File size: 172,029 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T02:10:09.057056Z"
    },
    "title": "Explainable Unsupervised Argument Similarity Rating with Abstract Meaning Representation and Conclusion Generation",
    "authors": [
        {
            "first": "Juri",
            "middle": [],
            "last": "Opitz",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Heidelberg University",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Philipp",
            "middle": [],
            "last": "Heinisch",
            "suffix": "",
            "affiliation": {
                "laboratory": "CITEC",
                "institution": "Bielefeld University",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Philipp",
            "middle": [],
            "last": "Wiesenbach",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Heidelberg University",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Philipp",
            "middle": [],
            "last": "Cimiano",
            "suffix": "",
            "affiliation": {
                "laboratory": "CITEC",
                "institution": "Bielefeld University",
                "location": {}
            },
            "email": "cimiano@techfak.uni-bielefeld.de"
        },
        {
            "first": "Anette",
            "middle": [],
            "last": "Frank",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Heidelberg University",
                "location": {}
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "When assessing the similarity of arguments, researchers typically use approaches that do not provide interpretable evidence or justifications for their ratings. Hence, the features that determine argument similarity remain elusive. We address this issue by introducing novel argument similarity metrics that aim at high performance and explainability. We show that Abstract Meaning Representation (AMR) graphs can be useful for representing arguments, and that novel AMR graph metrics can offer explanations for argument similarity ratings. We start from the hypothesis that similar premises often lead to similar conclusionsand extend an approach for AMR-based argument similarity rating by estimating, in addition, the similarity of conclusions that we automatically infer from the arguments used as premises. We show that AMR similarity metrics make argument similarity judgements more interpretable and may even support argument quality judgements. Our approach provides significant performance improvements over strong baselines in a fully unsupervised setting. Finally, we make first steps to address the problem of reference-less evaluation of argumentative conclusion generations.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "When assessing the similarity of arguments, researchers typically use approaches that do not provide interpretable evidence or justifications for their ratings. Hence, the features that determine argument similarity remain elusive. We address this issue by introducing novel argument similarity metrics that aim at high performance and explainability. We show that Abstract Meaning Representation (AMR) graphs can be useful for representing arguments, and that novel AMR graph metrics can offer explanations for argument similarity ratings. We start from the hypothesis that similar premises often lead to similar conclusionsand extend an approach for AMR-based argument similarity rating by estimating, in addition, the similarity of conclusions that we automatically infer from the arguments used as premises. We show that AMR similarity metrics make argument similarity judgements more interpretable and may even support argument quality judgements. Our approach provides significant performance improvements over strong baselines in a fully unsupervised setting. Finally, we make first steps to address the problem of reference-less evaluation of argumentative conclusion generations.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Rating the similarity of arguments (Reimers et al., 2019) is a core task in argument mining and argument search (Maturana, 1988; Wachsmuth et al., 2017; Ajjour et al., 2019) . Argument similarity ratings are also needed for (case-based) argument retrieval (Rissland et al., 1993; Chesnevar and Maguitman, 2004) , data exploration via argument clustering, and even automated debaters (Slonim et al., 2021) : to counter an opponent's argument, one may retrieve an argument similar to theirs, but of opposite stance to the topic (Wachsmuth et al., 2018) .",
                "cite_spans": [
                    {
                        "start": 35,
                        "end": 57,
                        "text": "(Reimers et al., 2019)",
                        "ref_id": "BIBREF40"
                    },
                    {
                        "start": 112,
                        "end": 128,
                        "text": "(Maturana, 1988;",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 129,
                        "end": 152,
                        "text": "Wachsmuth et al., 2017;",
                        "ref_id": "BIBREF49"
                    },
                    {
                        "start": 153,
                        "end": 173,
                        "text": "Ajjour et al., 2019)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 256,
                        "end": 279,
                        "text": "(Rissland et al., 1993;",
                        "ref_id": "BIBREF41"
                    },
                    {
                        "start": 280,
                        "end": 310,
                        "text": "Chesnevar and Maguitman, 2004)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 383,
                        "end": 404,
                        "text": "(Slonim et al., 2021)",
                        "ref_id": "BIBREF44"
                    },
                    {
                        "start": 526,
