File size: 51,163 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T02:09:40.981684Z"
    },
    "title": "System Description on Automatic Simultaneous Translation Workshop",
    "authors": [
        {
            "first": "Linjie",
            "middle": [],
            "last": "Chen",
            "suffix": "",
            "affiliation": {},
            "email": "chenlinjie887@pingan.com.cn"
        },
        {
            "first": "Jianzong",
            "middle": [],
            "last": "Wang",
            "suffix": "",
            "affiliation": {},
            "email": "jzwang@188.com"
        },
        {
            "first": "Zhangcheng",
            "middle": [],
            "last": "Huang",
            "suffix": "",
            "affiliation": {},
            "email": "huangzhangcheng624@pingan.com.cn"
        },
        {
            "first": "Xiongbin",
            "middle": [],
            "last": "Ding",
            "suffix": "",
            "affiliation": {},
            "email": "dingxiongbin106@pingan.com.cn"
        },
        {
            "first": "Jing",
            "middle": [],
            "last": "Xiao",
            "suffix": "",
            "affiliation": {},
            "email": "xiaojing661@pingan.com.cn"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "This paper shows our submission on the second automatic simultaneous translation workshop at NAACL2021. We participate in all the two directions of Chinese-to-English translation, Chinese audio\u2192English text and Chinese text\u2192English text. We do data filtering and model training techniques to get the best BLEU score and reduce the average lagging. We propose a two-stage simultaneous translation pipeline system which is composed of Quartznet and BPE-based transformer. We propose a competitive simultaneous translation system and achieves a BLEU score of 24.39 in the audio input track.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "This paper shows our submission on the second automatic simultaneous translation workshop at NAACL2021. We participate in all the two directions of Chinese-to-English translation, Chinese audio\u2192English text and Chinese text\u2192English text. We do data filtering and model training techniques to get the best BLEU score and reduce the average lagging. We propose a two-stage simultaneous translation pipeline system which is composed of Quartznet and BPE-based transformer. We propose a competitive simultaneous translation system and achieves a BLEU score of 24.39 in the audio input track.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Our submitted system consists of an end to end speech recognition model and a neural machine translation model which follows the traditional pipeline framework in simultaneous translation task. The system input is Chinese audio file and the output is English translation text. A temporary Streaming transcription is obtained by speech recognition model and transmitted into machine translation model to get the target system output.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "For automatic speech recognition(ASR) model, we use the QuartzNet model (Kriman et al., 2019) of Nvidia Jarvis. At the moment, we expand the train data set by adding Aishell-1 and data that collected, then using plenty of rules to filter audio data and deal with parallel transcription. Compared to the Jasper model (Li et al., 2019) , it can reduce number of parameters quickly by using separable 1D convolutions including time channel.",
                "cite_spans": [
                    {
                        "start": 72,
                        "end": 93,
                        "text": "(Kriman et al., 2019)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 316,
                        "end": 333,
                        "text": "(Li et al., 2019)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Our neural machine translation model is Transformer (Vaswani et al., 2017) . We use some human rules and the pre-trained language model to filter the parallel corpus. The method of back translation (Sennrich et al., 2016) is also applied to generate synthetic Chinese sentences.",
                "cite_spans": [
                    {
                        "start": 52,
                        "end": 74,
                        "text": "(Vaswani et al., 2017)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 198,
                        "end": 221,
                        "text": "(Sennrich et al., 2016)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "At the step of inference, we apply the wait-k words method (Ma et al., 2018) . Both the preprocessing and post-processing are applied to improve the terminology translation and deal with the word error produced by the ASR system.",
                "cite_spans": [
                    {
                        "start": 59,
                        "end": 76,
                        "text": "(Ma et al., 2018)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Since our submission is a two-stage system, the rest of this paper describes separately regards to the Automatic speech recognition(ASR and Machine translation(MT) sub-modules. We firstly describe the training and development datasets we used, then the data filtering methods we applied is introduced. Secondly, the system architecture is discussed and it is verified by the experiments. Lastly, we draw a conclusion of our system by analyzing the experiments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "For audio data of ASR, we use qianyan audio datasets provided by NAACL workshop (Zhang et al., 2021) , Aishell-1 (Hui Bu, 2017) and lip sentences we collect by smartphone(16kHz, 16-bit).",
                "cite_spans": [
                    {
                        "start": 80,
                        "end": 100,
                        "text": "(Zhang et al., 2021)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "2"
            },
            {
