File size: 58,616 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T01:06:23.697503Z"
    },
    "title": "BLAR: Biomedical Local Acronym Resolver",
    "authors": [
        {
            "first": "William",
            "middle": [],
            "last": "Hogan",
            "suffix": "",
            "affiliation": {},
            "email": "whogan@ucsd.edu"
        },
        {
            "first": "Yoshiki",
            "middle": [],
            "last": "Vazquez Baeza",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of California",
                "location": {
                    "addrLine": "San Diego",
                    "postCode": "92093",
                    "settlement": "La Jolla",
                    "region": "CA"
                }
            },
            "email": ""
        },
        {
            "first": "Yannis",
            "middle": [],
            "last": "Katsis",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "IBM Research-Almaden",
                "location": {
                    "addrLine": "650 Harry Road",
                    "postCode": "95120",
                    "settlement": "San Jose",
                    "region": "CA"
                }
            },
            "email": ""
        },
        {
            "first": "Tyler",
            "middle": [],
            "last": "Baldwin",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "IBM Research-Almaden",
                "location": {
                    "addrLine": "650 Harry Road",
                    "postCode": "95120",
                    "settlement": "San Jose",
                    "region": "CA"
                }
            },
            "email": ""
        },
        {
            "first": "Ho-Cheol",
            "middle": [],
            "last": "Kim",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "IBM Research-Almaden",
                "location": {
                    "addrLine": "650 Harry Road",
                    "postCode": "95120",
                    "settlement": "San Jose",
                    "region": "CA"
                }
            },
            "email": ""
        },
        {
            "first": "Chun-Nan",
            "middle": [],
            "last": "Hsu",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of California",
                "location": {
                    "addrLine": "San Diego",
                    "postCode": "92093",
                    "settlement": "La Jolla",
                    "region": "CA"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "NLP has emerged as an essential tool to extract knowledge from the exponentially increasing volumes of biomedical texts. Many NLP tasks, such as named entity recognition and named entity normalization, are especially challenging in the biomedical domain partly because of the prolific use of acronyms. Long names for diseases, bacteria, and chemicals are often replaced by acronyms. We propose Biomedical Local Acronym Resolver (BLAR), a highperforming acronym resolver that leverages state-of-the-art (SOTA) pre-trained language models to accurately resolve local acronyms in biomedical texts. We test BLAR on the Ab3P corpus and achieve state-of-the-art results compared to the current best-performing local acronym resolution algorithms and models.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "NLP has emerged as an essential tool to extract knowledge from the exponentially increasing volumes of biomedical texts. Many NLP tasks, such as named entity recognition and named entity normalization, are especially challenging in the biomedical domain partly because of the prolific use of acronyms. Long names for diseases, bacteria, and chemicals are often replaced by acronyms. We propose Biomedical Local Acronym Resolver (BLAR), a highperforming acronym resolver that leverages state-of-the-art (SOTA) pre-trained language models to accurately resolve local acronyms in biomedical texts. We test BLAR on the Ab3P corpus and achieve state-of-the-art results compared to the current best-performing local acronym resolution algorithms and models.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "In the past decade, natural language processing (NLP) has greatly advanced in the biomedical domain. Given the troves of biomedical texts, NLP has emerged as a critical tool for knowledge extraction. NLP has been used to automatically analyze clinical notes, electronic medical records, biological literature, and other biomedical texts in the hopes of unearthing new knowledge and deeper insights.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Acronyms are especially common in science and even more so in biomedical publications, as authors regularly seek to shorten the long names for diseases, bacteria, and chemicals. Barnett and Doubleday (2020) documented acronym use in more than 24 million scientific article titles and 18 million scientific articles published between 1950 and 2019. They report that 19% of titles and 73% of abstracts contain acronyms. Of the more than one million unique acronyms in their data, 0.2% appeared regularly and most acronyms, 79%, appeared less than 10 times.",
                "cite_spans": [
                    {
                        "start": 178,
                        "end": 206,
                        "text": "Barnett and Doubleday (2020)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Acronym resolution (AR) can be performed by either leveraging acronym definitions found in the text (referred to as local AR) or by consulting external resources, such as ontologies (known as disambiguation or global AR). While a lot of progress has been recently done on the latter, local AR has seen surprisingly little recent work. In particular, the SOTA approaches in local AR are rulebased or simple machine learning approaches from more than a decade ago. As a result, this task has not benefited from recent advances in transformers (Vaswani et al., 2017) . To address this issue, in this work we focus on local AR where we try to answer the question: Can transformers be leveraged to further improve traditional local AR approaches?",
