File size: 172,029 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 |
{
"paper_id": "2021",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T02:10:09.057056Z"
},
"title": "Explainable Unsupervised Argument Similarity Rating with Abstract Meaning Representation and Conclusion Generation",
"authors": [
{
"first": "Juri",
"middle": [],
"last": "Opitz",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Heidelberg University",
"location": {}
},
"email": ""
},
{
"first": "Philipp",
"middle": [],
"last": "Heinisch",
"suffix": "",
"affiliation": {
"laboratory": "CITEC",
"institution": "Bielefeld University",
"location": {}
},
"email": ""
},
{
"first": "Philipp",
"middle": [],
"last": "Wiesenbach",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Heidelberg University",
"location": {}
},
"email": ""
},
{
"first": "Philipp",
"middle": [],
"last": "Cimiano",
"suffix": "",
"affiliation": {
"laboratory": "CITEC",
"institution": "Bielefeld University",
"location": {}
},
"email": "cimiano@techfak.uni-bielefeld.de"
},
{
"first": "Anette",
"middle": [],
"last": "Frank",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Heidelberg University",
"location": {}
},
"email": ""
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "When assessing the similarity of arguments, researchers typically use approaches that do not provide interpretable evidence or justifications for their ratings. Hence, the features that determine argument similarity remain elusive. We address this issue by introducing novel argument similarity metrics that aim at high performance and explainability. We show that Abstract Meaning Representation (AMR) graphs can be useful for representing arguments, and that novel AMR graph metrics can offer explanations for argument similarity ratings. We start from the hypothesis that similar premises often lead to similar conclusionsand extend an approach for AMR-based argument similarity rating by estimating, in addition, the similarity of conclusions that we automatically infer from the arguments used as premises. We show that AMR similarity metrics make argument similarity judgements more interpretable and may even support argument quality judgements. Our approach provides significant performance improvements over strong baselines in a fully unsupervised setting. Finally, we make first steps to address the problem of reference-less evaluation of argumentative conclusion generations.",
"pdf_parse": {
"paper_id": "2021",
"_pdf_hash": "",
"abstract": [
{
"text": "When assessing the similarity of arguments, researchers typically use approaches that do not provide interpretable evidence or justifications for their ratings. Hence, the features that determine argument similarity remain elusive. We address this issue by introducing novel argument similarity metrics that aim at high performance and explainability. We show that Abstract Meaning Representation (AMR) graphs can be useful for representing arguments, and that novel AMR graph metrics can offer explanations for argument similarity ratings. We start from the hypothesis that similar premises often lead to similar conclusionsand extend an approach for AMR-based argument similarity rating by estimating, in addition, the similarity of conclusions that we automatically infer from the arguments used as premises. We show that AMR similarity metrics make argument similarity judgements more interpretable and may even support argument quality judgements. Our approach provides significant performance improvements over strong baselines in a fully unsupervised setting. Finally, we make first steps to address the problem of reference-less evaluation of argumentative conclusion generations.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "Rating the similarity of arguments (Reimers et al., 2019) is a core task in argument mining and argument search (Maturana, 1988; Wachsmuth et al., 2017; Ajjour et al., 2019) . Argument similarity ratings are also needed for (case-based) argument retrieval (Rissland et al., 1993; Chesnevar and Maguitman, 2004) , data exploration via argument clustering, and even automated debaters (Slonim et al., 2021) : to counter an opponent's argument, one may retrieve an argument similar to theirs, but of opposite stance to the topic (Wachsmuth et al., 2018) .",
"cite_spans": [
{
"start": 35,
"end": 57,
"text": "(Reimers et al., 2019)",
"ref_id": "BIBREF40"
},
{
"start": 112,
"end": 128,
"text": "(Maturana, 1988;",
"ref_id": "BIBREF26"
},
{
"start": 129,
"end": 152,
"text": "Wachsmuth et al., 2017;",
"ref_id": "BIBREF49"
},
{
"start": 153,
"end": 173,
"text": "Ajjour et al., 2019)",
"ref_id": "BIBREF0"
},
{
"start": 256,
"end": 279,
"text": "(Rissland et al., 1993;",
"ref_id": "BIBREF41"
},
{
"start": 280,
"end": 310,
"text": "Chesnevar and Maguitman, 2004)",
"ref_id": "BIBREF9"
},
{
"start": 383,
"end": 404,
"text": "(Slonim et al., 2021)",
"ref_id": "BIBREF44"
},
{
"start": 526,
"end": 550,
"text": "(Wachsmuth et al., 2018)",
"ref_id": "BIBREF50"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Typically, argument similarity ratings are computed over 'bag-of-word' argument representations, or else over argument representations inferred with language models such as BERT (Devlin et al., 2019) or InferSent (Conneau et al., 2017) . Two key advantages of such approaches are due to their unsupervised setup: First, unsupervised methods do not rely on human annotations, which are expensive and can be subject to noise and biases. Second, it has been shown for previous supervised methods that they have learned less about argumentation tasks than had been assumed, by exploiting spurious clues and artifacts from manually created data Niven and Kao, 2019) . This has led to a recent interest in solving argumentation tasks in an unsupervised manner, e.g., by logical reasoning (Jo et al., 2021) .",
"cite_spans": [
{
"start": 178,
"end": 199,
"text": "(Devlin et al., 2019)",
"ref_id": "BIBREF12"
},
{
"start": 213,
"end": 235,
"text": "(Conneau et al., 2017)",
"ref_id": "BIBREF10"
},
{
"start": 640,
"end": 660,
"text": "Niven and Kao, 2019)",
"ref_id": "BIBREF29"
},
{
"start": 782,
"end": 799,
"text": "(Jo et al., 2021)",
"ref_id": "BIBREF17"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In this paper we will highlight that previous methods for rating argument similarity suffer from a common flaw: beyond shallow statistics (word matches in bag-of-word models, or word similarities in distributional space), they do not provide any rationale for their predictions, and the prediction process is in general not transparent. Therefore, we know only little about the following question:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 Which argument features correlate with human argument similarity decisions?",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In this work, we undertake a first attempt at answering this question, by testing two hypotheses: i) Representing arguments with Abstract Meaning Representations (AMRs) and using AMR graph metrics improves argument similarity rating and provides explanatory information. ii) Extending arguments with inferred conclusions can improve argument similarity rating.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In the following \u00a72 we discuss related work. \u00a73 introduces our two key hypotheses, and \u00a74 presents our argument similarity rating model and its implementation. In \u00a75 we compare our model against strong baselines from prior work. In \u00a76 we conduct several analyses to show how our approach can contribute to a better understanding of arguments, their conclusions and argument similarity ratings: we i) assess predictors of human argument similarity ratings to investigate the criteria that correlate with human ratings of argument similarity; ii) discuss potential advantages of using AMR for graph-based argumentation tasks in a concrete example, and iii) investigate how interpretable argument similarity computation can help assess the quality and usefulness of conclusions drawn from arguments in a reference-less conclusion evaluation setup. 1",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Argument similarity and search Assessing argument similarity is a key task in argument mining (Reimers et al., 2019; Lenz et al., 2019) and can enhance argument search (Maturana, 1988; Rissland et al., 1993; Wachsmuth et al., 2017; Ajjour et al., 2019; Chesnevar and Maguitman, 2004 ). Yet, while delivering solid performance on benchmarks, current methods fail to provide any deeper rationale for their predictions. It is thus not clear whether and to what extent spurious clues or other artifacts may influence the similarity decision Niven and Kao, 2019) . In this paper, we aim at alleviating these issues by i) representing arguments with Abstract Meaning Representation (Banarescu et al., 2013) and conducting similarity assessment using well-defined graph metrics that provide explanatory AMR structure alignments; and ii) by investigating to what extent argument similarity can be projected to inferred conclusions.",
"cite_spans": [
{
"start": 94,
"end": 116,
"text": "(Reimers et al., 2019;",
"ref_id": "BIBREF40"
},
{
"start": 117,
"end": 135,
"text": "Lenz et al., 2019)",
"ref_id": "BIBREF22"
},
{
"start": 168,
"end": 184,
"text": "(Maturana, 1988;",
"ref_id": "BIBREF26"
},
{
"start": 185,
"end": 207,
"text": "Rissland et al., 1993;",
"ref_id": "BIBREF41"
},
{
"start": 208,
"end": 231,
"text": "Wachsmuth et al., 2017;",
"ref_id": "BIBREF49"
},
{
"start": 232,
"end": 252,
"text": "Ajjour et al., 2019;",
"ref_id": "BIBREF0"
},
{
"start": 253,
"end": 282,
"text": "Chesnevar and Maguitman, 2004",
"ref_id": "BIBREF9"
},
{
"start": 537,
"end": 557,
"text": "Niven and Kao, 2019)",
"ref_id": "BIBREF29"
},
{
"start": 676,
"end": 700,
"text": "(Banarescu et al., 2013)",
"ref_id": "BIBREF5"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related work",
"sec_num": "2"
},
{
"text": "Explanations in argumentation Until recently, the quest for explanations in argumentation was mainly focused on theory development. The Toulmin model, e.g., offers a theory of what is needed to make an argument complete (Toulmin, 2003) . Argumentation schemes, which develop taxonomies of argument types and argumentation fallacies (Walton, 2005; Walton et al., 2008) can be viewed as mechanisms for explaining functions, strengths and weaknesses of arguments. Other research aims at studying the computational and formal aspects of argumentation, e.g. abstract argumentation (Dung, 1995) and Bayesian argumentation (Zenker, 2013) . Research in empirical argument mining led researchers to investigate practical methods for explanations (Lawrence, 2021; Becker et al., 2021; Gunning et al., 2019; Rago et al., 2021; Vassiliades et al., 2021) . While most approaches focus on the analysis of linguistic aspects (Lauscher et al., 2021) , e.g., by extracting selected features (Aker et al., 2017; Lugini and Litman, 2018) or leveraging discourse knowledge in language models (Opitz, 2019) , others exploit large background knowledge graphs (Kobbe et al., 2019; Paul et al., 2020; Yuan et al., 2021) such as ConceptNet (Liu and Singh, 2004; Speer et al., 2017) or DBpedia (Mendes et al., 2012) . An advantage of our approach is the explicit graph alignment between two arguments' meaning graphs that better marks related structures, and that can help explain argument similarity judgements.",
"cite_spans": [
{
"start": 220,
"end": 235,
"text": "(Toulmin, 2003)",
"ref_id": "BIBREF47"
},
{
"start": 332,
"end": 346,
"text": "(Walton, 2005;",
"ref_id": "BIBREF52"
},
{
"start": 347,
"end": 367,
"text": "Walton et al., 2008)",
"ref_id": "BIBREF53"
},
{
"start": 576,
"end": 588,
"text": "(Dung, 1995)",
"ref_id": "BIBREF13"
},
{
"start": 616,
"end": 630,
"text": "(Zenker, 2013)",
"ref_id": "BIBREF55"
},
{
"start": 737,
"end": 753,
"text": "(Lawrence, 2021;",
"ref_id": "BIBREF21"
},
{
"start": 754,
"end": 774,
"text": "Becker et al., 2021;",
"ref_id": "BIBREF6"
},
{
"start": 775,
"end": 796,
"text": "Gunning et al., 2019;",
"ref_id": null
},
{
"start": 797,
"end": 815,
"text": "Rago et al., 2021;",
"ref_id": "BIBREF39"
},
{
"start": 816,
"end": 841,
"text": "Vassiliades et al., 2021)",
"ref_id": "BIBREF48"
},
{
"start": 910,
"end": 933,
"text": "(Lauscher et al., 2021)",
"ref_id": "BIBREF20"
},
{
"start": 974,
"end": 993,
"text": "(Aker et al., 2017;",
"ref_id": "BIBREF1"
},
{
