File size: 117,715 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T02:10:02.097572Z"
    },
    "title": "Assessing the Sufficiency of Arguments through Conclusion Generation",
    "authors": [
        {
            "first": "Timon",
            "middle": [],
            "last": "Gurcke",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Paderborn University",
                "location": {
                    "settlement": "Paderborn",
                    "country": "Germany"
                }
            },
            "email": ""
        },
        {
            "first": "Milad",
            "middle": [],
            "last": "Alshomary",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Paderborn University",
                "location": {
                    "settlement": "Paderborn",
                    "country": "Germany"
                }
            },
            "email": ""
        },
        {
            "first": "Henning",
            "middle": [],
            "last": "Wachsmuth",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Paderborn University",
                "location": {
                    "settlement": "Paderborn",
                    "country": "Germany"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "The premises of an argument give evidence or other reasons to support a conclusion. However, the amount of support required depends on the generality of a conclusion, the nature of the individual premises, and similar. An argument whose premises make its conclusion rationally worthy to be drawn is called sufficient in argument quality research. Previous work tackled sufficiency assessment as a standard text classification problem, not modeling the inherent relation of premises and conclusion. In this paper, we hypothesize that the conclusion of a sufficient argument can be generated from its premises. To study this hypothesis, we explore the potential of assessing sufficiency based on the output of large-scale pre-trained language models. Our best model variant achieves an F 1-score of .885, outperforming the previous state-of-the-art and being on par with human experts. While manual evaluation reveals the quality of the generated conclusions, their impact remains low ultimately.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "The premises of an argument give evidence or other reasons to support a conclusion. However, the amount of support required depends on the generality of a conclusion, the nature of the individual premises, and similar. An argument whose premises make its conclusion rationally worthy to be drawn is called sufficient in argument quality research. Previous work tackled sufficiency assessment as a standard text classification problem, not modeling the inherent relation of premises and conclusion. In this paper, we hypothesize that the conclusion of a sufficient argument can be generated from its premises. To study this hypothesis, we explore the potential of assessing sufficiency based on the output of large-scale pre-trained language models. Our best model variant achieves an F 1-score of .885, outperforming the previous state-of-the-art and being on par with human experts. While manual evaluation reveals the quality of the generated conclusions, their impact remains low ultimately.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "The quality assessment of natural language argumentation is nowadays studied extensively for various genres and text granularities, from entire news editorials (El Baff et al., 2020) to arguments in online forums (Lauscher et al., 2020) to single claims in social media discussions (Skitalinskaya et al., 2021) . The reason lies in its importance for driving downstream applications such as writing support (Stab, 2017) , argument search (Wachsmuth et al., 2017b) , and debating technologies (Slonim et al., 2021) . Wachsmuth et al. (2017a) organized quality dimensions of arguments into three complementary aspects: logic, rhetoric, and dialectic. Logical quality refers to the actual argument structure, that is, how strong an argument is in terms of the support of a claim (the argument's conclusion) by evidence and other reasons (the premises).",
                "cite_spans": [
                    {
                        "start": 160,
                        "end": 182,
                        "text": "(El Baff et al., 2020)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 213,
                        "end": 236,
                        "text": "(Lauscher et al., 2020)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 282,
                        "end": 310,
                        "text": "(Skitalinskaya et al., 2021)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 407,
                        "end": 419,
                        "text": "(Stab, 2017)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 438,
                        "end": 463,
                        "text": "(Wachsmuth et al., 2017b)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 492,
                        "end": 513,
                        "text": "(Slonim et al., 2021)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 516,
                        "end": 540,
                        "text": "Wachsmuth et al. (2017a)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The first reason why education and preventative measures should receive a greater budget is the potential improvements in health system. I believe that decreasing the number of patients can lead hospitals and healthcare centers to be managed effectively which will result in better treatments for current patients. Therefore, society should be educated and became aware of health issues so that the potential precautions on the way of illnesses can be taken instead of trying to provide treatment for the increasing number of patients.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The second reason why governments should allocate more budget on prevention from illness and providing health education is the welfare of the society. In my opinion, there is nothing more important than health in a human's life and the happiness and welfare come with health. Therefore, a government's role should be providing means that lead its citizens to learn how to prevent from potential illness that can cause misery in people's lives. For example, the marketing campaign of Ministry of Health in Turkey which aimed smoking problem among the youth increased the well-being of those who quit smoking and adapted a better lifestyle after the campaign. Figure 1 : Two example arguments from a persuasive student essay, one classified as sufficient, the other as insufficient in the corpus of Stab and Gurevych (2017b) .",
                "cite_spans": [
                    {
                        "start": 797,
                        "end": 822,
                        "text": "Stab and Gurevych (2017b)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 658,
                        "end": 666,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "A key dimension of logical quality is sufficiency, capturing whether an argument's premises together make it rationally worthy of drawing its conclusion (Johnson and Blair, 2006) . Consider, for example, the two arguments on health education in Figure 1 , taken from the argument-annotated essay corpus of Stab and Gurevych (2017a) . While the upper one was deemed sufficient by human experts (Stab and Gurevych, 2017b) , the lower one was not, likely because the second premise tries to reason from a single example. A reliable computational assessment of argument sufficiency would allow systems to determine those arguments that are well-reasoned.",
                "cite_spans": [
                    {
                        "start": 153,
                        "end": 178,
                        "text": "(Johnson and Blair, 2006)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 306,
                        "end": 331,
                        "text": "Stab and Gurevych (2017a)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 393,
                        "end": 419,
                        "text": "(Stab and Gurevych, 2017b)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 245,
                        "end": 253,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "As detailed in Section 2, previous approaches to argument sufficiency assessment model the task as a standard text classification problem and tackle it with convolutional neural networks (Stab and Gurevych, 2017b) or traditional feature engineer-ing (Wachsmuth and Werner, 2020) . In the focused domain of persuasive student essays, Stab and Gurevych (2017b) obtained a macro F 1 -score of .827, not far away from human performance in their setting (.887). However, to further improve the state of the art, we expect the integration of knowledge beyond what is directly available in the text at hand is needed. In particular, we observe that existing work neither explicitly considers an argument's premises and conclusions, nor a property of their relationship. We hypothesize that only a sufficient argument makes it possible to infer the conclusion from the premises. Consequently, comparing the stated conclusion of an argument with one that is (automatically) generated from the premises could help the model to distinguish sufficient arguments from insufficient ones. This hypothesis raises the question of whether the knowledge encoded in large-scale pre-trained language models can be leveraged, a direction nearly unexplored so far in argument quality assessment.",
                "cite_spans": [
                    {
                        "start": 187,
                        "end": 213,
                        "text": "(Stab and Gurevych, 2017b)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 250,
                        "end": 278,
                        "text": "(Wachsmuth and Werner, 2020)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 333,
                        "end": 358,
                        "text": "Stab and Gurevych (2017b)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper, we study whether generating a conclusion from an argument's premises benefits the computational assessment of the argument's sufficiency. In particular, we first enrich the argument with structural annotations, highlighting which parts are the premises and which part is the conclusion. We propose in Section 4 to then mask the conclusion in order to learn to re-generate it using fine-tuned BART (Lewis et al., 2020) . Combining the generated conclusion with the original argument and its annotations, our approach learns to distinguish sufficient from insufficient arguments using a modified RoBERTa model (Liu et al., 2019) .",
                "cite_spans": [
                    {
                        "start": 412,
                        "end": 432,
                        "text": "(Lewis et al., 2020)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 623,
                        "end": 641,
