File size: 82,388 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
{
    "paper_id": "2022",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T02:09:37.739045Z"
    },
    "title": "BIT-Xiaomi's Simultaneous Translation System for AutoSimTrans 2022",
    "authors": [
        {
            "first": "Mengge",
            "middle": [],
            "last": "Liu",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Beijing Institute of Technology",
                "location": {
                    "settlement": "Beijing",
                    "country": "China"
                }
            },
            "email": "liumengge@bit.edu.cn"
        },
        {
            "first": "Xiang",
            "middle": [],
            "last": "Li",
            "suffix": "",
            "affiliation": {},
            "email": "lixiang21@xiaomi.com"
        },
        {
            "first": "Bao",
            "middle": [],
            "last": "Chen",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Beijing Institute of Technology",
                "location": {
                    "settlement": "Beijing",
                    "country": "China"
                }
            },
            "email": "chenbao@bit.edu.cn"
        },
        {
            "first": "Yanzhi",
            "middle": [],
            "last": "Tian",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Beijing Institute of Technology",
                "location": {
                    "settlement": "Beijing",
                    "country": "China"
                }
            },
            "email": "tianyanzhi@bit.edu.cn"
        },
        {
            "first": "Tianwei",
            "middle": [],
            "last": "Lan",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Beijing Institute of Technology",
                "location": {
                    "settlement": "Beijing",
                    "country": "China"
                }
            },
            "email": "lantianwei@bit.edu.cn"
        },
        {
            "first": "Silin",
            "middle": [],
            "last": "Li",
            "suffix": "",
            "affiliation": {},
            "email": "lisilin@bit.edu.cn"
        },
        {
            "first": "Yuhang",
            "middle": [],
            "last": "Guo",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Beijing Institute of Technology",
                "location": {
                    "settlement": "Beijing",
                    "country": "China"
                }
            },
            "email": "guoyuhang@bit.edu.cn"
        },
        {
            "first": "Jian",
            "middle": [],
            "last": "Luan",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Beijing Institute of Technology",
                "location": {
                    "settlement": "Beijing",
                    "country": "China"
                }
            },
            "email": "luanjian@xiaomi.com"
        },
        {
            "first": "Bin",
            "middle": [],
            "last": "Wang",
            "suffix": "",
            "affiliation": {},
            "email": "wangbin11@xiaomi.com"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "This system paper describes the BIT-Xiaomi simultaneous translation system for Autosimtrans 2022 simultaneous translation challenge. We participated in three tracks: the Zh-En text-to-text track, the Zh-En audio-to-text track, and the En-Es test-to-text track. In our system, wait-k is utilized to train prefix-to-prefix translation models. We integrate streaming chunking to detect segmentation boundaries as the source streaming reading in. We further improve our system with data selection, data augmentation, and R-Drop training methods. Results show that our wait-k implementation outperforms the organizer's baseline by at most 8 BLEU score and our proposed streaming chunking method further improves by about 2 BLEU score in the low latency regime. * The work was done during the author's internship at Xiaomi.",
    "pdf_parse": {
        "paper_id": "2022",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "This system paper describes the BIT-Xiaomi simultaneous translation system for Autosimtrans 2022 simultaneous translation challenge. We participated in three tracks: the Zh-En text-to-text track, the Zh-En audio-to-text track, and the En-Es test-to-text track. In our system, wait-k is utilized to train prefix-to-prefix translation models. We integrate streaming chunking to detect segmentation boundaries as the source streaming reading in. We further improve our system with data selection, data augmentation, and R-Drop training methods. Results show that our wait-k implementation outperforms the organizer's baseline by at most 8 BLEU score and our proposed streaming chunking method further improves by about 2 BLEU score in the low latency regime. * The work was done during the author's internship at Xiaomi.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Simultaneous translation (Cho and Esipova, 2016; Yarmohammadi et al., 2013; Ma et al., 2019) , is a task in Machine Translation (MT), which intends to provide low latency translation in real-time scenarios. To achieve low latency translation, the translation system needs to begin translating before the end of source sentences, which can be viewed as prefix-toprefix translation (Ma et al., 2019) . Simultaneous translation is widely used in real-time translation scenarios such as simultaneous interpretation, online subtitles, and live broadcasting. In these scenarios, low latency may have equal or even higher priority than translation quality.",
                "cite_spans": [
                    {
                        "start": 25,
                        "end": 48,
                        "text": "(Cho and Esipova, 2016;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 49,
                        "end": 75,
                        "text": "Yarmohammadi et al., 2013;",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 76,
                        "end": 92,
                        "text": "Ma et al., 2019)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 380,
                        "end": 397,
                        "text": "(Ma et al., 2019)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In simultaneous translation, the most challenge is the balance of translation quality and latency. Low latency translation requires beginning translation with insufficient source information, which may cause incorrect translation results. How to find a simultaneous policy to balance quality and latency is the most challenging question. On another hand, in most cases, the standard machine translation model is trained on full sentences, which can achieve good performance in full-sentence evaluation. But for prefix-to-prefix inference, which is crucial for simultaneous translation, the standard machine translation model always perform poorly.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Previous methods for simultaneous translation can be classified as the fixed policy and the adaptive policy according to different simultaneous policies. Fixed policy uses fixedlatency simultaneous strategy, for example, set value K, and forces the translation to lag behind source for K tokens (Ma et al., 2019) . The adaptive policy needs an agent module to perform adaptive simultaneous translation. The agent will consider the current translation state, including the source prefix and the hypothesis prefix, to decide whether to output new tokens at the current state (Gu et al., 2017; Arivazhagan et al., 2019; Ma et al., 2020) . Chunk-base Zhang et al., 2020 ) simultaneous translation is a special adaptive policy, which makes a decision only based on the source prefix.",