"start": 994,
"end": 1018,
"text": "Lugini and Litman, 2018)",
"ref_id": "BIBREF25"
},
{
"start": 1072,
"end": 1085,
"text": "(Opitz, 2019)",
"ref_id": "BIBREF30"
},
{
"start": 1137,
"end": 1157,
"text": "(Kobbe et al., 2019;",
"ref_id": "BIBREF19"
},
{
"start": 1158,
"end": 1176,
"text": "Paul et al., 2020;",
"ref_id": "BIBREF35"
},
{
"start": 1177,
"end": 1195,
"text": "Yuan et al., 2021)",
"ref_id": "BIBREF54"
},
{
"start": 1215,
"end": 1236,
"text": "(Liu and Singh, 2004;",
"ref_id": "BIBREF24"
},
{
"start": 1237,
"end": 1256,
"text": "Speer et al., 2017)",
"ref_id": "BIBREF45"
},
{
"start": 1268,
"end": 1289,
"text": "(Mendes et al., 2012)",
"ref_id": "BIBREF27"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related work",
"sec_num": "2"
},
{
"text": "Argument mining with graphs There is growing interest in extracting graph structures from natural language arguments. Lenz et al. (2020) , e.g., propose a pipeline for detecting and linking argumentative discourse units (ADUs). Al-Khatib et al. (2020) detect textual phrases and link them with POS/NEG relations, where POS indicates a positive influence and NEG a negative influence (inhibition), e.g., sports NEG health issues. However, such approaches lack finer semantic assessment: they do not distinguish word senses, and the linked entities (phrases or ADUs) are taken as atoms, which hampers explainability: when linking sports and health issues with a NEG relation, we cannot differentiate sports NEG issues and sports NEG health (only the former is correct). We target a finer analysis of argumentative texts, by representing them with dense AMR graphs. Additionally, by aligning graph representations of several arguments, our work paves the way for improved argument knowledge graph construction, aided by, or based on, AMR.",
"cite_spans": [
{
"start": 118,
"end": 136,
"text": "Lenz et al. (2020)",
"ref_id": "BIBREF23"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related work",
"sec_num": "2"
},
{
"text": "The task of conclusion generation has been recently investigated by Alshomary et al. (2020 Alshomary et al. ( , 2021 , and allows us to infer conclusions from given premises. Conclusion generation can be seen as the inverse of argument generation (Sato et al., 2015; Schiller et al., 2020) . In this work, we show that by considering conclusions inferred from pairs of arguments, we can improve our argument similarity ratings.",
"cite_spans": [
{
"start": 68,
"end": 90,
"text": "Alshomary et al. (2020",
"ref_id": "BIBREF4"
},
{
"start": 91,
"end": 116,
"text": "Alshomary et al. ( , 2021",
"ref_id": "BIBREF3"
},
{
"start": 247,
"end": 266,
"text": "(Sato et al., 2015;",
"ref_id": "BIBREF42"
},
{
"start": 267,
"end": 289,
"text": "Schiller et al., 2020)",
"ref_id": "BIBREF43"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Generation of argumentative conclusions",
"sec_num": null
},
{
"text": "We base our models for explanatory argument similarity assessment on two hypotheses.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Hypotheses",
"sec_num": "3"
},
{
"text": "Hypothesis I: Abstract Meaning Representation (Banarescu et al., 2013) of arguments supports explainable argument similarity assessment AMRs are directed, rooted and acyclic graphs that aim at capturing a sentence's meaning in a machine-readable format. Edges are labeled with semantic relation types (e.g., negation, cause, etc.) and vertices denote either variables or concepts (variables are instances of concepts and allow us to capture coreferences) Hence, the AMR formalism captures various semantic phenomena that can play a role when assessing argument similarity. E.g., besides the obviously useful aspect of negation, AMR captures semantic roles and predicate senses (Kingsbury and Palmer, 2002) . While it is clear that similar arguments tend to involve similar predicates and predicate senses, semantic structure and role assignment may also play a role. For instance, the claims: consumption of alcohol leads to depression vs. depression leads to consumption of alcohol are clearly distinct, while sharing the same concepts. Other AMR facets may also be useful. E.g., AMR captures coreferences and resolving them in different ways can induce significant meaning differences, Finally, AMR includes key semantic relations (location, cause, possession, etc.) that are often implicit or underspecified in language, hence their explicit representation in AMR provides a rich basis for assessing arguments.",
"cite_spans": [
{
"start": 46,
"end": 70,
"text": "(Banarescu et al., 2013)",
"ref_id": "BIBREF5"
},
{
"start": 677,
"end": 705,
"text": "(Kingsbury and Palmer, 2002)",
"ref_id": "BIBREF18"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Hypotheses",
"sec_num": "3"
},
{
"text": "Arguments represented with AMR can be compared with AMR graph metrics Damonte et al., 2017; that also induce an explicit alignment between two argument graphs.",
"cite_spans": [
{
"start": 70,
"end": 91,
"text": "Damonte et al., 2017;",
"ref_id": "BIBREF11"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Hypotheses",
"sec_num": "3"
},
{
"text": "Hypothesis II: similar arguments lead to similar conclusions We hypothesize that a key feature of similar arguments is that they invite for similar conclusions. Analogously, dissimilar arguments tend to lead to differing conclusions. Consider the following two arguments: i) Cannabis can have negative effects on brain development of teens. ii) Smoking cannabis is harmful for the lungs.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Hypotheses",
"sec_num": "3"
},
{
"text": "The arguments are dissimilar, even though they share the same (negative) stance and argue from a similar perspective (health). This dissimilarity is also reflected in the conclusions that can be inferred from them: from i) we can infer that, i.a., Cannabis consumption should be strictly controlled for age or Cannabis can have a negative impact on the brain-while from ii) we could infer that Cannabis, if consumed, should not be smoked or Cannabis smokers should get their lungs checked.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Hypotheses",
"sec_num": "3"
},
{
"text": "As a complementary example, the similarity of two arguments may be reinforced by the similarity of their inferred conclusions, as shown below: i) Fracking can contaminate water and water wells and suck towns dry. ii) As a water-poor state, fracking and its toxic wastewater presents a serious danger to our communities and ecosystems.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Hypotheses",
"sec_num": "3"
},
{
"text": "Arguments i) and ii) are rated as similar, presumably because they point at detrimental ramifications of fracking related to water issues. This similarity is likely to be reflected in conclusions drawn from them, such as: i) Fracking can lead to water issues or ii) Fracking poses dangers for water-poor states.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Hypotheses",
"sec_num": "3"
},
{
"text": "According Hyp I, we represent arguments with AMR graphs and rate their similarity with AMR metrics. To test Hyp II we infer conclusions from arguments with language models and compute similarity on arguments extended with their conclusion.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Argument Similarity via AMR Metrics",
"sec_num": "4"
},
{
"text": "We propose three model variants that aim at explaining argument similarity. Given two arguments a, a and their extrapolated conclusions c = conclusion(a), c = conclusion(a ), we compute similarity in the space of abstract meaning representation using a similarity function f in three alternative ways: i) f (a, a ), between the two arguments, ii) f (c, c ) between their conclusions, iii) f (a \u2295 c, a \u2295 c ), i.e., between the combinations of argument a and its derived conclusion c, where we use a simple decomposable weighting:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Models",
"sec_num": "4.1"
},
{
"text": "f (a\u2295c, a \u2295c ) = \u03bbf (a, a )+(1\u2212\u03bb)f (c, c ) (1)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Models",
"sec_num": "4.1"
},
{
"text": "If not specified otherwise, \u03bb is set to 0.95. 2 The AMR metric f will be described in the following.",
"cite_spans": [
{
"start": 46,
"end": 47,
"text": "2",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Models",
"sec_num": "4.1"
},
{
"text": "AMR parser We parse all arguments from the data with the parser from amrlib 3 , a fine-tuned T5 sequence-to-sequence model that achieves high scores on AMR benchmarks. AMR metric We use S 2 MATCH , which is based on the AMR graph matching metric SMATCH , but admits graded concept similarity by matching concept nodes with GloVe embeddings (Pennington et al., 2014) and cosine similarity 4 . To find an optimal graph mapping, exactly like SMATCH, it leverages a hill-climber to approximate the NPhard problem of aligning AMR graphs. Following the alignment step, the (soft) matching of propositions (triples) are scored with an F1 score. Since, so-far, little is known about the trade-off and interface between concrete and abstract semantics in human mental representations (Mkrtychian et al., 2019) , we introduce two more variants that assess similarity from complementary perspectives: S2MATCH Concept and S2MATCH Struct . The first metric variant focuses on conceptual overlap (Fig. 1, middle) , i.e. the more concrete semantic aspects, by putting a triple weight on concept matches. The second variant focuses on structural matches (Fig. 1, bottom) , i.e., the more abstract semantic aspects, by putting triple weight on relation matches.",
"cite_spans": [
{
"start": 340,
"end": 365,
"text": "(Pennington et al., 2014)",
"ref_id": "BIBREF36"
},
{
"start": 775,
"end": 800,
"text": "(Mkrtychian et al., 2019)",
"ref_id": "BIBREF28"
}
],
"ref_spans": [
{
"start": 982,
"end": 999,
"text": "(Fig. 1, middle)",
"ref_id": "FIGREF0"
},
{
"start": 1139,
"end": 1156,
"text": "(Fig. 1, bottom)",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Implementation",
"sec_num": "4.2"
},
{
"text": "We generate conclusions from arguments using the T5 model (Raffel et al., 2020) pre-trained on summarization tasks. To encourage the model to generate informative conclusions (as opposed to summaries), we further finetune it on premise-conclusion samples from Stab and Gurevych (2017) , which contain intelligible 5 Argument Similarity Prediction with AMR Metrics: Experiments",
"cite_spans": [
{
"start": 58,
"end": 79,
"text": "(Raffel et al., 2020)",
"ref_id": "BIBREF38"
},
{
"start": 260,
"end": 284,
"text": "Stab and Gurevych (2017)",
"ref_id": "BIBREF46"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion generator",
"sec_num": null
},
{
"text": "Data set and evaluation metric We use the UKP aspect corpus (Reimers et al., 2019) , which contains 3,596 argument pairs on 28 topics that have been assigned a four-way similarity rating: highly similar (HS), somewhat similar (SS), not similar (NS), different topic/'can't decide' (DTORCD). Following Reimers et al. (2019), we frame the task as a binary prediction problem: highly similar (HS, SS) and non-similar (NS, DTORCD), and we conduct evaluation via cross validation with 4 folds. In every iteration, 7 topics serve as testing data, while the other 21 topics serve to tune a decision threshold of the metric score. 6 As in Reimers et al. 2019, we evaluate the F1 score for each of the two labels and the arithmetic F1 mean (macro F1).",
"cite_spans": [
{
"start": 60,
"end": 82,
"text": "(Reimers et al., 2019)",
"ref_id": "BIBREF40"
},
{
"start": 623,
"end": 624,
"text": "6",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Setup",
"sec_num": "5.1"
},
{
"text": "Baselines We compare to previously established unsupervised baselines (Reimers et al., 2019) : i) Tfidf calculates cosine similarity between Tfidf-weighted bag-of-word vectors; i) InferSent-(FastText|Glove) leverages sentence embeddings produced by the InferSent model (Conneau et al., 2017) based on either FastText (Bojanowski et al., 2016) or GloVe (Pennington et al., 2014) vectors, which are compared with cosine similarity; iii) (GloVe|ELMo|BERT) Embedding uses averaged GloVe embeddings or averaged contextualized embeddings from ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019) language models.",
"cite_spans": [
{
"start": 70,
"end": 92,
"text": "(Reimers et al., 2019)",