                "text": "We invite 20 volunteers in data collection. Each volunteer performed two hours of Mandarin Chinese audio about 1000 sentences in the quiet room. To keep data diversity, different domains of audios were collected, including artificial intelligent, industrial production, business conversation and medical. Finally, we get a total of 19800 sentences (audio and transcription) in this way.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Audio Data",
                "sec_num": "2.1"
            },
            {
                "text": "For qianyan audio datasets, we split each audio into sentences according to the sentence-level transcription. After processing, the blank part of all entire audio files was removed, and duration time of audios was reduced from the original 68 hours to about 52 hours.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Audio Data",
                "sec_num": "2.1"
            },
            {
                "text": "For AIshell-1 datasets, we firstly deal with transcription files by using rules to get path and filename of every transcription. Then using wave library to read audio files to get the duration time of each audio.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Audio Data",
                "sec_num": "2.1"
            },
            {
                "text": "Noting that the audio data and the transcription may not exactly match. In order to improve the accuracy of the data, we use a pre-trained ASR model to transcript audio data to produce text result. Then using similarity matching algorithm to filter audio and original transcription data of lower similarity. Table1 shows the number of train data after filtering. The corpus we use to build our machine translation system is CWMT 19 corpus 1 . It includes both the bilingual and monolingual data. For the bilingual data, we apply data filtering techniques. The main process is described as follows. Firstly, we set the punctuation ratio and sentence length ratio of the sentence pairs to abandon the sentences higher than the ratio. Secondly, we calculate the cross entropy of each English sentence by a pre-trained language model and removed the sentence pair exceed the threshold. Thirdly, we construct a terminology table using the methods of name entity resolution and word alignment. The terminology such as companies, organizations and human names are replaced with specific words.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Audio Data",
                "sec_num": "2.1"
            },
            {
                "text": "For the monolingual data, we follow the method proposed by (Sennrich et al., 2016) . We firstly train an English to Chinese machine translation model. Then the monolingual English sentences are translated to generate synthetic Chinese translation. All the synthetic parallel data are filtered with the same strategies applied in bilingual data.",
                "cite_spans": [
                    {
                        "start": 59,
                        "end": 82,
                        "text": "(Sennrich et al., 2016)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Audio Data",
                "sec_num": "2.1"
            },
            {
                "text": "After the filtering process, we normalize the punctuation for both Chinese and English sentences. We apply Chinese word segmentation using LAC toolkit 2 (Jiao et al., 2018) for Chinese sentences. For the English sentences, we apply the Tokenizer and Truecaser toolkit provided by Moses scripts (Koehn et al., 2007) . Finally, we train a bytes pairs encoding model and applied it for both Chinese and English sentences.",
                "cite_spans": [
                    {
                        "start": 153,
                        "end": 172,
                        "text": "(Jiao et al., 2018)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 294,
                        "end": 314,
                        "text": "(Koehn et al., 2007)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Audio Data",
                "sec_num": "2.1"
            },
            {
                "text": "The model training process for both the speech recognition and machine translation model are implemented on a device with eight GPUs of Nvidia TESLA V100.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "System description",
                "sec_num": "3"
            },
            {
                "text": "The QuartzNet15x5 model is as our based model on ASR, we also use Memory-Self-Attention(MSA) (Luo et al., 2021 ) modules in the model structure of CTC and RNN-T.",
                "cite_spans": [
                    {
                        "start": 93,
                        "end": 110,
                        "text": "(Luo et al., 2021",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Automatic speech recognition",
                "sec_num": "3.1"
            },
            {
                "text": "After data pre-processing, we use the file of json structure to train quartznet 15x5 model. We list the model configuration and train parameters in Table2. When the model was trained, the size of each sample audio should be controlled to less than 16.7 s. To do this, it can improve the accuracy of model and accelerate the training speed. The ASR model was trained over three days and reached to the best WER. After the loss value converged, we use the last saved model to try to transform test datasets and get average score. We use WER-BEAT (Sheshadri et al., 2021) to evaluate our model. And we get closed to 1.0 WER. To increase the accuracy of model recognition, we use MSA modules in the model structure of CTC and RNN-T. The operation complexity of the model maintains a linear relationship with the length of the input speech, which greatly improves the efficiency of the model, and there will be no serious decline in efficiency as the input increases.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training Scheme",
                "sec_num": "3.1.1"
            },
            {
                "text": "Before we use the model, in order to improve the accuracy of recognition, we need to process the input voice file.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Usage",
