File size: 94,022 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T01:06:14.325898Z"
    },
    "title": "damo_nlp at MEDIQA 2021: Knowledge-based Preprocessing and Coverage-oriented Reranking for Medical Question Summarization",
    "authors": [
        {
            "first": "Yifan",
            "middle": [],
            "last": "He",
            "suffix": "",
            "affiliation": {
                "laboratory": "Alibaba Group",
                "institution": "",
                "location": {}
            },
            "email": "y.he@alibaba-inc.com"
        },
        {
            "first": "Mosha",
            "middle": [],
            "last": "Chen",
            "suffix": "",
            "affiliation": {
                "laboratory": "Alibaba Group",
                "institution": "",
                "location": {}
            },
            "email": "chenmosha.cms@alibaba-inc.com"
        },
        {
            "first": "Songfang",
            "middle": [],
            "last": "Huang",
            "suffix": "",
            "affiliation": {
                "laboratory": "Alibaba Group",
                "institution": "",
                "location": {}
            },
            "email": "songfang.hsf@alibaba-inc.com"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Medical question summarization is an important but difficult task, where the input is often complex and erroneous while annotated data is expensive to acquire. We report our participation in the MEDIQA 2021 question summarization task in which we are required to address these challenges. We start from pre-trained conditional generative language models, use knowledge bases to help correct input errors, and rerank single system outputs to boost coverage. Experimental results show significant improvement in stringbased metrics.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Medical question summarization is an important but difficult task, where the input is often complex and erroneous while annotated data is expensive to acquire. We report our participation in the MEDIQA 2021 question summarization task in which we are required to address these challenges. We start from pre-trained conditional generative language models, use knowledge bases to help correct input errors, and rerank single system outputs to boost coverage. Experimental results show significant improvement in stringbased metrics.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Question summarization for medical forum is important for medical knowledge discovery and retrieval and facilitates downstream tasks such as biomedical question answering (Jin et al., 2021) . Medical questions are often complex, scattered with non-medical information, and can sometimes be erroneous because forum users are not domain experts (Ben Abacha and Demner-Fushman, 2019) . In addition, annotation in the medical domain is harder to acquire than in the general domain. These challenges make medical question summarization an important and difficult task where annotation is often scarce. The MEDIQA 2021 shared task 1 (Ben Abacha et al., 2021), medical question summarization, requires participants to build summarization systems for noisy medical forum texts with limited annotation data. The official training set of the task is the MeQSum dataset (Ben Abacha and Demner-Fushman, 2019), which is composed of 1,000 medical questions and their corresponding summaries. The validation and test sets consist of 50 and 100 questions respectively and topic words are sometimes misspelled.",
                "cite_spans": [
                    {
                        "start": 171,
                        "end": 189,
                        "text": "(Jin et al., 2021)",
                        "ref_id": null
                    },
                    {
                        "start": 343,
                        "end": 380,
                        "text": "(Ben Abacha and Demner-Fushman, 2019)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Scarcity of data, noisy input, and complexity and redundancy of text all pose challenges for ques-tion summarization systems. We try to address these challenges using a combination of knowledgebased error correction, pre-trained generative language models, and output reranking.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Knowledge-based error correction leverages multiple levels of lexical resources and a high coverage knowledge base to correct errors in input. Our experiments show that knowledge-based error correction helps downstream summarization performance according to the Rouge metric.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Pre-trained generative language models are transformer-based language models trained with loss functions that facilitate sequence to sequence generation. Models such as Pegasus (Zhang et al., 2020a) , BART (Lewis et al., 2020) , and T5 (Raffel et al., 2020) achieve state-of-the-art performance on various text generation tasks and are shown to perform well on few-shot generation scenarios (Goodwin et al., 2020) . We finetune pre-trained language models to obtain baseline systems with limited amount of training data.",
                "cite_spans": [
                    {
                        "start": 177,
                        "end": 198,
                        "text": "(Zhang et al., 2020a)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 206,
                        "end": 226,
                        "text": "(Lewis et al., 2020)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 236,
                        "end": 257,
                        "text": "(Raffel et al., 2020)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 391,
                        "end": 413,
                        "text": "(Goodwin et al., 2020)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Output reranking picks the best output among multiple systems. The availability of different language models offers a diverse set of summaries to choose from. We observe difference in summarization styles between the training and the validation set and devise a simple heuristic to pick the best output based on this observation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In the rest of the paper, we describe these components and report evaluation results on the validation and the test set.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The MEDIQA question summarization task requires participants to summarize user generated medical queries into shorter, more focused questions. We present an example from the MEDIQA 2021 task 1 validation set in Figure 1 (a). We note that the name of the disease \"folliculitis\" is spelled Hi, Please can you help -I am writing from South Africa. My daughter suffers with acute folliculitus, and has been since the age of 13. She is now 20 and is in so much distress as nothing seems to alleviate the itching and soreness... I am writing to you for any help you could give me to try and assist her. Could you recommend a specialist and someone who could help us with research? Please could you point us in the right direction? I am happy to send through her lab tests -please let me know. Thanks How can we find a specialist or clinical trial for chronic folliculitis? incorrectly in the input question and the question contains a lot of irrelevant information. We attempt to correct misspellings with a dedicated module in our system. As useful information is often scattered in different sentences in the input, abstractive summarization suits this task better than extractive summarization. We perform abstractive summarization with pre-trained language models. We illustrate the architecture of our submission in Figure 1 (b): we first try to correct spell errors in the input; then summarize each question with three generative LMs: Pegasus, BART, and T5; finally, for each question, we pick the best output with a feature-based reranker and the best output is chosen as the summarization of the question.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 211,
                        "end": 219,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    },
                    {
                        "start": 1315,
                        "end": 1323,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Task and Architecture Overview",
                "sec_num": "2"