"ref_id": "BIBREF40"
},
{
"start": 269,
"end": 291,
"text": "(Conneau et al., 2017)",
"ref_id": "BIBREF10"
},
{
"start": 317,
"end": 342,
"text": "(Bojanowski et al., 2016)",
"ref_id": "BIBREF7"
},
{
"start": 352,
"end": 377,
"text": "(Pennington et al., 2014)",
"ref_id": "BIBREF36"
},
{
"start": 542,
"end": 563,
"text": "(Peters et al., 2018)",
"ref_id": "BIBREF37"
},
{
"start": 573,
"end": 594,
"text": "(Devlin et al., 2019)",
"ref_id": "BIBREF12"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Setup",
"sec_num": "5.1"
},
{
"text": "Best system Table 1 shows our main results. The AMR-based approach that is based on conceptfocused S 2 MATCH scores, taking both the argument and its inferred conclusion into account, obtains rank 1 (68.70 macro F1) and outperforms all baselines, including the BERT baseline. The difference is significant with p < 0.005 (Student t-test). This system is closely followed by other AMR-based systems, e.g., using concept-focused S 2 MATCH that sees only the argument (68.17 macro F1), and standard S 2 MATCH taking both argument and conclusion into account (66.21 macro F1).",
"cite_spans": [],
"ref_spans": [
{
"start": 12,
"end": 19,
"text": "Table 1",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "Results",
"sec_num": "5.2"
},
{
"text": "Does incorporating conclusions help? Interestingly, assessing only conclusions (rank 13/14/15) outperforms the random baseline (rank 16). The low performance, in general, is expected, since clearly, argument similarity must be primarily determined based on the arguments, and hence, methods that rate the similarity of arguments only via a conclusion proxy have an obvious disadvantage. Hence, the more interesting question is: Do inferred conclusions provide complementary information for the task? Our results show a tendency that this is the case. All AMR-based models that take both conclusion and argument into account (model type f (a \u2295 c, a \u2295 c )) outperform models that only see the arguments (AMR: +0.77; AMR concept-focus: +0.63; AMR struct-focus +0.40). At this point, however, we cannot explain whether this is due to useful reformulations or truly novel content that was generated, or a mix of both. We will investigate this question deeper in Section 6.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Results",
"sec_num": "5.2"
},
{
"text": "Argument similarity: driven by abstract or concrete semantics? The strong performance of the concept-focused AMR metric shows that a large overlap in concepts tends to correlate with human ratings more than an overlap in abstract semantic structure. The structure-focused AMR methods (last block in Table 1 ), while significantly outperforming the random baseline, lag behind all other baselines. Note, however, that the standard AMRbased model, which weights concept and structure overlap equally, provides strong performance, oc- ",
"cite_spans": [],
"ref_spans": [
{
"start": 299,
"end": 306,
"text": "Table 1",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "Results",
"sec_num": "5.2"
},
{
"text": "Pearson's \u03c1 predictor f (a, a) f (c, c) f (ac, a c ) Concepts 0.492 \u2021 0.299 \u2021 0.492 \u2021 Sem. Role Labels (SRL) 0.400 \u2021 0.185 \u2021 0.402 \u2021 Predicate Frames 0.355 \u2021 0.232 \u2021 0.357 \u2021 Reentrancies (Coref.) 0.235 \u2021 0.085 \u2021 0.235 \u2021 Named Entity (NER) 0.076 \u2021 0.052 \u2021 0.077 \u2021 Negations 0.042 \u2020 -0.011 0.042 \u2020",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Results",
"sec_num": "5.2"
},
{
"text": "The previous experiment suggests that human argument similarity ratings can be modeled through a combination of different meaning facets, with a focus on concepts. We will now investigate how human argument similarity ratings correlate with specific meaning aspects represented in AMR graphs.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Fine predictors of argument similarity",
"sec_num": "6.1"
},
{
"text": "Setup For this we leverage fine-grained AMR metrics (Damonte et al., 2017) and compute semantic similarity with respect to 6 meaning aspects i) named entities (NER); ii) negation; iii) lexical concepts; iv) predicate frames; v) coreference and vi) semantic roles (SRL). Instead of merging the labels somewhat similar and similar, we keep them distinct and use a three-point Likert scale: 0 means not similar or unrelated, 0.5 means somewhat similar, and 1 means highly similar. To assess the correlation, we use Pearson's correlation coefficient.",
"cite_spans": [
{
"start": 52,
"end": 74,
"text": "(Damonte et al., 2017)",
"ref_id": "BIBREF11"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Fine predictors of argument similarity",
"sec_num": "6.1"
},
{
"text": "Results of this univariate feature analysis are displayed in Table 2 . As expected from the earlier experiment, shared concepts are strong predictors for argument similarity (Concepts, \u03c1=0.49). Also more abstract semantic features, such as similar semantic roles, have a solid signalling effect (SRL, \u03c1=0.40). Similarly, coreferences have predictive capacity, though at a lower range (\u03c1=0.23). On the other hand, negation or shared named entities do exhibit only small (yet still significant) predictive capacity (Negation, \u03c1=0.04 and NER, \u03c1=0.08).",
"cite_spans": [],
"ref_spans": [
{
"start": 61,
"end": 68,
"text": "Table 2",
"ref_id": "TABREF2"
}
],
"eq_spans": [],
"section": "Fine predictors of argument similarity",
"sec_num": "6.1"
},
{
"text": "The low correlation of NE overlap with human similarity ratings can in part be explained by the fact that we do not find many arguments where this could potentially matter (in our data, only 1 to 2 out of 1,000 nodes represent person NEs). However, if humans were to rate argument similarity in a dataset that features many arguments from expert opinion (Godden and Walton, 2006; Wagemans, 2011) , named entity overlap may have a significant predictive capacity. Also negation might be more important than what we see in this analysis, since it can be expressed in alternative ways (e.g., through antonyms) that are not encoded as such in AMR.",
"cite_spans": [
{
"start": 366,
"end": 379,
"text": "Walton, 2006;",
"ref_id": "BIBREF14"
},
{
"start": 380,
"end": 395,
"text": "Wagemans, 2011)",
"ref_id": "BIBREF51"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Fine predictors of argument similarity",
"sec_num": "6.1"
},
{
"text": "To illustrate the potential of using AMR for connecting and assessing arguments, we study an example case in Fig. 2 . It shows the graphs and graph alignments 8 that were found, for the actual arguments and their automatically induced conclusions, for our running example on fracking.",
"cite_spans": [],
"ref_spans": [
{
"start": 109,
"end": 115,
"text": "Fig. 2",
"ref_id": null
}
],
"eq_spans": [],
"section": "Example case with alignment",
"sec_num": "6.2"
},
{
"text": "Observations about argument alignment The top figure shows the alignment of the two argument graphs, where important substructures have been linked. Contamination of water and water wells is linked to endangering of our communities and ecosystems (orange nodes and alignment). It is also appropriate that towns that are sucked dry is linked to water poor state (blue). This link is very valuable since these statements stand in a semantic EXACERBATE-relation that may be important for the arguments' similarity (the water-poverty of states is exacerbated if towns are sucked dry). Ideally, we would like such alignments to be labeled with a corresponding semantic relation. In future work, we plan to achieve this by leveraging commonsense knowledge graphs like ConceptNet.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Example case with alignment",
"sec_num": "6.2"
},
{
"text": "Observations about conclusion alignment The bottom figure shows the alignment of the automatically deduced conclusions. For the left argument, the conclusion fails to produce an abstraction and more or less repeats the argument. For the argument on the right-hand side, however, the conclusion generator produced a more informative conclusion. From the input argument it concludes that Fracking and its toxic wastewater are a threat to the environmentfocusing on the negative environmental impact of fracking. This triggers a graph alignment which adds valuable new information 8 The alignments were computed with S2M Concept+Concl.",
"cite_spans": [
{
"start": 578,
"end": 579,
"text": "8",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Example case with alignment",
"sec_num": "6.2"
},
{
"text": "(see clouds with dotted margins). The alignment makes explicit that water wells and toxic wastewater stand in a correspondence in the context of fracking. Specifically, we see how the contamination of wells (left graphs) happens: wells are polluted with toxic wastewater (right graphs). Additionally, the left graph helps explain parts of the meaning of the right graph: Fracking and toxic wastewater are a threat because fracking contaminates water and water wells.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Example case with alignment",
"sec_num": "6.2"
},
{
"text": "An inferred conclusion can be more or less abstract or dissimilar from the input argument. This raises the question of the quality of an inferred conclusion. In fact, we can apply our AMR similarity metrics to quantify the similarity of an argument and its inferred conclusion-formally: f (a, c)-which may be indicative of the novelty of a conclusion in relation to its premise. Hence, we investigate how AMR similarity metrics can be used to measure the novelty of a conclusion relative to its premise. Another aspect of conclusion quality is its validity or justification, i.e., to what extent it can be trusted. Clearly, a conclusion that is very similar to the premise has a high chance of being valid (as long as the premise is), whereas this is uncertain for parts of its meaning that do not match the premise.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Investigations of conclusion quality",
"sec_num": "6.3"
},
{
"text": "In current research, not much is known about how to rate the quality of a conclusion drawn from an argument. We explore this question by performing a manual assessment of different quality aspects of conclusions, and investigate to what extent these can be assessed with our AMR similarty metrics.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Investigations of conclusion quality",
"sec_num": "6.3"
},
{
"text": "We randomly sample 100 argument-conclusion pairs per topic. The pairs are given to two annotators whom we ask to assign binary ratings regarding two questions: i) Is the conclusion justified based on the premise? With this we aim to assess whether the argument legitimizes the conclusion; and ii) Does the conclusion introduce some novelty relative to the argument? This should be denied if, e.g., the conclusion repeats the premise.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Investigations of conclusion quality",
"sec_num": "6.3"
},
{
"text": "As shown in Fig. 3 , we measure moderate IAA, with slightly higher agreement for novelty. The results show that T5 often manages to produce either valid (justification, \u224865-75% of cases) or novel content (novelty, \u2248 50-60%), but struggles to produce conclusions that fulfill both criteria (justification & novetly: \u2248 25-35% of cases). Fracking contaminates water and water wells and sucks towns dry.",
"cite_spans": [],
"ref_spans": [
{
"start": 12,
"end": 18,
"text": "Fig. 3",
"ref_id": null
}
],
"eq_spans": [],
"section": "Investigations of conclusion quality",
"sec_num": "6.3"
},
{
"text": "Fracking and its toxic wastewater are a threat to the environment. 2) Fracking can contaminate water and water wells and suck towns dry..",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Investigations of conclusion quality",
"sec_num": "6.3"
},
{
"text": "As a water-poor state, fracking and its toxic wastewater presents a serious danger to our communities and ecosystems.. ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Investigations of conclusion quality",
"sec_num": "6.3"
},
{