                        "text": "(Liu et al., 2019)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Starting from ground-truth argument structure, we subsequently evaluate conclusion generation and sufficiency assessment on the merged annotations of the corpora of Stab and Gurevych (2017a) and Stab and Gurevych (2017b) , as described in Section 3. Our generation experiments indicate that fine-tuning BART leads to better conclusions, which are on par with human-written conclusions in terms of sufficiency, likeliness, and novelty (Section 5). To quantify the impact on sufficiency assessment, we explore various combinations of premises, original conclusion, and generated conclusion in systematic ablation tests, and we compare them to the state of the art and a human upper bound (Section 6). Our sufficiency experiments reveal that, even on the plain input text of an argument, RoBERTa already improves significantly over the state of the art. The addition of structural annotations and the generated conclusion lead to further improvements, although the benefit of generation ultimately remains limited, possibly due to the generally limited importance of knowing the conclusion on the given data. Finally, we discuss the results of our approaches in Section 7 in light of their implications for the field.",
                "cite_spans": [
                    {
                        "start": 165,
                        "end": 190,
                        "text": "Stab and Gurevych (2017a)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 195,
                        "end": 220,
                        "text": "Stab and Gurevych (2017b)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The main contributions of this paper are: 1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 A language model that can generate humanlike argument conclusions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 The new state-of-the-art approach to argument sufficiency assessment.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Insights into the importance of mined and generated structure within argument assessment.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Computational argumentation research has assessed various dimensions of argument quality. Wachsmuth et al. (2017a) provide a theory-based taxonomy of 15 logical, rhetorical, and dialectical quality dimensions and of the work in natural language processing done in these directions. We focus on the (local) sufficiency dimension, which is key to logical cogency, representing that an argument's conclusion can rationally be drawn from its premises, given that these are acceptable and relevant (Johnson and Blair, 2006) . Few approaches tackled sufficiency computationally so far. Aside from Wachsmuth and Werner (2020) who assess it as one of the 15 dimensions above using traditional text-focused feature engineering, we are only aware of the work of Stab and Gurevych (2017b) who extend the argumentannotated essay corpus of Stab and Gurevych (2017a) with binary sufficiency annotations. On this basis, the authors compare a support vector machine using lexical, syntactic, and length features to a convolutional neural network (CNN) with word vectors, the latter achieving the best result with a macro F 1 -score of .827. In our experiments, we use their dataset and replicate their experiment settings, in order to compare to the CNN.",
                "cite_spans": [
                    {
                        "start": 90,
                        "end": 114,
                        "text": "Wachsmuth et al. (2017a)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 493,
                        "end": 518,
                        "text": "(Johnson and Blair, 2006)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 591,
                        "end": 618,
                        "text": "Wachsmuth and Werner (2020)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 752,
                        "end": 777,
                        "text": "Stab and Gurevych (2017b)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 827,
                        "end": 852,
                        "text": "Stab and Gurevych (2017a)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Unlike Stab and Gurevych (2017a) , we rely on a transformer-based architecture, namely we adapt RoBERTa (Liu et al., 2019) to assess sufficiency. Approaches to argument quality assessment using such architectures are still limited, mostly focusing on a holistic view of quality (Gretz et al., 2020; Toledo et al., 2019) , although a few approaches used transformers for some of the dimensions of Wachsmuth et al. (2017a) , such as Lauscher et al. (2020) , or somewhat related dimensions in light of quality improvement (Skitalinskaya et al., 2021) .",
                "cite_spans": [
                    {
                        "start": 7,
                        "end": 32,
                        "text": "Stab and Gurevych (2017a)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 104,
                        "end": 122,
                        "text": "(Liu et al., 2019)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 278,
                        "end": 298,
                        "text": "(Gretz et al., 2020;",
                        "ref_id": null
                    },
                    {
                        "start": 299,
                        "end": 319,
                        "text": "Toledo et al., 2019)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 396,
                        "end": 420,
                        "text": "Wachsmuth et al. (2017a)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 431,
                        "end": 453,
                        "text": "Lauscher et al. (2020)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 519,
                        "end": 547,
                        "text": "(Skitalinskaya et al., 2021)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "In contrast to the standard use of transformers for text classification, we leverage the structure of arguments for their assessment. Wachsmuth et al. (2016) provided evidence that mining the argumentative structure of persuasive essays helps to better assess four essay-level quality dimensions of argumentation. Similarly, we use annotations of the premises and conclusions of arguments for the sufficiency assessment, but we target the arguments. Moreover, we explore to benefit of conclusion generation for the assessment.",
                "cite_spans": [
                    {
                        "start": 134,
                        "end": 157,
                        "text": "Wachsmuth et al. (2016)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "The idea of reconstructing an argument's conclusion from its premises was introduced by Alshomary et al. 2020, but their approach focused on the inference of a conclusion's target. The actual generation of entire conclusions has so far only been studied by Syed et al. (2021) . The authors presented the first corpus for this task along with experiments where they adapted BART (Lewis et al., 2020 ) from summarization to conclusion generation. While they trained BART to directly generate a conclusion based on premises, we generate conclusions that fit the context of an entire argument. To this end, we leverage and finetune BART's inherent denoising capabilities obtained during pretraining to replace a mask token in an argument.",
                "cite_spans": [
                    {
                        "start": 257,
                        "end": 275,
                        "text": "Syed et al. (2021)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 378,
                        "end": 397,
                        "text": "(Lewis et al., 2020",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "To study our hypothesis that a sufficient argument's conclusion can be generated from its premises, we need data that is annotated for both argument structure and sufficiency. In this section, we describe how we employ existing corpora for this purpose.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data",
                "sec_num": "3"
            },
            {
                "text": "The argument-annotated essay (AAE-v2) corpus (Stab and Gurevych, 2017a) contains structural annotations for 402 complete persuasive student essays. For conclusion generation (as well as for structure-based sufficiency assessment), we only need annotations of single arguments.",
                "cite_spans": [
                    {
                        "start": 45,
                        "end": 71,
                        "text": "(Stab and Gurevych, 2017a)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data for Conclusion Generation",
                "sec_num": "3.1"
            },
            {
                "text": "Our instance creation procedure resembles the one of Alshomary et al. 2020, but we work on argument level rather than conclusion level, since we approach conclusion generation as a language model denoising task (Lewis et al., 2020) . Concretely, instead of using premises-conclusion training pairs where the conclusion shall be generated given the premises, we rely on argument-argument pairs. The first argument here is a modified version of the second argument where the conclusion is masked. This way, we avoid conflicts with the argument-level sufficiency annotations of Stab and Gurevych (2017b) (see below). In total, we obtain 1506 argument-argument pairs relating to 1506 unique conclusions matched with 1029 unique arguments. On average, each argument has a length of 4.5 sentences and contains 94.6 tokens.",
                "cite_spans": [
                    {
                        "start": 211,
                        "end": 231,
                        "text": "(Lewis et al., 2020)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data for Conclusion Generation",
                "sec_num": "3.1"
            },
            {
                "text": "For training, we rely on 5-fold cross-validation, ensuring that the argument-argument pairs from one essay are never split between training, validation, and test data. This prevents possible data leakage that could artificially improve the final evaluation scores. For each folding, we use 70% training, 10% validation, and 20% test data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data for Conclusion Generation",
                "sec_num": "3.1"
            },
            {
                "text": "Stab and Gurevych (2017b) further classified each argument in the 402 essays of the AAE-v2 corpus as being sufficient or not. Following Johnson and Blair 2006, the authors defined that an \"argument complies with the sufficiency criterion if its premises provide enough evidence for accepting or rejecting the claim\" (we speak of \"conclusion\" here instead of \"claim\"). All 1029 arguments were labeled, of which 681 (66.2%) were considered sufficient and 348 (33.8%) insufficient.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data for Sufficiency Assessment",
                "sec_num": "3.2"
            },
            {