                "sec_num": "3.1.2"
            },
            {
                "text": "In the end, we only submit one point in the competition. This point is to directly use the previously segmented audio transcription text as the input of the translation model, thereby obtaining a more accurate English text output.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Usage",
                "sec_num": "3.1.2"
            },
            {
                "text": "We use Transformer as our based model on machine translation, the attention mechanism is strength-able at capturing the Semantic relationship on a sentence. The development toolkit we used in machine translation is Marian (Junczys-Dowmunt et al., 2018) .",
                "cite_spans": [
                    {
                        "start": 222,
                        "end": 252,
                        "text": "(Junczys-Dowmunt et al., 2018)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Machine translation",
                "sec_num": "3.2"
            },
            {
                "text": "After completing the data preprocessing on both the bilingual data and back-translated data, we train our baseline model by evaluating BLEU. The language tool for evaluation is uncased 4-gram BLEU (Papineni et al., 2002) . We list the model configuration in Table3 and training parameters in Table  4 . We train the model for over three days, the BLEU score increased rapidly at the beginning and the growth slowed after 30 hours. After the loss converged, we collect the last 20 checkpoints of the model in the time interval of one hour and applied checkpoint average to get the final model. We implement fine-tuning on the Transformer model using the development set of qianyan audio datasets (956 sentence pairs) to improve the translation quality on simultaneous translation task. Since fine-tuning is effective to build a domain-adaptive model.",
                "cite_spans": [
                    {
                        "start": 197,
                        "end": 220,
                        "text": "(Papineni et al., 2002)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 292,
                        "end": 300,
                        "text": "Table  4",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Training Scheme",
                "sec_num": "3.2.1"
            },
            {
                "text": "This paper describes our submission to the second automatic simultaneous translation workshop at NAACL2021. We detail our process of data filtering and model training. The Consecutive Wait(CW) (Klein et al., 2017) of the best point reached to 18.4 while we get the BLEU value of 24.39 in the audio input track. In future work, we will continue to research on end-to-end speech translation model from Chinese speech input to English text output.",
                "cite_spans": [
                    {
                        "start": 193,
                        "end": 213,
                        "text": "(Klein et al., 2017)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "4"
            },
            {
                "text": "http://mteval.cipsc.org.cn:81/agreement/AutoSimTrans 2 https://github.com/baidu/lac",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Aishell-1: An open-source mandarin speech corpus and a speech recognition baseline",
                "authors": [
                    {
                        "first": "Xingyu Na Bengu Wu Hao Zheng Hui",
                        "middle": [],
                        "last": "Bu",
                        "suffix": ""
                    },
                    {
                        "first": "Jiayu",
                        "middle": [],
                        "last": "Du",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Oriental COCOSDA 2017",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xingyu Na Bengu Wu Hao Zheng Hui Bu, Jiayu Du. 2017. Aishell-1: An open-source mandarin speech corpus and a speech recognition baseline. In Orien- tal COCOSDA 2017, page Submitted.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Chinese lexical analysis with deep bi-gru-crf network",
                "authors": [
                    {
                        "first": "Zhenyu",
                        "middle": [],
                        "last": "Jiao",
                        "suffix": ""
                    },
                    {
                        "first": "Shuqi",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "Ke",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1807.01882"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Zhenyu Jiao, Shuqi Sun, and Ke Sun. 2018. Chinese lexical analysis with deep bi-gru-crf network. arXiv preprint arXiv:1807.01882.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Marian: Fast neural machine translation in C++",
                "authors": [
                    {
                        "first": "Marcin",
                        "middle": [],
                        "last": "Junczys-Dowmunt",
                        "suffix": ""
                    },
                    {
                        "first": "Roman",
                        "middle": [],
                        "last": "Grundkiewicz",
                        "suffix": ""
                    },
                    {
                        "first": "Tomasz",
                        "middle": [],
                        "last": "Dwojak",
                        "suffix": ""
                    },
                    {
                        "first": "Hieu",
                        "middle": [],
                        "last": "Hoang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenneth",
                        "middle": [],
                        "last": "Heafield",
                        "suffix": ""
                    },
                    {
                        "first": "Tom",
                        "middle": [],
                        "last": "Neckermann",
                        "suffix": ""