"text": "We now extend the use of our metrics to assess conclusion quality by computing the similarity of argument and conclusion: f (a, c). 9 We calculate six graph similarity statistics of their AMRs to finally produce an aggregate score assessment: i) |a \u2229 c|/|a| measures the relative amount of premise content that is contained in the conclusion ('precision'); ii) |a \u2229 c|/|c| measures the relative amount of conclusion content contained in the premise ('recall'); iii) the harmonic mean of i) and ii) corre-sponds to main metric f (a, c); and features iv-vi) apply a non-linear function to i)-iii), measuring the proximity to the feature means 10 , which expresses the idea that a conclusion that is both novel and justified may be situated at mean similarity of premise and conclusion, measured by f (a, c).",
"cite_spans": [
{
"start": 132,
"end": 133,
"text": "9",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Can we predict conclusion quality?",
"sec_num": "6.4"
},
{
"text": "We use a Linear SVM for predicting, in three binary classification tasks, either justification; novelty or both, using the feature set i)-vi). 11 Results are seen in Table 3 . Despite the small training data, performance is good for predicting justified (max. 68.6 F1) or novel (max. 70.0 F1). But predicting a conclusion to be novel & justified yields substantially lower performance (max. 58.3 F1), while still above baseline. Feature correlations show that novel is negatively (-) associated with f (a, c) (iiii), while justified is positively (+) correlated with f (a, c) (i-iii). We find much weaker correlation for novel&justified, tending to mean similarity (iv-vi). Our analyses support Hyp1 in that AMR metrics are able to rate similarity of arguments, of conclusions and of argument-conclusion pairs, and this also allows us to determine if a conclusion is novel or justified. While many justified conclusions are highly similar to the premise, deciding their justification is difficult if they involve novelty. We argue this is because justification cannot be determined from premises alone, but requires external knowledge. We leave this issue for future work.",
"cite_spans": [],
"ref_spans": [
{
"start": 166,
"end": 173,
"text": "Table 3",
"ref_id": "TABREF4"
}
],
"eq_spans": [],
"section": "Can we predict conclusion quality?",
"sec_num": "6.4"
},
{
"text": "Finally, we revisit our Hyp2, that by extending arguments with inferred conclusions, we can support assessment of argument similarity. This raises the issue of the usefulness of a conclusion, in terms of achieving good performance and interpretability of an argument similarity method. The aspect of the usefulness of a conclusion clearly differs from the question of its quality. For one, it is possible that a good conclusion is not useful for argument similarity rating, simply because the assessment of the paired argument premises already provides a confident and precise similarity judgement. On the other hand, a mediocre conclusion could provide complementary indications that can support the similarity judgement. In this final section we aim to assess factors that can determine this usefulness.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion usefulness",
"sec_num": "6.5"
},
{
"text": "Operationalizing conclusion usefulness We define a score U for the usefulness of a conclusion, based on a human rating y, the conclusion similarity f (c, c ) and argument similarity f (a, a ), as",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion usefulness",
"sec_num": "6.5"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "U = 1 1+(y\u2212f (c,c )) 2 + (y \u2212 f (a, a )) 2 ,",
"eq_num": "(2)"
}
],
"section": "Conclusion usefulness",
"sec_num": "6.5"
},
{
"text": "where U is maximized iff the automatic similarity rating of the conclusions does not differ from the human rating, while the automatic similarity a) Because you may save up to eight lives through organ donation and enhance many others through tissue donation. c) organ donation is a great way to save up to eight lives. a') This medical research is important to understanding diseases in humans so that lives may be saved and improved. c') medical research is important to understand diseases in humans rating of the premises differs maximally from the human rating. It is in exactly these situations that a conclusion assessment will prove most useful.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion usefulness",
"sec_num": "6.5"
},
{
"text": "Features for assessing conclusion usefulness U We assume the following features for modeling the usefulness of a conclusion, which we compute with our similarity function f : i) the similarity of the arguments f (a, a ); ii) the similarity of the conclusions f (c, c ); iii) the (signed) difference between the argument and the conclusion similarities f (a, a ) \u2212 f (c, c ); iv) we compute the (signed) difference between the similarity of (a, c) and (a , c ):",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion usefulness",
"sec_num": "6.5"
},
{
"text": "f (a,c)\u2212f (a ,c ) 2",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion usefulness",
"sec_num": "6.5"
},
{
"text": "; finally, v) y is the human rating.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion usefulness",
"sec_num": "6.5"
},
{
"text": "Results Table 4 shows that the highest predictive power for conclusion usefulness is feature iii): the similarity of the two arguments minus the similarity of the two conclusions. It exhibits a highly significant positive correlation with conclusion usefulness, and relates to the following scenario: If two arguments are considered to be similar, but the conclusions as dissimilar, this may signal that the arguments are rated dissimilar by the human, and the high initial rating may be reconsidered. Table 5 shows a data sample where the conclusions help to correct an initial, over-optimistic similarity rating of the premises. The premises are rated dissimilar by the human, but since they contain similar concepts, such as saving lives, the AMR metric assigns a high similarity rating (0.7) to the pair (a, a ). However, the automatically generated conclusions (c, c ) are assigned low(er) similarity (0.2). The low rating can be explained by the fact that the conclusion generator has distilled different conclusions from the premises that reflect the dif-ferent foci of the arguments: the first proposes that organ donations are good for saving lives, while the second argument proposes that generally more medical research should be conducted.",
"cite_spans": [],
"ref_spans": [
{
"start": 8,
"end": 15,
"text": "Table 4",
"ref_id": "TABREF6"
},
{
"start": 502,
"end": 509,
"text": "Table 5",
"ref_id": "TABREF7"
}
],
"eq_spans": [],
"section": "Conclusion usefulness",
"sec_num": "6.5"
},
{
"text": "Explanation dimensions Our argument similarity rating approach may provide explanations in various dimensions. i) First and foremost, the explicit alignment and similarity computation based on AMR and AMR graph metrics, by relating similar concepts between arguments and their conclusions, provides insight into which components of two argument AMRs relate to each other, with individual alignment scores, and to what extent they congtribute to the overall score. Especially in light of recent observations showing supervised models to be prone to superficial cues in data sets Niven and Kao, 2019; Heinzerling, 2020; Jo et al., 2021) , this property is desirable. ii) We apply the fine-grained AMR decomposition of Damonte et al. (2017) in terms of semantic phenomena, such as negation or semantic roles. This can further illuminate in which ways an argument pair is similar/dissimilar. iii) By taking into account the similarity of automatically inferred conclusions, the similarity computed for premises may be re-adjusted in case the similarity of the inferred conclusions strongly differs.",
"cite_spans": [
{
"start": 578,
"end": 598,
"text": "Niven and Kao, 2019;",
"ref_id": "BIBREF29"
},
{
"start": 599,
"end": 617,
"text": "Heinzerling, 2020;",
"ref_id": "BIBREF16"
},
{
"start": 618,
"end": 634,
"text": "Jo et al., 2021)",
"ref_id": "BIBREF17"
},
{
"start": 716,
"end": 737,
"text": "Damonte et al. (2017)",
"ref_id": "BIBREF11"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Discussion",
"sec_num": "7"
},
{
"text": "On a related note, the AMR similarity statistics enabled us to gain some first indications of what could be considered a good conclusion (without even matching against a reference): e.g., our qualitative evaluations indicate that good conclusions tend to be neither very similar, nor very dissimilar to the premise. This seems plausible, since (too) high similarity may indicate a mere summary (reducing novelty), while (too) low similarity may indicate a lack of coherence (reducing validity).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Discussion",
"sec_num": "7"
},
{
"text": "A key component of our approach that influences all aspects of explainability described above, are the similarity metrics computed over AMRs. While we proposed one variant of S 2 MATCH that focuses specifically on the similarity of concepts, further variations could be explored. We may also consider more recent AMR metrics that measure meaning similarity via graph kernels .",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Perspectives of improvement and future work",
"sec_num": null
},
{
"text": "Our approach also hinges on the quality of the inferred conclusions. The conclusions we obtained are often either justified or novel, but less often satisfy both conditions. In addition, we find that the degree of novelty is often rather small, perhaps reflecting that the T5 generator was pre-trained on summarization data and hence may tend to produce inferences that are not novel, since novelty is not a common characteristics of a summary. On the positive side, our approach can be fueled by an increasing amount of research on argument conclusion generation (Alshomary et al., 2020 (Alshomary et al., , 2021 . In general, and particularly for our approach, it will be interesting to work with systems that produce not only a single, but multiple valid conclusions. Considering relations across and within two conclusion sets inferred from two premises may provide key information on argument similarity.",
"cite_spans": [
{
"start": 564,
"end": 587,
"text": "(Alshomary et al., 2020",
"ref_id": "BIBREF4"
},
{
"start": 588,
"end": 613,
"text": "(Alshomary et al., , 2021",
"ref_id": "BIBREF3"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Perspectives of improvement and future work",
"sec_num": null
},
{
"text": "Finally, by measuring the similarity of premises and their conclusions, our approach could shed light on another important question: how to assess novelty and justification of a conclusion without a reference? This is an important question for research on argument conclusion generation since it lacks methods that can judge the quality of conclusions in the absence of (costly) references.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Perspectives of improvement and future work",
"sec_num": null
},
{
"text": "In this paper, we investigated two hypotheses: i) AMR meaning representation and graph metrics help in assessing argument similarity, ii) automatically inferred conclusions can aid or reinforce the similarity assessment of arguments. We find solid evidence for the first hypothesis, especially when slightly adapting AMR metrics to focus more on concrete concepts found in arguments. We find weak evidence that supports the second hypothesis, i.e., metrics improve consistently, but by small margins, when they are allowed to additionally consider the AMRs of automatically inferred conclusions. We believe, however, that more substantial gains may be obtained in future work, by improving conclusion generation models such that they produce content that is both valid and novel. Finally, we have made first steps towards a reference-less metric for assessing novelty and justification of generated conclusions.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "8"
},
{