            },
            {
                "text": "Misspellings are prevalent in medical forums, where non-expert users discuss highly specialized medical topics. Uncorrected misspellings can lead to mismatch between the source text and the summary during training and cause errors if copied verbatim during prediction. These errors are penalized heavily by string matching-based metrics like Rouge as they break n-grams.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Knowledge-based Error Correction",
                "sec_num": "3"
            },
            {
                "text": "In this shared task, we conservatively correct misspelled words in input by reusing a cascade of candidate generation modules from an entity linking system. Entity linking is the task to link entity mentions in text to entities in a knowledge base (KB). Candidate generation is an intermediate step in entity linking to generate candidate KB entities from potentially abbreviated, misspelled, or alias text mentions (see e.g. (Charton et al., 2014) ). Our method is also comparable to previous work on Levenshtein distance-based (Levenshtein, 1966) medical query correction (Soualmia et al., 2012), but we augment that approach with cascaded knowledge sources and an alias table.",
                "cite_spans": [
                    {
                        "start": 426,
                        "end": 448,
                        "text": "(Charton et al., 2014)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 529,
                        "end": 548,
                        "text": "(Levenshtein, 1966)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Knowledge-based Error Correction",
                "sec_num": "3"
            },
            {
                "text": "Error correction can be implemented easier and with possibly higher quality if search suggestions from online search engines (Zhou et al., 2015) are utilized. We use in-house error correction to keep the submission offline.",
                "cite_spans": [
                    {
                        "start": 125,
                        "end": 144,
                        "text": "(Zhou et al., 2015)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Knowledge-based Error Correction",
                "sec_num": "3"
            },
            {
                "text": "The error correction module relies on the following resources:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Resources",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 Medical word list. We collect tokens from the English side of~20K bilingual medical phrases collected from dictionaries and drug names.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Resources",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 Wikipedia dump. We use a 20210101 dump of the English Wikipedia as the knowledge base and alias table.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Resources",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 High frequency word list. We use the top 10,000 words in the Google 1T corpus 1 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Resources",
                "sec_num": "3.1"
            },
            {
                "text": "We use Wikipedia instead of a medical KB because of its broad coverage. Edges (redirects, links etc.) in the Wikipedia KB can be used as an alias table to capture common misspellings and aliases. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Resources",
                "sec_num": "3.1"
            },
            {
                "text": "During error correction, we handle tokens composed entirely of alphabetical characters and allow at most 2 edits in similarity searches. We only consider tokens that share 3-prefix or 3-suffix with the query to limit search space.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Error correction steps",
                "sec_num": "3.2"
            },
            {
                "text": "Error correction consists of the following steps:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Error correction steps",
                "sec_num": "3.2"
            },
            {
                "text": "\u2022 Index construction. We build a token index of Wikipedia. We only index titles with no more than two tokens and tokens more than 5 characters long. We use the first token to represent the title. When a token can map to more than one titles, we map it to the title with the lowest id.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Error correction steps",
                "sec_num": "3.2"
            },
            {
                "text": "\u2022 Spell checking. We pass the text through a spell checker with medical terms 2 to detect potential errors. The flagged tokens are the query words for the error correction pipeline.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Error correction steps",
                "sec_num": "3.2"
            },
            {
                "text": "\u2022 Wikipedia match. If the query has an exact match in the Wikipedia token index, we link the query to the token and its corresponding Wikipedia title. Note that a title can either be an entity or an alias, which we resolve later in the name resolution step.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Error correction steps",
                "sec_num": "3.2"
            },
            {
                "text": "\u2022 Medical word search. We search the medical word list to find medical terms that spell similarly to the query. We choose the medical term if a result is found.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Error correction steps",
                "sec_num": "3.2"
            },
            {
                "text": "\u2022 Frequent word search. We search the high frequency word list to recall common English words that spell similarly to the query. We choose the word if a result is found.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Error correction steps",
                "sec_num": "3.2"
            },
            {
                "text": "\u2022 Wikipedia search. We search the Wikipedia token index for queries longer than 5. To further constrain search space, we only consider tokens that share 5-prefix, 5-suffix, or all consonants with the query. We choose the token with the highest sequence matching ratio 3 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Error correction steps",
                "sec_num": "3.2"
            },
            {
                "text": "\u2022 Name resolution. For corrected tokens retrieved from the medical word list and the Wikipedia, we search the Wikipedia dump to check if it is an alias of another entity and maps it to its canonical form.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Error correction steps",
                "sec_num": "3.2"
            },
            {
                "text": "Consider the example in Figure 2 . Input queries of the error correction pipeline are the misspelled words identified by the spell checker. Wikipedia match catches the common misspelling *folliculitus and recovers its canonical form folliculitis. Medical word search recovers pigmentosum from the medical dictionary. Frequent word search recovers misspellings of popular words, avoid sending them to the noisy Wikipedia search. Finally, Wikipedia search first map *ureatha to its closest alias ureathra in Wikipedia and then maps ureathra to the canonical form urethra.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 24,
                        "end": 32,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Error correction steps",
                "sec_num": "3.2"
            },
            {
                "text": "On the validation set, the process is unable to recover the word *preagnet (pregnant). We are able to recover most other errors on the validation set. Impact of error correction is evaluated in Section 6.2.1.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Error correction steps",
                "sec_num": "3.2"
            },
            {