                "cite_spans": [
                    {
                        "start": 295,
                        "end": 312,
                        "text": "(Ma et al., 2019)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 573,
                        "end": 590,
                        "text": "(Gu et al., 2017;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 591,
                        "end": 616,
                        "text": "Arivazhagan et al., 2019;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 617,
                        "end": 633,
                        "text": "Ma et al., 2020)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 647,
                        "end": 665,
                        "text": "Zhang et al., 2020",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In our system, we propose a streaming chunking method that can be combined with a fixed wait-k policy. The streaming chunking method can significantly improve translation quality with little latency increase in low latency regions. We train a segmentation model to detect boundaries in streaming sources and employ a wait-k policy to decide output token numbers. We pre-train transformer models with multi-path wait-k on a",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "#Sentence Pairs",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus",
                "sec_num": null
            },
            {
                "text": "Zh-En BSTC CWMT 38K 9M En-Es UN Parallel 22M",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus",
                "sec_num": null
            },
            {
                "text": "Zh ASR BSTC AIshell 68h 150h Table 1 : Data statistics. Parallel corpus is counted by sentence pairs. ASR corpus is counted by audio time (hour).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 29,
                        "end": 36,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Corpus",
                "sec_num": null
            },
            {
                "text": "large general corpus and fine-tune with single k on a small domain corpus. We augment the general corpus and domain corpus with Back-Translation (BT) and Front-Translation (FT), and further augment the domain corpus with character-level pseudo ASR error. In training we incorporate R-Drop (liang et al., 2021) method to improve translation quality. In text-to-text tracks, we use text streaming input provided by the organizer. In the audio-totext track, we train our ASR system to transcript audio into the streaming text as translation input. The remainder of this paper is organized as follows. We describe the techniques employed in our system and the methods we propose in Section 2. In Section 3 we show our experiment settings and results, including data and model. Finally, we conclude this paper.",
                "cite_spans": [
                    {
                        "start": 282,
                        "end": 309,
                        "text": "R-Drop (liang et al., 2021)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus",
                "sec_num": null
            },
            {
                "text": "In this section, we describe the data, the utilized prefix-to-prefix translation model, and the proposed streaming chunking method.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methods",
                "sec_num": "2"
            },
            {
                "text": "We describe the data used in our system from the following aspects: statistics, preprocessing, filtering and data-augmentation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data",
                "sec_num": "2.1"
            },
            {
                "text": "All allowed bilingual training sets are employed, including the BSTC and the CWMT21 for the Zh-En track, the UN Parallel Corpus for the En-Es track. For the ASR model in the Zh-En audioto-text track, we use the BSTC and the AIshell (Hui Bu, 2017) corpus for training. Data statistics are shown in Table 1 . Pre-processing. Sacremoses 1 is conducted to normalize and tokenize English and Span-1 https://github.com/alvations/sacremoses ish sentences. Jieba 2 is used to segment Chinese sentences. And redundant spaces in the text are removed. After tokenization, we apply Subword-nmt 3 to learn byte-pair encoding with 32K operations. Data filtering. The noises in the original data may bring a negative impact on translation quality, so we filter the training set as following steps:",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 297,
                        "end": 304,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Data",
                "sec_num": "2.1"
            },
            {
                "text": "\u2022 First, the parallel corpus is filtered by hand-crafted rules. Sentences that contain less than 30% linguistic words will be viewed as noise sentences. When any sentence in a sentence pair is judged as noise, this pair is discarded. For Chinese sentences, we consider Chinese characters as linguistic words. For En or Es, we consider words only containing alphabet characters as linguistic words.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data",
                "sec_num": "2.1"
            },
            {
                "text": "\u2022 Second, we utilize fast_align 4 to filter out poorly aligned sentence pairs. We calculate align scores for each sentence pair and filter out sentence pairs with low scores. Align score threshold is set as \u22127.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data",
                "sec_num": "2.1"
            },
            {
                "text": "\u2022 Third, language identification is applied with langid 5 . Sentences in the wrong languages are viewed as low-quality samples and removed.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data",
                "sec_num": "2.1"
            },
            {
                "text": "\u2022 Finally, we discard duplicate pairs and remove the pair with a length ratio greater than 3.0 or the sentence with a length more than 200.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data",
                "sec_num": "2.1"
            },
            {
                "text": "Data selection Because the bilingual corpus utilized in training is not all from the speech domain, we use a language-model-based data selection method select domain data, which is similar to methods proposed by Moore and Lewis (2010). We train two 5-gram language model on source sentences with KenLM 6 , one on the BSTC corpus (denoted as lm in ), another on the CWMT corpus (denoted as lm out ). Than for each sentence in the CWMT corpus, we compute the perplexity distances with two language model, which denoted as domain score for the sentence ppl_score = \u2212(ppl in \u2212 ppl out ). We sort the corpus by domain score and remove the pair with a large domain distance. Data augmentation As the training corpus is limited, we utilize back-translation (BT) and front-translation (FT) to augment the training corpus. We first train two translation models in two directions: Zh-En and En-Zh, then generate pseudo training corpus in two directions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data",
                "sec_num": "2.1"
            },
            {