                "cite_spans": [
                    {
                        "start": 541,
                        "end": 563,
                        "text": "(Vaswani et al., 2017)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "To answer this question, we present Biomedical Local Acronym Resolver (BLAR); a transformerbased model designed to resolve local acronyms in biomedical texts. In particular, this work makes the following contributions:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "1. Design of a novel transformer-based model for local acronym resolution, which resolves acronyms through a combination of a two-step architecture and appropriate leveraging of pretrained language models. To the best of our knowledge, this is the first transformer-based approach for local AR.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "2. Experimental evaluation of BLAR against SOTA local AR approaches, showing that it outperforms the latter. In particular, evaluated on the Ab3P corpus (Sohn et al., 2008) , BLAR reaches an F1 score of 0.966 compared to 0.899 of the best performing existing approach.",
                "cite_spans": [
                    {
                        "start": 153,
                        "end": 172,
                        "text": "(Sohn et al., 2008)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "There are a few challenges inherent in acronym resolution that make a simple dictionary-lookup and Our approach is applicable to both \"Local AR\" and \"Acronym Dictionary Compilation.\"",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background and Related Work",
                "sec_num": "2"
            },
            {
                "text": "other rule-based models less effective. First, shortform acronym representations are rarely unique. For instance, \"CD\" is an acronym for \"Crohn's disease\" and \"Cowden Disease.\" A simple dictionary lookup of \"CD\" using an acronym disease dictionary will produce ambiguous results and requires additional steps of acronym disambiguation. Moreover, the number of letters in a short-form may not match the number of words in the corresponding long-form (e.g. the short-form of \"systemic sclerosis\" is \"SSc\" ). Lastly, long-form entities can have complicated short-forms. For example, the short-form of \"heparin-induced thrombocytopenia type II\" is \"HIT type II,\" a short-form that shortens the first three words of the long-form and leaves the last two words unmodified. To address these challenges, approaches to acronym resolution have been developed and can be classified into three broad categories: local acronym resolution (Schwartz and Hearst, 2003; Sohn et al., 2008) , disambiguation acronym resolution (also referred to as non-local or global acronym resolution) (Jin et al., 2019; Jacobs et al., 2020) , and acronym dictionary compilation (Grossman et al., 2018). We refer to approaches that resolve acronyms by leveraging their definitions found in the containing text as local acronym resolution techniques. In contrast, non-local or global techniques resolve acronyms by using external resources. These typically target acronyms whose long-form is not contained within the text, which is common among more established acronyms, such as \"mRNA\" and \"DNA.\" Finally, acronym dic-tionary compilation refers to the creation of an acronym dictionary based on the source text or external ontologies, or a combination of the two. These three sub-categories of AR approaches are depicted in Figure 1 .",
                "cite_spans": [
                    {
                        "start": 925,
                        "end": 952,
                        "text": "(Schwartz and Hearst, 2003;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 953,
                        "end": 971,
                        "text": "Sohn et al., 2008)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 1069,
                        "end": 1087,
                        "text": "(Jin et al., 2019;",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 1088,
                        "end": 1108,
                        "text": "Jacobs et al., 2020)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 1791,
                        "end": 1799,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Background and Related Work",
                "sec_num": "2"
            },
            {
                "text": "Our approach specifically targets local acronym resolution and acronym dictionary compilation. Local acronyms appear as a pair of entities featuring a short-form (SF) entity and a corresponding longform (LF) entity. Historically, local acronym resolution has been handled by rule-based algorithms. From 2003 , Schwartz et al. (2003 and Sohn et al. (2008) demonstrated the best performance of local acronym resolution. They used a combination of hand-crafted filters to identify SF-LF pairs. Kuo et al. (2009) introduced the first local acronym resolution model that leveraged machine learning. It produced SOTA results with the help of four sets of hand-crafted features, including rule-based text filters. Yeganova et al. (2011) further improved upon local acronym resolution by introducing a hybrid machine learning and rulebase model that does not rely on labeled data. They extract potential SF-LF pairs from PubMed articles using rules similar to the rules developed by Sohn et al. and train a classifier to identify SF-LF pairs.",