                "text": "We use the provided corpus both in its original form and in a modified version where we replace the conclusion of an argument with two separator tokens, \"</s></s>\". This allows us to study a wide range of different approaches for sufficiency assessment by placing text in-between the two tokens as a replacement for the original conclusion.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data for Sufficiency Assessment",
                "sec_num": "3.2"
            },
            {
                "text": "For training, we replicate the original 20-times 5-fold cross-validation setup of Stab and Gurevych (2017b) , with 70% training, 10% validation, and 20% test data, in order to ensure comparability.",
                "cite_spans": [
                    {
                        "start": 82,
                        "end": 107,
                        "text": "Stab and Gurevych (2017b)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data for Sufficiency Assessment",
                "sec_num": "3.2"
            },
            {
                "text": "This section describes our two-step approach to assess the sufficiency of a given argument through conclusion generation. First, we generate a conclusion from the argument's premises using a pretrained language model finetuned on the task of replacing the masked conclusion of an argument. Second, the generated conclusion is used to assess the argument's sufficiency by experimenting with eight modified versions of the original input argument (Section 6). An overview of the approach is shown in Figure 2 . In the following, we detail how we train the models for the two steps.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 498,
                        "end": 506,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Approach",
                "sec_num": "4"
            },
            {
                "text": "Given an argument with a masked conclusion, the first task is to re-generate the conclusion. To tackle this task, we use BART-large (Lewis et al., 2020) and treat generation as a denoising task. We explore two model variants:",
                "cite_spans": [
                    {
                        "start": 132,
                        "end": 152,
                        "text": "(Lewis et al., 2020)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion Generation using Denoising",
                "sec_num": "4.1"
            },
            {
                "text": "BART-unsupervised In this variant, we do not finetune BART on any data, but we use its vanilla denoising capabilities obtained in its pre-training procedure. Note that the masked conclusions usually do not represent entire sentences, thus leaving textual markers which trigger BART to generate a logical conclusion, for example, \"Thus, <mask>\" or \"This makes it clear that <mask>.\" We consider this model as a baseline.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion Generation using Denoising",
                "sec_num": "4.1"
            },
            {
                "text": "BART-supervised In this variant, we finetune BART on the data from Section 3, in order to tailor its denoising capabilities towards conclusion generation. In particular, we thereby adjust the language model towards the given domain and teach the model to replace the mask token with a conclusion (instead of just generating text that fits the context). We finetune BART using cross-entropy loss, as commonly done in text generation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion Generation using Denoising",
                "sec_num": "4.1"
            },
            {
                "text": "The proper training settings of the two models are found via a hyperparameter search. For the evaluation described below, we ran 10 trials for each fold, testing batch sizes between 4 and 8 and learning rates between 5 \u2022 10 \u22126 and 5 \u2022 10 \u22125 . We fixed the number of epochs to 3 per fold, as we did not observe any improvements afterwards, and we used a cosine learning rate scheduler with 50 warmup steps to stabilize the training. At inference time, we employed a beam size of 5 to obtain the final generated conclusions. We considered the epoch out of three, which performs best on the validation data in terms of BERTScore (Zhang* et al., 2020) .",
                "cite_spans": [
                    {
                        "start": 626,
                        "end": 647,
                        "text": "(Zhang* et al., 2020)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion Generation using Denoising",
                "sec_num": "4.1"
            },
            {
                "text": "Given a modified argument, the second task is to predict whether the premises in the argument are rationally worth drawing the conclusion. We use RoBERTa (Liu et al., 2019) for this task by adding a linear layer on top of the pooled output of the original model (Devlin et al., 2019) .",
                "cite_spans": [
                    {
                        "start": 154,
                        "end": 172,
                        "text": "(Liu et al., 2019)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 262,
                        "end": 283,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sufficiency Assessment using Structure",
                "sec_num": "4.2"
            },
            {
                "text": "Successfully optimizing RoBERTa using mean squared error (MSE) or cross-entropy loss functions would be difficult, as both of them do not align well with the target metric of sufficiency assessment (macro F 1 -score). We therefore follow ideas of Puthiya Parambath et al. 2014and Eban et al. (2017) who propose to optimize machine learning models on the F 1 -score directly. Accordingly, we allow the model to output probabilities instead of interpreting a single binary value. Analogous to Stab and Gurevych (2017b) , we allow our model to adjust hyperparameters between folds. In our experiments, we followed the same hyperparameter optimization procedure as before but for different parameters and ranges. In total, we ran 10 trials for each fold, and we adjusted the batch size to be between 16 and 32 and the learning rate between 10 \u22126 and 5 \u2022 10 \u22125 . We selected the epoch for each trial out of three, which performed best on the validation data in terms of macro F 1 -score. Table 1 : Automatic evaluation results of concluion generation: Rescaled F1-BERTScore and ROUGE-1/-2/-L scores of the two considered models on the full corpus.",
                "cite_spans": [
                    {
                        "start": 280,
                        "end": 298,
                        "text": "Eban et al. (2017)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 491,
                        "end": 516,
                        "text": "Stab and Gurevych (2017b)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 983,
                        "end": 990,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Sufficiency Assessment using Structure",
                "sec_num": "4.2"
            },
            {
                "text": "To study our hypothesis, we need to ensure that the generated conclusions are meaningful and fit in the context of a given argument, so they can be helpful in sufficiency assessment. In this section, we therefore evaluate the quality of the generated conclusions, both automatically and manually.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation of Conclusion Generation",
                "sec_num": "5"
            },
            {
                "text": "As indicated in Section 4, we compare two approaches: (1) BART-unsupervised, which replaces the mask token in an argument (denoising) with fitting text, as it is part of BART's training procedure (Lewis et al., 2020) ; and (2) BART-supervised, which finetunes BART on the argument-argument pairs from Section 3. For both approaches, we obtained the complete set of generated conclusions using the cross-validation setup described in Section 4. Matching these with the corresponding ground-truth conclusion, we then computed their quality in terms of BERTScore as well as ROUGE-1, ROUGE-2, and ROUGE-L.",
                "cite_spans": [
                    {
                        "start": 196,
                        "end": 216,
                        "text": "(Lewis et al., 2020)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Automatic Evaluation",
                "sec_num": "5.1"
            },
            {
                "text": "Results Table 1 lists the results of the approaches. BART-unsupervised is a strong baseline in terms of lexical accuracy: Values such as 19.69 (ROUGE-1) and 16.40 (ROUGE-L) are comparable to those that Syed et al. (2021) achieved in similar domains with sophisticated approaches. However, finetuning on the argument-argument pairs does not only significantly increase the semantic similarity between generated and ground truth conclusions from 0.14 to 0.25 in terms of BERTScore, but it also leads to a slight increase in lexical accuracy.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 8,
                        "end": 15,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Automatic Evaluation",
                "sec_num": "5.1"
            },
            {
                "text": "The metrics used to automatically evaluate conclusion generation are not ideal, since they expect a single correct result. The task of conclusion generation, in contrast, allows for multiple, possibly very different correct conclusions, for example, a different conclusion target may be derived from a single set of premises (Alshomary et al., 2020) . We thus conducted an additional manual annotation study to evaluate the quality of the conclusions generated by the two approaches in comparison to the human ground truth. We randomly chose 100 arguments from the given corpus, 50 labeled as sufficient and 50 labeled as insufficient. For each arguments, we additionally created two variants, replacing the original conclusion with the generated conclusion of either approach. In each case, we then presented the three arguments with their premises and conclusions highlighted to five annotators of different academic backgrounds (economics, computer science, health/medicine), none being an author of this paper. We asked each annotator three questions, Q1-Q3, on each argument, resulting 300 annotations for each model and 900 annotations in total. For consistency reasons, we used a 5-point Likert scale for each question:",
                "cite_spans": [
                    {
                        "start": 325,
                        "end": 349,
                        "text": "(Alshomary et al., 2020)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Manual Evaluation",
                "sec_num": "5.2"
            },
            {
                "text": "\u2022 Q1: Are the premises sufficient to draw the conclusion? This question referred to the sufficiency of arguments, from \"not sufficient\" (score 1) to \"sufficient\" (score 5). We asked this question to see how the sufficiency of generated and human-written conclusions differs, thus directly evaluating our hypothesis.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Manual Evaluation",
                "sec_num": "5.2"