                "text": "R-Drop 7 is a method to improve translation quality in machine translation, which can be easily incorporated with our translation model. All models in our system are trained with the R-Drop algorithm proposed by liang et al. (2021).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "R-Drop",
                "sec_num": "2.2"
            },
            {
                "text": "Wait-k is a simple and effective method for fixed-policy simultaneous translation, which can train prefix-to-prefix translation ability for transformer models. We build our system based on fairseq, which provides a wait-k baseline similar to efficient wait-k (Elbayad et al., 2020) . Two-stage training is employed to achieve better performance in the speech domain. Model is firstly trained on large scale parallel corpus with multi-path wait-k, which randomly selects a value of k within the interval (for example, [k, k+n]) for each training batch (denoted as wait(k)-(k+n)). Secondly, we fine-tune the model with a small speech domain parallel corpus with simple wait-k (denoted as wait(k)) or multi-path wait-k.",
                "cite_spans": [
                    {
                        "start": 259,
                        "end": 281,
                        "text": "(Elbayad et al., 2020)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Wait-k",
                "sec_num": "2.3"
            },
            {
                "text": "In a streaming translation system, the source is received token by token. The wait-k policy will try to translate each time source is ahead of target for k tokens, which may bring some mistakes when the source stops at a partial phrase. Especially for Chinese streaming input, in which source streaming is growing by character. So some source prefixes may contain incomplete word pieces which may cause misunderstanding and incorrect translation. A stream case with error source prefixes is shown in Table 2 . We propose a streaming chunking method, which employs a streaming segmentation model to detect word boundaries on-the-fly in streaming input.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 500,
                        "end": 507,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Streaming Chunking",
                "sec_num": "2.4"
            },
            {
                "text": "We build our streaming segmentation model base on chinese-roberta-wwm-ext 8 proposed by Cui et al. (2021) . Compared with a vanilla Chinese word segmentation model, the streaming segmentation model does not need to obtain the complete sentence and can segment words without introducing an additional delay. We treat the streaming word segmentation task as a sequence classification task and use the final hidden state of the classification token ([CLS]) to perform binary classification through a 3-layer fully connected network to determine whether the current source sentence prefix end with complete words. We construct training data using transcribed sentences from the BSTC training set. The complete sentences in the training data are segmented using pkuseg (Luo et al., 2019) . The source sentence prefixes ending with word boundaries are considered positive examples, while the rest of the source sentence prefixes are negative examples.",
                "cite_spans": [
                    {
                        "start": 88,
                        "end": 105,
                        "text": "Cui et al. (2021)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 764,
                        "end": 782,
                        "text": "(Luo et al., 2019)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Streaming Segmentation Model",
                "sec_num": "2.4.1"
            },
            {
                "text": "We utilize the streaming segmentation model to detect word boundaries and only enable the wait-k policy at the word boundaries to determine word numbers that need to translate. Then the prefix-to-prefix translation is performed, which can avoid translating on source prefix containing incomplete words. Algorithm 1 gives the pseudo code of our proposed method. And Figure 1 shows how the streaming segmentation model works with the wait-k inference.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 365,
                        "end": 373,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Combine with wait-k",
                "sec_num": "2.4.2"
            },
            {
                "text": "We evaluate our simultaneous translation model in two aspects. First is translation quality, we compute BLEU (Papineni et al., 2002) score with merged document translation results. Second, for latency, we utilize Average Lagging (AL) (Ma et al., 2019) Target: ideal simultaneous interpretation, which is calculated in the following equation:",
                "cite_spans": [
                    {
                        "start": 109,
                        "end": 132,
                        "text": "(Papineni et al., 2002)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 234,
                        "end": 251,
                        "text": "(Ma et al., 2019)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "2.5"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "AL = 1 \u03c4 \u03c4 \u2211 j=1 g(j) \u2212 j \u2212 1 \u03b3 where \u03c4 = arg min t [ g(j) = |X| ] \u03b3 = |Y |/|X|",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Evaluation",
                "sec_num": "2.5"
            },
            {
                "text": "In this section, we describe our experiment settings and results on all the three tracks we participate in.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments and Results",
                "sec_num": "3"
            },
            {
                "text": "For the Zh-En text-to-text track, we introduce our experiments in detail, including model configurations, data, as well as results of a strong wait-k baseline and streaming chunking method.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Zh-En text-to-text track",
                "sec_num": "3.1"
            },
            {
                "text": "In our experiment, we train transformer-big models with the same parameters in Vaswani et al. (2017) . The token-level batch size is about 100k on 8 GPUs for pre-training in all experiments. The learning rate is set as 5e-4 for pre-training and 5e-6 for fine-tuning, controlled by Adam optimizer (Kingma and Ba, 2015). We pre-train the model for 100000 steps and save the model every 2000 steps. We fine-tune the model for 10000 steps and save every 200 steps (batch size is about 30k).",
                "cite_spans": [
                    {
                        "start": 79,
                        "end": 100,
                        "text": "Vaswani et al. (2017)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Configurations",
                "sec_num": "3.1.1"
            },
            {