                "cite_spans": [
                    {
                        "start": 298,
                        "end": 307,
                        "text": "From 2003",
                        "ref_id": null
                    },
                    {
                        "start": 308,
                        "end": 331,
                        "text": ", Schwartz et al. (2003",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 336,
                        "end": 354,
                        "text": "Sohn et al. (2008)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 491,
                        "end": 508,
                        "text": "Kuo et al. (2009)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 707,
                        "end": 729,
                        "text": "Yeganova et al. (2011)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background and Related Work",
                "sec_num": "2"
            },
            {
                "text": "Our approach to local acronym resolution is simple in its architecture yet novel in its application. Our two-stage model leverages transfer learning from modern, SOTA pretrained transformers and is able to learn the features of short-form and longform acronym pairs without the help of a predefined dictionary, hand-crafted features, filters, or rules. Our model processes batches of documents, such as abstracts from PubMed, and creates an acronym dictionary specific to each inputted document.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background and Related Work",
                "sec_num": "2"
            },
            {
                "text": "The intuition behind local acronym resolution is that authors of scientific publications commonly define the acronyms that they employ later on in the document. This is typically done by defining acronyms within the text in the form of pairs of short-form (SF) and corresponding long-form (LF) entities. We can then use the identified SF-LF acronym pairs to either resolve the acronyms appearing in the input document or populate an SF-LF dictionary that can be used to accurately resolve future uses of the SF versions of the acronyms in the remainder of the text. Step 2 showing the various tagged entities of a short and long-form acronym pair. We use a BILOU (Beginning, Inside, Last, Outside, Unit) tagging scheme (Ratinov and Roth, 2009) to identify long-form (LF) entities, short-form (SF) entities, and parenthesis (PR) enclosing a paired SF or LF entity.",
                "cite_spans": [
                    {
                        "start": 719,
                        "end": 743,
                        "text": "(Ratinov and Roth, 2009)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Method",
                "sec_num": "3"
            },
            {
                "text": "Identifying the definitions of SF-LF pairs poses two major challenges: First, one has to identify the location in the text where the definition of an SF-LF pair is provided. Second, one has to identify the exact span (i.e., text) of both the short and long-form within the definition.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Method",
                "sec_num": "3"
            },
            {
                "text": "Two-step AR: Following the above structure, BLAR splits the problem into two separate subtasks:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Method",
                "sec_num": "3"
            },
            {
                "text": "\u2022",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Method",
                "sec_num": "3"
            },
            {
                "text": "Step 1: Sentence Classification. Given the input text, identify sentences containing definitions of SF-LF pairs. This is modeled as a binary classification task.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Method",
                "sec_num": "3"
            },
            {
                "text": "\u2022",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Method",
                "sec_num": "3"
            },
            {
                "text": "Step 2: SF-LF Acronym Tagging: Given a sentence predicted to contain a definition of an SF-LF pair, identify the exact form (i.e., text) of the SF and LF entities. This is modeled as a token classification task, where each token in the sentence is classified as being part of an acronym short-form, acronym long-form, or the parenthesis enclosing a paired entity. Token classification follows the BILOU (Beginning, Inside, Last, Outside, and Unit) encoding scheme (Ratinov and Roth, 2009) , as shown in Figure 2 through a simple example.",
                "cite_spans": [
                    {
                        "start": 464,
                        "end": 488,
                        "text": "(Ratinov and Roth, 2009)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 503,
                        "end": 511,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Method",
                "sec_num": "3"
            },
            {
                "text": "Model architecture: The sentence classification model (Step 1) leverages transfer learning by fine-tuning the pretrained SciBERT model (Beltagy et al., 2019) for the specific task of sentence classification. The sentences that have been predicted as containing SF-LF pairs are given as input to the SF and LF tagging model (Step 2). The tagging model also leverages SciBERT by fine-tuning it on the SF and LF tagging task. To avoid exposure bias resulting from training on a set of perfect inputs (e.g. sentences containing acronym pairs as labeled in the dataset), we use the output from the sentence classification model from Step 1 to train the tagging model in Step 2. The output of the tagging model is a dictionary that can then be used to replace all the short-form acronyms with their corresponding long-forms within a single source text.",