                "text": "Pre-trained conditional generative language models have become the dominating paradigm for text generation and especially summarization, with recent models such as Pegasus (Zhang et al., 2020a) , BART (Lewis et al., 2020) , T5 (Raffel et al., 2020) , and PALM (Bi et al., 2020) achieving stateof-the-art results on standard benchmarks CNN-Dailymail (See et al., 2017) and XSUM (Narayan et al., 2018) . Recent work has also shown that these models achieve good performance in few-shot medical summarization settings (Goodwin et al., 2020) . Following (Goodwin et al., 2020) , we use Pegasus, BART, and T5 single systems as our baselines.",
                "cite_spans": [
                    {
                        "start": 172,
                        "end": 193,
                        "text": "(Zhang et al., 2020a)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 201,
                        "end": 221,
                        "text": "(Lewis et al., 2020)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 227,
                        "end": 248,
                        "text": "(Raffel et al., 2020)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 260,
                        "end": 277,
                        "text": "(Bi et al., 2020)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 349,
                        "end": 367,
                        "text": "(See et al., 2017)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 377,
                        "end": 399,
                        "text": "(Narayan et al., 2018)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 515,
                        "end": 537,
                        "text": "(Goodwin et al., 2020)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 550,
                        "end": 572,
                        "text": "(Goodwin et al., 2020)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Summarization with Pre-trained Conditional Generative Language Models",
                "sec_num": "4"
            },
            {
                "text": "\u2022 Pegasus (Zhang et al., 2020a ) is a conditional language model designed specifically for abstractive summarization and is pretrained with a self-supervised gap-sentencegeneration objective, where the model is pretrained to predict entire masked sentences from the document.",
                "cite_spans": [
                    {
                        "start": 10,
                        "end": 30,
                        "text": "(Zhang et al., 2020a",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Summarization with Pre-trained Conditional Generative Language Models",
                "sec_num": "4"
            },
            {
                "text": "\u2022 BART (Lewis et al., 2020) is a model combining bi-directional and auto-regressive transformers, trained to both denoise and reconstruct corrupted texts.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Summarization with Pre-trained Conditional Generative Language Models",
                "sec_num": "4"
            },
            {
                "text": "\u2022 T5 (Raffel et al., 2020) is pre-trained on multiple objectives, including masking, translation, classification, machine reading comprehension (MRC) and summarization, all formulated as conditional generation tasks.",
                "cite_spans": [
                    {
                        "start": 5,
                        "end": 26,
                        "text": "(Raffel et al., 2020)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Summarization with Pre-trained Conditional Generative Language Models",
                "sec_num": "4"
            },
            {
                "text": "We use Pegasus-large, BART-large, and T5-base respectively in our experiments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Summarization with Pre-trained Conditional Generative Language Models",
                "sec_num": "4"
            },
            {
                "text": "Following previous work on reranking generative LM outputs (Mi et al., 2021) , we pick the best summary for each question using the following linear model from outputs of three heterogeneous generative LMs,",
                "cite_spans": [
                    {
                        "start": 59,
                        "end": 76,
                        "text": "(Mi et al., 2021)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Output Reranking",
                "sec_num": "5"
            },
            {
                "text": "T * = argmax T i \u03c8 i (T, T , S)w i (1)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Output Reranking",
                "sec_num": "5"
            },
            {
                "text": "where T is output of a single system, T is the set of outputs of all single systems, and S is the input text. T * is the ensemble output, which is picked from single system outputs by highest score. The feature function \u03c8(T, T , S) is a function to estimate the quality of T using information from T and S. w i is a weight of \u03c8(T, T , S). In sequence generation tasks such as machine translation (Kumar and Byrne, 2004), \u03c8 is usually a combination of consensus and linguistic features and w i can be tuned by optimization algorithms such as MERT (Och, 2003) towards an automatic evaluation metric.",
                "cite_spans": [
                    {
                        "start": 546,
                        "end": 557,
                        "text": "(Och, 2003)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Output Reranking",
                "sec_num": "5"
            },
            {
                "text": "Our approach. We use a simple and coverageoriented approach for reranking, based on the size and characteristics of the validation data. We notice that the writing style of the validation set is different from the MeQSum data set which we use for training: in MeQSum 18.5% sentences start with \"What are the treatments for\", 14.6% start with \"Where can I find\", and 2.5% start with \"What are the causes of \". A model trained on MeQSum tends to generate these topic-based boilerplates that are not mentioned in the source text. But in the validation set, summaries do not have these boilerplate texts and resemble the content of the source text more closely, which inspires us to pick the output with high coverage of the source.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Output Reranking",
                "sec_num": "5"
            },
            {
                "text": "We consider the validation set (50 sentences) too small for automatic tuning, so we design a minimal set of features and set the weights w i manually.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Output Reranking",
                "sec_num": "5"
            },
            {
                "text": "Features. We use fidelity, length, consensus and wellformedness features:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Output Reranking",
                "sec_num": "5"
            },
            {
                "text": "\u2022 Fidelity (w f ). We calculate the Rouge-2 score between the input and the prediction. A higher score indicate a high-coverage summary.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Output Reranking",
                "sec_num": "5"
            },
            {
                "text": "\u2022 Length (w l ). The length ratio between the prediction and the input. \u2022 Consensus (w c ). 1 if T shares any bigram with T \u2212 T , 0 otherwise.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Output Reranking",
                "sec_num": "5"
            },
            {
                "text": "\u2022 Wellformedness (w w ). 1 if T has less than three subsentences and starts with one question marker, 0 otherwise.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Output Reranking",
                "sec_num": "5"
            },
            {
                "text": "For our experiments on the validation set and Rouge-2 experiments on the test set, we set w f = 1, w l = 0.01, w c = 10, w w = 10. The idea is to select the summary that has highest coverage of the source that is a one sentence question, with at least one bi-gram in common with other summaries.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Output Reranking",
                "sec_num": "5"
            },
            {
                "text": "The choice to favor high coverage summary is based on this particular pair of training and validation data, rather than general ensemble principles for text generation. We switch the weights for w f and w l for length reranking experiments on the test set. Impact of reranking is evaluated in Section 6.2.2.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Output Reranking",