            },
            {
                "text": "\u2022 Q2: How likely is it that the conclusion will be inferred from the context? This question referred to the likelihood of a conclusion, from \"very unlikely\" (score 1) to \" very likely\" (score 5). We asked this question as an internal quality assurance, ruling out the possibility that our models generate conclusions unrelated to the given context of the argument.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Manual Evaluation",
                "sec_num": "5.2"
            },
            {
                "text": "\u2022 Q3: How can the conclusion be composed from the context? This question, finally, referred to the novelty of the generated conclusions in light of their context. The score range here is more complex; inspired by Syed et al. (2021) , who also ask annotators about the novelty of generated conclusions, it reflects the cognitive load required to infer the conclusions from the context of the argument: \"verbatim copying\" (1), \"synonymous copying\" (2), \"copying + fusion\" (3), \"inference\" (4), and \"can not be composed\" (5).",
                "cite_spans": [
                    {
                        "start": 213,
                        "end": 231,
                        "text": "Syed et al. (2021)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Manual Evaluation",
                "sec_num": "5.2"
            },
            {
                "text": "Results For each question, Table 2 shows the inter-annotator agreement, the distribution of majority scores, and the resulting mean score of the three compared approaches (including the ground truth), and the mean rank. We obtained the rank by Table 2 : Manual evaluation results of conclusion generation on the 100 arguments of each of the three approaches: (a) Agreement of all five annotators in terms of Krippendorff's \u03b1 and majority. (b) Distribution of majority scores. For Q1/Q2, higher scores mean more sufficient/likely. For Q3, they mean less \"copying\" (see text for details). (c) Mean score of each approach and rank obtained by comparing the majority score for each argument in isolation.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 27,
                        "end": 34,
                        "text": "Table 2",
                        "ref_id": null
                    },
                    {
                        "start": 244,
                        "end": 251,
                        "text": "Table 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Manual Evaluation",
                "sec_num": "5.2"
            },
            {
                "text": "treating each question as a ranking task where, for each argument, the approaches are ranked from 1 to 3 by decreasing highest majority score.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Manual Evaluation",
                "sec_num": "5.2"
            },
            {
                "text": "We find that the general agreement for the questions in terms of Krippendorff's \u03b1 is low, with values between .19 and .50, but comparable to other tasks in the realm of argumentation (Wachsmuth et al., 2017a) . On all three questions, the annotators agreed mostly for BART-unsupervised, followed by the BART-supervised, while having the least agreement for the ground truth. This may indicate a more apparent connection of the generated conclusions to the premises. In 57% to 64% of the cases, we observe majority agreement of the annotators for the first two questions, whereas this value goes up to 72%-78% for the last question.",
                "cite_spans": [
                    {
                        "start": 183,
                        "end": 208,
                        "text": "(Wachsmuth et al., 2017a)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Manual Evaluation",
                "sec_num": "5.2"
            },
            {
                "text": "The ranking for Q1 shows that conclusions generated by our BART-supervised model overall ranked best in sufficiency (mean rank 1.37), even though the mean score is slightly better for the ground truth. While the differences are small, this behavior is expected as half of the provided arguments were initially labeled as insufficient.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Manual Evaluation",
                "sec_num": "5.2"
            },
            {
                "text": "Considering the likelihood of the premises (Q2), we see that conclusions of BART-supervised are on par with the ground truth conclusions (score rank 2.96 vs. 2.98, rank 1.39 vs. 1.42) and better than those generated by the baseline BARTunsupervised (1.54) . This suggests that the conclusions generated by our model both fit the context of the argument and are at least as likely to be drawn as the ones written by humans. This property is essential for our approach to sufficiency assessment to rule out the possibility of failure due to a low quality of the generated conclusions in general.",
                "cite_spans": [
                    {
                        "start": 232,
                        "end": 255,
                        "text": "BARTunsupervised (1.54)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Manual Evaluation",
                "sec_num": "5.2"
            },
            {
                "text": "Finally, we consider the cognitive load that is required to compose a conclusion given its context, as reflected by novelty (Q3). This information is vital to rule out that the generated conclusions are copied from the context of an argument instead of being inferred. We find the ground-truth conclusions to require the most cognitive load in this regard, having a clearly better mean rank (1.39) than the others (both 1.54). Thus, they potentially provide the most novelty to the context. The mean scores indicate an increase of novelty from BART-unsupervised (3.34) to BART-supervised (3.47) though.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Manual Evaluation",
                "sec_num": "5.2"
            },
            {
                "text": "The scores and ranks can be interpreted more easily when looking at the majority scores for the two BART models and the ground truth. As expected, we find that the amount of conclusions considered to be sufficient is approximately the same to those considered insufficient. The annotators did not agree on the highest sufficiency rank, which may be due to subjectivity in the perception of \"full\" sufficiency. We observe an analog behavior for score 5 for the likelihood of conclusions (Q2). Here, this may imply that, rarely, only a single conclusion would fit the premises of an argument. Regarding the novelty of the generated conclusions, Q3 reveals that the ground truth annotations are mostly inferences (score 4) and only rarely copied from the context (scores 1 and 2). While BART-unsupervised only somewhat follows this distribution, our BART-supervised model shows a similar behavior to the ground truth, though in less clear form. This is another indication that BART-supervised has learned to generate conclusions from premises.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Manual Evaluation",
                "sec_num": "5.2"
            },
            {
                "text": "Part Text (a) Sufficient Argument Second, <MASK>. Averagely, public transports use much less gasoline to carry people than private cars. It means that by using public transports, the less gas exhaust is pumped to the air and people will no longer have to bear the stuffy situation on the roads, which is always full of fumes.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "# Label",
                "sec_num": null
            },
            {
                "text": "Ground truth public transportation helps to solve the air pollution problems BART-unsupervised public transport is more efficient than private cars BART-supervised using public transports will help to reduce the amount of pollution in the air (b) Insufficient Argument Last, <MASK>. Playing musical instrument is a good way, I can play classical guitar. When I meet difficulties in studies, I will take my guitar and play the song Green Sleeves. It makes me feel better and gives me the confidence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "# Label",
                "sec_num": null
            },
            {
                "text": "Ground truth we should develop at least one personal hobby, not to show off, but express our emotion when we feel depressed or pressured BART-unsupervised but not least, I love music BART-supervised playing musical instrument is very important to me (c) Insufficient Argument In addition to this, <MASK>. For instance, further enforcement banned smoking in capital in Sri Lanka has reduced this consumption related diseases and deaths, as per the ministry of health. As this shows, smoking restrictions has successfully daunted public from this bad puffing that put less strain on country's healthcare systems.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "# Label",
                "sec_num": null
            },
            {
                "text": "Ground truth introducing smoking ban in public places would greatly discourage people from engaging tobacco puffing BART-unsupervised Sri Lankan government has taken several measures to curb smoking BART-supervised smoking restrictions in Sri Lanka has brought a lot of benefits to the country Table 3 : Conclusions generated by the BART models for four arguments (with masked conclusion) compared to the ground truth conclusion: (a) BART-supervised almost reconstructs the ground truth. (b) Here, the two models increase sufficiency. (c) Sometimes, the generated conclusions remain rather vague and pick the wrong target.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 294,
                        "end": 301,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "# Label",
                "sec_num": null
            },
            {
                "text": "Error Analysis & Examples To better understand the differences between the two BART models and the ground truth, we analyzed the 100 examples from our annotation study manually. Table 3 compares the conclusions for three arguments.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 178,
                        "end": 185,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "# Label",
                "sec_num": null
            },
            {
                "text": "For the sufficient argument in Table 3 (a), BARTsupervised nearly perfectly reconstructs the ground truth, whereas BART-unsupervised generates a reasonable but less specific alternative. In Table 3 (b), the approaches appear to make the argument more sufficient, particularly BART-supervised. Both examples speak for the truth of our hypothesis that the conclusion of sufficient arguments can be generated from the premises. This tendency is further backed by our analysis in which we found that for BART-supervised 20% (10/50) of the sufficient arguments have perfect matching conclusions (Table 3(a)) 60% (30/50) either are less abstract or have a different conclusion target but are of equal quality, and 20% (10/50) have a conclusion that is of lower quality, compared to the ground truth. In contrast, only 10% (5/50) of the insufficient arguments are perfect matches, 60% (30/50) either are less abstract or have a different conclusion target of equal quality, and 30% (15/50) have lower quality generated conclusions (Table 3(b)) .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 31,