                "cite_spans": [
                    {
                        "start": 135,
                        "end": 157,
                        "text": "(Beltagy et al., 2019)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Method",
                "sec_num": "3"
            },
            {
                "text": "Model training: We developed BLAR using the BioADI corpus (Kuo et al., 2009) and tested it on the Ab3P corpus (Sohn et al., 2008) . BioADI includes 1,668 true SF-LF pairs from 1,200 annotated PubMed abstracts and Ab3P includes 1,221 true SF-LF pairs from 1,250 annotated PubMed abstracts. Both provide span-level data identifying short and long-form acronym pairs within PubMed abstracts and differ only in the articles selected for annotation. During development, we fine-tuned both our sentence and acronym token classifiers on the BioADI corpus randomly split into three subsets for training (80% of the corpus), validation (10% of the corpus), and testing (10% of the corpus). We use BioADI as a training dataset and Ab3P as a testing dataset to best compare our model's performance to existing SOTA benchmarks for local acronym resolution which use the same train/test splits. The BioADI and Ab3P corpora are described in Section 4. Since the models in both steps are fine-tuned versions of SciBERT, they are able to train fairly quick on CPUs.",
                "cite_spans": [
                    {
                        "start": 58,
                        "end": 76,
                        "text": "(Kuo et al., 2009)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 110,
                        "end": 129,
                        "text": "(Sohn et al., 2008)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Method",
                "sec_num": "3"
            },
            {
                "text": "Step 1 and Step 2 converged within eight epochs, taking roughly 10 hours and 2 hours to complete, respectively, on two Intel Xeon CPUs (E5-2640 v3 @ 2.60GH) with 16GB of RAM.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Method",
                "sec_num": "3"
            },
            {
                "text": "Ablation study: To determine the importance of the 2-step architecture, we conduct an ablation study where we train a model to resolve acronyms without the help of a sentence classification step. This model is identical to the tagging model used in Step 2, only, it is trained on raw sentences that may or may not contain an acronym pair. This single-step architecture must simultaneously learn to detect and resolve an acronym pair. We refer to this model variation as \"BLAR (single step).\"",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Method",
                "sec_num": "3"
            },
            {
                "text": "BioADI: We use the BioADI (Kuo et al., 2009) corpus to train BLAR. It includes 1,668 true SF-LF pairs from 1,200 annotated PubMed abstracts.",
                "cite_spans": [
                    {
                        "start": 26,
                        "end": 44,
                        "text": "(Kuo et al., 2009)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "4"
            },
            {
                "text": "Ab3P: We use the Ab3P (Sohn et al., 2008) corpus for testing. It includes 1,221 true SF-LF pairs from 1,250 annotated PubMed abstracts.",
                "cite_spans": [
                    {
                        "start": 22,
                        "end": 41,
                        "text": "(Sohn et al., 2008)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "4"
            },
            {
                "text": "At the time of writing, both datasets are available for download on the BioC (Comeau et al., 2013) website.",
                "cite_spans": [
                    {
                        "start": 77,
                        "end": 98,
                        "text": "(Comeau et al., 2013)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "4"
            },
            {
                "text": "To measure BLAR's performance, we first compare it against SOTA local AR approaches. As explained in the Background and Previous Work section, to the best of our knowledge, local acronym resolution has not seen significant advances since 2009. More recent acronym resolution works have focused instead on disambiguation acronym resolution, still relying on simpler rule-based algorithms for local acronym resolution (Jin et al., 2019; Jacobs et al., 2020) . As a result, we compare BLAR to Kuo et al. (2009) , Sohn et al. (2008) , and Schwartz and Hearst (2003) , which represent the SOTA in local acronym resolution. Table 1 depicts the performance of BLAR against SOTA AR models. In this experiment, all models were trained on the BioADI dataset and tested on the Ab3P dataset. For each model, we evaluate Precision, Recall, and F1 score based on exact matches of long-form and short-form pairs. The results show that BLAR significantly outperforms all previous approaches, achieving an F1 score of 0.966 compared to 0.899 of the next best approach. We observe that, without a sentence classification step, the single-step BLAR model under-performs compared to the two-step architecture, highlighting the benefit of the sentence classification step in the full two-step architecture. Schwartz et al. (2003) 0.950 0.788 0.861 Sohn et al. (2008) 0.970 0.836 0.898 Kuo et al. (2009) 0.959 0.846 0.899 Yeganova et al. (2011) Model Output Analysis: Finally, to further understand the performance of BLAR, we perform an instance-level analysis of its output.",
                "cite_spans": [
                    {