                "sec_num": "5"
            },
            {
                "text": "Our systems are based on the Transformers (Wolf et al., 2020) package. We finetune baseline models on the MeQSum (Ben Abacha and Demner-Fushman, 2019) dataset for 50 epochs, with batch size 8 and learning rate 2e-5 with the AdamW optimizer on Nvidia P100 GPUs. Finetuning is indispensable for this task: without finetuning, BART-large scores 0.06 Rouge-2 and 0.15 Table 3 : Results on the test set. EC: Input error correction; R1/2/L: Rouge-1/2/L; P: Precision, R: Recall; Best team: Best score among all teams; Scores in bold when our system achieves the best score.",
                "cite_spans": [
                    {
                        "start": 42,
                        "end": 61,
                        "text": "(Wolf et al., 2020)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 364,
                        "end": 371,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Experimental settings",
                "sec_num": "6.1"
            },
            {
                "text": "Rouge-L on the validation set in preliminary experiments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental settings",
                "sec_num": "6.1"
            },
            {
                "text": "For experiments on the test set, models for ensemble are further finetuned for 50 epochs on the validation set. Models for error-corrected input are finetuned on an automatically corrected version of the validation set.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental settings",
                "sec_num": "6.1"
            },
            {
                "text": "We report single and reranking system performance in Tables 1 and 2 respectively. Results are evaluated by Rouge (Lin, 2004) , which is based on n-gram or longest common sequence (LCS) matching of strings.",
                "cite_spans": [
                    {
                        "start": 113,
                        "end": 124,
                        "text": "(Lin, 2004)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 53,
                        "end": 67,
                        "text": "Tables 1 and 2",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Validation set experiments",
                "sec_num": "6.2"
            },
            {
                "text": "Among the pre-trained LMs in Table 1 , BART performs the best on the validation set. Comparing error-corrected (Pegasus/BART/T5 EC) and original (Pegasus/BART/T5) inputs, we note that error-corrected input significantly boosts the performance of Pegasus. In addition to corrected entity names, the fixed input also leads Pegasus to generate 5% longer output and results in a much higher Rouge-2 score in this small dataset. This trend is less significant on BART and T5, but adding error correction has a positive impact in general.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 29,
                        "end": 36,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Single systems and error correction",
                "sec_num": "6.2.1"
            },
            {
                "text": "We compare the reranked systems against baselines, with or without error-corrected input in Table 2 . In both cases, reranking does not have significant effect on Rouge-2, but helps Rouge-L significantly. We suspect that reranking does improve word and style choice, but the room for increasing 2-gram matches is small on the validation set.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 92,
                        "end": 99,
                        "text": "Table 2",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Reranking",
                "sec_num": "6.2.2"
            },
            {
                "text": "We run three sets of experiments on the test set and report results in Table 3 : single systems are the same systems tested on the validation set and ensembles are reranked outputs from systems further finetuned on the validation set.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 71,
                        "end": 78,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Test set experiments",
                "sec_num": "6.3"
            },
            {
                "text": "In addition to string-based Rouge (Lin, 2004) , test set results are also evaluated by pre-trained language model-based BERTScore (Zhang et al., 2020b) and HOLMS (Mrabet and Demner-Fushman, 2020 ) metrics:",
                "cite_spans": [
                    {
                        "start": 34,
                        "end": 45,
                        "text": "(Lin, 2004)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 130,
                        "end": 151,
                        "text": "(Zhang et al., 2020b)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 162,
                        "end": 194,
                        "text": "(Mrabet and Demner-Fushman, 2020",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Test set experiments",
                "sec_num": "6.3"
            },
            {
                "text": "\u2022 BERTScore (Zhang et al., 2020b) leverages the pre-trained contextual embeddings from BERT and matches words in candidate and reference sentences by cosine similarity, where matching is performed greedily for each word by choosing the most similar word in the other sentence.",
                "cite_spans": [
                    {
                        "start": 12,
                        "end": 33,
                        "text": "(Zhang et al., 2020b)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Test set experiments",
                "sec_num": "6.3"
            },
            {
                "text": "\u2022 HOLMS (Mrabet and Demner-Fushman, 2020) combines soft matching of contextual embeddings derived from pre-trained LMs and a string-based metric (Rouge-1 recall in practice).",
                "cite_spans": [
                    {
                        "start": 8,
                        "end": 41,
                        "text": "(Mrabet and Demner-Fushman, 2020)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Test set experiments",
                "sec_num": "6.3"
            },
            {
                "text": "String-based and pre-trained language modelbased metrics rank summaries differently. We discuss the impact of the choice of metrics in Section 6.4.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Test set experiments",
                "sec_num": "6.3"
            },
            {
                "text": "We run two other experiments validating postprocessing and the UniLM language model (Dong et al., 2019) , they perform inferior to their respective baselines and are not reported in Table 3 .",
                "cite_spans": [
                    {
                        "start": 84,
                        "end": 103,
                        "text": "(Dong et al., 2019)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 182,
                        "end": 189,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Test set experiments",
                "sec_num": "6.3"
            },
            {
                "text": "We notice in single system experiments that the characteristics of the test set is still different from the validation set: all systems suffer from low recall, which leads us to perform more aggressive length-based reranking.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Test set experiments",
                "sec_num": "6.3"
            },
            {
                "text": "Length reranking. We experiment with a baseline approach that explicitly picks the longest output sentence by switching the weight of length and fidelity features in (1). The 3 systems in runs 4 and 5 are Pegasus and T5 finetuned on the validation set and the Pegasus system in run 3. Run 6 adds BART finetuned on the validation set.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Test set experiments",
                "sec_num": "6.3"
            },
            {