                "text": "We filter the BSTC corpus and the CWMT corpus with methods described in Section 2.1 and apply language-model-based data selection to the CWMT corpus. For the first edition standard transformer model, we mix the BSTC corpus and the CWMT corpus for pre-training, using the BSTC corpus for fine-tuning (denoted as M1). And following is the detail of the M1 model. For the pre-training stage, we show our results in each filtering step in Table 3 . We directly mix the CWMT and the BSTC parallel data as the D0 corpus. The rules-filter discards noise data containing few linguistic words, which improves about 1.3 BLEU. In align-langid-filter, we drop sentence pairs with a align score less than \u22127 and sentences in the wrong languages. In PPL-selection, we use ppl_score computed by the language model to sort sentence pairs and drop sentence pairs with a ppl_score larger than 8000. With alignlangid-filter and PPL-selection, 1.5M sentence pairs are dropped and nearly no BLEU descend is observed. We get the D1 corpus after all the filtering and selection. Further, we up-sample the BSTC corpus 5 times to enlarge the proportion of domain data. The R-Drop method is incorporated and we choose a larger dropout value (default dropout 0.1). Results in 4 show that the R-Drop (\u03b1 = 5) method significantly improves BLEU, and more increase is observed as we employ these methods together. For fine-tuning, we filter the BSTC corpus by hand-crafted rules and train with the consistent R-Drop method in the pretraining. Finally, we integrate the pre-training and the fine-tuning to train the M1 model, and the performance on the development set is shown in Table 7 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 435,
                        "end": 442,
                        "text": "Table 3",
                        "ref_id": "TABREF3"
                    },
                    {
                        "start": 1649,
                        "end": 1656,
                        "text": "Table 7",
                        "ref_id": "TABREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Data",
                "sec_num": "3.1.2"
            },
            {
                "text": "As the training corpus is limited, we utilize data augmentation methods. We perform data augmentation with the M1 model, containing forward-translation (FT) and backward- translation (BT) on the pre-training and the fine-tuning corpus. For the pre-training corpus, we leverage the M1 model to perform FT and BT on the D1 corpus, mixed with D1 corpus as the augmented pre-training corpus. Results in Table 5 show FT has better performance than BT. For fine-tuning corpus, we employ the M1 model to translate BSTC corpus in forward and backward paths and add all 5 beam results to the fine-tuning corpus. What's more, to strengthen the robustness of the model, we add char-level augmentation into the fine-tuning corpus, which contains insertion, deletion, duplication, and homophone substitution. For homophone substitution, we use python-pinyin 9 to extract homophone dictionary and substitute homophone characters according to character frequency. Results on the fine-tuning corpus are shown in Table 6 , which indicates that each augmentation method is useful. Finally, we add FT augmentation in pretraining, add FT, and BT as well as character augmentation in fine-tuning. The model trained with augmented pre-training and finetuning is denoted as the M2 models. Significant improvement of the M2 model against the M1 model could be observed in Table 7 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 399,
                        "end": 406,
                        "text": "Table 5",
                        "ref_id": null
                    },
                    {
                        "start": 996,
                        "end": 1003,
                        "text": "Table 6",
                        "ref_id": "TABREF6"
                    },
                    {
                        "start": 1348,
                        "end": 1355,
                        "text": "Table 7",
                        "ref_id": "TABREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Data",
                "sec_num": "3.1.2"
            },
            {
                "text": "To improve prefix-to-prefix translation quality, we use wait-k training described in Sec-9 https://github.com/mozillazg/python-pinyin tion 2.3. Using the same training data of the M2 model, we pre-train the model with multipath wait-k and fine-tune with simple wait-k or multi-path wait-k. We report the results of our model on the BSTC development set. All trained model is listed in Table 8 , and we show the AL-BLEU curve of several models. We achieve good performance according to Figure 2 , in which our M2_wait1-9_wait5 model exceeds the PaddlePaddle wait-5 model by at most 8 BLEU. The model trained with small k may achieve better performance in the low-latency regime, but not perform well in the high-latency regime. What's more, we ensemble the top-3 model in each inference k, which shows benefits across all latency regimes. Same as Guo et al. (2022) , standard beam-search is utilized after the source stream is finished. Our models achieve almost consistent performance in high latency regime. Table 8 . PaddlePaddle_wait5 is wait-k model provided by organizer.",
                "cite_spans": [
                    {
                        "start": 846,
                        "end": 863,
                        "text": "Guo et al. (2022)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 385,
                        "end": 392,
                        "text": "Table 8",
                        "ref_id": null
                    },
                    {
                        "start": 485,
                        "end": 493,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 1009,
                        "end": 1016,
                        "text": "Table 8",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Wait-k Baseline",
                "sec_num": "3.1.3"
            },
            {
                "text": "Pre-training (Augmentation) Data statistic (Pre-training) dev (SacreBleu) M1 (only pre-train) 6.34M 21.48 +FT pre-train 10.95M 22.32 +BT pre-train 11.03M 19.90 Table 5 : Results of data augmentation in the pre-training stage. We use the M1 model to generate the FT and BT augment data and mixed with the D1 corpus for pre-training. 8: Our wait-k models are pre-trained and finetuned on the same data of the M2 model in Section 3.1. We show the K value settings in pre-training and finetuning wait-k training for all M2 wait-k models. Take M2_wait5-15_wait5 for example, we use multi-path wait-k training with K \u2208 [5, 15] for pre-training and use simple wait-k with K = 5 for fine-tuning.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 160,
                        "end": 167,
                        "text": "Table 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Wait-k Baseline",
                "sec_num": "3.1.3"
            },
            {
                "text": "K = 1 M2_wait1-9_wait3 K \u2208 [1, 9] K = 3 M2_wait1-9_wait5 K \u2208 [1, 9] K = 5 M2_wait1-9_wait1-9 K \u2208 [1, 9] K \u2208 [1, 9]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Wait-k Baseline",
                "sec_num": "3.1.3"
            },
            {
                "text": "In this section, we add streaming chunking methods. We first fine-tune our segmentation model based on chinese-roberta-wwm-ext on BSTC train set and get 92.0% accuracy and 93.7% F-score on the BSTC development set. Then we employ our segmentation to perform online source chunking to detect word boundaries. The results in Figure 3 show about 2 BLEU improvements in the low-latency regime with a little increase in AL. M2_ensemble_chunk add streaming segmentation model compare to M2_ensemble.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 323,
                        "end": 331,
                        "text": "Figure 3",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Streaming Chunking",
                "sec_num": "3.1.4"
            },
            {