                        "start": 416,
                        "end": 434,
                        "text": "(Jin et al., 2019;",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 435,
                        "end": 455,
                        "text": "Jacobs et al., 2020)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 490,
                        "end": 507,
                        "text": "Kuo et al. (2009)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 510,
                        "end": 528,
                        "text": "Sohn et al. (2008)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 535,
                        "end": 561,
                        "text": "Schwartz and Hearst (2003)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 1286,
                        "end": 1308,
                        "text": "Schwartz et al. (2003)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 1327,
                        "end": 1345,
                        "text": "Sohn et al. (2008)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 1364,
                        "end": 1381,
                        "text": "Kuo et al. (2009)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 1400,
                        "end": 1422,
                        "text": "Yeganova et al. (2011)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 618,
                        "end": 625,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Results and Discussion",
                "sec_num": "5"
            },
            {
                "text": "Analyzing the correct predictions, we see that the model successfully overcomes some of the complex challenges inherent in acronym resolution. For example, it correctly resolves the acronyms \"SSc\" to \"systemic sclerosis\" and \"IUAG\" to \"intrauterine growth retardation.\" These examples show that BLAR learns to resolve short-forms that contain a different number of letters compared to the number of words in the corresponding long-form. In another example, BLAR correctly resolves \"HIT type II\" to \"heparin-induced thrombocytopenia type II\" which illustrates that the model was able to learn more complex acronyms that consist of a mix of short-form entities and complete words.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "AR Model P R F1",
                "sec_num": null
            },
            {
                "text": "Moving to the incorrect predictions, we classify BLAR's errors into three categories: missed acronyms (false negatives), added acronyms (false positives), and modified acronyms (i.e., acronyms where the model correctly identifies a short-form but either truncates or extends the corresponding long-form).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "AR Model P R F1",
                "sec_num": null
            },
            {
                "text": "A majority of the errors come from modified acronyms. Analyzing the modified acronyms, we find that 63.7% of cases are long-forms expanded or truncated by a single word/token. We identify that many of the erroneously expanded long-forms add a word or words preceding the ground truth long-form. For example, in the text \". . . heat stroke by reducing iNOS-dependent nitric oxide (NO). . . \", BLAR identified \"iNOS-dependent nitric oxide\" as the long-form expansion of the short-form \"NO.\", instead of the correct \"nitric oxide.\"",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "AR Model P R F1",
                "sec_num": null
            },
            {
                "text": "Another common error within the modified acronyms category is a truncated long-form. For example, BLAR predicts the long-form of \"FVC\" to be \"forced vital capacity\" but the ground truth is \"forced expiratory volume in 1 s vital capacity.\" Here, BLAR predicts a simple long-form when the ground truth long-form is actually more complex. We plan to explore these insights in future work to further improve the model.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "AR Model P R F1",
                "sec_num": null
            },
            {
                "text": "Local acronym resolution has seen limited progress in recent years and has not benefited from the recent advancements in machine learning approaches. To address this problem, we develop BLAR; a deeplearning model that leverages a two-step architecture on top of pre-trained language models to identify SF-LF pairs in input documents. Our experimental results show that BLAR outperforms other local acronym resolution approaches and achieves state-of-the-art performance. We release BLAR and its source code for public use. As part of our future work, we will be exploring two threads: first, further improving the model based on our error analysis, and second, exploring how BLAR (which in this case has been fine-tuned for the scientific domain) can be extended to cover acronyms found in other domains. We believe future work could also focus on a hybrid model that leverages both deep-learning and rule-based algorithms.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "6"
            }
        ],
        "back_matter": [
            {
                "text": "Thank you to the anonymous reviewers for their thoughtful comments and corrections. This work is supported by IBM Research AI through the AI Horizons Network.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgement",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Metaresearch: The growth of acronyms in the scientific literature. eLife",
                "authors": [
                    {
                        "first": "Adrian",
                        "middle": [],
                        "last": "Barnett",
                        "suffix": ""
                    },
                    {