                "text": "We observe that this simple heuristic, together with further finetuning on the validation set, leads to significantly higher Rouge scores between runs 3 and 4 in Table 3 . This change also improves HOLMS and BERTScore, suggesting that recall / coverage-based sentence selection does correlate to summarization quality in this scenario. Rouge is further improved by adding BART to the combination between runs 5 and 6.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 162,
                        "end": 169,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Test set experiments",
                "sec_num": "6.3"
            },
            {
                "text": "Correcting input errors between runs 4 and 5 also helps Rouge significantly. BERTScore, which is based on word matching and utilizes BERT embeddings, is much less sensitive to small spelling errors and changes negatively. HOLMS changes positively as it has a Rouge component.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Test set experiments",
                "sec_num": "6.3"
            },
            {
                "text": "The negative change of BERTScore also suggests that we should be more cautious applying input error correction to summarization: mistakes in error correction might not hurt string-based metrics (the word is often misspelled already), but they can change the meaning of the sentence and degrade summarization quality.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Test set experiments",
                "sec_num": "6.3"
            },
            {
                "text": "Coverage reranking. In runs 7 and 8, we experiment with the the same setting as in Table 2 . 3 systems are Pegasus, BART, and T5 finetuned on the validation set. These runs achieve balanced Rouge precision and recall, and the highest Rouge-2 score across all runs. There are small improvement on all metrics, which is expected, as Rouge-2 is a better indicator of summarization coverage than length.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 83,
                        "end": 90,
                        "text": "Table 2",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Test set experiments",
                "sec_num": "6.3"
            },
            {
                "text": "According to BERT-based metrics, coveragebased reranking also leads to more steady improvement than length-based reranking. The overall improvement in all metrics suggests that coveragebased reranking does improve summarization quality in this task.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Test set experiments",
                "sec_num": "6.3"
            },
            {
                "text": "In this shared task, we experimented with knowledge-based input error correction and coverage-oriented system reranking. These methods are effective in boosting string matching between the prediction and the reference summaries. According to Rouge metrics, our submissiong ranks first according to Rouge-1/2 metrics and ranks second according to the Rouge-L metric.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lessons learned",
                "sec_num": "6.4"
            },
            {
                "text": "According to BERT-based metrics, however, reranking has a smaller impact on summarization quality and error correction has little to no effect: we are about 1 point below the best submission according to BERTScore and HOLMS, which are shown to often have higher correlation with human judgement (Zhang et al., 2020b; Mrabet and Demner-Fushman, 2020) .",
                "cite_spans": [
                    {
                        "start": 295,
                        "end": 316,
                        "text": "(Zhang et al., 2020b;",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 317,
                        "end": 349,
                        "text": "Mrabet and Demner-Fushman, 2020)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lessons learned",
                "sec_num": "6.4"
            },
            {
                "text": "The discrepancy between the string-based and LM-based metrics makes the real improvement of summarization quality hard to measure. It is arguable that by focusing on misspellings and using coverage as surrogate for summarization quality, we might be optimizing more for the writing style and spelling, rather than the content of the summary. This shows the need of an efficient, optimizable summarization evaluation metric with high correlation with human judgement that our field agrees upon. We plan to look more into the choice of metric and optimization objectives for summarzation tasks in future work.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lessons learned",
                "sec_num": "6.4"
            },
            {
                "text": "We reported our experiments in MEDIQA 2021 shared task 1. We used knowledge-based error correction and coverage-oriented reranking improve summarization. Our system performed well on string-based Rouge metrics, but less so on BERTbased semantic metrics. We plan to investigate methods that improve summarization according to human judgement.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "7"
            },
            {
                "text": "https://books.google.com/ngrams/info",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://github.com/glutanimate/ hunspell-en-med-glut 3 https://docs.python.org/3/library/ difflib.html",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "On the summarization of consumer health questions",
                "authors": [
                    {
                        "first": "Asma",
                        "middle": [],
                        "last": "Ben Abacha",
                        "suffix": ""
                    },
                    {
                        "first": "Dina",
                        "middle": [],
                        "last": "Demner-Fushman",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "2228--2234",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1215"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Asma Ben Abacha and Dina Demner-Fushman. 2019. On the summarization of consumer health questions. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2228-2234, Florence, Italy.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Overview of the mediqa 2021 shared task on summarization in the medical domain",
                "authors": [
                    {
                        "first": "Asma",
                        "middle": [],
                        "last": "Ben Abacha",
                        "suffix": ""
                    },
                    {
                        "first": "Yassine",
                        "middle": [],
                        "last": "Mrabet",
                        "suffix": ""
                    },
                    {
                        "first": "Yuhao",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Chaitanya",
                        "middle": [],
                        "last": "Shivade",
                        "suffix": ""
                    },
                    {
                        "first": "Curtis",
                        "middle": [],
                        "last": "Langlotz",
                        "suffix": ""
                    },
                    {
                        "first": "Dina",
                        "middle": [],
                        "last": "Demner-Fushman",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the 20th SIG-BioMed Workshop on Biomedical Language Processing, NAACL-BioNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Asma Ben Abacha, Yassine Mrabet, Yuhao Zhang, Chaitanya Shivade, Curtis Langlotz, and Dina Demner-Fushman. 2021. Overview of the mediqa 2021 shared task on summarization in the med- ical domain. In Proceedings of the 20th SIG- BioMed Workshop on Biomedical Language Pro- cessing, NAACL-BioNLP 2021.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "PALM: Pre-training an autoencod-ing&autoregressive language model for contextconditioned generation",
                "authors": [
                    {
                        "first": "Bin",
                        "middle": [],
                        "last": "Bi",
                        "suffix": ""
                    },
                    {
                        "first": "Chenliang",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Chen",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Ming",