                "text": "For En-Es text-to-text track, we use the same data filtering rules on the UN-parallel corpus. Because of lacking speech corpus, we didn't perform data selection and augmentation. Standard and wait1-11 transformers are trained and we report our results on the devel-opment set in Figure 4 . ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 279,
                        "end": 287,
                        "text": "Figure 4",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "En-Es text-to-text track",
                "sec_num": "3.2"
            },
            {
                "text": "In Zh-En audio-to-text track, we train a simple transformer ASR model 10 with audio from BSTC and AIshell. The audio wav files are segmented by Silero-VAD(Team, 2021) and we achieve 0.38 WER on development and 0.28 WER on the test. And we perform simultaneous decoding on the ASR transcriptions with the same model and settings in the text-to-text track. Results show on development Figure 5 shows that the translation BLEU dropped by about 10 BLEU on audio input. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 383,
                        "end": 391,
                        "text": "Figure 5",
                        "ref_id": "FIGREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Zh-En audio-to-text track",
                "sec_num": "3.3"
            },
            {
                "text": "We elaborate on the BIT-Xiaomi simultaneous translation system in this paper. We investigate data filtering and augmentation to enlarge high-quality corpus and utilize the R-Drop method to improve translation quality. We train our simultaneous translation models 10 https://github.com/facebookresearch/fairseq /blob/main/examples/speech_to_text/docs/ mustc_example.md based on the wait-k strategy, and the streaming chunking method is employed to avoid segmentation errors in the source stream. The results on Zh-En text-to-text track indicate that the streaming chunking method can be integrated with the streaming decoding and improves translation quality. The slightly worse quality on the audio track suggests that the ASR error may affect translation quality much. In the future, we will explore better streaming ASR models and try more interesting simultaneous policies to get better latency and quality.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "4"
            },
            {
                "text": "https://github.com/fxsjy/jieba 3 https://github.com/rsennrich/subword-nmt 4 https://github.com/clab/fast_align 5 https://github.com/saffsd/langid.py 6 https://github.com/kpu/kenlm",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://github.com/dropreg/R-Drop",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://huggingface.co/hfl/chinese-roberta-wwmext",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This work is supported by the National Key RD Program of China (No. 2020AAA0106600).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Monotonic infinite lookback attention for simultaneous machine translation",
                "authors": [
                    {
                        "first": "Naveen",
                        "middle": [],
                        "last": "Arivazhagan",
                        "suffix": ""
                    },
                    {
                        "first": "Colin",
                        "middle": [],
                        "last": "Cherry",
                        "suffix": ""
                    },
                    {
                        "first": "Wolfgang",
                        "middle": [],
                        "last": "Macherey",
                        "suffix": ""
                    },
                    {
                        "first": "Chung-Cheng",
                        "middle": [],
                        "last": "Chiu",
                        "suffix": ""
                    },
                    {
                        "first": "Semih",
                        "middle": [],
                        "last": "Yavuz",
                        "suffix": ""
                    },
                    {
                        "first": "Ruoming",
                        "middle": [],
                        "last": "Pang",
                        "suffix": ""
                    },
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Colin",
                        "middle": [],
                        "last": "Raffel",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proc. of ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Naveen Arivazhagan, Colin Cherry, Wolfgang Macherey, Chung-Cheng Chiu, Semih Yavuz, Ruoming Pang, Wei Li, and Colin Raffel. 2019. Monotonic infinite lookback attention for simul- taneous machine translation. In Proc. of ACL.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Can neural machine translation do simultaneous translation?",
                "authors": [
                    {
                        "first": "Kyunghyun",
                        "middle": [],
                        "last": "Cho",
                        "suffix": ""
                    },
                    {
                        "first": "Masha",
                        "middle": [],
                        "last": "Esipova",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1606.02012"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kyunghyun Cho and Masha Esipova. 2016. Can neural machine translation do simultaneous translation? arXiv preprint arXiv:1606.02012.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Pre-training with whole word masking for chinese bert",
                "authors": [
                    {
                        "first": "Yiming",
                        "middle": [],
                        "last": "Cui",
                        "suffix": ""
                    },
                    {
                        "first": "Wanxiang",
                        "middle": [],
                        "last": "Che",
                        "suffix": ""
                    },
                    {
                        "first": "Ting",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Bing",
                        "middle": [],
                        "last": "Qin",
                        "suffix": ""
                    },
                    {
                        "first": "Ziqing",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Shijin",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Guoping",
                        "middle": [],
                        "last": "Hu",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Speech, and Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, and Guoping Hu. 2021. Pre-training with whole word masking for chinese bert. IEEE/ACM Transactions on Au- dio, Speech, and Language Processing.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Efficient Wait-k Models for Simultaneous Machine Translation",
                "authors": [
                    {
                        "first": "Maha",
                        "middle": [],
                        "last": "Elbayad",
                        "suffix": ""
                    },
                    {
                        "first": "Laurent",
                        "middle": [],
                        "last": "Besacier",
                        "suffix": ""
                    },
                    {
                        "first": "Jakob",
                        "middle": [],