                        "first": "Zoe",
                        "middle": [],
                        "last": "Doubleday",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "9",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.7554/eLife.60080"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Adrian Barnett and Zoe Doubleday. 2020. Meta- research: The growth of acronyms in the scientific literature. eLife, 9:e60080.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "SciB-ERT: A pretrained language model for scientific text",
                "authors": [
                    {
                        "first": "Iz",
                        "middle": [],
                        "last": "Beltagy",
                        "suffix": ""
                    },
                    {
                        "first": "Kyle",
                        "middle": [],
                        "last": "Lo",
                        "suffix": ""
                    },
                    {
                        "first": "Arman",
                        "middle": [],
                        "last": "Cohan",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "3615--3620",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1371"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB- ERT: A pretrained language model for scientific text. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Lan- guage Processing (EMNLP-IJCNLP), pages 3615- 3620, Hong Kong, China. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Bioc: a minimalist approach to interoperability for biomedical text processing",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Donald",
                        "suffix": ""
                    },
                    {
                        "first": "Rezarta",
                        "middle": [],
                        "last": "Comeau",
                        "suffix": ""
                    },
                    {
                        "first": "Paolo",
                        "middle": [],
                        "last": "Islamaj Dogan",
                        "suffix": ""
                    },
                    {
                        "first": "Kevin",
                        "middle": [
                            "Bretonnel"
                        ],
                        "last": "Ciccarese",
                        "suffix": ""
                    },
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Cohen",
                        "suffix": ""
                    },
                    {
                        "first": "Florian",
                        "middle": [],
                        "last": "Krallinger",
                        "suffix": ""
                    },
                    {
                        "first": "Zhiyong",
                        "middle": [],
                        "last": "Leitner",
                        "suffix": ""
                    },
                    {
                        "first": "Yifan",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    },
                    {
                        "first": "Fabio",
                        "middle": [],
                        "last": "Peng",
                        "suffix": ""
                    },
                    {
                        "first": "Manabu",
                        "middle": [],
                        "last": "Rinaldi",
                        "suffix": ""
                    },
                    {
                        "first": "Alfonso",
                        "middle": [],
                        "last": "Torii",
                        "suffix": ""
                    },
                    {
                        "first": "Karin",
                        "middle": [],
                        "last": "Valencia",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [
                            "C"
                        ],
                        "last": "Verspoor",
                        "suffix": ""
                    },
                    {
                        "first": "Cathy",
                        "middle": [
                            "H"
                        ],
                        "last": "Wiegers",
                        "suffix": ""
                    },
                    {
                        "first": "W. John",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Wilbur",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Database : the journal of biological databases and curation",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1093/database/bat064"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Donald C. Comeau, Rezarta Islamaj Dogan, Paolo Ci- ccarese, Kevin Bretonnel Cohen, Martin Krallinger, Florian Leitner, Zhiyong Lu, Yifan Peng, Fabio Ri- naldi, Manabu Torii, Alfonso Valencia, Karin Ver- spoor, Thomas C. Wiegers, Cathy H. Wu, and W. John Wilbur. 2013. Bioc: a minimalist approach to interoperability for biomedical text processing. Database : the journal of biological databases and curation, 2013:bat064-bat064. 24048470[pmid].",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "A method for harmonization of clinical abbreviation and acronym sense inventories",
                "authors": [
                    {
                        "first": "Lisa",
                        "middle": [
                            "V"
                        ],
                        "last": "Grossman",
                        "suffix": ""
                    },
                    {
                        "first": "Elliot",
                        "middle": [
                            "G"
                        ],
                        "last": "Mitchell",
                        "suffix": ""
                    },