                    },
                    {
                        "first": "Frank",
                        "middle": [],
                        "last": "Seide",
                        "suffix": ""
                    },
                    {
                        "first": "Ulrich",
                        "middle": [],
                        "last": "Germann",
                        "suffix": ""
                    },
                    {
                        "first": "Alham",
                        "middle": [],
                        "last": "Fikri Aji",
                        "suffix": ""
                    },
                    {
                        "first": "Nikolay",
                        "middle": [],
                        "last": "Bogoychev",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [
                            "T"
                        ],
                        "last": "Andr\u00e9",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "116--121",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P18-4020"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Marcin Junczys-Dowmunt, Roman Grundkiewicz, Tomasz Dwojak, Hieu Hoang, Kenneth Heafield, Tom Neckermann, Frank Seide, Ulrich Germann, Al- ham Fikri Aji, Nikolay Bogoychev, Andr\u00e9 F. T. Mar- tins, and Alexandra Birch. 2018. Marian: Fast neu- ral machine translation in C++. In Proceedings of ACL 2018, Melbourne, Australia, July 15-20, 2018, System Demonstrations, pages 116-121. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Opennmt: Open-source toolkit for neural machine translation",
                "authors": [
                    {
                        "first": "Guillaume",
                        "middle": [],
                        "last": "Klein",
                        "suffix": ""
                    },
                    {
                        "first": "Yoon",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "Yuntian",
                        "middle": [],
                        "last": "Deng",
                        "suffix": ""
                    },
                    {
                        "first": "Jean",
                        "middle": [],
                        "last": "Senellart",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [
                            "M"
                        ],
                        "last": "Rush",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel- lart, and Alexander M. Rush. 2017. Opennmt: Open-source toolkit for neural machine translation.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Moses: Open source toolkit for statistical machine translation",
                "authors": [
                    {
                        "first": "Philipp",
                        "middle": [],
                        "last": "Koehn",
                        "suffix": ""
                    },
                    {
                        "first": "Hieu",
                        "middle": [],
                        "last": "Hoang",
                        "suffix": ""
                    },
                    {
                        "first": "Alexandra",
                        "middle": [],
                        "last": "Birch",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Callison-Burch",
                        "suffix": ""
                    },
                    {
                        "first": "Marcello",
                        "middle": [],
                        "last": "Federico",
                        "suffix": ""
                    },
                    {
                        "first": "Nicola",
                        "middle": [],
                        "last": "Bertoldi",
                        "suffix": ""
                    },
                    {
                        "first": "Brooke",
                        "middle": [],
                        "last": "Cowan",
                        "suffix": ""
                    },
                    {
                        "first": "Wade",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    },
                    {
                        "first": "Christine",
                        "middle": [],
                        "last": "Moran",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Zens",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Dyer",
                        "suffix": ""
                    },
                    {
                        "first": "Ondrej",
                        "middle": [],
                        "last": "Bojar",
                        "suffix": ""
                    },
                    {
                        "first": "Alexandra",
                        "middle": [],
                        "last": "Constantin",
                        "suffix": ""
                    },
                    {
                        "first": "Evan",
                        "middle": [],
                        "last": "Herbst",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "ACL 2007, Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin, and Evan Herbst. 2007. Moses: Open source toolkit for statistical machine translation. In ACL 2007, Proceedings of the 45th Annual Meet- ing of the Association for Computational Linguistics, June 23-30, 2007, Prague, Czech Republic. The As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Quartznet: Deep automatic speech recognition with 1d time-channel separable convolutions",
                "authors": [
                    {
                        "first": "Stanislav",
                        "middle": [],
                        "last": "Samuel Kriman",
                        "suffix": ""
                    },
                    {
                        "first": "Boris",
                        "middle": [],
                        "last": "Beliaev",
                        "suffix": ""
                    },
                    {
                        "first": "Jocelyn",
                        "middle": [],
                        "last": "Ginsburg",