                        "last": "Verbeek",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proc. of Interspeech",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Maha Elbayad, Laurent Besacier, and Jakob Ver- beek. 2020. Efficient Wait-k Models for Simul- taneous Machine Translation. In Proc. of Inter- speech.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Learning to translate in real-time with neural machine translation",
                "authors": [
                    {
                        "first": "Jiatao",
                        "middle": [],
                        "last": "Gu",
                        "suffix": ""
                    },
                    {
                        "first": "Graham",
                        "middle": [],
                        "last": "Neubig",
                        "suffix": ""
                    },
                    {
                        "first": "Kyunghyun",
                        "middle": [],
                        "last": "Cho",
                        "suffix": ""
                    },
                    {
                        "first": "O",
                        "middle": [
                            "K"
                        ],
                        "last": "Victor",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proc. of EACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jiatao Gu, Graham Neubig, Kyunghyun Cho, and Victor O.K. Li. 2017. Learning to translate in real-time with neural machine translation. In Proc. of EACL.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "The xiaomi text-totext simultaneous speech translation system for IWSLT 2022",
                "authors": [
                    {
                        "first": "Bao",
                        "middle": [],
                        "last": "Guo",
                        "suffix": ""
                    },
                    {
                        "first": "Mengge",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Wen",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Hexuan",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Chang",
                        "middle": [],
                        "last": "Mu",
                        "suffix": ""
                    },
                    {
                        "first": "Xiang",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Jianwei",
                        "middle": [],
                        "last": "Cui",
                        "suffix": ""
                    },
                    {
                        "first": "Bin",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Yuhang",
                        "middle": [],
                        "last": "Guo",
                        "suffix": ""
                    }
                ],
                "year": 2022,
                "venue": "Proceedings of the 19th International Conference on Spoken Language Translation",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bao Guo, Mengge Liu, Wen Zhang, Hexuan Chen, Chang Mu, Xiang Li, Jianwei Cui, Bin Wang, and Yuhang Guo. 2022. The xiaomi text-to- text simultaneous speech translation system for IWSLT 2022. In Proceedings of the 19th Inter- national Conference on Spoken Language Trans- lation (IWSLT 2022).",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Aishell-1: An open-source mandarin speech corpus and a speech recognition baseline",
                "authors": [],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xingyu Na Bengu Wu Hao Zheng Hui Bu, Ji- ayu Du. 2017. Aishell-1: An open-source man- darin speech corpus and a speech recognition baseline. In Oriental COCOSDA 2017.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Adam: A method for stochastic optimization",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Diederick",
                        "suffix": ""
                    },
                    {
                        "first": "Jimmy",
                        "middle": [],
                        "last": "Kingma",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ba",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proc. of ICLR",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Diederick P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In Proc. of ICLR.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "R-drop: Regularized dropout for neural networks",
                "authors": [
                    {
                        "first": "Lijun",
                        "middle": [],
                        "last": "Xiaobo Liang",
                        "suffix": ""
                    },
                    {
                        "first": "Juntao",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Yue",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Qi",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Tao",
                        "middle": [],
                        "last": "Meng",
                        "suffix": ""
                    },
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Qin",
                        "suffix": ""
                    },
                    {
                        "first": "Min",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Tie-Yan",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proc. of NeurIPS",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "xiaobo liang, Lijun Wu, Juntao Li, Yue Wang, Qi Meng, Tao Qin, Wei Chen, Min Zhang, and Tie-Yan Liu. 2021. R-drop: Regular- ized dropout for neural networks. In Proc. of NeurIPS.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Pkuseg: A toolkit for multi-domain chinese word segmentation",
                "authors": [
                    {
                        "first": "Ruixuan",
                        "middle": [],
                        "last": "Luo",
                        "suffix": ""
                    },
                    {
                        "first": "Jingjing",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Yi",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Xuancheng",
                        "middle": [],
                        "last": "Ren",
                        "suffix": ""
                    },
                    {
                        "first": "Xu",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ruixuan Luo, Jingjing Xu, Yi Zhang, Xuancheng Ren, and Xu Sun. 2019. Pkuseg: A toolkit for multi-domain chinese word segmentation. CoRR.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "STACL: Simultaneous translation with implicit anticipation and controllable latency using prefix-to-prefix framework",
                "authors": [
                    {
                        "first": "Mingbo",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Liang",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Hao",
                        "middle": [],
                        "last": "Xiong",
                        "suffix": ""
                    },
                    {
                        "first": "Renjie",
                        "middle": [],
                        "last": "Zheng",
                        "suffix": ""
                    },
                    {
                        "first": "Kaibo",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Baigong",
                        "middle": [],
                        "last": "Zheng",
                        "suffix": ""
                    },
                    {