                        "end": 38,
                        "text": "Table 3",
                        "ref_id": null
                    },
                    {
                        "start": 190,
                        "end": 197,
                        "text": "Table 3",
                        "ref_id": null
                    },
                    {
                        "start": 1024,
                        "end": 1036,
                        "text": "(Table 3(b))",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "# Label",
                "sec_num": null
            },
            {
                "text": "Further analysis reveals that for 58% (29/50) of the insufficient arguments, BART-supervised generated a sufficient conclusion with a different target (16/29) or a different level of abstraction, either more specific (11/29) or more abstract (2/29) than the ground truth. In Table 3 (c), the BART models seem tricked by the anecdotal evidence given in the premises, mistakenly picking Sri Lanka as the conclusion's target.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 275,
                        "end": 282,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "# Label",
                "sec_num": null
            },
            {
                "text": "Regarding the difference of our models, we found that BART-supervised more often generated conclusions with targets that are equally likely to the target of the human ground truth (68/100 vs. 42/100).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "# Label",
                "sec_num": null
            },
            {
                "text": "Using our conclusion generation model, BARTsupervised, we finally study our hypothesis on sufficiency assessment by experimenting with different input variations and testing on the corpus of Stab and Gurevych (2017b) . The first setting is by just using the RoBERTa model (direct sufficiency as- Table 4 : Results of argument sufficiency assessment: Accuracy as well as macro precision, recall, and F 1 -score of all evaluated approaches, averaged over twenty 5-fold cross-validations. Significant gains over Stab and Gurevych (2017a) and the RoBERTa approach without structural enrichment are marked with \u2020 and \u2021 , respectively (computed using Wilcoxon signed-rank test, p-value .05). The human upper bound is obtained on a subset of 432 arguments. sessment) and the second by introducing structural knowledge and our generated conclusions (indirect sufficiency assessment).",
                "cite_spans": [
                    {
                        "start": 191,
                        "end": 216,
                        "text": "Stab and Gurevych (2017b)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 509,
                        "end": 534,
                        "text": "Stab and Gurevych (2017a)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 296,
                        "end": 303,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Evaluation of Sufficiency Assessment",
                "sec_num": "6"
            },
            {
                "text": "First, we compare the \"base version\" of our approach, RoBERTa without additional structure annotations, to the human upper bound and the state of the art CNN of Stab and Gurevych (2017b). 2 Results The upper part of Table 4 shows the direct assessment results. Our RoBERTa model significantly outperforms the CNN both on accuracy (.889 vs. .846) and on macro F 1 score (.876 vs. .831), the latter being an improvement of whole 4.5 points. Our model also performs almost on par with the human upper bound, meaning it is approximately at the level of human performance. This underlines the potential of pre-trained transformer models in argument quality assessment.",
                "cite_spans": [
                    {
                        "start": 161,
                        "end": 189,
                        "text": "Stab and Gurevych (2017b). 2",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 216,
                        "end": 223,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Direct Sufficiency Assessment",
                "sec_num": "6.1"
            },
            {
                "text": "As our conclusion generation model starts from structural annotations of a given argument, we systematically study the benefit of knowing the premises and the original conclusion, as well of having the generated conclusion. We consider the following eight input variants for the assessment:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Indirect Sufficiency Assessment",
                "sec_num": "6.2"
            },
            {
                "text": "\u2022 RoBERTa-premises-only. Use the full argument as input, but replace the ground-truth conclusion with an <\\unk> token.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Indirect Sufficiency Assessment",
                "sec_num": "6.2"
            },
            {
                "text": "\u2022 RoBERTa-conclusion-only. Use only the ground-truth conclusion as input.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Indirect Sufficiency Assessment",
                "sec_num": "6.2"
            },
            {
                "text": "\u2022 RoBERTa-generated-only. Use only the generated conclusion as input.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Indirect Sufficiency Assessment",
                "sec_num": "6.2"
            },
            {
                "text": "\u2022 RoBERTa-premises+conclusion. Use the full argument as input and highlight the groundtruth conclusion using <\\s> tokens.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Indirect Sufficiency Assessment",
                "sec_num": "6.2"
            },
            {
                "text": "\u2022 RoBERTa-premises+generated. Use the full argument as input, but replace the groundtruth conclusion with its generated counterpart. Highlight the latter using <\\s> tokens.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Indirect Sufficiency Assessment",
                "sec_num": "6.2"
            },
            {
                "text": "\u2022 RoBERTa-conclusion+generated. Use only the ground-truth and the generated conclusion as input, separated with a <\\s> token",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Indirect Sufficiency Assessment",
                "sec_num": "6.2"
            },
            {
                "text": "\u2022 RoBERTa-all. Use the full argument as input, insert the highlight the generated conclusion after the ground-truth conclusion and highlight both together using <\\s> tokens.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Indirect Sufficiency Assessment",
                "sec_num": "6.2"
            },
            {
                "text": "Results The lower part of Table 4 shows that both RoBERTa-premises+conclusion and RoBERTa-all yield the best results overall, significantly outperforming our vanilla RoBERTa model by almost 1 point in terms of both accuracy (.896 vs. .889) and macro F 1 -score (.885 vs. .876) . The results suggest that using a generated conclusion for the argument does not really help, but also not hurts the model performance. This is also supported by RoBERTa-premises-only, which also matches the performance of RoBERTa-premises+generated. In general, however, bringing structural knowledge to the model gives a slight but significant improvement in sufficiency assessment.",
                "cite_spans": [
                    {
                        "start": 261,
                        "end": 276,
                        "text": "(.885 vs. .876)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 26,
                        "end": 33,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Indirect Sufficiency Assessment",
                "sec_num": "6.2"
            },
            {
                "text": "Looking at the weak performance of RoBERTa-conclusion+generated (macro F 1 -score .571), we see that an opposition of the two conclusions alone is not enough four sufficiency assessment. Even though adding the generated one improves over having the ground-truth conclusion only, all variants that include the premises perform much better.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Indirect Sufficiency Assessment",
                "sec_num": "6.2"
            },
            {
                "text": "To better understand the role of premises and conclusions in sufficiency assessment, we trained the three RoBERTa-<xy>-only variants. The high performance of RoBERTa-premises-only (macro F 1 -score .875) clearly reveals that the conclusion is of almost no importance on the data of Stab and Gurevych (2017b), being not significantly worse than vanilla RoBERTa. The low scores of RoBERTa-conclusion-only further support this hypothesis, suggesting that the knowledge obtained from the conclusion can be inferred from the argument without its conclusion alone. This result is very insightful in that it displays that the currently available data barely enables a study of sufficiency assessment in terms of its actual definition. Instead, we suppose that models mainly learn a correlation between the nature and the quality of a given set of premises and the possible sufficiency evolving from this. In particular, students who provide \"good\" premises for an argument in their essays can also deliver an inferrable conclusion.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Indirect Sufficiency Assessment",
                "sec_num": "6.2"
            },
            {
                "text": "Our results suggest that large-scale pre-trained transformer models can help assess the quality of arguments, here their sufficiency. They even nearly matched human performance. However, an accurate understanding of the argument sufficiency task in terms of the actual definition of sufficiency seems barely possible on the available data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "7"
            },
            {
                "text": "Employing knowledge about argumentative structure can benefit sufficiency assessment, in line with findings on predicting essay-level argument quality (Wachsmuth et al., 2016) . Our results suggest that there is at least some additional knowledge in an argument's conclusion that our model could not learn itself. However, we did not actually mine argumentative structure here, but we resorted to the human-annotated ground truth, which is usually not available in a real-world setting. Thus, the improvements obtained by the structure could vanish as soon as we resort to computational methods. We note, though, that we obtained state-of-the-art results also using RoBERTa on the plain text only.",
                "cite_spans": [
                    {
                        "start": 151,