                        "middle": [],
                        "last": "Yan",
                        "suffix": ""
                    },
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Songfang",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Fei",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Luo",
                        "middle": [],
                        "last": "Si",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "8681--8691",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.emnlp-main.700"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Bin Bi, Chenliang Li, Chen Wu, Ming Yan, Wei Wang, Songfang Huang, Fei Huang, and Luo Si. 2020. PALM: Pre-training an autoencod- ing&autoregressive language model for context- conditioned generation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Lan- guage Processing (EMNLP), pages 8681-8691.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Improving entity linking using surface form refinement",
                "authors": [
                    {
                        "first": "Eric",
                        "middle": [],
                        "last": "Charton",
                        "suffix": ""
                    },
                    {
                        "first": "Marie-Jean",
                        "middle": [],
                        "last": "Meurs",
                        "suffix": ""
                    },
                    {
                        "first": "Ludovic",
                        "middle": [],
                        "last": "Jean-Louis",
                        "suffix": ""
                    },
                    {
                        "first": "Michel",
                        "middle": [],
                        "last": "Gagnon",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)",
                "volume": "",
                "issue": "",
                "pages": "4609--4615",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eric Charton, Marie-Jean Meurs, Ludovic Jean-Louis, and Michel Gagnon. 2014. Improving entity link- ing using surface form refinement. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14), pages 4609- 4615, Reykjavik, Iceland.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Unified language model pre-training for natural language understanding and generation",
                "authors": [
                    {
                        "first": "Li",
                        "middle": [],
                        "last": "Dong",
                        "suffix": ""
                    },
                    {
                        "first": "Nan",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Wenhui",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Furu",
                        "middle": [],
                        "last": "Wei",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaodong",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Yu",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Ming",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Hsiao-Wuen",
                        "middle": [],
                        "last": "Hon",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "33rd Conference on Neural Information Processing Systems",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi- aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou, and Hsiao-Wuen Hon. 2019. Unified language model pre-training for natural language understand- ing and generation. In 33rd Conference on Neural Information Processing Systems (NeurIPS 2019).",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Flight of the PEGASUS? comparing transformers on few-shot and zero-shot multidocument abstractive summarization",
                "authors": [
                    {
                        "first": "Travis",
                        "middle": [],
                        "last": "Goodwin",
                        "suffix": ""
                    },
                    {
                        "first": "Max",
                        "middle": [],
                        "last": "Savery",
                        "suffix": ""
                    },
                    {
                        "first": "Dina",
                        "middle": [],
                        "last": "Demner-Fushman",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 28th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "5640--5646",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.coling-main.494"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Travis Goodwin, Max Savery, and Dina Demner- Fushman. 2020. Flight of the PEGASUS? compar- ing transformers on few-shot and zero-shot multi- document abstractive summarization. In Proceed- ings of the 28th International Conference on Com- putational Linguistics, pages 5640-5646, Barcelona, Spain (Online). International Committee on Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Xiaozhong Liu, and Sheng Yu. 2021. Biomedical question answering: A comprehensive review",
                "authors": [
                    {
                        "first": "Qiao",
                        "middle": [],
                        "last": "Jin",
                        "suffix": ""
                    },
                    {
                        "first": "Zheng",
                        "middle": [],
                        "last": "Yuan",
                        "suffix": ""
                    },
                    {
                        "first": "Guangzhi",
                        "middle": [],
                        "last": "Xiong",
                        "suffix": ""
                    },
                    {
                        "first": "Qianlan",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "Chuanqi",
                        "middle": [],
                        "last": "Tan",
                        "suffix": ""
                    },
                    {
                        "first": "Mosha",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Songfang",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2102.05281"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Qiao Jin, Zheng Yuan, Guangzhi Xiong, Qianlan Yu, Chuanqi Tan, Mosha Chen, Songfang Huang, Xi- aozhong Liu, and Sheng Yu. 2021. Biomedical ques- tion answering: A comprehensive review. arXiv preprint arXiv:2102.05281.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Minimum bayes-risk decoding for statistical machine translation",
                "authors": [
                    {
                        "first": "Shankar",
                        "middle": [],
                        "last": "Kumar",
                        "suffix": ""
                    },
                    {
                        "first": "William",
                        "middle": [],
                        "last": "Byrne",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of HLT-NAACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shankar Kumar and William Byrne. 2004. Minimum bayes-risk decoding for statistical machine transla- tion. In Proceedings of HLT-NAACL.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Binary codes capable of correcting deletions, insertions, and reversals",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Vladimir I Levenshtein",
                        "suffix": ""
                    }
                ],
                "year": 1966,
                "venue": "Soviet physics doklady",
                "volume": "10",
                "issue": "",
                "pages": "707--710",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Vladimir I Levenshtein. 1966. Binary codes capable of correcting deletions, insertions, and reversals. In Soviet physics doklady, volume 10, pages 707-710.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "BART: Denoising sequence-to-sequence pretraining for natural language generation, translation, and comprehension",
                "authors": [
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Lewis",
                        "suffix": ""
                    },
                    {
                        "first": "Yinhan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Naman",
                        "middle": [],
                        "last": "Goyal ; Abdelrahman Mohamed",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "Veselin",