"text": "https://github.com/Heidelberg-nlp/ amr-argument-sim",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "We choose a high value of \u03bb since, clearly, the premises are bound to host the primary evidence for similarity, while a conclusion may serve as auxiliary information. In our experiments, we also consider extreme decompositions (\u03bb \u2208 {0, 1}).3 https://github.com/bjascob/amrlib",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "If the cosine similarity exceeds \u03c4 = 0.95. and rational conclusions of high linguistic quality.5",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "For further detail on this fine-tuning step see Appendix.6 Strictly speaking, this is not a fully unsupervised setup, however, we stick to this framing of the task to facilitate comparison to the previous work(Reimers et al., 2019).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "Motivated by this result, we conduct two extreme ablations: concept-only and structure-only metrics. While the structure-only variant shows worse results than AMR S-focus (macro F1 \u2206f (a, a ): -2.7), concept-only variant and conceptfocused are more or less on par (macro F1 \u2206f (a, a ): -0.2).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "AMR metrics have been previously used in NLG evaluation by.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "I.e., given the mean \u00b5 of a feature x, the new valuex i of datum i is x i = 1 \u2212 (\u00b5 \u2212 xi) 2 .11 We average all results over 25 runs of leave-one-out cross validations. When predicting either justification, or novelty, we average over the two annotators; when predicting justification and novelty, to increase the positive class labels slightly, the gold target are cases where one or two annotators annotated both novel and justified.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "Whenever we encounter multiple premises or supportive claims of a single claim, we concatenate them in document order.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "We are grateful to the anonymous reviewers for their valuable comments. This work has been partially funded by the DFG through the project AC-CEPT as part of the Priority Program \"Robust Argumentation Machines\" (SPP1999).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgements",
"sec_num": null
},
{
"text": "To fine-tune the sequence to sequence language model T5 for conclusion generation, we create training data from the the persuasive essays dataset of Stab and Gurevych (2017) as follows: From all premise-conclusion-pairs annotated in this dataset, we retrieved all claims with their annotated premises. In addition, we employ all annotated major claims with their supportive claims as premise-conclusion-pairs. 12 We discarded samples for which we cannot retrieve any premise. Each resulting premises-conclusion-sample has 3.1 premises on average.We split the data into 80% instances for training, and 10% for validation and testing, each. For each sample, we input the concatenated premises by encoding summarize:<premises> and train with the conclusion as a target by applying a crossentropy loss for each token. We guide the training process with an early stopping mechanism to ensure the best accuracy (ignoring padding tokens) on our validation dataset. In inference, we apply a 5-beam-search in combination with sampling over the 20 most probable tokens per inference step.To assess the quality and relatedness of the generated conclusions, we manually compared the predicted conclusions with their premises in our test split. Since we observed promising and appropriate conclusion generations, we were encouraged to utilize the learned capabilities of the fine-tuned language model to generate conclusions for the argumentative sentences in the UKP aspect corpus.",
"cite_spans": [
{
"start": 149,
"end": 173,
"text": "Stab and Gurevych (2017)",
"ref_id": "BIBREF46"
},
{
"start": 410,
"end": 412,
"text": "12",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "A.1 Fine-tuning the conclusion generator",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Data acquisition for argument search: The args. me corpus",
"authors": [
{
"first": "Yamen",
"middle": [],
"last": "Ajjour",
"suffix": ""
},
{
"first": "Henning",
"middle": [],
"last": "Wachsmuth",
"suffix": ""
},
{
"first": "Johannes",
"middle": [],
"last": "Kiesel",
"suffix": ""
},
{
"first": "Martin",
"middle": [],
"last": "Potthast",
"suffix": ""
},
{
"first": "Matthias",
"middle": [],
"last": "Hagen",
"suffix": ""
},
{
"first": "Benno",
"middle": [],
"last": "Stein",
"suffix": ""
}
],
"year": 2019,
"venue": "Joint German/Austrian Conference on Artificial Intelligence (K\u00fcnstliche Intelligenz)",
"volume": "",
"issue": "",
"pages": "48--59",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yamen Ajjour, Henning Wachsmuth, Johannes Kiesel, Martin Potthast, Matthias Hagen, and Benno Stein. 2019. Data acquisition for argument search: The args. me corpus. In Joint German/Austrian Con- ference on Artificial Intelligence (K\u00fcnstliche Intelli- genz), pages 48-59. Springer.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "What works and what does not: Classifier and feature analysis for argument mining",
"authors": [
{
"first": "Ahmet",
"middle": [],
"last": "Aker",
"suffix": ""
},
{
"first": "Alfred",
"middle": [],
"last": "Sliwa",
"suffix": ""
},
{
"first": "Yuan",
"middle": [],
"last": "Ma",
"suffix": ""
},
{
"first": "Ruishen",
"middle": [],
"last": "Lui",
"suffix": ""
},
{
"first": "Niravkumar",
"middle": [],
"last": "Borad",
"suffix": ""
},
{
"first": "Seyedeh",
"middle": [],
"last": "Ziyaei",
"suffix": ""
},
{
"first": "Mina",
"middle": [],
"last": "Ghobadi",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 4th Workshop on Argument Mining",
"volume": "",
"issue": "",
"pages": "91--96",
"other_ids": {
"DOI": [
"10.18653/v1/W17-5112"
]
},
"num": null,
"urls": [],
"raw_text": "Ahmet Aker, Alfred Sliwa, Yuan Ma, Ruishen Lui, Niravkumar Borad, Seyedeh Ziyaei, and Mina Ghobadi. 2017. What works and what does not: Classifier and feature analysis for argument mining. In Proceedings of the 4th Workshop on Argument Mining, pages 91-96, Copenhagen, Denmark. Asso- ciation for Computational Linguistics.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "End-to-end argumentation knowledge graph construction",
"authors": [
{
"first": "Khalid",
"middle": [],
"last": "Al-Khatib",
"suffix": ""
},
{
"first": "Yufang",
"middle": [],
"last": "Hou",
"suffix": ""
},
{
"first": "Henning",
"middle": [],
"last": "Wachsmuth",
"suffix": ""
},
{
"first": "Charles",
"middle": [],
"last": "Jochim",
"suffix": ""
},
{
"first": "Francesca",
"middle": [],
"last": "Bonin",
"suffix": ""
},
{
"first": "Benno",
"middle": [],
"last": "Stein",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the AAAI Conference on Artificial Intelligence",
"volume": "34",
"issue": "",
"pages": "7367--7374",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Khalid Al-Khatib, Yufang Hou, Henning Wachsmuth, Charles Jochim, Francesca Bonin, and Benno Stein. 2020. End-to-end argumentation knowledge graph construction. In Proceedings of the AAAI Confer- ence on Artificial Intelligence, volume 34, pages 7367-7374.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Belief-based generation of argumentative claims",
"authors": [
{
"first": "Milad",
"middle": [],
"last": "Alshomary",
"suffix": ""
},
{
"first": "Wei-Fan",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Timon",
"middle": [],
"last": "Gurcke",
"suffix": ""
},
{
"first": "Henning",
"middle": [],
"last": "Wachsmuth",
"suffix": ""
}
],
"year": 2021,
"venue": "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
"volume": "",
"issue": "",
"pages": "224--233",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Milad Alshomary, Wei-Fan Chen, Timon Gurcke, and Henning Wachsmuth. 2021. Belief-based genera- tion of argumentative claims. In Proceedings of the 16th Conference of the European Chapter of the As- sociation for Computational Linguistics: Main Vol- ume, pages 224-233, Online. Association for Com- putational Linguistics.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Target inference in argument conclusion generation",
"authors": [
{
"first": "Milad",
"middle": [],
"last": "Alshomary",
"suffix": ""
},
{
"first": "Shahbaz",
"middle": [],
"last": "Syed",
"suffix": ""
},
{
"first": "Martin",
"middle": [],
"last": "Potthast",
"suffix": ""
},
{
"first": "Henning",
"middle": [],
"last": "Wachsmuth",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "4334--4345",
"other_ids": {
"DOI": [
"10.18653/v1/2020.acl-main.399"
]
},
"num": null,
"urls": [],
"raw_text": "Milad Alshomary, Shahbaz Syed, Martin Potthast, and Henning Wachsmuth. 2020. Target inference in argument conclusion generation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4334-4345, On- line. Association for Computational Linguistics.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Abstract Meaning Representation for sembanking",
"authors": [
{
"first": "Laura",
"middle": [],
"last": "Banarescu",
"suffix": ""
},
{
"first": "Claire",
"middle": [],
"last": "Bonial",
"suffix": ""
},
{
"first": "Shu",
"middle": [],
"last": "Cai",
"suffix": ""
},
{
"first": "Madalina",
"middle": [],
"last": "Georgescu",
"suffix": ""
},
{
"first": "Kira",
"middle": [],
"last": "Griffitt",
"suffix": ""
},
{
"first": "Ulf",
"middle": [],
"last": "Hermjakob",
"suffix": ""
},
{
"first": "Kevin",
"middle": [],
"last": "Knight",
"suffix": ""
},
{
"first": "Philipp",
"middle": [],
"last": "Koehn",
"suffix": ""
},
{
"first": "Martha",
"middle": [],
"last": "Palmer",
"suffix": ""
},
{
"first": "Nathan",
"middle": [],
"last": "Schneider",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse",
"volume": "",
"issue": "",
"pages": "178--186",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider. 2013. Abstract Meaning Representation for sembanking. In Proceedings of the 7th Linguis- tic Annotation Workshop and Interoperability with Discourse, pages 178-186, Sofia, Bulgaria. Associa- tion for Computational Linguistics.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Reconstructing implicit knowledge with language models",
"authors": [
{
"first": "Maria",
"middle": [],
"last": "Becker",
"suffix": ""
},
{
"first": "Siting",
"middle": [],
"last": "Liang",
"suffix": ""
},
{
"first": "Anette",
"middle": [],
"last": "Frank",
"suffix": ""
}
],
"year": 2021,
"venue": "Proceedings of Deep Learning Inside Out (DeeLIO): The 2nd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures",
"volume": "",
"issue": "",
"pages": "11--24",
"other_ids": {
"DOI": [
"10.18653/v1/2021.deelio-1.2"
]
},
"num": null,
"urls": [],
"raw_text": "Maria Becker, Siting Liang, and Anette Frank. 2021. Reconstructing implicit knowledge with language models. In Proceedings of Deep Learning Inside Out (DeeLIO): The 2nd Workshop on Knowledge Ex- traction and Integration for Deep Learning Architec- tures, pages 11-24, Online. Association for Compu- tational Linguistics.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Enriching word vectors with subword information",
"authors": [
{
"first": "Piotr",
"middle": [],
"last": "Bojanowski",
"suffix": ""
},
{
"first": "Edouard",
"middle": [],
"last": "Grave",
"suffix": ""
},
{
"first": "Armand",
"middle": [],
"last": "Joulin",
"suffix": ""
},
{
"first": "Tomas",
"middle": [],
"last": "Mikolov",
"suffix": ""
}
],
"year": 2016,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1607.04606"
]
},
"num": null,
"urls": [],
"raw_text": "Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016. Enriching word vec- tors with subword information. arXiv preprint arXiv:1607.04606.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Smatch: an evaluation metric for semantic feature structures",
"authors": [
{
"first": "Shu",
"middle": [],
"last": "Cai",
"suffix": ""
},
{
"first": "Kevin",
"middle": [],
"last": "Knight",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics",
"volume": "2",
"issue": "",
"pages": "748--752",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Shu Cai and Kevin Knight. 2013. Smatch: an evalua- tion metric for semantic feature structures. In Pro- ceedings of the 51st Annual Meeting of the Associa- tion for Computational Linguistics (Volume 2: Short Papers), pages 748-752, Sofia, Bulgaria. Associa- tion for Computational Linguistics.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Arguenet: An argument-based recommender system for solving web search queries",
"authors": [
{
"first": "Ana",
"middle": [
"G"
],
"last": "Carlos Iv\u00e1n Chesnevar",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Maguitman",
"suffix": ""
}
],
"year": 2004,
"venue": "2nd International IEEE Conference on'Intelligent Systems'. Proceedings (IEEE Cat. No. 04EX791)",
"volume": "1",
"issue": "",