                    {
                        "first": "George",
                        "middle": [],
                        "last": "Hripcsak",
                        "suffix": ""
                    },
                    {
                        "first": "Chunhua",
                        "middle": [],
                        "last": "Weng",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [
                            "K"
                        ],
                        "last": "Vawdrey",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Journal of Biomedical Informatics",
                "volume": "88",
                "issue": "",
                "pages": "62--69",
                "other_ids": {
                    "DOI": [
                        "10.1016/j.jbi.2018.11.004"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Lisa V. Grossman, Elliot G. Mitchell, George Hripc- sak, Chunhua Weng, and David K. Vawdrey. 2018. A method for harmonization of clinical abbreviation and acronym sense inventories. Journal of Biomedi- cal Informatics, 88:62 -69.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Acronyms: identification, expansion and disambiguation",
                "authors": [
                    {
                        "first": "Kayla",
                        "middle": [],
                        "last": "Jacobs",
                        "suffix": ""
                    },
                    {
                        "first": "Alon",
                        "middle": [],
                        "last": "Itai",
                        "suffix": ""
                    },
                    {
                        "first": "Shuly",
                        "middle": [],
                        "last": "Wintner",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Annals of Mathematics and Artificial Intelligence",
                "volume": "88",
                "issue": "5",
                "pages": "517--532",
                "other_ids": {
                    "DOI": [
                        "10.1007/s10472-018-9608-8"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kayla Jacobs, Alon Itai, and Shuly Wintner. 2020. Acronyms: identification, expansion and disam- biguation. Annals of Mathematics and Artificial In- telligence, 88(5):517-532.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Deep contextualized biomedical abbreviation expansion",
                "authors": [
                    {
                        "first": "Qiao",
                        "middle": [],
                        "last": "Jin",
                        "suffix": ""
                    },
                    {
                        "first": "Jinling",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Xinghua",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 18th BioNLP Workshop and Shared Task",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/w19-5010"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Qiao Jin, Jinling Liu, and Xinghua Lu. 2019. Deep con- textualized biomedical abbreviation expansion. Pro- ceedings of the 18th BioNLP Workshop and Shared Task.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Bioadi: a machine learning approach to identifying abbreviations and definitions in biological literature",
                "authors": [
                    {
                        "first": "Cheng-Ju",
                        "middle": [],
                        "last": "Kuo",
                        "suffix": ""
                    },
                    {
                        "first": "Maurice",
                        "middle": [
                            "Ht"
                        ],
                        "last": "Ling",
                        "suffix": ""
                    },
                    {
                        "first": "Kuan-Ting",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Chun-Nan",
                        "middle": [],
                        "last": "Hsu",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "BMC Bioinformatics",
                "volume": "10",
                "issue": "15",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1186/1471-2105-10-S15-S7"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Cheng-Ju Kuo, Maurice HT Ling, Kuan-Ting Lin, and Chun-Nan Hsu. 2009. Bioadi: a machine learn- ing approach to identifying abbreviations and defi- nitions in biological literature. BMC Bioinformatics, 10(15):S7.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Design challenges and misconceptions in named entity recognition",
                "authors": [
                    {
                        "first": "Lev",
                        "middle": [],
                        "last": "Ratinov",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Roth",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of the Thirteenth Conference on Computational Natural Language Learning (CoNLL-2009)",
                "volume": "",
                "issue": "",
                "pages": "147--155",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lev Ratinov and Dan Roth. 2009. Design chal- lenges and misconceptions in named entity recog- nition. In Proceedings of the Thirteenth Confer- ence on Computational Natural Language Learning (CoNLL-2009), pages 147-155, Boulder, Colorado. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "A simple algorithm for identifying abbreviation definitions in biomedical text",
                "authors": [
                    {
                        "first": "Ariel",
                        "middle": [
                            "S"
                        ],
                        "last": "Schwartz",
                        "suffix": ""
                    },
                    {