                        "middle": [],
                        "last": "Stoyanov",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "7871--7880",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.acl-main.703"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Mike Lewis, Yinhan Liu, Naman Goyal, Mar- jan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART: Denoising sequence-to-sequence pre- training for natural language generation, translation, and comprehension. In Proceedings of the 58th An- nual Meeting of the Association for Computational Linguistics, pages 7871-7880, Online.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "ROUGE: A package for automatic evaluation of summaries",
                "authors": [
                    {
                        "first": "Chin-Yew",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Text Summarization Branches Out",
                "volume": "",
                "issue": "",
                "pages": "74--81",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chin-Yew Lin. 2004. ROUGE: A package for auto- matic evaluation of summaries. In Text Summariza- tion Branches Out, pages 74-81, Barcelona, Spain.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Towards generalized models for beyond domain api task-oriented dialogue",
                "authors": [
                    {
                        "first": "Haitao",
                        "middle": [],
                        "last": "Mi",
                        "suffix": ""
                    },
                    {
                        "first": "Qiyu",
                        "middle": [],
                        "last": "Ren",
                        "suffix": ""
                    },
                    {
                        "first": "Yinpei",
                        "middle": [],
                        "last": "Dai",
                        "suffix": ""
                    },
                    {
                        "first": "Yifan",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Jian",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "Yongbin",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Jing",
                        "middle": [],
                        "last": "Zheng",
                        "suffix": ""
                    },
                    {
                        "first": "Peng",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the 9th Dialog System Technology Challenge",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Haitao Mi, Qiyu Ren, Yinpei Dai, Yifan He, Jian Sun, Yongbin Li, Jing Zheng, and Peng Xu. 2021. To- wards generalized models for beyond domain api task-oriented dialogue. In Proceedings of the 9th Dialog System Technology Challenge.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "HOLMS: Alternative summary evaluation with large language models",
                "authors": [
                    {
                        "first": "Yassine",
                        "middle": [],
                        "last": "Mrabet",
                        "suffix": ""
                    },
                    {
                        "first": "Dina",
                        "middle": [],
                        "last": "Demner-Fushman",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 28th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "5679--5688",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.coling-main.498"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yassine Mrabet and Dina Demner-Fushman. 2020. HOLMS: Alternative summary evaluation with large language models. In Proceedings of the 28th Inter- national Conference on Computational Linguistics, pages 5679-5688, Barcelona, Spain (Online).",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Don't give me the details, just the summary! Topic-aware convolutional neural networks for extreme summarization",
                "authors": [
                    {
                        "first": "Shashi",
                        "middle": [],
                        "last": "Narayan",
                        "suffix": ""
                    },
                    {
                        "first": "Shay",
                        "middle": [
                            "B"
                        ],
                        "last": "Cohen",
                        "suffix": ""
                    },
                    {
                        "first": "Mirella",
                        "middle": [],
                        "last": "Lapata",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shashi Narayan, Shay B. Cohen, and Mirella Lapata. 2018. Don't give me the details, just the summary! Topic-aware convolutional neural networks for ex- treme summarization. In Proceedings of the 2018 Conference on Empirical Methods in Natural Lan- guage Processing, Brussels, Belgium.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Minimum error rate training in statistical machine translation",
                "authors": [
                    {
                        "first": "Franz Josef",
                        "middle": [],
                        "last": "Och",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "160--167",
                "other_ids": {
                    "DOI": [
                        "10.3115/1075096.1075117"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Franz Josef Och. 2003. Minimum error rate training in statistical machine translation. In Proceedings of the 41st Annual Meeting of the Association for Computa- tional Linguistics, pages 160-167, Sapporo, Japan.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Exploring the limits of transfer learning with a unified text-totext transformer",
                "authors": [
                    {
                        "first": "Colin",
                        "middle": [],
                        "last": "Raffel",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Shazeer",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Roberts",
                        "suffix": ""
                    },
                    {
                        "first": "Katherine",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Sharan",
                        "middle": [],
                        "last": "Narang",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Matena",
                        "suffix": ""
                    },
                    {
                        "first": "Yanqi",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [
                            "J"
                        ],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Journal of Machine Learning Research",
                "volume": "21",
                "issue": "140",
                "pages": "1--67",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Colin Raffel, Noam Shazeer, Adam Roberts, Kather- ine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the limits of transfer learning with a unified text-to- text transformer. Journal of Machine Learning Re- search, 21(140):1-67.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Get to the point: Summarization with pointergenerator networks",
                "authors": [
                    {
                        "first": "Abigail",
                        "middle": [],
                        "last": "See",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Peter",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get to the point: Summarization with pointer- generator networks. CoRR, abs/1704.04368.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Matching health information seekers' queries to medical terms",
                "authors": [
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Lina",
                        "suffix": ""
                    },
                    {
                        "first": "Elise",
                        "middle": [],
                        "last": "Soualmia",
                        "suffix": ""
                    },
                    {
                        "first": "Zied",
                        "middle": [],
                        "last": "Prieur-Gaston",
                        "suffix": ""
                    },
                    {
                        "first": "Thierry",
                        "middle": [],