                        "end": 175,
                        "text": "(Wachsmuth et al., 2016)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "7"
            },
            {
                "text": "Regarding the central hypothesis of this work, we study an example of a more task-aligned approach. However, our results show that answering the question of conclusion inferability by generating conclusions for an argument is difficult, as generated conclusions may be perceived as sufficient, likely, and novel, but may still not be unique. That is, for many premises, it may be possible to generated multiple sufficient conclusions, which naturally limits the impact of quality assessment through generation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "7"
            },
            {
                "text": "Consequently, although the task of sufficiency assessment appears to be solved on the given data, we argue for the need for more sophisticated corpora that better reflect the actual definition of the task, to ultimately allow studying whether approaches such as ours are needed in real-world applications.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "7"
            },
            {
                "text": "In this work we have studied the task of argument sufficiency assessment based on auto-generated argument conclusions. According to our findings, traditional approaches can be improved by using largescale pre-trained transformer models and by incorporating knowledge about argumentative structure. The effect of our proposed idea to leverage generation for the assessment turned out low though. However, this may likely be caused by the available data, wehere sufficiency seems to barely depend on the arguments' conclusions, thus preventing our and previous approaches from actually tackling the task as intended by its definition.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "8"
            },
            {
                "text": "In general, the insights of this paper lay the foundation for more task-oriented approaches towards the assessment of argument quality dimensions, that are tailored towards the properties in scope (here the relation between premises and conclusion). To adequately evaluate such approaches, also refined corpora may be needed.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "8"
            },
            {
                "text": "The experiment code can be found under: https://gi thub.com/webis-de/ArgMining-21",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Note that the human upper bound ofStab and Gurevych (2017b) was computed on a subset of 433 arguments annotated by three annotators only. Thus, it is only an approximation of the actual human performance. The human scores are based on pairwise comparisons of the three annotators.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "We thank Katharina Brennig, Simon Seidl, Abdullah Burak, Frederike Gurcke and Dr. Maurice Gurcke for their feedback. We gratefully acknowledge the computing time provided the described experiments by the Paderborn Center for Parallel Computing (PC 2 ). This project has been partially funded by the German Research Foundation (DFG) within the project OASiS, project number 455913891, as part of the Priority Program \"Robust Argumentation Machines (RATIO)\" (SPP-1999).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Target inference in argument conclusion generation",
                "authors": [
                    {
                        "first": "Milad",
                        "middle": [],
                        "last": "Alshomary",
                        "suffix": ""
                    },
                    {
                        "first": "Shahbaz",
                        "middle": [],
                        "last": "Syed",
                        "suffix": ""
                    },
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Potthast",
                        "suffix": ""
                    },
                    {
                        "first": "Henning",
                        "middle": [],
                        "last": "Wachsmuth",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "4334--4345",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.acl-main.399"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Milad Alshomary, Shahbaz Syed, Martin Potthast, and Henning Wachsmuth. 2020. Target inference in argu- ment conclusion generation. In Proceedings of the 58th Annual Meeting of the Association for Compu- tational Linguistics, pages 4334-4345, Online. Asso- ciation for Computational Linguistics.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "4171--4186",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1423"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Tech- nologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Scalable learning of non-decomposable objectives",
                "authors": [
                    {
                        "first": "Elad",
                        "middle": [],
                        "last": "Eban",
                        "suffix": ""
                    },
                    {
                        "first": "Mariano",
                        "middle": [],
                        "last": "Schain",
                        "suffix": ""
                    },
                    {
                        "first": "Alan",
                        "middle": [],
                        "last": "Mackey",
                        "suffix": ""
                    },
                    {
                        "first": "Ariel",
                        "middle": [],
                        "last": "Gordon",
                        "suffix": ""
                    },
                    {
                        "first": "Ryan",
                        "middle": [],
                        "last": "Rifkin",
                        "suffix": ""
                    },
                    {
                        "first": "Gal",
                        "middle": [],
                        "last": "Elidan",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Artificial intelligence and statistics",
                "volume": "",
                "issue": "",
                "pages": "832--840",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Elad Eban, Mariano Schain, Alan Mackey, Ariel Gor- don, Ryan Rifkin, and Gal Elidan. 2017. Scalable learning of non-decomposable objectives. In Ar- tificial intelligence and statistics, pages 832-840. PMLR.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Analyzing the persuasive effect of style in news editorial argumentation",
                "authors": [
                    {
                        "first": "Roxanne",
                        "middle": [
                            "El"
                        ],
                        "last": "Baff",
                        "suffix": ""
                    },
                    {
                        "first": "Henning",
                        "middle": [],
                        "last": "Wachsmuth",
                        "suffix": ""
                    },
                    {
                        "first": "Khalid",
                        "middle": [
                            "Al"
                        ],
                        "last": "Khatib",
                        "suffix": ""
                    },
                    {
                        "first": "Benno",
                        "middle": [],
                        "last": "Stein",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "3154--3160",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.acl-main.287"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Roxanne El Baff, Henning Wachsmuth, Khalid Al Khatib, and Benno Stein. 2020. Analyzing the persuasive effect of style in news editorial argumen- tation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 3154-3160, Online. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Ranit Aharonov, and Noam Slonim. 2020. A large-scale dataset for argument quality ranking: Construction and analysis",
                "authors": [
                    {
                        "first": "Shai",
                        "middle": [],
                        "last": "Gretz",
                        "suffix": ""
                    },
                    {
                        "first": "Roni",
                        "middle": [],
                        "last": "Friedman",
                        "suffix": ""
                    },
                    {
                        "first": "Edo",
                        "middle": [],
                        "last": "Cohen-Karlik",
                        "suffix": ""
                    },
                    {
                        "first": "Assaf",
                        "middle": [],
                        "last": "Toledo",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Lahav",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "Proceedings of the AAAI Conference on Artificial Intelligence",
                "volume": "34",
                "issue": "",
                "pages": "7805--7813",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shai Gretz, Roni Friedman, Edo Cohen-Karlik, As- saf Toledo, Dan Lahav, Ranit Aharonov, and Noam Slonim. 2020. A large-scale dataset for argument quality ranking: Construction and analysis. In Pro- ceedings of the AAAI Conference on Artificial Intelli- gence, volume 34, pages 7805-7813.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Logical self-defense",
                "authors": [
                    {
                        "first": "Ralph",
                        "middle": [],
                        "last": "Henry",
                        "suffix": ""
                    },
                    {
                        "first": "Johnson",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "J Anthony",
                        "middle": [],
                        "last": "Blair",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ralph Henry Johnson and J Anthony Blair. 2006. Logi- cal self-defense. Idea.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Rhetoric, logic, and dialectic: Advancing theory-based argument quality assessment in natural language processing",
                "authors": [
                    {
                        "first": "Anne",
                        "middle": [],
                        "last": "Lauscher",
                        "suffix": ""
                    },
                    {
                        "first": "Lily",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    },
                    {
                        "first": "Courtney",
                        "middle": [],
                        "last": "Napoles",
                        "suffix": ""
                    },
                    {
                        "first": "Joel",
                        "middle": [],