                        "end": 550,
                        "text": "(Wachsmuth et al., 2018)",
                        "ref_id": "BIBREF50"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Typically, argument similarity ratings are computed over 'bag-of-word' argument representations, or else over argument representations inferred with language models such as BERT (Devlin et al., 2019) or InferSent (Conneau et al., 2017) . Two key advantages of such approaches are due to their unsupervised setup: First, unsupervised methods do not rely on human annotations, which are expensive and can be subject to noise and biases. Second, it has been shown for previous supervised methods that they have learned less about argumentation tasks than had been assumed, by exploiting spurious clues and artifacts from manually created data Niven and Kao, 2019) . This has led to a recent interest in solving argumentation tasks in an unsupervised manner, e.g., by logical reasoning (Jo et al., 2021) .",
                "cite_spans": [
                    {
                        "start": 178,
                        "end": 199,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 213,
                        "end": 235,
                        "text": "(Conneau et al., 2017)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 640,
                        "end": 660,
                        "text": "Niven and Kao, 2019)",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 782,
                        "end": 799,
                        "text": "(Jo et al., 2021)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper we will highlight that previous methods for rating argument similarity suffer from a common flaw: beyond shallow statistics (word matches in bag-of-word models, or word similarities in distributional space), they do not provide any rationale for their predictions, and the prediction process is in general not transparent. Therefore, we know only little about the following question:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Which argument features correlate with human argument similarity decisions?",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this work, we undertake a first attempt at answering this question, by testing two hypotheses: i) Representing arguments with Abstract Meaning Representations (AMRs) and using AMR graph metrics improves argument similarity rating and provides explanatory information. ii) Extending arguments with inferred conclusions can improve argument similarity rating.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In the following \u00a72 we discuss related work. \u00a73 introduces our two key hypotheses, and \u00a74 presents our argument similarity rating model and its implementation. In \u00a75 we compare our model against strong baselines from prior work. In \u00a76 we conduct several analyses to show how our approach can contribute to a better understanding of arguments, their conclusions and argument similarity ratings: we i) assess predictors of human argument similarity ratings to investigate the criteria that correlate with human ratings of argument similarity; ii) discuss potential advantages of using AMR for graph-based argumentation tasks in a concrete example, and iii) investigate how interpretable argument similarity computation can help assess the quality and usefulness of conclusions drawn from arguments in a reference-less conclusion evaluation setup. 1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Argument similarity and search Assessing argument similarity is a key task in argument mining (Reimers et al., 2019; Lenz et al., 2019) and can enhance argument search (Maturana, 1988; Rissland et al., 1993; Wachsmuth et al., 2017; Ajjour et al., 2019; Chesnevar and Maguitman, 2004 ). Yet, while delivering solid performance on benchmarks, current methods fail to provide any deeper rationale for their predictions. It is thus not clear whether and to what extent spurious clues or other artifacts may influence the similarity decision Niven and Kao, 2019) . In this paper, we aim at alleviating these issues by i) representing arguments with Abstract Meaning Representation (Banarescu et al., 2013) and conducting similarity assessment using well-defined graph metrics that provide explanatory AMR structure alignments; and ii) by investigating to what extent argument similarity can be projected to inferred conclusions.",
                "cite_spans": [
                    {
                        "start": 94,
                        "end": 116,
                        "text": "(Reimers et al., 2019;",
                        "ref_id": "BIBREF40"
                    },
                    {
                        "start": 117,
                        "end": 135,
                        "text": "Lenz et al., 2019)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 168,
                        "end": 184,
                        "text": "(Maturana, 1988;",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 185,
                        "end": 207,
                        "text": "Rissland et al., 1993;",
                        "ref_id": "BIBREF41"
                    },
                    {
                        "start": 208,
                        "end": 231,
                        "text": "Wachsmuth et al., 2017;",
                        "ref_id": "BIBREF49"
                    },
                    {
                        "start": 232,
                        "end": 252,
                        "text": "Ajjour et al., 2019;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 253,
                        "end": 282,
                        "text": "Chesnevar and Maguitman, 2004",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 537,
                        "end": 557,
                        "text": "Niven and Kao, 2019)",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 676,
                        "end": 700,