                        "first": "Chuanqiang",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Zhongjun",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Hairong",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Xing",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Hua",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Haifeng",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proc. of ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng, Kaibo Liu, Baigong Zheng, Chuanqiang Zhang, Zhongjun He, Hairong Liu, Xing Li, Hua Wu, and Haifeng Wang. 2019. STACL: Simulta- neous translation with implicit anticipation and controllable latency using prefix-to-prefix frame- work. In Proc. of ACL.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Monotonic multihead attention",
                "authors": [
                    {
                        "first": "Xutai",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Juan",
                        "middle": [
                            "Miguel"
                        ],
                        "last": "Pino",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Cross",
                        "suffix": ""
                    },
                    {
                        "first": "Liezl",
                        "middle": [],
                        "last": "Puzon",
                        "suffix": ""
                    },
                    {
                        "first": "Jiatao",
                        "middle": [],
                        "last": "Gu",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proc. of ICLR",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xutai Ma, Juan Miguel Pino, James Cross, Liezl Puzon, and Jiatao Gu. 2020. Monotonic multi- head attention. In Proc. of ICLR.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Intelligent selection of language model training data",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Robert",
                        "suffix": ""
                    },
                    {
                        "first": "William",
                        "middle": [],
                        "last": "Moore",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Lewis",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the ACL 2010 conference short papers",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Robert C Moore and William Lewis. 2010. Intelli- gent selection of language model training data. In Proceedings of the ACL 2010 conference short papers.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Bleu: a method for automatic evaluation of machine translation",
                "authors": [
                    {
                        "first": "Kishore",
                        "middle": [],
                        "last": "Papineni",
                        "suffix": ""
                    },
                    {
                        "first": "Salim",
                        "middle": [],
                        "last": "Roukos",
                        "suffix": ""
                    },
                    {
                        "first": "Todd",
                        "middle": [],
                        "last": "Ward",
                        "suffix": ""
                    },
                    {
                        "first": "Wei-Jing",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc. of ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a method for au- tomatic evaluation of machine translation. In Proc. of ACL.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Silero vad: pre-trained enterprise-grade voice activity detector (vad), number detector and language classifier",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Silero Team. 2021. Silero vad: pre-trained enterprise-grade voice activity detector (vad), number detector and language classifier.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Attention is all you need",
                "authors": [
                    {
                        "first": "Ashish",
                        "middle": [],
                        "last": "Vaswani",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Shazeer",
                        "suffix": ""
                    },
                    {
                        "first": "Niki",
                        "middle": [],
                        "last": "Parmar",
                        "suffix": ""
                    },
                    {
                        "first": "Jakob",
                        "middle": [],
                        "last": "Uszkoreit",
                        "suffix": ""
                    },
                    {
                        "first": "Llion",
                        "middle": [],
                        "last": "Jones",
                        "suffix": ""
                    },
                    {
                        "first": "Aidan",
                        "middle": [
                            "N"
                        ],
                        "last": "Gomez",
                        "suffix": ""
                    },
                    {
                        "first": "\u0141ukasz",
                        "middle": [],
                        "last": "Kaiser",
                        "suffix": ""
                    },
                    {
                        "first": "Illia",
                        "middle": [],
                        "last": "Polosukhin",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proc. of NeurIPS",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, \u0141ukasz Kaiser, and Illia Polosukhin. 2017. At- tention is all you need. Proc. of NeurIPS.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Dutongchuan: Context-aware translation model for simultaneous interpreting",
                "authors": [
                    {
                        "first": "Hao",
                        "middle": [],
                        "last": "Xiong",
                        "suffix": ""
                    },
                    {
                        "first": "Ruiqing",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Chuanqiang",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Zhongjun",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Hua",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Haifeng",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1907.12984"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Hao Xiong, Ruiqing Zhang, Chuanqiang Zhang, Zhongjun He, Hua Wu, and Haifeng Wang. 2019. Dutongchuan: Context-aware transla- tion model for simultaneous interpreting. arXiv preprint arXiv:1907.12984.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Incremental segmentation and decoding strategies for simultaneous translation",
                "authors": [
                    {
                        "first": "Mahsa",
                        "middle": [],
                        "last": "Yarmohammadi",
                        "suffix": ""
                    },
                    {
                        "first": "Vivek",
                        "middle": [],
                        "last": "Kumar Rangarajan",
                        "suffix": ""
                    },
                    {
                        "first": "Srinivas",
                        "middle": [],
                        "last": "Sridhar",
                        "suffix": ""
                    },
                    {
                        "first": "Baskaran",
                        "middle": [],