                        "last": "Tetreault",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 28th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "4563--4574",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.coling-main.402"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Anne Lauscher, Lily Ng, Courtney Napoles, and Joel Tetreault. 2020. Rhetoric, logic, and dialectic: Ad- vancing theory-based argument quality assessment in natural language processing. In Proceedings of the 28th International Conference on Computational Linguistics, pages 4563-4574, Barcelona, Spain (On- line). International Committee on Computational Lin- guistics.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension",
                "authors": [
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Lewis",
                        "suffix": ""
                    },
                    {
                        "first": "Yinhan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Naman",
                        "middle": [],
                        "last": "Goyal",
                        "suffix": ""
                    },
                    {
                        "first": "Marjan",
                        "middle": [],
                        "last": "Ghazvininejad",
                        "suffix": ""
                    },
                    {
                        "first": "Abdelrahman",
                        "middle": [],
                        "last": "Mohamed",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "Veselin",
                        "middle": [],
                        "last": "Stoyanov",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "7871--7880",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.acl-main.703"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and com- prehension. In Proceedings of the 58th Annual Meet- ing of the Association for Computational Linguistics, pages 7871-7880, Online. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Roberta: A robustly optimized bert pretraining approach",
                "authors": [
                    {
                        "first": "Yinhan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Myle",
                        "middle": [],
                        "last": "Ott",
                        "suffix": ""
                    },
                    {
                        "first": "Naman",
                        "middle": [],
                        "last": "Goyal",
                        "suffix": ""
                    },
                    {
                        "first": "Jingfei",
                        "middle": [],
                        "last": "Du",
                        "suffix": ""
                    },
                    {
                        "first": "Mandar",
                        "middle": [],
                        "last": "Joshi",
                        "suffix": ""
                    },
                    {
                        "first": "Danqi",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Lewis",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    },
                    {
                        "first": "Veselin",
                        "middle": [],
                        "last": "Stoyanov",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- dar Joshi, Danqi Chen, Omer Levy, M. Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. ArXiv, abs/1907.11692.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Optimizing f-measures by cost-sensitive classification",
                "authors": [
                    {
                        "first": "Nicolas",
                        "middle": [],
                        "last": "Shameem Puthiya Parambath",
                        "suffix": ""
                    },
                    {
                        "first": "Yves",
                        "middle": [],
                        "last": "Usunier",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Grandvalet",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Advances in Neural Information Processing Systems",
                "volume": "27",
                "issue": "",
                "pages": "2123--2131",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shameem Puthiya Parambath, Nicolas Usunier, and Yves Grandvalet. 2014. Optimizing f-measures by cost-sensitive classification. Advances in Neural In- formation Processing Systems, 27:2123-2131.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Learning from revisions: Quality assessment of claims in argumentation at scale",
                "authors": [
                    {
                        "first": "Gabriella",
                        "middle": [],
                        "last": "Skitalinskaya",
                        "suffix": ""
                    },
                    {
                        "first": "Jonas",
                        "middle": [],
                        "last": "Klaff",
                        "suffix": ""
                    },
                    {
                        "first": "Henning",
                        "middle": [],
                        "last": "Wachsmuth",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
                "volume": "",
                "issue": "",
                "pages": "1718--1729",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gabriella Skitalinskaya, Jonas Klaff, and Henning Wachsmuth. 2021. Learning from revisions: Quality assessment of claims in argumentation at scale. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Lin- guistics: Main Volume, pages 1718-1729, Online. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "An autonomous debating system",
                "authors": [
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Slonim",
                        "suffix": ""
                    },
                    {
                        "first": "Yonatan",
                        "middle": [],
                        "last": "Bilu",
                        "suffix": ""
                    },
                    {
                        "first": "Carlos",
                        "middle": [],
                        "last": "Alzate",
                        "suffix": ""
                    },
                    {
                        "first": "Roy",
                        "middle": [],
                        "last": "Bar-Haim",
                        "suffix": ""
                    },
                    {
                        "first": "Ben",
                        "middle": [],
                        "last": "Bogin",
                        "suffix": ""
                    },
                    {
                        "first": "Francesca",
                        "middle": [],
                        "last": "Bonin",
                        "suffix": ""
                    },
                    {
                        "first": "Leshem",
                        "middle": [],
                        "last": "Choshen",
                        "suffix": ""
                    },
                    {
                        "first": "Edo",
                        "middle": [],
                        "last": "Cohen-Karlik",
                        "suffix": ""
                    },
                    {
                        "first": "Lena",
                        "middle": [],
                        "last": "Dankin",
                        "suffix": ""
                    },
                    {
                        "first": "Lilach",
                        "middle": [],
                        "last": "Edelstein",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Nature",
                "volume": "591",
                "issue": "7850",
                "pages": "379--384",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Noam Slonim, Yonatan Bilu, Carlos Alzate, Roy Bar-Haim, Ben Bogin, Francesca Bonin, Leshem Choshen, Edo Cohen-Karlik, Lena Dankin, Lilach Edelstein, et al. 2021. An autonomous debating sys- tem. Nature, 591(7850):379-384.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Parsing argumentation structures in persuasive essays",
                "authors": [
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Stab",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Computational Linguistics",
                "volume": "43",
                "issue": "3",
                "pages": "619--659",
                "other_ids": {
                    "DOI": [
                        "10.1162/COLI_a_00295"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Christian Stab and Iryna Gurevych. 2017a. Parsing argumentation structures in persuasive essays. Com- putational Linguistics, 43(3):619-659.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Argumentative writing support by means of natural language processing",
                "authors": [
                    {
                        "first": "Christian Matthias Edwin",
                        "middle": [],
                        "last": "Stab",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christian Matthias Edwin Stab. 2017. Argumentative writing support by means of natural language pro- cessing. Ph.D. thesis, Technische Universit\u00e4t Darm- stadt.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Recognizing insufficiently supported arguments in argumentative essays",
                "authors": [
                    {
                        "first": "Christian",
                        "middle": [
                            "Matthias"
                        ],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Edwin",
                        "middle": [],
                        "last": "Stab",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 15th Conference of the European Chapter",
                "volume": "1",
                "issue": "",
                "pages": "980--990",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christian Matthias Edwin Stab and Iryna Gurevych. 2017b. Recognizing insufficiently supported argu- ments in argumentative essays. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 980-990.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Generating informative conclusions for argumentative texts",
                "authors": [
                    {
                        "first": "Shahbaz",
                        "middle": [],
                        "last": "Syed",
                        "suffix": ""
                    },
                    {
                        "first": "Khalid",
                        "middle": [
                            "Al"
                        ],
                        "last": "Khatib",
                        "suffix": ""
                    },
                    {
                        "first": "Milad",
                        "middle": [],
                        "last": "Alshomary",
                        "suffix": ""
                    },
                    {
                        "first": "Henning",
                        "middle": [],
                        "last": "Wachsmuth",
                        "suffix": ""
                    },
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Potthast",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
                "volume": "",
                "issue": "",