                        "text": "(Banarescu et al., 2013)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "2"
            },
            {
                "text": "Explanations in argumentation Until recently, the quest for explanations in argumentation was mainly focused on theory development. The Toulmin model, e.g., offers a theory of what is needed to make an argument complete (Toulmin, 2003) . Argumentation schemes, which develop taxonomies of argument types and argumentation fallacies (Walton, 2005; Walton et al., 2008) can be viewed as mechanisms for explaining functions, strengths and weaknesses of arguments. Other research aims at studying the computational and formal aspects of argumentation, e.g. abstract argumentation (Dung, 1995) and Bayesian argumentation (Zenker, 2013) . Research in empirical argument mining led researchers to investigate practical methods for explanations (Lawrence, 2021; Becker et al., 2021; Gunning et al., 2019; Rago et al., 2021; Vassiliades et al., 2021) . While most approaches focus on the analysis of linguistic aspects (Lauscher et al., 2021) , e.g., by extracting selected features (Aker et al., 2017; Lugini and Litman, 2018) or leveraging discourse knowledge in language models (Opitz, 2019) , others exploit large background knowledge graphs (Kobbe et al., 2019; Paul et al., 2020; Yuan et al., 2021) such as ConceptNet (Liu and Singh, 2004; Speer et al., 2017) or DBpedia (Mendes et al., 2012) . An advantage of our approach is the explicit graph alignment between two arguments' meaning graphs that better marks related structures, and that can help explain argument similarity judgements.",
                "cite_spans": [
                    {
                        "start": 220,
                        "end": 235,
                        "text": "(Toulmin, 2003)",
                        "ref_id": "BIBREF47"
                    },
                    {
                        "start": 332,
                        "end": 346,
                        "text": "(Walton, 2005;",
                        "ref_id": "BIBREF52"
                    },
                    {
                        "start": 347,
                        "end": 367,
                        "text": "Walton et al., 2008)",
                        "ref_id": "BIBREF53"
                    },
                    {
                        "start": 576,
                        "end": 588,
                        "text": "(Dung, 1995)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 616,
                        "end": 630,
                        "text": "(Zenker, 2013)",
                        "ref_id": "BIBREF55"
                    },
                    {
                        "start": 737,
                        "end": 753,
                        "text": "(Lawrence, 2021;",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 754,
                        "end": 774,
                        "text": "Becker et al., 2021;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 775,
                        "end": 796,
                        "text": "Gunning et al., 2019;",
                        "ref_id": null
                    },
                    {
                        "start": 797,
                        "end": 815,
                        "text": "Rago et al., 2021;",
                        "ref_id": "BIBREF39"
                    },
                    {
                        "start": 816,
                        "end": 841,
                        "text": "Vassiliades et al., 2021)",
                        "ref_id": "BIBREF48"
                    },
                    {
                        "start": 910,
                        "end": 933,
                        "text": "(Lauscher et al., 2021)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 974,
                        "end": 993,
                        "text": "(Aker et al., 2017;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 994,
                        "end": 1018,
                        "text": "Lugini and Litman, 2018)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 1072,
                        "end": 1085,
                        "text": "(Opitz, 2019)",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 1137,
                        "end": 1157,
                        "text": "(Kobbe et al., 2019;",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 1158,
                        "end": 1176,
                        "text": "Paul et al., 2020;",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 1177,
                        "end": 1195,
                        "text": "Yuan et al., 2021)",
                        "ref_id": "BIBREF54"
                    },
                    {
                        "start": 1215,
                        "end": 1236,
                        "text": "(Liu and Singh, 2004;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 1237,
                        "end": 1256,
                        "text": "Speer et al., 2017)",
                        "ref_id": "BIBREF45"
                    },
                    {
                        "start": 1268,
                        "end": 1289,
                        "text": "(Mendes et al., 2012)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "2"
            },
            {
                "text": "Argument mining with graphs There is growing interest in extracting graph structures from natural language arguments. Lenz et al. (2020) , e.g., propose a pipeline for detecting and linking argumentative discourse units (ADUs). Al-Khatib et al. (2020) detect textual phrases and link them with POS/NEG relations, where POS indicates a positive influence and NEG a negative influence (inhibition), e.g., sports NEG health issues. However, such approaches lack finer semantic assessment: they do not distinguish word senses, and the linked entities (phrases or ADUs) are taken as atoms, which hampers explainability: when linking sports and health issues with a NEG relation, we cannot differentiate sports NEG issues and sports NEG health (only the former is correct). We target a finer analysis of argumentative texts, by representing them with dense AMR graphs. Additionally, by aligning graph representations of several arguments, our work paves the way for improved argument knowledge graph construction, aided by, or based on, AMR.",