                        "last": "Moalla",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Lecroq",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "St\u00e9fan",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Darmoni",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "BMC bioinformatics",
                "volume": "13",
                "issue": "14",
                "pages": "1--15",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lina F Soualmia, Elise Prieur-Gaston, Zied Moalla, Thierry Lecroq, and St\u00e9fan J Darmoni. 2012. Match- ing health information seekers' queries to medical terms. BMC bioinformatics, 13(14):1-15.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Transformers: State-of-the-art natural language processing",
                "authors": [
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Wolf",
                        "suffix": ""
                    },
                    {
                        "first": "Lysandre",
                        "middle": [],
                        "last": "Debut",
                        "suffix": ""
                    },
                    {
                        "first": "Victor",
                        "middle": [],
                        "last": "Sanh",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Chaumond",
                        "suffix": ""
                    },
                    {
                        "first": "Clement",
                        "middle": [],
                        "last": "Delangue",
                        "suffix": ""
                    },
                    {
                        "first": "Anthony",
                        "middle": [],
                        "last": "Moi",
                        "suffix": ""
                    },
                    {
                        "first": "Pierric",
                        "middle": [],
                        "last": "Cistac",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Rault",
                        "suffix": ""
                    },
                    {
                        "first": "Remi",
                        "middle": [],
                        "last": "Louf",
                        "suffix": ""
                    },
                    {
                        "first": "Morgan",
                        "middle": [],
                        "last": "Funtowicz",
                        "suffix": ""
                    },
                    {
                        "first": "Joe",
                        "middle": [],
                        "last": "Davison",
                        "suffix": ""
                    },
                    {
                        "first": "Sam",
                        "middle": [],
                        "last": "Shleifer",
                        "suffix": ""
                    },
                    {
                        "first": "Clara",
                        "middle": [],
                        "last": "Patrick Von Platen",
                        "suffix": ""
                    },
                    {
                        "first": "Yacine",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Jernite",
                        "suffix": ""
                    },
                    {
                        "first": "Canwen",
                        "middle": [],
                        "last": "Plu",
                        "suffix": ""
                    },
                    {
                        "first": "Teven",
                        "middle": [
                            "Le"
                        ],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Sylvain",
                        "middle": [],
                        "last": "Scao",
                        "suffix": ""
                    },
                    {
                        "first": "Mariama",
                        "middle": [],
                        "last": "Gugger",
                        "suffix": ""
                    },
                    {
                        "first": "Quentin",
                        "middle": [],
                        "last": "Drame",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [],
                        "last": "Lhoest",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Rush",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
                "volume": "",
                "issue": "",
                "pages": "38--45",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.emnlp-demos.6"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pier- ric Cistac, Tim Rault, Remi Louf, Morgan Funtow- icz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. 2020. Trans- formers: State-of-the-art natural language process- ing. In Proceedings of the 2020 Conference on Em- pirical Methods in Natural Language Processing: System Demonstrations, pages 38-45, Online.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "PEGASUS: Pre-training with extracted gap-sentences for abstractive summarization",
                "authors": [
                    {
                        "first": "Jingqing",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Yao",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Mohammad",
                        "middle": [],
                        "last": "Saleh",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 37th International Conference on Machine Learning",
                "volume": "",
                "issue": "",
                "pages": "11328--11339",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe- ter Liu. 2020a. PEGASUS: Pre-training with ex- tracted gap-sentences for abstractive summarization. In Proceedings of the 37th International Conference on Machine Learning, pages 11328-11339.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Bertscore: Evaluating text generation with bert",
                "authors": [
                    {
                        "first": "Tianyi",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Varsha",
                        "middle": [],
                        "last": "Kishore",
                        "suffix": ""
                    },
                    {
                        "first": "Felix",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Kilian",
                        "middle": [
                            "Q"
                        ],
                        "last": "Weinberger",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Artzi",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. 2020b. Bertscore: Evaluating text generation with bert. In Interna- tional Conference on Learning Representations.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Context-sensitive spelling correction of consumer-generated content on health care",
                "authors": [
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "An",
                        "middle": [],
                        "last": "Zheng",
                        "suffix": ""
                    },
                    {
                        "first": "Jiaheng",
                        "middle": [],
                        "last": "Yin",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Xianyang",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Wenqing",
                        "middle": [],
                        "last": "Cheng",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Xia",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "JMIR Medical Informatics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "X. Zhou, An Zheng, Jiaheng Yin, R. Chen, Xi- anyang Zhao, Wei Xu, Wenqing Cheng, T. Xia, and S. Lin. 2015. Context-sensitive spelling correction of consumer-generated content on health care. JMIR Medical Informatics.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "num": null,
                "uris": null,
                "text": "Question-summarization example and system architecture"
            },
            "FIGREF1": {
                "type_str": "figure",
                "num": null,
                "uris": null,
                "text": "Example of error correction"
            },
            "TABREF3": {
                "text": "",
                "type_str": "table",
                "html": null,
                "content": "<table/>",
                "num": null
            }
        }
    }
}