                        "last": "Bangalore",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Sankaran",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the Sixth International Joint Conference on Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mahsa Yarmohammadi, Vivek Kumar Rangara- jan Sridhar, Srinivas Bangalore, and Baskaran Sankaran. 2013. Incremental segmentation and decoding strategies for simultaneous translation. In Proceedings of the Sixth International Joint Conference on Natural Language Processing.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "BSTC: A large-scale Chinese-English speech translation dataset",
                "authors": [
                    {
                        "first": "Ruiqing",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Xiyang",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Chuanqiang",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Zhongjun",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Hua",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Zhi",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Haifeng",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Ying",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Qinfei",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the Second Workshop on Automatic Simultaneous Translation",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ruiqing Zhang, Xiyang Wang, Chuanqiang Zhang, Zhongjun He, Hua Wu, Zhi Li, Haifeng Wang, Ying Chen, and Qinfei Li. 2021. BSTC: A large-scale Chinese-English speech translation dataset. In Proceedings of the Second Workshop on Automatic Simultaneous Translation.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Learning adaptive segmentation policy for simultaneous translation",
                "authors": [
                    {
                        "first": "Ruiqing",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Chuanqiang",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Zhongjun",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Hua",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Haifeng",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proc. of EMNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ruiqing Zhang, Chuanqiang Zhang, Zhongjun He, Hua Wu, and Haifeng Wang. 2020. Learning adaptive segmentation policy for simultaneous translation. In Proc. of EMNLP.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "text": "This example shows how the streaming segmentation model works with a wait-k model. The solid lines are the translation points of our proposed method, and the dashed lines are the additional possible translation points of the wait-k model.Algorithm 1: Wait-k decoding with the streaming chunking method Input: the translation model M t , the chunking model M c , the source sequence x, wait-k lagging K Output: The translated sentence\u0177 1 Initialization: the read token sequenc\u00ea x = [], the output sentence\u0177 = [],the incomplete word read x p = \u2032\u2032 2 while |\u0177| \u0338 = '</s>' x p + x.next_char() // x p is a complete word 8 if M c (x, x p ) then 9",
                "num": null,
                "uris": null
            },
            "FIGREF1": {
                "type_str": "figure",
                "text": "Results of M2 wait-k models. Models are list in",
                "num": null,
                "uris": null
            },
            "FIGREF2": {
                "type_str": "figure",
                "text": "Results of streaming chunking method.",
                "num": null,
                "uris": null
            },
            "FIGREF3": {
                "type_str": "figure",
                "text": "Results of En-Es text-to-text track. BLEU is computed in document level with Mteval-v13a.",
                "num": null,
                "uris": null
            },
            "FIGREF4": {
                "type_str": "figure",
                "text": "Results of Zh-En audio-to-text track. BLEU is computed in document level with Mteval-v13a.",
                "num": null,
                "uris": null
            },
            "TABREF1": {
                "type_str": "table",
                "num": null,
                "html": null,
                "text": "",
                "content": "<table/>"
            },
            "TABREF2": {
                "type_str": "table",
                "num": null,
                "html": null,
                "text": "",
                "content": "<table><tr><td>Orig BSTC+CWMT (D0)</td><td>9.1M</td><td>16.82</td></tr><tr><td>+rules-filter</td><td>7.7M</td><td>18.09</td></tr><tr><td>+align-langid-filter</td><td>7.2M</td><td>18.04</td></tr><tr><td>+PPL-selection (D1)</td><td>6.2M</td><td>17.99</td></tr></table>"
            },
            "TABREF3": {
                "type_str": "table",
                "num": null,
                "html": null,
                "text": "Data filtering and selection in the pre-training stage. BLEU is computed by ScareBleu in sentence-level.Filtering and selection methods are applied incrementally.",
                "content": "<table><tr><td>Pre-training (method)</td><td colspan=\"2\">Data statistic dev (SacreBleu)</td></tr><tr><td>BSTC+CWMT (D1)</td><td>6.2M</td><td>17.99</td></tr><tr><td>+up-sampling</td><td>6.34M</td><td>18.40</td></tr><tr><td>+dropout 0.25</td><td>6.2M</td><td>18.59</td></tr><tr><td>+R-Drop (\u03b1 = 5)</td><td>6.2M</td><td>19.72</td></tr><tr><td>+up-sampling + dropout 0.25 + R-Drop</td><td>6.34M</td><td>21.48</td></tr></table>"
            },
            "TABREF4": {
                "type_str": "table",
                "num": null,
                "html": null,
                "text": "Data statistic and BLEU on the development of our pre-training methods. BLEU is computed by ScareBleu in sentence-level.",
                "content": "<table/>"
            },
            "TABREF6": {
                "type_str": "table",
                "num": null,
                "html": null,
                "text": "Results of data augmentation in the fine-tuning stage. The M1 model is leveraged to generate FT and BT augment data, and beam 5 results are saved. For the char-aug, we use character-level augmentations including insertion, deletion, duplication, and homophone substitution. The models in this table are all based on the same pre-trained model.",
                "content": "<table><tr><td colspan=\"3\">Model dev (SacreBleu) dev (Mteval-v13a)</td></tr><tr><td>M1</td><td>22.43</td><td>27.26</td></tr><tr><td>M2</td><td>23.62</td><td>28.96</td></tr></table>"
            },
            "TABREF7": {
                "type_str": "table",
                "num": null,
                "html": null,
                "text": "Results of data augmentation on standard transformer model. The M1 model is trained with pretraining and fine-tuning. The M2 model leverage data augmentation in both the pre-training and the finetuning stage.",
                "content": "<table><tr><td>Model name</td><td>Pre-train Fine-tune</td></tr><tr><td colspan=\"2\">M2_wait5-15_wait5 M2_wait5-15_wait7 M2_wait5-15_wait9 M2_wait5-15_wait11 M2_wait5-15_wait13 M2_wait5-15_wait15 M2_wait5-15_wait5-15 K \u2208 [5, 15] K \u2208 [5, 15] K \u2208 [5, 15] K = 5 K \u2208 [5, 15] K = 7 K \u2208 [5, 15] K = 9 K \u2208 [5, 15] K = 11 K \u2208 [5, 15] K = 13 K \u2208 [5, 15] K = 15 M2_wait1-9_wait1 K \u2208 [1, 9]</td></tr></table>"
            },
            "TABREF8": {
                "type_str": "table",
                "num": null,
                "html": null,
                "text": "",
                "content": "<table/>"
            }
        }
    }
}