                "cite_spans": [
                    {
                        "start": 118,
                        "end": 136,
                        "text": "Lenz et al. (2020)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "2"
            },
            {
                "text": "The task of conclusion generation has been recently investigated by Alshomary et al. (2020 Alshomary et al. ( , 2021 , and allows us to infer conclusions from given premises. Conclusion generation can be seen as the inverse of argument generation (Sato et al., 2015; Schiller et al., 2020) . In this work, we show that by considering conclusions inferred from pairs of arguments, we can improve our argument similarity ratings.",
                "cite_spans": [
                    {
                        "start": 68,
                        "end": 90,
                        "text": "Alshomary et al. (2020",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 91,
                        "end": 116,
                        "text": "Alshomary et al. ( , 2021",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 247,
                        "end": 266,
                        "text": "(Sato et al., 2015;",
                        "ref_id": "BIBREF42"
                    },
                    {
                        "start": 267,
                        "end": 289,
                        "text": "Schiller et al., 2020)",
                        "ref_id": "BIBREF43"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Generation of argumentative conclusions",
                "sec_num": null
            },
            {
                "text": "We base our models for explanatory argument similarity assessment on two hypotheses.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hypotheses",
                "sec_num": "3"
            },
            {
                "text": "Hypothesis I: Abstract Meaning Representation (Banarescu et al., 2013) of arguments supports explainable argument similarity assessment AMRs are directed, rooted and acyclic graphs that aim at capturing a sentence's meaning in a machine-readable format. Edges are labeled with semantic relation types (e.g., negation, cause, etc.) and vertices denote either variables or concepts (variables are instances of concepts and allow us to capture coreferences) Hence, the AMR formalism captures various semantic phenomena that can play a role when assessing argument similarity. E.g., besides the obviously useful aspect of negation, AMR captures semantic roles and predicate senses (Kingsbury and Palmer, 2002) . While it is clear that similar arguments tend to involve similar predicates and predicate senses, semantic structure and role assignment may also play a role. For instance, the claims: consumption of alcohol leads to depression vs. depression leads to consumption of alcohol are clearly distinct, while sharing the same concepts. Other AMR facets may also be useful. E.g., AMR captures coreferences and resolving them in different ways can induce significant meaning differences, Finally, AMR includes key semantic relations (location, cause, possession, etc.) that are often implicit or underspecified in language, hence their explicit representation in AMR provides a rich basis for assessing arguments.",
                "cite_spans": [
                    {
                        "start": 46,
                        "end": 70,
                        "text": "(Banarescu et al., 2013)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 677,
                        "end": 705,
                        "text": "(Kingsbury and Palmer, 2002)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hypotheses",
                "sec_num": "3"
            },
            {
                "text": "Arguments represented with AMR can be compared with AMR graph metrics Damonte et al., 2017; that also induce an explicit alignment between two argument graphs.",
                "cite_spans": [
                    {
                        "start": 70,
                        "end": 91,
                        "text": "Damonte et al., 2017;",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hypotheses",
                "sec_num": "3"
            },
            {
                "text": "Hypothesis II: similar arguments lead to similar conclusions We hypothesize that a key feature of similar arguments is that they invite for similar conclusions. Analogously, dissimilar arguments tend to lead to differing conclusions. Consider the following two arguments: i) Cannabis can have negative effects on brain development of teens. ii) Smoking cannabis is harmful for the lungs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hypotheses",
                "sec_num": "3"
            },
            {
                "text": "The arguments are dissimilar, even though they share the same (negative) stance and argue from a similar perspective (health). This dissimilarity is also reflected in the conclusions that can be inferred from them: from i) we can infer that, i.a., Cannabis consumption should be strictly controlled for age or Cannabis can have a negative impact on the brain-while from ii) we could infer that Cannabis, if consumed, should not be smoked or Cannabis smokers should get their lungs checked.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hypotheses",
                "sec_num": "3"
            },
            {