"pages": "282--287",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Carlos Iv\u00e1n Chesnevar and Ana G Maguitman. 2004. Arguenet: An argument-based recommender system for solving web search queries. In 2004 2nd Inter- national IEEE Conference on'Intelligent Systems'. Proceedings (IEEE Cat. No. 04EX791), volume 1, pages 282-287. IEEE.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Supervised learning of universal sentence representations from natural language inference data",
"authors": [
{
"first": "Alexis",
"middle": [],
"last": "Conneau",
"suffix": ""
},
{
"first": "Douwe",
"middle": [],
"last": "Kiela",
"suffix": ""
},
{
"first": "Holger",
"middle": [],
"last": "Schwenk",
"suffix": ""
},
{
"first": "Lo\u00efc",
"middle": [],
"last": "Barrault",
"suffix": ""
},
{
"first": "Antoine",
"middle": [],
"last": "Bordes",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "670--680",
"other_ids": {
"DOI": [
"10.18653/v1/D17-1070"
]
},
"num": null,
"urls": [],
"raw_text": "Alexis Conneau, Douwe Kiela, Holger Schwenk, Lo\u00efc Barrault, and Antoine Bordes. 2017. Supervised learning of universal sentence representations from natural language inference data. In Proceedings of the 2017 Conference on Empirical Methods in Nat- ural Language Processing, pages 670-680, Copen- hagen, Denmark. Association for Computational Linguistics.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "An incremental parser for Abstract Meaning Representation",
"authors": [
{
"first": "Marco",
"middle": [],
"last": "Damonte",
"suffix": ""
},
{
"first": "Shay",
"middle": [
"B"
],
"last": "Cohen",
"suffix": ""
},
{
"first": "Giorgio",
"middle": [],
"last": "Satta",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics",
"volume": "1",
"issue": "",
"pages": "536--546",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Marco Damonte, Shay B. Cohen, and Giorgio Satta. 2017. An incremental parser for Abstract Mean- ing Representation. In Proceedings of the 15th Con- ference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Pa- pers, pages 536-546, Valencia, Spain. Association for Computational Linguistics.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
"authors": [
{
"first": "Jacob",
"middle": [],
"last": "Devlin",
"suffix": ""
},
{
"first": "Ming-Wei",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Kristina",
"middle": [],
"last": "Toutanova",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "4171--4186",
"other_ids": {
"DOI": [
"10.18653/v1/N19-1423"
]
},
"num": null,
"urls": [],
"raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games",
"authors": [
{
"first": "Dung",
"middle": [],
"last": "Phan Minh",
"suffix": ""
}
],
"year": 1995,
"venue": "Artificial intelligence",
"volume": "77",
"issue": "2",
"pages": "321--357",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Phan Minh Dung. 1995. On the acceptability of argu- ments and its fundamental role in nonmonotonic rea- soning, logic programming and n-person games. Ar- tificial intelligence, 77(2):321-357.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Argument from expert opinion as legal evidence: Critical questions and admissibility criteria of expert testimony in the american legal system",
"authors": [
{
"first": "M",
"middle": [],
"last": "David",
"suffix": ""
},
{
"first": "Douglas",
"middle": [],
"last": "Godden",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Walton",
"suffix": ""
}
],
"year": 2006,
"venue": "Ratio Juris",
"volume": "19",
"issue": "3",
"pages": "261--286",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "David M Godden and Douglas Walton. 2006. Argu- ment from expert opinion as legal evidence: Criti- cal questions and admissibility criteria of expert tes- timony in the american legal system. Ratio Juris, 19(3):261-286.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Nlp's clever hans moment has arrived",
"authors": [
{
"first": "Benjamin",
"middle": [],
"last": "Heinzerling",
"suffix": ""
}
],
"year": 2020,
"venue": "Journal of Cognitive Science",
"volume": "21",
"issue": "1",
"pages": "159--168",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Benjamin Heinzerling. 2020. Nlp's clever hans mo- ment has arrived. Journal of Cognitive Science, 21(1):159-168.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Classifying argumentative relations using logical mechanisms and argumentation schemes",
"authors": [
{
"first": "Yohan",
"middle": [],
"last": "Jo",
"suffix": ""
},
{
"first": "Seojin",
"middle": [],
"last": "Bang",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Reed",
"suffix": ""
},
{
"first": "Eduard",
"middle": [
"H"
],
"last": "Hovy",
"suffix": ""
}
],
"year": 2021,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yohan Jo, Seojin Bang, Chris Reed, and Eduard H. Hovy. 2021. Classifying argumentative relations us- ing logical mechanisms and argumentation schemes. CoRR, abs/2105.07571.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "From treebank to propbank",
"authors": [
{
"first": "Paul",
"middle": [],
"last": "Kingsbury",
"suffix": ""
},
{
"first": "Martha",
"middle": [],
"last": "Palmer",
"suffix": ""
}
],
"year": 2002,
"venue": "Proceedings of the Third International Conference on Language Resources and Evaluation (LREC'02)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Paul Kingsbury and Martha Palmer. 2002. From tree- bank to propbank. In Proceedings of the Third In- ternational Conference on Language Resources and Evaluation (LREC'02).",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Exploiting Background Knowledge for Argumentative Relation Classification",
"authors": [
{
"first": "Jonathan",
"middle": [],
"last": "Kobbe",
"suffix": ""
},
{
"first": "Juri",
"middle": [],
"last": "Opitz",
"suffix": ""
},
{
"first": "Maria",
"middle": [],
"last": "Becker",
"suffix": ""
},
{
"first": "Ioana",
"middle": [],
"last": "Hulpus",
"suffix": ""
},
{
"first": "Heiner",
"middle": [],
"last": "Stuckenschmidt",
"suffix": ""
},
{
"first": "Anette",
"middle": [],
"last": "Frank",
"suffix": ""
}
],
"year": 2019,
"venue": "2nd Conference on Language, Data and Knowledge (LDK 2019",
"volume": "70",
"issue": "",
"pages": "1--8",
"other_ids": {
"DOI": [
"10.4230/OASIcs.LDK.2019.8"
]
},
"num": null,
"urls": [],
"raw_text": "Jonathan Kobbe, Juri Opitz, Maria Becker, Ioana Hulpus, Heiner Stuckenschmidt, and Anette Frank. 2019. Exploiting Background Knowledge for Ar- gumentative Relation Classification. In 2nd Con- ference on Language, Data and Knowledge (LDK 2019), volume 70 of OpenAccess Series in Informat- ics (OASIcs), pages 8:1-8:14, Dagstuhl, Germany. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Scientia potentia est -on the role of knowledge in computational argumentation",
"authors": [
{
"first": "Anne",
"middle": [],
"last": "Lauscher",
"suffix": ""
},
{
"first": "Henning",
"middle": [],
"last": "Wachsmuth",
"suffix": ""
},
{
"first": "Iryna",
"middle": [],
"last": "Gurevych",
"suffix": ""
},
{
"first": "Goran",
"middle": [],
"last": "Glava\u0161",
"suffix": ""
}
],
"year": 2021,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Anne Lauscher, Henning Wachsmuth, Iryna Gurevych, and Goran Glava\u0161. 2021. Scientia potentia est -on the role of knowledge in computational argumenta- tion.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Explainable argument mining",
"authors": [
{
"first": "John",
"middle": [],
"last": "Lawrence",
"suffix": ""
}
],
"year": 2021,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "John Lawrence. 2021. Explainable argument mining. Ph.D. thesis, University of Dundee.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Semantic textual similarity measures for case-based retrieval of argument graphs",
"authors": [
{
"first": "Mirko",
"middle": [],
"last": "Lenz",
"suffix": ""
},
{
"first": "Stefan",
"middle": [],
"last": "Ollinger",
"suffix": ""
},
{
"first": "Premtim",
"middle": [],
"last": "Sahitaj",
"suffix": ""
},
{
"first": "Ralph",
"middle": [],
"last": "Bergmann",
"suffix": ""
}
],
"year": 2019,
"venue": "International Conference on Case-Based Reasoning",
"volume": "",
"issue": "",
"pages": "219--234",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mirko Lenz, Stefan Ollinger, Premtim Sahitaj, and Ralph Bergmann. 2019. Semantic textual similar- ity measures for case-based retrieval of argument graphs. In International Conference on Case-Based Reasoning, pages 219-234. Springer.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Towards an argument mining pipeline transforming texts to argument graphs",
"authors": [
{
"first": "Mirko",
"middle": [],
"last": "Lenz",
"suffix": ""
},
{
"first": "Premtim",
"middle": [],
"last": "Sahitaj",
"suffix": ""
},
{
"first": "Sean",
"middle": [],
"last": "Kallenberg",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "Coors",
"suffix": ""
},
{
"first": "Lorik",
"middle": [],
"last": "Dumani",
"suffix": ""
},
{
"first": "Ralf",
"middle": [],
"last": "Schenkel",
"suffix": ""
},
{
"first": "Ralph",
"middle": [],
"last": "Bergmann",
"suffix": ""
}
],
"year": 2020,
"venue": "Computational Models of Argument: Proceedings",
"volume": "2020",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mirko Lenz, Premtim Sahitaj, Sean Kallenberg, Christopher Coors, Lorik Dumani, Ralf Schenkel, and Ralph Bergmann. 2020. Towards an argu- ment mining pipeline transforming texts to argument graphs. Computational Models of Argument: Pro- ceedings of COMMA 2020, 326:263.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Conceptnet-a practical commonsense reasoning tool-kit",
"authors": [
{
"first": "Hugo",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Push",
"middle": [],
"last": "Singh",
"suffix": ""
}
],
"year": 2004,
"venue": "BT technology journal",
"volume": "22",
"issue": "4",
"pages": "211--226",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hugo Liu and Push Singh. 2004. Conceptnet-a practi- cal commonsense reasoning tool-kit. BT technology journal, 22(4):211-226.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Argument component classification for classroom discussions",
"authors": [
{
"first": "Luca",
"middle": [],
"last": "Lugini",
"suffix": ""
},
{
"first": "Diane",
"middle": [],
"last": "Litman",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 5th Workshop on Argument Mining",
"volume": "",
"issue": "",
"pages": "57--67",
"other_ids": {
"DOI": [
"10.18653/v1/W18-5208"
]
},
"num": null,
"urls": [],
"raw_text": "Luca Lugini and Diane Litman. 2018. Argument com- ponent classification for classroom discussions. In Proceedings of the 5th Workshop on Argument Min- ing, pages 57-67, Brussels, Belgium. Association for Computational Linguistics.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Reality: The search for objectivity or the quest for a compelling argument",
"authors": [
{
"first": "",
"middle": [],
"last": "Humberto R Maturana",
"suffix": ""
}
],
"year": 1988,
"venue": "The Irish journal of psychology",
"volume": "9",
"issue": "1",
"pages": "25--82",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Humberto R Maturana. 1988. Reality: The search for objectivity or the quest for a compelling argument. The Irish journal of psychology, 9(1):25-82.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "DBpedia: A multilingual cross-domain knowledge base",
"authors": [
{
"first": "Pablo",
"middle": [],
"last": "Mendes",
"suffix": ""
},
{
"first": "Max",
"middle": [],
"last": "Jakob",
"suffix": ""
},
{
"first": "Christian",
"middle": [],
"last": "Bizer",
"suffix": ""
}
],
"year": 2012,
"venue": "Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)",
"volume": "",
"issue": "",
"pages": "1813--1817",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Pablo Mendes, Max Jakob, and Christian Bizer. 2012. DBpedia: A multilingual cross-domain knowledge base. In Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12), pages 1813-1817, Istanbul, Turkey. Eu- ropean Language Resources Association (ELRA).",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "Concrete vs. abstract semantics: from mental representations to functional brain mapping",
"authors": [
{
"first": "Nadezhda",
"middle": [],
"last": "Mkrtychian",
"suffix": ""
},
{
"first": "Evgeny",
"middle": [],
"last": "Blagovechtchenski",
"suffix": ""
},
{
"first": "Diana",
"middle": [],
"last": "Kurmakaeva",
"suffix": ""
},
{
"first": "Daria",
"middle": [],
"last": "Gnedykh",
"suffix": ""
},
{
"first": "Svetlana",
"middle": [],
"last": "Kostromina",
"suffix": ""
},
{
"first": "Yury",
"middle": [],
"last": "Shtyrov",
"suffix": ""
}
],
"year": 2019,