                        "first": "Marti",
                        "middle": [
                            "A"
                        ],
                        "last": "Hearst",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing",
                "volume": "",
                "issue": "",
                "pages": "451--62",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ariel S. Schwartz and Marti A. Hearst. 2003. A sim- ple algorithm for identifying abbreviation definitions in biomedical text. Pacific Symposium on Biocom- puting. Pacific Symposium on Biocomputing, pages 451-62.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Abbreviation definition identification based on automatic precision estimates",
                "authors": [
                    {
                        "first": "Sunghwan",
                        "middle": [],
                        "last": "Sohn",
                        "suffix": ""
                    },
                    {
                        "first": "Donald",
                        "middle": [
                            "C"
                        ],
                        "last": "Comeau",
                        "suffix": ""
                    },
                    {
                        "first": "Won",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "W. John",
                        "middle": [],
                        "last": "Wilbur",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "BMC bioinformatics",
                "volume": "9",
                "issue": "",
                "pages": "402--402",
                "other_ids": {
                    "DOI": [
                        "10.1186/1471-2105-9-402"
                    ],
                    "PMCID": [
                        "PMC2576267"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Sunghwan Sohn, Donald C. Comeau, Won Kim, and W. John Wilbur. 2008. Abbreviation def- inition identification based on automatic preci- sion estimates. BMC bioinformatics, 9:402-402. PMC2576267[pmcid].",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Attention is all you need",
                "authors": [
                    {
                        "first": "Ashish",
                        "middle": [],
                        "last": "Vaswani",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Shazeer",
                        "suffix": ""
                    },
                    {
                        "first": "Niki",
                        "middle": [],
                        "last": "Parmar",
                        "suffix": ""
                    },
                    {
                        "first": "Jakob",
                        "middle": [],
                        "last": "Uszkoreit",
                        "suffix": ""
                    },
                    {
                        "first": "Llion",
                        "middle": [],
                        "last": "Jones",
                        "suffix": ""
                    },
                    {
                        "first": "Aidan",
                        "middle": [
                            "N"
                        ],
                        "last": "Gomez",
                        "suffix": ""
                    },
                    {
                        "first": "Illia",
                        "middle": [],
                        "last": "Kaiser",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Polosukhin",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Advances in Neural Information Processing Systems",
                "volume": "30",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, \u0141 ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Pro- cessing Systems, volume 30. Curran Associates, Inc.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Machine learning with naturally labeled data for identifying abbreviation definitions",
                "authors": [
                    {
                        "first": "Lana",
                        "middle": [],
                        "last": "Yeganova",
                        "suffix": ""
                    },
                    {
                        "first": "Donald",
                        "middle": [],
                        "last": "Comeau",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Wilbur",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "BMC bioinformatics",
                "volume": "12",
                "issue": "3",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1186/1471-2105-12-S3-S6"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Lana Yeganova, Donald Comeau, and W. Wilbur. 2011. Machine learning with naturally labeled data for identifying abbreviation definitions. BMC bioinfor- matics, 12 Suppl 3:S6.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "num": null,
                "uris": null,
                "text": "Sub-tasks of acronym resolution (AR).",
                "type_str": "figure"
            },
            "FIGREF1": {
                "num": null,
                "uris": null,
                "text": "Sample output of",
                "type_str": "figure"
            },
            "TABREF1": {
                "num": null,
                "content": "<table><tr><td>: Evaluation results of BLAR against SOTA</td></tr><tr><td>local acronym resolution models. All models, save</td></tr><tr><td>Yeganova et al., were trained on BioADI and tested</td></tr><tr><td>on Ab3P. Yeganova et al. is trained on 1M automati-</td></tr><tr><td>cally extracted potential SF-LF pairs from PubMed ab-</td></tr><tr><td>stracts.</td></tr></table>",
                "text": "",
                "html": null,
                "type_str": "table"
            }
        }
    }
}