                "text": "As a complementary example, the similarity of two arguments may be reinforced by the similarity of their inferred conclusions, as shown below: i) Fracking can contaminate water and water wells and suck towns dry. ii) As a water-poor state, fracking and its toxic wastewater presents a serious danger to our communities and ecosystems.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hypotheses",
                "sec_num": "3"
            },
            {
                "text": "Arguments i) and ii) are rated as similar, presumably because they point at detrimental ramifications of fracking related to water issues. This similarity is likely to be reflected in conclusions drawn from them, such as: i) Fracking can lead to water issues or ii) Fracking poses dangers for water-poor states.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hypotheses",
                "sec_num": "3"
            },
            {
                "text": "According Hyp I, we represent arguments with AMR graphs and rate their similarity with AMR metrics. To test Hyp II we infer conclusions from arguments with language models and compute similarity on arguments extended with their conclusion.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Argument Similarity via AMR Metrics",
                "sec_num": "4"
            },
            {
                "text": "We propose three model variants that aim at explaining argument similarity. Given two arguments a, a and their extrapolated conclusions c = conclusion(a), c = conclusion(a ), we compute similarity in the space of abstract meaning representation using a similarity function f in three alternative ways: i) f (a, a ), between the two arguments, ii) f (c, c ) between their conclusions, iii) f (a \u2295 c, a \u2295 c ), i.e., between the combinations of argument a and its derived conclusion c, where we use a simple decomposable weighting:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Models",
                "sec_num": "4.1"
            },
            {
                "text": "f (a\u2295c, a \u2295c ) = \u03bbf (a, a )+(1\u2212\u03bb)f (c, c ) (1)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Models",
                "sec_num": "4.1"
            },
            {
                "text": "If not specified otherwise, \u03bb is set to 0.95. 2 The AMR metric f will be described in the following.",
                "cite_spans": [
                    {
                        "start": 46,
                        "end": 47,
                        "text": "2",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Models",
                "sec_num": "4.1"
            },
            {
                "text": "AMR parser We parse all arguments from the data with the parser from amrlib 3 , a fine-tuned T5 sequence-to-sequence model that achieves high scores on AMR benchmarks. AMR metric We use S 2 MATCH , which is based on the AMR graph matching metric SMATCH , but admits graded concept similarity by matching concept nodes with GloVe embeddings (Pennington et al., 2014) and cosine similarity 4 . To find an optimal graph mapping, exactly like SMATCH, it leverages a hill-climber to approximate the NPhard problem of aligning AMR graphs. Following the alignment step, the (soft) matching of propositions (triples) are scored with an F1 score. Since, so-far, little is known about the trade-off and interface between concrete and abstract semantics in human mental representations (Mkrtychian et al., 2019) , we introduce two more variants that assess similarity from complementary perspectives: S2MATCH Concept and S2MATCH Struct . The first metric variant focuses on conceptual overlap (Fig.  1, middle) , i.e. the more concrete semantic aspects, by putting a triple weight on concept matches. The second variant focuses on structural matches (Fig.  1, bottom) , i.e., the more abstract semantic aspects, by putting triple weight on relation matches.",
                "cite_spans": [
                    {
                        "start": 340,
                        "end": 365,
                        "text": "(Pennington et al., 2014)",
                        "ref_id": "BIBREF36"
                    },
                    {
                        "start": 775,
                        "end": 800,
                        "text": "(Mkrtychian et al., 2019)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 982,
                        "end": 999,
                        "text": "(Fig.  1, middle)",
                        "ref_id": "FIGREF0"
                    },
                    {
                        "start": 1139,
                        "end": 1156,
                        "text": "(Fig.  1, bottom)",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Implementation",
                "sec_num": "4.2"
            },
            {
                "text": "We generate conclusions from arguments using the T5 model (Raffel et al., 2020) pre-trained on summarization tasks. To encourage the model to generate informative conclusions (as opposed to summaries), we further finetune it on premise-conclusion samples from Stab and Gurevych (2017) , which contain intelligible 5 Argument Similarity Prediction with AMR Metrics: Experiments",
                "cite_spans": [
                    {
                        "start": 58,
                        "end": 79,
                        "text": "(Raffel et al., 2020)",
                        "ref_id": "BIBREF38"
                    },
                    {
                        "start": 260,
                        "end": 284,
                        "text": "Stab and Gurevych (2017)",
                        "ref_id": "BIBREF46"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion generator",
                "sec_num": null
            },
            {