"venue": "Frontiers in human neuroscience",
"volume": "13",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nadezhda Mkrtychian, Evgeny Blagovechtchenski, Di- ana Kurmakaeva, Daria Gnedykh, Svetlana Kostro- mina, and Yury Shtyrov. 2019. Concrete vs. ab- stract semantics: from mental representations to functional brain mapping. Frontiers in human neu- roscience, 13:267.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Probing neural network comprehension of natural language arguments",
"authors": [
{
"first": "Timothy",
"middle": [],
"last": "Niven",
"suffix": ""
},
{
"first": "Hung-Yu",
"middle": [],
"last": "Kao",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "4658--4664",
"other_ids": {
"DOI": [
"10.18653/v1/P19-1459"
]
},
"num": null,
"urls": [],
"raw_text": "Timothy Niven and Hung-Yu Kao. 2019. Probing neu- ral network comprehension of natural language ar- guments. In Proceedings of the 57th Annual Meet- ing of the Association for Computational Linguis- tics, pages 4658-4664, Florence, Italy. Association for Computational Linguistics.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Argumentative relation classification as plausibility ranking",
"authors": [
{
"first": "Juri",
"middle": [],
"last": "Opitz",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 15th Conference on Natural Language Processing",
"volume": "",
"issue": "",
"pages": "193--202",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Juri Opitz. 2019. Argumentative relation classification as plausibility ranking. In Proceedings of the 15th Conference on Natural Language Processing (KON- VENS 2019): Long Papers, pages 193-202, Erlan- gen, Germany. German Society for Computational Linguistics & Language Technology.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "Weisfeiler-leman in the bamboo: Novel amr graph metrics and a benchmark for amr graph similarity",
"authors": [
{
"first": "Juri",
"middle": [],
"last": "Opitz",
"suffix": ""
},
{
"first": "Angel",
"middle": [],
"last": "Daza",
"suffix": ""
},
{
"first": "Anette",
"middle": [],
"last": "Frank",
"suffix": ""
}
],
"year": 2021,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:2108.11949"
]
},
"num": null,
"urls": [],
"raw_text": "Juri Opitz, Angel Daza, and Anette Frank. 2021. Weisfeiler-leman in the bamboo: Novel amr graph metrics and a benchmark for amr graph similarity. arXiv preprint arXiv:2108.11949.",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "Dissecting content and context in argumentative relation analysis",
"authors": [
{
"first": "Juri",
"middle": [],
"last": "Opitz",
"suffix": ""
},
{
"first": "Anette",
"middle": [],
"last": "Frank",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 6th Workshop on Argument Mining",
"volume": "",
"issue": "",
"pages": "25--34",
"other_ids": {
"DOI": [
"10.18653/v1/W19-4503"
]
},
"num": null,
"urls": [],
"raw_text": "Juri Opitz and Anette Frank. 2019. Dissecting content and context in argumentative relation analysis. In Proceedings of the 6th Workshop on Argument Min- ing, pages 25-34, Florence, Italy. Association for Computational Linguistics.",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "Towards a decomposable metric for explainable evaluation of text generation from AMR",
"authors": [
{
"first": "Juri",
"middle": [],
"last": "Opitz",
"suffix": ""
},
{
"first": "Anette",
"middle": [],
"last": "Frank",
"suffix": ""
}
],
"year": 2021,
"venue": "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
"volume": "",
"issue": "",
"pages": "1504--1518",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Juri Opitz and Anette Frank. 2021. Towards a decom- posable metric for explainable evaluation of text gen- eration from AMR. In Proceedings of the 16th Con- ference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 1504-1518, Online. Association for Computational Linguistics.",
"links": null
},
"BIBREF34": {
"ref_id": "b34",
"title": "AMR similarity metrics from principles",
"authors": [
{
"first": "Juri",
"middle": [],
"last": "Opitz",
"suffix": ""
},
{
"first": "Letitia",
"middle": [],
"last": "Parcalabescu",
"suffix": ""
},
{
"first": "Anette",
"middle": [],
"last": "Frank",
"suffix": ""
}
],
"year": 2020,
"venue": "Transactions of the Association for Computational Linguistics",
"volume": "8",
"issue": "",
"pages": "522--538",
"other_ids": {
"DOI": [
"10.1162/tacl_a_00329"
]
},
"num": null,
"urls": [],
"raw_text": "Juri Opitz, Letitia Parcalabescu, and Anette Frank. 2020. AMR similarity metrics from principles. Transactions of the Association for Computational Linguistics, 8:522-538.",
"links": null
},
"BIBREF35": {
"ref_id": "b35",
"title": "Argumentative relation classification with background knowledge",
"authors": [
{
"first": "Debjit",
"middle": [],
"last": "Paul",
"suffix": ""
},
{
"first": "Juri",
"middle": [],
"last": "Opitz",
"suffix": ""
},
{
"first": "Maria",
"middle": [],
"last": "Becker",
"suffix": ""
},
{
"first": "Jonathan",
"middle": [],
"last": "Kobbe",
"suffix": ""
},
{
"first": "Graeme",
"middle": [],
"last": "Hirst",
"suffix": ""
},
{
"first": "Anette",
"middle": [],
"last": "Frank",
"suffix": ""
}
],
"year": 2020,
"venue": "Computational Models of Argument",
"volume": "",
"issue": "",
"pages": "319--330",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Debjit Paul, Juri Opitz, Maria Becker, Jonathan Kobbe, Graeme Hirst, and Anette Frank. 2020. Argumen- tative relation classification with background knowl- edge. In Computational Models of Argument, pages 319-330. IOS Press.",
"links": null
},
"BIBREF36": {
"ref_id": "b36",
"title": "GloVe: Global vectors for word representation",
"authors": [
{
"first": "Jeffrey",
"middle": [],
"last": "Pennington",
"suffix": ""
},
{
"first": "Richard",
"middle": [],
"last": "Socher",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "Manning",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "1532--1543",
"other_ids": {
"DOI": [
"10.3115/v1/D14-1162"
]
},
"num": null,
"urls": [],
"raw_text": "Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe: Global vectors for word representation. In Proceedings of the 2014 Confer- ence on Empirical Methods in Natural Language Processing (EMNLP), pages 1532-1543, Doha, Qatar. Association for Computational Linguistics.",
"links": null
},
"BIBREF37": {
"ref_id": "b37",
"title": "Deep contextualized word representations",
"authors": [
{
"first": "Matthew",
"middle": [
"E"
],
"last": "Peters",
"suffix": ""
},
{
"first": "Mark",
"middle": [],
"last": "Neumann",
"suffix": ""
},
{
"first": "Mohit",
"middle": [],
"last": "Iyyer",
"suffix": ""
},
{
"first": "Matt",
"middle": [],
"last": "Gardner",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "Clark",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Luke",
"middle": [],
"last": "Zettlemoyer",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "2227--2237",
"other_ids": {
"DOI": [
"10.18653/v1/N18-1202"
]
},
"num": null,
"urls": [],
"raw_text": "Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word rep- resentations. In Proceedings of the 2018 Confer- ence of the North American Chapter of the Associ- ation for Computational Linguistics: Human Lan- guage Technologies, Volume 1 (Long Papers), pages 2227-2237, New Orleans, Louisiana. Association for Computational Linguistics.",
"links": null
},
"BIBREF38": {
"ref_id": "b38",
"title": "Exploring the limits of transfer learning with a unified text-totext transformer",
"authors": [
{
"first": "Colin",
"middle": [],
"last": "Raffel",
"suffix": ""
},
{
"first": "Noam",
"middle": [],
"last": "Shazeer",
"suffix": ""
},
{
"first": "Adam",
"middle": [],
"last": "Roberts",
"suffix": ""
},
{
"first": "Katherine",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Sharan",
"middle": [],
"last": "Narang",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Matena",
"suffix": ""
},
{
"first": "Yanqi",
"middle": [],
"last": "Zhou",
"suffix": ""
},
{
"first": "Wei",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Peter",
"middle": [
"J"
],
"last": "Liu",
"suffix": ""
}
],
"year": 2020,
"venue": "Journal of Machine Learning Research",
"volume": "21",
"issue": "140",
"pages": "1--67",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Colin Raffel, Noam Shazeer, Adam Roberts, Kather- ine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the limits of transfer learning with a unified text-to- text transformer. Journal of Machine Learning Re- search, 21(140):1-67.",
"links": null
},
"BIBREF39": {
"ref_id": "b39",
"title": "Argumentative explanations for interactive recommendations",
"authors": [
{
"first": "A",
"middle": [],
"last": "Rago",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Cocarascu",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Bechlivanidis",
"suffix": ""
},
{
"first": "F",
"middle": [],
"last": "Lagnado",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Toni",
"suffix": ""
}
],
"year": 2021,
"venue": "Artificial Intelligence",
"volume": "296",
"issue": "",
"pages": "1--22",
"other_ids": {
"DOI": [
"10.1016/j.artint.2021.103506"
]
},
"num": null,
"urls": [],
"raw_text": "A Rago, O Cocarascu, C Bechlivanidis, D Lagnado, and F Toni. 2021. Argumentative explanations for interactive recommendations. Artificial Intelligence, 296:1-22.",
"links": null
},
"BIBREF40": {
"ref_id": "b40",
"title": "Classification and clustering of arguments with contextualized word embeddings",
"authors": [
{
"first": "Nils",
"middle": [],
"last": "Reimers",
"suffix": ""
},
{
"first": "Benjamin",
"middle": [],
"last": "Schiller",
"suffix": ""
},
{
"first": "Tilman",
"middle": [],
"last": "Beck",
"suffix": ""
},
{
"first": "Johannes",
"middle": [],
"last": "Daxenberger",
"suffix": ""
},
{
"first": "Christian",
"middle": [],
"last": "Stab",
"suffix": ""
},
{
"first": "Iryna",
"middle": [],
"last": "Gurevych",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "567--578",
"other_ids": {
"DOI": [
"10.18653/v1/P19-1054"
]
},
"num": null,
"urls": [],
"raw_text": "Nils Reimers, Benjamin Schiller, Tilman Beck, Jo- hannes Daxenberger, Christian Stab, and Iryna Gurevych. 2019. Classification and clustering of ar- guments with contextualized word embeddings. In Proceedings of the 57th Annual Meeting of the As- sociation for Computational Linguistics, pages 567- 578, Florence, Italy. Association for Computational Linguistics.",
"links": null
},
"BIBREF41": {
"ref_id": "b41",
"title": "Bankxx: a program to generate argument through case-base search",
"authors": [
{
"first": "",
"middle": [],
"last": "Edwina L Rissland",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "David",
"suffix": ""
},
{
"first": "M Timur",
"middle": [],
"last": "Skalak",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Friedman",
"suffix": ""
}
],
"year": 1993,
"venue": "Proceedings of the 4th international conference on Artificial intelligence and law",
"volume": "",
"issue": "",
"pages": "117--124",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Edwina L Rissland, David B Skalak, and M Timur Friedman. 1993. Bankxx: a program to generate ar- gument through case-base search. In Proceedings of the 4th international conference on Artificial intelli- gence and law, pages 117-124.",
"links": null
},
"BIBREF42": {
"ref_id": "b42",
"title": "End-to-end argument generation system in debating",
"authors": [
{
"first": "Misa",
"middle": [],
"last": "Sato",
"suffix": ""
},
{
"first": "Kohsuke",
"middle": [],
"last": "Yanai",
"suffix": ""
},
{
"first": "Toshinori",
"middle": [],
"last": "Miyoshi",
"suffix": ""
},
{
"first": "Toshihiko",
"middle": [],
"last": "Yanase",
"suffix": ""
},
{
"first": "Makoto",
"middle": [],
"last": "Iwayama",
"suffix": ""
},
{
"first": "Qinghua",
"middle": [],
"last": "Sun",
"suffix": ""
},
{
"first": "Yoshiki",
"middle": [],
"last": "Niwa",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of ACL-IJCNLP 2015 System Demonstrations",
"volume": "",
"issue": "",
"pages": "109--114",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Misa Sato, Kohsuke Yanai, Toshinori Miyoshi, Toshi- hiko Yanase, Makoto Iwayama, Qinghua Sun, and Yoshiki Niwa. 2015. End-to-end argument gener- ation system in debating. In Proceedings of ACL- IJCNLP 2015 System Demonstrations, pages 109- 114.",
"links": null
},
"BIBREF43": {
"ref_id": "b43",
"title": "Aspect-controlled neural argument generation",
"authors": [
{
"first": "Benjamin",
"middle": [],
"last": "Schiller",
"suffix": ""
},
{
"first": "Johannes",
"middle": [],
"last": "Daxenberger",
"suffix": ""