                "pages": "3482--3493",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2021.findings-acl.306"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Shahbaz Syed, Khalid Al Khatib, Milad Alshomary, Henning Wachsmuth, and Martin Potthast. 2021. Generating informative conclusions for argumenta- tive texts. In Findings of the Association for Com- putational Linguistics: ACL-IJCNLP 2021, pages 3482-3493, Online. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Automatic argument quality assessment -new datasets and methods",
                "authors": [
                    {
                        "first": "Assaf",
                        "middle": [],
                        "last": "Toledo",
                        "suffix": ""
                    },
                    {
                        "first": "Shai",
                        "middle": [],
                        "last": "Gretz",
                        "suffix": ""
                    },
                    {
                        "first": "Edo",
                        "middle": [],
                        "last": "Cohen-Karlik",
                        "suffix": ""
                    },
                    {
                        "first": "Roni",
                        "middle": [],
                        "last": "Friedman",
                        "suffix": ""
                    },
                    {
                        "first": "Elad",
                        "middle": [],
                        "last": "Venezian",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Lahav",
                        "suffix": ""
                    },
                    {
                        "first": "Michal",
                        "middle": [],
                        "last": "Jacovi",
                        "suffix": ""
                    },
                    {
                        "first": "Ranit",
                        "middle": [],
                        "last": "Aharonov",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Slonim",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "5625--5635",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1564"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Assaf Toledo, Shai Gretz, Edo Cohen-Karlik, Roni Friedman, Elad Venezian, Dan Lahav, Michal Jacovi, Ranit Aharonov, and Noam Slonim. 2019. Auto- matic argument quality assessment -new datasets and methods. In Proceedings of the 2019 Confer- ence on Empirical Methods in Natural Language Pro- cessing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5625-5635, Hong Kong, China. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Using argument mining to assess the argumentation quality of essays",
                "authors": [
                    {
                        "first": "Henning",
                        "middle": [],
                        "last": "Wachsmuth",
                        "suffix": ""
                    },
                    {
                        "first": "Al",
                        "middle": [],
                        "last": "Khalid",
                        "suffix": ""
                    },
                    {
                        "first": "Benno",
                        "middle": [],
                        "last": "Khatib",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Stein",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers",
                "volume": "",
                "issue": "",
                "pages": "1680--1691",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Henning Wachsmuth, Khalid Al Khatib, and Benno Stein. 2016. Using argument mining to assess the argumentation quality of essays. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pages 1680-1691.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Computational argumentation quality assessment in natural language",
                "authors": [
                    {
                        "first": "Henning",
                        "middle": [],
                        "last": "Wachsmuth",
                        "suffix": ""
                    },
                    {
                        "first": "Nona",
                        "middle": [],
                        "last": "Naderi",
                        "suffix": ""
                    },
                    {
                        "first": "Yufang",
                        "middle": [],
                        "last": "Hou",
                        "suffix": ""
                    },
                    {
                        "first": "Yonatan",
                        "middle": [],
                        "last": "Bilu",
                        "suffix": ""
                    },
                    {
                        "first": "Vinodkumar",
                        "middle": [],
                        "last": "Prabhakaran",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [
                            "Alberdingk"
                        ],
                        "last": "Thijm",
                        "suffix": ""
                    },
                    {
                        "first": "Graeme",
                        "middle": [],
                        "last": "Hirst",
                        "suffix": ""
                    },
                    {
                        "first": "Benno",
                        "middle": [],
                        "last": "Stein",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 15th Conference of the European Chapter",
                "volume": "1",
                "issue": "",
                "pages": "176--187",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Henning Wachsmuth, Nona Naderi, Yufang Hou, Yonatan Bilu, Vinodkumar Prabhakaran, Tim Alberd- ingk Thijm, Graeme Hirst, and Benno Stein. 2017a. Computational argumentation quality assessment in natural language. In Proceedings of the 15th Confer- ence of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 176-187.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Building an argument search engine for the web",
                "authors": [
                    {
                        "first": "Henning",
                        "middle": [],
                        "last": "Wachsmuth",
                        "suffix": ""
                    },
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Potthast",
                        "suffix": ""
                    },
                    {
                        "first": "Khalid",
                        "middle": [
                            "Al"
                        ],
                        "last": "Khatib",
                        "suffix": ""
                    },
                    {
                        "first": "Yamen",
                        "middle": [],
                        "last": "Ajjour",
                        "suffix": ""
                    },
                    {
                        "first": "Jana",
                        "middle": [],
                        "last": "Puschmann",
                        "suffix": ""
                    },
                    {
                        "first": "Jiani",
                        "middle": [],
                        "last": "Qu",
                        "suffix": ""
                    },
                    {
                        "first": "Jonas",
                        "middle": [],
                        "last": "Dorsch",
                        "suffix": ""
                    },
                    {
                        "first": "Viorel",
                        "middle": [],
                        "last": "Morari",
                        "suffix": ""
                    },
                    {
                        "first": "Janek",
                        "middle": [],
                        "last": "Bevendorff",
                        "suffix": ""
                    },
                    {
                        "first": "Benno",
                        "middle": [],
                        "last": "Stein",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 4th Workshop on Argument Mining",
                "volume": "",
                "issue": "",
                "pages": "49--59",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Henning Wachsmuth, Martin Potthast, Khalid Al Khatib, Yamen Ajjour, Jana Puschmann, Jiani Qu, Jonas Dorsch, Viorel Morari, Janek Bevendorff, and Benno Stein. 2017b. Building an argument search engine for the web. In Proceedings of the 4th Workshop on Argument Mining, pages 49-59.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Intrinsic quality assessment of arguments",
                "authors": [
                    {
                        "first": "Henning",
                        "middle": [],
                        "last": "Wachsmuth",
                        "suffix": ""
                    },
                    {
                        "first": "Till",
                        "middle": [],
                        "last": "Werner",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 28th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "6739--6745",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.coling-main.592"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Henning Wachsmuth and Till Werner. 2020. Intrinsic quality assessment of arguments. In Proceedings of the 28th International Conference on Computational Linguistics, pages 6739-6745, Barcelona, Spain (On- line). International Committee on Computational Lin- guistics.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Bertscore: Evaluating text generation with bert",
                "authors": [
                    {
                        "first": "Tianyi",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "*",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Varsha",
                        "middle": [],
                        "last": "Kishore",
                        "suffix": ""
                    },
                    {
                        "first": "*",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Felix",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "*",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Kilian",
                        "middle": [
                            "Q"
                        ],
                        "last": "Weinberger",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Artzi",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q. Weinberger, and Yoav Artzi. 2020. Bertscore: Eval- uating text generation with bert. In International Conference on Learning Representations.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF1": {
                "type_str": "figure",
                "uris": null,
                "text": "Illustration of our sufficiency assessment approach through generation: (1) BART is used to generate the masked conclusion in an argument.(2)The generated conclusion is combined with the ground truth annotation of the argument. (3) RoBERTa classifies the enriched argument as sufficient/insufficient. Several ablations of the annotations are tested in our experiments.",
                "num": null
            }
        }
    }
}