                "text": "Data set and evaluation metric We use the UKP aspect corpus (Reimers et al., 2019) , which contains 3,596 argument pairs on 28 topics that have been assigned a four-way similarity rating: highly similar (HS), somewhat similar (SS), not similar (NS), different topic/'can't decide' (DTORCD). Following Reimers et al. (2019), we frame the task as a binary prediction problem: highly similar (HS, SS) and non-similar (NS, DTORCD), and we conduct evaluation via cross validation with 4 folds. In every iteration, 7 topics serve as testing data, while the other 21 topics serve to tune a decision threshold of the metric score. 6 As in Reimers et al. 2019, we evaluate the F1 score for each of the two labels and the arithmetic F1 mean (macro F1).",
                "cite_spans": [
                    {
                        "start": 60,
                        "end": 82,
                        "text": "(Reimers et al., 2019)",
                        "ref_id": "BIBREF40"
                    },
                    {
                        "start": 623,
                        "end": 624,
                        "text": "6",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Setup",
                "sec_num": "5.1"
            },
            {
                "text": "Baselines We compare to previously established unsupervised baselines (Reimers et al., 2019) : i) Tfidf calculates cosine similarity between Tfidf-weighted bag-of-word vectors; i) InferSent-(FastText|Glove) leverages sentence embeddings produced by the InferSent model (Conneau et al., 2017) based on either FastText (Bojanowski et al., 2016) or GloVe (Pennington et al., 2014) vectors, which are compared with cosine similarity; iii) (GloVe|ELMo|BERT) Embedding uses averaged GloVe embeddings or averaged contextualized embeddings from ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019) language models.",
                "cite_spans": [
                    {
                        "start": 70,
                        "end": 92,
                        "text": "(Reimers et al., 2019)",
                        "ref_id": "BIBREF40"
                    },
                    {
                        "start": 269,
                        "end": 291,
                        "text": "(Conneau et al., 2017)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 317,
                        "end": 342,
                        "text": "(Bojanowski et al., 2016)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 352,
                        "end": 377,
                        "text": "(Pennington et al., 2014)",
                        "ref_id": "BIBREF36"
                    },
                    {
                        "start": 542,
                        "end": 563,
                        "text": "(Peters et al., 2018)",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 573,
                        "end": 594,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Setup",
                "sec_num": "5.1"
            },
            {
                "text": "Best system Table 1 shows our main results. The AMR-based approach that is based on conceptfocused S 2 MATCH scores, taking both the argument and its inferred conclusion into account, obtains rank 1 (68.70 macro F1) and outperforms all baselines, including the BERT baseline. The difference is significant with p < 0.005 (Student t-test). This system is closely followed by other AMR-based systems, e.g., using concept-focused S 2 MATCH that sees only the argument (68.17 macro F1), and standard S 2 MATCH taking both argument and conclusion into account (66.21 macro F1).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 12,
                        "end": 19,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5.2"
            },
            {
                "text": "Does incorporating conclusions help? Interestingly, assessing only conclusions (rank 13/14/15) outperforms the random baseline (rank 16). The low performance, in general, is expected, since clearly, argument similarity must be primarily determined based on the arguments, and hence, methods that rate the similarity of arguments only via a conclusion proxy have an obvious disadvantage. Hence, the more interesting question is: Do inferred conclusions provide complementary information for the task? Our results show a tendency that this is the case. All AMR-based models that take both conclusion and argument into account (model type f (a \u2295 c, a \u2295 c )) outperform models that only see the arguments (AMR: +0.77; AMR concept-focus: +0.63; AMR struct-focus +0.40). At this point, however, we cannot explain whether this is due to useful reformulations or truly novel content that was generated, or a mix of both. We will investigate this question deeper in Section 6.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5.2"
            },
            {
                "text": "Argument similarity: driven by abstract or concrete semantics? The strong performance of the concept-focused AMR metric shows that a large overlap in concepts tends to correlate with human ratings more than an overlap in abstract semantic structure. The structure-focused AMR methods (last block in Table 1 ), while significantly outperforming the random baseline, lag behind all other baselines. Note, however, that the standard AMRbased model, which weights concept and structure overlap equally, provides strong performance, oc- ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 299,
                        "end": 306,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5.2"
            },
            {
                "text": "Pearson's \u03c1 predictor f (a, a) f (c, c) f (ac, a c ) Concepts 0.492 \u2021 0.299 \u2021 0.492 \u2021 Sem. Role Labels (SRL) 0.400 \u2021 0.185 \u2021 0.402 \u2021 Predicate Frames 0.355 \u2021 0.232 \u2021 0.357 \u2021 Reentrancies (Coref.) 0.235 \u2021 0.085 \u2021 0.235 \u2021 Named Entity (NER) 0.076 \u2021 0.052 \u2021 0.077 \u2021 Negations 0.042 \u2020 -0.011 0.042 \u2020",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5.2"
            },
            {