},
{
"first": "Iryna",
"middle": [],
"last": "Gurevych",
"suffix": ""
}
],
"year": 2020,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:2005.00084"
]
},
"num": null,
"urls": [],
"raw_text": "Benjamin Schiller, Johannes Daxenberger, and Iryna Gurevych. 2020. Aspect-controlled neural argument generation. arXiv preprint arXiv:2005.00084.",
"links": null
},
"BIBREF44": {
"ref_id": "b44",
"title": "An autonomous debating system",
"authors": [
{
"first": "Noam",
"middle": [],
"last": "Slonim",
"suffix": ""
},
{
"first": "Yonatan",
"middle": [],
"last": "Bilu",
"suffix": ""
},
{
"first": "Carlos",
"middle": [],
"last": "Alzate",
"suffix": ""
},
{
"first": "Roy",
"middle": [],
"last": "Bar-Haim",
"suffix": ""
},
{
"first": "Ben",
"middle": [],
"last": "Bogin",
"suffix": ""
},
{
"first": "Francesca",
"middle": [],
"last": "Bonin",
"suffix": ""
},
{
"first": "Leshem",
"middle": [],
"last": "Choshen",
"suffix": ""
},
{
"first": "Edo",
"middle": [],
"last": "Cohen-Karlik",
"suffix": ""
},
{
"first": "Lena",
"middle": [],
"last": "Dankin",
"suffix": ""
},
{
"first": "Lilach",
"middle": [],
"last": "Edelstein",
"suffix": ""
}
],
"year": 2021,
"venue": "Nature",
"volume": "591",
"issue": "7850",
"pages": "379--384",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Noam Slonim, Yonatan Bilu, Carlos Alzate, Roy Bar-Haim, Ben Bogin, Francesca Bonin, Leshem Choshen, Edo Cohen-Karlik, Lena Dankin, Lilach Edelstein, et al. 2021. An autonomous debating sys- tem. Nature, 591(7850):379-384.",
"links": null
},
"BIBREF45": {
"ref_id": "b45",
"title": "Conceptnet 5.5: An open multilingual graph of general knowledge",
"authors": [
{
"first": "Robyn",
"middle": [],
"last": "Speer",
"suffix": ""
},
{
"first": "Joshua",
"middle": [],
"last": "Chin",
"suffix": ""
},
{
"first": "Catherine",
"middle": [],
"last": "Havasi",
"suffix": ""
}
],
"year": 2017,
"venue": "Thirty-first AAAI conference on artificial intelligence",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Robyn Speer, Joshua Chin, and Catherine Havasi. 2017. Conceptnet 5.5: An open multilingual graph of gen- eral knowledge. In Thirty-first AAAI conference on artificial intelligence.",
"links": null
},
"BIBREF46": {
"ref_id": "b46",
"title": "Parsing argumentation structures in persuasive essays",
"authors": [
{
"first": "Christian",
"middle": [],
"last": "Stab",
"suffix": ""
},
{
"first": "Iryna",
"middle": [],
"last": "Gurevych",
"suffix": ""
}
],
"year": 2017,
"venue": "Computational Linguistics",
"volume": "43",
"issue": "3",
"pages": "619--659",
"other_ids": {
"DOI": [
"10.1162/COLI_a_00295"
]
},
"num": null,
"urls": [],
"raw_text": "Christian Stab and Iryna Gurevych. 2017. Parsing ar- gumentation structures in persuasive essays. Com- putational Linguistics, 43(3):619-659.",
"links": null
},
"BIBREF47": {
"ref_id": "b47",
"title": "The uses of argument",
"authors": [
{
"first": "",
"middle": [],
"last": "Stephen E Toulmin",
"suffix": ""
}
],
"year": 2003,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Stephen E Toulmin. 2003. The uses of argument. Cam- bridge university press.",
"links": null
},
"BIBREF48": {
"ref_id": "b48",
"title": "Argumentation and explainable artificial intelligence: a survey. The Knowledge Engineering Review",
"authors": [
{
"first": "Alexandros",
"middle": [],
"last": "Vassiliades",
"suffix": ""
},
{
"first": "Nick",
"middle": [],
"last": "Bassiliades",
"suffix": ""
},
{
"first": "Theodore",
"middle": [],
"last": "Patkos",
"suffix": ""
}
],
"year": 2021,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Alexandros Vassiliades, Nick Bassiliades, and Theodore Patkos. 2021. Argumentation and explain- able artificial intelligence: a survey. The Knowledge Engineering Review, 36.",
"links": null
},
"BIBREF49": {
"ref_id": "b49",
"title": "Building an argument search engine for the web",
"authors": [
{
"first": "Henning",
"middle": [],
"last": "Wachsmuth",
"suffix": ""
},
{
"first": "Martin",
"middle": [],
"last": "Potthast",
"suffix": ""
},
{
"first": "Khalid",
"middle": [
"Al"
],
"last": "Khatib",
"suffix": ""
},
{
"first": "Yamen",
"middle": [],
"last": "Ajjour",
"suffix": ""
},
{
"first": "Jana",
"middle": [],
"last": "Puschmann",
"suffix": ""
},
{
"first": "Jiani",
"middle": [],
"last": "Qu",
"suffix": ""
},
{
"first": "Jonas",
"middle": [],
"last": "Dorsch",
"suffix": ""
},
{
"first": "Viorel",
"middle": [],
"last": "Morari",
"suffix": ""
},
{
"first": "Janek",
"middle": [],
"last": "Bevendorff",
"suffix": ""
},
{
"first": "Benno",
"middle": [],
"last": "Stein",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 4th Workshop on Argument Mining",
"volume": "",
"issue": "",
"pages": "49--59",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Henning Wachsmuth, Martin Potthast, Khalid Al Khatib, Yamen Ajjour, Jana Puschmann, Jiani Qu, Jonas Dorsch, Viorel Morari, Janek Bevendorff, and Benno Stein. 2017. Building an argument search engine for the web. In Proceedings of the 4th Workshop on Argument Mining, pages 49-59.",
"links": null
},
"BIBREF50": {
"ref_id": "b50",
"title": "Retrieval of the best counterargument without prior topic knowledge",
"authors": [
{
"first": "Henning",
"middle": [],
"last": "Wachsmuth",
"suffix": ""
},
{
"first": "Shahbaz",
"middle": [],
"last": "Syed",
"suffix": ""
},
{
"first": "Benno",
"middle": [],
"last": "Stein",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
"volume": "1",
"issue": "",
"pages": "241--251",
"other_ids": {
"DOI": [
"10.18653/v1/P18-1023"
]
},
"num": null,
"urls": [],
"raw_text": "Henning Wachsmuth, Shahbaz Syed, and Benno Stein. 2018. Retrieval of the best counterargument with- out prior topic knowledge. In Proceedings of the 56th Annual Meeting of the Association for Com- putational Linguistics (Volume 1: Long Papers), pages 241-251, Melbourne, Australia. Association for Computational Linguistics.",
"links": null
},
"BIBREF51": {
"ref_id": "b51",
"title": "The assessment of argumentation from expert opinion. Argumentation",
"authors": [
{
"first": "H",
"middle": [
"M"
],
"last": "Jean",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Wagemans",
"suffix": ""
}
],
"year": 2011,
"venue": "",
"volume": "25",
"issue": "",
"pages": "329--339",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jean HM Wagemans. 2011. The assessment of ar- gumentation from expert opinion. Argumentation, 25(3):329-339.",
"links": null
},
"BIBREF52": {
"ref_id": "b52",
"title": "Justification of argumentation schemes",
"authors": [
{
"first": "Douglas",
"middle": [],
"last": "Walton",
"suffix": ""
}
],
"year": 2005,
"venue": "The Australasian Journal of Logic",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Douglas Walton. 2005. Justification of argumentation schemes. The Australasian Journal of Logic, 3.",
"links": null
},
"BIBREF53": {
"ref_id": "b53",
"title": "Argumentation schemes",
"authors": [
{
"first": "Douglas",
"middle": [],
"last": "Walton",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "Reed",
"suffix": ""
},
{
"first": "Fabrizio",
"middle": [],
"last": "Macagno",
"suffix": ""
}
],
"year": 2008,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Douglas Walton, Christopher Reed, and Fabrizio Macagno. 2008. Argumentation schemes. Cam- bridge University Press.",
"links": null
},
"BIBREF54": {
"ref_id": "b54",
"title": "Leveraging argumentation knowledge graph for interactive argument pair identification",
"authors": [
{
"first": "Jian",
"middle": [],
"last": "Yuan",
"suffix": ""
},
{
"first": "Zhongyu",
"middle": [],
"last": "Wei",
"suffix": ""
},
{
"first": "Donghua",
"middle": [],
"last": "Zhao",
"suffix": ""
},
{
"first": "Qi",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Changjian",
"middle": [],
"last": "Jiang",
"suffix": ""
}
],
"year": 2021,
"venue": "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
"volume": "",
"issue": "",
"pages": "2310--2319",
"other_ids": {
"DOI": [
"10.18653/v1/2021.findings-acl.203"
]
},
"num": null,
"urls": [],
"raw_text": "Jian Yuan, Zhongyu Wei, Donghua Zhao, Qi Zhang, and Changjian Jiang. 2021. Leveraging argumen- tation knowledge graph for interactive argument pair identification. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 2310-2319, Online. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF55": {
"ref_id": "b55",
"title": "Bayesian argumentation: The practical side of probability",
"authors": [
{
"first": "Frank",
"middle": [],
"last": "Zenker",
"suffix": ""
}
],
"year": 2013,
"venue": "Bayesian Argumentation",
"volume": "",
"issue": "",
"pages": "1--11",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Frank Zenker. 2013. Bayesian argumentation: The practical side of probability. In Bayesian Argumen- tation, pages 1-11. Springer.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"type_str": "figure",
"num": null,
"uris": null,
"text": "Standard, concept-focus and structure focus."
},
"FIGREF3": {
"type_str": "figure",
"num": null,
"uris": null,
"text": "Full example (edge-labels omitted for simplified display) of explicit alignments between argument graphs (top) and automatically induced conclusions (bottom). Here, the conclusions help explaining argument similarity, since the alignment connects fracking in both graphs, as well as water wells and toxic wastewater, showing how contaminating of the wells (left graphs) actually happens: wells are polluted with toxic wastewater (right graphs).not justif. nov.justif. jus. & nov. not nov. Annotation results of two quality aspects with IAA: K=0.49 (justification) and K=0.57 (novelty)."
},
"TABREF0": {
"type_str": "table",
"html": null,
"num": null,
"content": "<table><tr><td/><td/><td/><td/><td>F1 score</td><td/><td>rank</td></tr><tr><td/><td>metric</td><td>model type</td><td>macro</td><td>sim</td><td>not sim</td></tr><tr><td/><td>human</td><td>?</td><td>78.34</td><td>74.74</td><td>81.94</td><td>0</td></tr><tr><td/><td>random</td><td>-</td><td>48.01</td><td>34.31</td><td>61.71</td><td>16</td></tr><tr><td/><td>Tf-Idf</td><td>f (a, a )</td><td>61.18</td><td>52.30</td><td>70.07</td><td>10</td></tr><tr><td>Baselines</td><td colspan=\"2\">InfSnt-fText InfSnt-GloVe f (a, a ) f (a, a ) GloVe Emb. f (a, a ) ELMo Emb. f (a, a )</td><td>66.21 64.94 64.68 64.47</td><td>58.66 54.72 56.32 53.55</td><td>73.76 75.17 73.04 75.38</td><td>3/4 9 8 7</td></tr><tr><td/><td colspan=\"2\">BERT Embe. f (a, a )</td><td>65.39</td><td>52.32</td><td>78.48</td><td>6</td></tr><tr><td/><td>AMR</td><td>f (a, a )</td><td>65.44</td><td/><td/></tr></table>",
"text": "\u00b10.5 55.23 \u00b10.8 75.66 \u00b10.4 5 AMR f (c, c ) 57.31 \u00b10.6 45.73 \u00b11.2 68.89 \u00b10.4 14 AMR f (a \u2295 c, a \u2295 c ) 66.21 \u00b10.3 56.98 \u00b10.6 75.42 \u00b10.1 3/4 AMR C-focus f (a, a ) 68.17 \u00b10.3 59.2 \u00b10.6 77.14 \u00b10.2 2 \u2666\u2663 AMR C-focus f (c, c ) 60.29 \u00b10.5 49.33 \u00b10.4 71.26 \u00b10.8 13 Ours AMR C-focus f (a \u2295 c, a \u2295 c ) 68.70 \u00b10.5 60.35 \u00b11.0 77.04 \u00b10.1 1 \u2666\u2663 AMR S-focus f (a, a ) 60.74 \u00b10.5 49.94 \u00b10.8 71.55 \u00b10.5 12 AMR S-focus f (c, c ) 56.48 \u00b10.3 44.96 \u00b10.6 67.99 \u00b10.2 15 AMR S-focus f (a \u2295 c, a \u2295 c ) 61.14 \u00b10.3 49.74 \u00b10.5 72.55 \u00b10.5 11"
},
"TABREF1": {
"type_str": "table",
"html": null,
"num": null,
"content": "<table/>",
"text": "Main results."
},
"TABREF2": {
"type_str": "table",
"html": null,
"num": null,
"content": "<table><tr><td>cupying rank 3-5 of all examined methods. 7</td></tr><tr><td>6 Analyses & Explainability</td></tr><tr><td>While these model ablations provide a global view</td></tr><tr><td>of what matters in argument similarity rating, we</td></tr><tr><td>now analyze the impact of finer semantic features.</td></tr></table>",
"text": "Semantic predictors of human argument similarity. \u2020/ \u2021: significant with p<0.05/p<0.005."
},
"TABREF4": {
"type_str": "table",
"html": null,
"num": null,
"content": "<table><tr><td>: Macro F1 scores for predicted conclusion qual-</td></tr><tr><td>ity using AMR-based models f (a, c), assessing various</td></tr><tr><td>aspects. For single features, + show positive correla-</td></tr><tr><td>tion; -negative correlation (levels 0.05, 0.005, 0.0005).</td></tr></table>",
"text": ""
},
"TABREF6": {
"type_str": "table",
"html": null,
"num": null,
"content": "<table/>",
"text": "Predictors of conclusion usefulness."
},
"TABREF7": {
"type_str": "table",
"html": null,
"num": null,
"content": "<table/>",
"text": "AMR metrics detecting dissimilar arguments."
}
}
}
} |