                        "suffix": ""
                    },
                    {
                        "first": "Oleksii",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Vitaly",
                        "middle": [],
                        "last": "Kuchaiev",
                        "suffix": ""
                    },
                    {
                        "first": "Ryan",
                        "middle": [],
                        "last": "Lavrukhin",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Leary",
                        "suffix": ""
                    },
                    {
                        "first": "Yang",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Samuel Kriman, Stanislav Beliaev, Boris Ginsburg, Jo- celyn Huang, Oleksii Kuchaiev, Vitaly Lavrukhin, Ryan Leary, Jason Li, and Yang Zhang. 2019. Quartznet: Deep automatic speech recognition with 1d time-channel separable convolutions.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Jasper: An end-to-end convolutional neural acoustic model",
                "authors": [
                    {
                        "first": "Ravi Teja",
                        "middle": [],
                        "last": "Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Gadde",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nguyen, and Ravi Teja Gadde. 2019. Jasper: An end-to-end convolutional neural acoustic model.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Unidirectional memory-self-attention transducer for online speech recognition",
                "authors": [
                    {
                        "first": "Jian",
                        "middle": [],
                        "last": "Luo",
                        "suffix": ""
                    },
                    {
                        "first": "Jianzong",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Ning",
                        "middle": [],
                        "last": "Cheng",
                        "suffix": ""
                    },
                    {
                        "first": "Jing",
                        "middle": [],
                        "last": "Xiao",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jian Luo, Jianzong Wang, Ning Cheng, and Jing Xiao. 2021. Unidirectional memory-self-attention trans- ducer for online speech recognition.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "STACL: simultaneous translation with integrated anticipation and controllable latency",
                "authors": [
                    {
                        "first": "Mingbo",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Liang",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Hao",
                        "middle": [],
                        "last": "Xiong",
                        "suffix": ""
                    },
                    {
                        "first": "Kaibo",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Chuanqiang",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Zhongjun",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Hairong",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Xing",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Haifeng",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mingbo Ma, Liang Huang, Hao Xiong, Kaibo Liu, Chuanqiang Zhang, Zhongjun He, Hairong Liu, Xing Li, and Haifeng Wang. 2018. STACL: simul- taneous translation with integrated anticipation and controllable latency. CoRR, abs/1810.08398.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Bleu: a method for automatic evaluation of machine translation",
                "authors": [
                    {
                        "first": "Kishore",
                        "middle": [],
                        "last": "Papineni",
                        "suffix": ""
                    },
                    {
                        "first": "Salim",
                        "middle": [],
                        "last": "Roukos",
                        "suffix": ""
                    },
                    {
                        "first": "Todd",
                        "middle": [],
                        "last": "Ward",
                        "suffix": ""
                    },
                    {
                        "first": "Wei-Jing",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "311--318",
                "other_ids": {
                    "DOI": [
                        "10.3115/1073083.1073135"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kishore Papineni, Salim Roukos, Todd Ward, and Wei- Jing Zhu. 2002. Bleu: a method for automatic eval- uation of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Compu- tational Linguistics, July 6-12, 2002, Philadelphia, PA, USA, pages 311-318. ACL.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Improving neural machine translation models with monolingual data",
                "authors": [
                    {
                        "first": "Rico",
                        "middle": [],
                        "last": "Sennrich",
                        "suffix": ""
                    },
                    {
                        "first": "Barry",
                        "middle": [],
                        "last": "Haddow",
                        "suffix": ""
                    },
                    {
                        "first": "Alexandra",
                        "middle": [],
                        "last": "Birch",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016",
                "volume": "1",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/p16-1009"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Improving neural machine translation mod- els with monolingual data. In Proceedings of the 54th Annual Meeting of the Association for Compu- tational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers. The Asso- ciation for Computer Linguistics.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Wer-bert: Automatic wer estimation with bert in a balanced ordinal classification paradigm",