                "text": "The previous experiment suggests that human argument similarity ratings can be modeled through a combination of different meaning facets, with a focus on concepts. We will now investigate how human argument similarity ratings correlate with specific meaning aspects represented in AMR graphs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Fine predictors of argument similarity",
                "sec_num": "6.1"
            },
            {
                "text": "Setup For this we leverage fine-grained AMR metrics (Damonte et al., 2017) and compute semantic similarity with respect to 6 meaning aspects i) named entities (NER); ii) negation; iii) lexical concepts; iv) predicate frames; v) coreference and vi) semantic roles (SRL). Instead of merging the labels somewhat similar and similar, we keep them distinct and use a three-point Likert scale: 0 means not similar or unrelated, 0.5 means somewhat similar, and 1 means highly similar. To assess the correlation, we use Pearson's correlation coefficient.",
                "cite_spans": [
                    {
                        "start": 52,
                        "end": 74,
                        "text": "(Damonte et al., 2017)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Fine predictors of argument similarity",
                "sec_num": "6.1"
            },
            {
                "text": "Results of this univariate feature analysis are displayed in Table 2 . As expected from the earlier experiment, shared concepts are strong predictors for argument similarity (Concepts, \u03c1=0.49). Also more abstract semantic features, such as similar semantic roles, have a solid signalling effect (SRL, \u03c1=0.40). Similarly, coreferences have predictive capacity, though at a lower range (\u03c1=0.23). On the other hand, negation or shared named entities do exhibit only small (yet still significant) predictive capacity (Negation, \u03c1=0.04 and NER, \u03c1=0.08).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 61,
                        "end": 68,
                        "text": "Table 2",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Fine predictors of argument similarity",
                "sec_num": "6.1"
            },
            {
                "text": "The low correlation of NE overlap with human similarity ratings can in part be explained by the fact that we do not find many arguments where this could potentially matter (in our data, only 1 to 2 out of 1,000 nodes represent person NEs). However, if humans were to rate argument similarity in a dataset that features many arguments from expert opinion (Godden and Walton, 2006; Wagemans, 2011) , named entity overlap may have a significant predictive capacity. Also negation might be more important than what we see in this analysis, since it can be expressed in alternative ways (e.g., through antonyms) that are not encoded as such in AMR.",
                "cite_spans": [
                    {
                        "start": 366,
                        "end": 379,
                        "text": "Walton, 2006;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 380,
                        "end": 395,
                        "text": "Wagemans, 2011)",
                        "ref_id": "BIBREF51"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Fine predictors of argument similarity",
                "sec_num": "6.1"
            },
            {
                "text": "To illustrate the potential of using AMR for connecting and assessing arguments, we study an example case in Fig. 2 . It shows the graphs and graph alignments 8 that were found, for the actual arguments and their automatically induced conclusions, for our running example on fracking.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 109,
                        "end": 115,
                        "text": "Fig. 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Example case with alignment",
                "sec_num": "6.2"
            },
            {
                "text": "Observations about argument alignment The top figure shows the alignment of the two argument graphs, where important substructures have been linked. Contamination of water and water wells is linked to endangering of our communities and ecosystems (orange nodes and alignment). It is also appropriate that towns that are sucked dry is linked to water poor state (blue). This link is very valuable since these statements stand in a semantic EXACERBATE-relation that may be important for the arguments' similarity (the water-poverty of states is exacerbated if towns are sucked dry). Ideally, we would like such alignments to be labeled with a corresponding semantic relation. In future work, we plan to achieve this by leveraging commonsense knowledge graphs like ConceptNet.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Example case with alignment",
                "sec_num": "6.2"
            },
            {
                "text": "Observations about conclusion alignment The bottom figure shows the alignment of the automatically deduced conclusions. For the left argument, the conclusion fails to produce an abstraction and more or less repeats the argument. For the argument on the right-hand side, however, the conclusion generator produced a more informative conclusion. From the input argument it concludes that Fracking and its toxic wastewater are a threat to the environmentfocusing on the negative environmental impact of fracking. This triggers a graph alignment which adds valuable new information 8 The alignments were computed with S2M Concept+Concl.",
                "cite_spans": [
                    {
                        "start": 578,
                        "end": 579,
                        "text": "8",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Example case with alignment",
                "sec_num": "6.2"
            },
            {