                "authors": [
                    {
                        "first": "Krishna",
                        "middle": [],
                        "last": "Akshay",
                        "suffix": ""
                    },
                    {
                        "first": "Anvesh",
                        "middle": [
                            "Rao"
                        ],
                        "last": "Sheshadri",
                        "suffix": ""
                    },
                    {
                        "first": "Sukhdeep",
                        "middle": [],
                        "last": "Vijjini",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Kharbanda",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Akshay Krishna Sheshadri, Anvesh Rao Vijjini, and Sukhdeep Kharbanda. 2021. Wer-bert: Automatic wer estimation with bert in a balanced ordinal classi- fication paradigm.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Attention is all you need",
                "authors": [
                    {
                        "first": "Ashish",
                        "middle": [],
                        "last": "Vaswani",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Shazeer",
                        "suffix": ""
                    },
                    {
                        "first": "Niki",
                        "middle": [],
                        "last": "Parmar",
                        "suffix": ""
                    },
                    {
                        "first": "Jakob",
                        "middle": [],
                        "last": "Uszkoreit",
                        "suffix": ""
                    },
                    {
                        "first": "Llion",
                        "middle": [],
                        "last": "Jones",
                        "suffix": ""
                    },
                    {
                        "first": "Aidan",
                        "middle": [
                            "N"
                        ],
                        "last": "Gomez",
                        "suffix": ""
                    },
                    {
                        "first": "Lukasz",
                        "middle": [],
                        "last": "Kaiser",
                        "suffix": ""
                    },
                    {
                        "first": "Illia",
                        "middle": [],
                        "last": "Polosukhin",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems",
                "volume": "",
                "issue": "",
                "pages": "5998--6008",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Pro- cessing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4- 9, 2017, Long Beach, CA, USA, pages 5998-6008.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Bstc: A large-scale chinese-english speech translation dataset",
                "authors": [
                    {
                        "first": "Ruiqing",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Xiyang",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Chuanqiang",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Zhongjun",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Hua",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Zhi",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Haifeng",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Ying",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Qinfei",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2104.03575"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ruiqing Zhang, Xiyang Wang, Chuanqiang Zhang, Zhongjun He, Hua Wu, Zhi Li, Haifeng Wang, Ying Chen, and Qinfei Li. 2021. Bstc: A large-scale chinese-english speech translation dataset. arXiv preprint arXiv:2104.03575.",
                "links": null
            }
        },
        "ref_entries": {
            "TABREF0": {
                "text": "ZH-EN audio train datasets",
                "content": "<table><tr><td>Data Source</td><td colspan=\"2\">Duration Total Samples</td></tr><tr><td colspan=\"2\">Qianyan(NAACL) 70hours</td><td>36,140</td></tr><tr><td>Aishell-1</td><td colspan=\"2\">178hours 120,098</td></tr><tr><td>Collection</td><td>40hours</td><td>19,800</td></tr><tr><td>2.2 Text Data</td><td/><td/></tr></table>",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF1": {
                "text": "Model Configuration",
                "content": "<table><tr><td>Configuration</td><td>Value</td></tr><tr><td>Sample rate</td><td>16,000</td></tr><tr><td>Repeat</td><td>5</td></tr><tr><td>n fft</td><td>512</td></tr><tr><td>activation</td><td>relu</td></tr><tr><td>Chinese Vocabulary size</td><td>5,270</td></tr><tr><td>Optimizer</td><td>Adam</td></tr><tr><td>residual</td><td>true</td></tr><tr><td>filters</td><td>256/512</td></tr><tr><td>batch size</td><td>64</td></tr></table>",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF2": {
                "text": "Model Configuration",
                "content": "<table><tr><td>Configuration</td><td>Value</td></tr><tr><td>Encoder/Decoder depth</td><td>6</td></tr><tr><td>Attention heads</td><td>16</td></tr><tr><td>Word Embedding</td><td>1024</td></tr><tr><td>FFN size</td><td>4096</td></tr><tr><td>Chinese Vocabulary size</td><td>50,000</td></tr><tr><td>English Vocabulary size</td><td>50,000</td></tr><tr><td>Optimizer</td><td>Adam</td></tr></table>",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF3": {
                "text": "Training Parameters",
                "content": "<table><tr><td>Parameter</td><td>Value</td></tr><tr><td>Label smoothing</td><td>0.1</td></tr><tr><td>Learning rate</td><td>16</td></tr><tr><td>Warmup rates</td><td>15,000</td></tr><tr><td>Maximum sentence length</td><td>120</td></tr><tr><td>Clip normalization</td><td>5</td></tr><tr><td>3.2.2 Fine-tuning</td><td/></tr></table>",
                "type_str": "table",
                "num": null,
                "html": null
            }
        }
    }
}