                "text": "(see clouds with dotted margins). The alignment makes explicit that water wells and toxic wastewater stand in a correspondence in the context of fracking. Specifically, we see how the contamination of wells (left graphs) happens: wells are polluted with toxic wastewater (right graphs). Additionally, the left graph helps explain parts of the meaning of the right graph: Fracking and toxic wastewater are a threat because fracking contaminates water and water wells.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Example case with alignment",
                "sec_num": "6.2"
            },
            {
                "text": "An inferred conclusion can be more or less abstract or dissimilar from the input argument. This raises the question of the quality of an inferred conclusion. In fact, we can apply our AMR similarity metrics to quantify the similarity of an argument and its inferred conclusion-formally: f (a, c)-which may be indicative of the novelty of a conclusion in relation to its premise. Hence, we investigate how AMR similarity metrics can be used to measure the novelty of a conclusion relative to its premise. Another aspect of conclusion quality is its validity or justification, i.e., to what extent it can be trusted. Clearly, a conclusion that is very similar to the premise has a high chance of being valid (as long as the premise is), whereas this is uncertain for parts of its meaning that do not match the premise.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Investigations of conclusion quality",
                "sec_num": "6.3"
            },
            {
                "text": "In current research, not much is known about how to rate the quality of a conclusion drawn from an argument. We explore this question by performing a manual assessment of different quality aspects of conclusions, and investigate to what extent these can be assessed with our AMR similarty metrics.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Investigations of conclusion quality",
                "sec_num": "6.3"
            },
            {
                "text": "We randomly sample 100 argument-conclusion pairs per topic. The pairs are given to two annotators whom we ask to assign binary ratings regarding two questions: i) Is the conclusion justified based on the premise? With this we aim to assess whether the argument legitimizes the conclusion; and ii) Does the conclusion introduce some novelty relative to the argument? This should be denied if, e.g., the conclusion repeats the premise.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Investigations of conclusion quality",
                "sec_num": "6.3"
            },
            {
                "text": "As shown in Fig. 3 , we measure moderate IAA, with slightly higher agreement for novelty. The results show that T5 often manages to produce either valid (justification, \u224865-75% of cases) or novel content (novelty, \u2248 50-60%), but struggles to produce conclusions that fulfill both criteria (justification & novetly: \u2248 25-35% of cases). Fracking contaminates water and water wells and sucks towns dry.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 12,
                        "end": 18,
                        "text": "Fig. 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Investigations of conclusion quality",
                "sec_num": "6.3"
            },
            {
                "text": "Fracking and its toxic wastewater are a threat to the environment. 2) Fracking can contaminate water and water wells and suck towns dry..",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Investigations of conclusion quality",
                "sec_num": "6.3"
            },
            {
                "text": "As a water-poor state, fracking and its toxic wastewater presents a serious danger to our communities and ecosystems.. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Investigations of conclusion quality",
                "sec_num": "6.3"
            },
            {
                "text": "We now extend the use of our metrics to assess conclusion quality by computing the similarity of argument and conclusion: f (a, c). 9 We calculate six graph similarity statistics of their AMRs to finally produce an aggregate score assessment: i) |a \u2229 c|/|a| measures the relative amount of premise content that is contained in the conclusion ('precision'); ii) |a \u2229 c|/|c| measures the relative amount of conclusion content contained in the premise ('recall'); iii) the harmonic mean of i) and ii) corre-sponds to main metric f (a, c); and features iv-vi) apply a non-linear function to i)-iii), measuring the proximity to the feature means 10 , which expresses the idea that a conclusion that is both novel and justified may be situated at mean similarity of premise and conclusion, measured by f (a, c).",
                "cite_spans": [
                    {
                        "start": 132,
                        "end": 133,
                        "text": "9",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Can we predict conclusion quality?",
                "sec_num": "6.4"
            },
            {
                "text": "We use a Linear SVM for predicting, in three binary classification tasks, either justification; novelty or both, using the feature set i)-vi). 11 Results are seen in Table 3 . Despite the small training data, performance is good for predicting justified (max. 68.6 F1) or novel (max. 70.0 F1). But predicting a conclusion to be novel & justified yields substantially lower performance (max. 58.3 F1), while still above baseline. Feature correlations show that novel is negatively (-) associated with f (a, c) (iiii), while justified is positively (+) correlated with f (a, c) (i-iii). We find much weaker correlation for novel&justified, tending to mean similarity (iv-vi). Our analyses support Hyp1 in that AMR metrics are able to rate similarity of arguments, of conclusions and of argument-conclusion pairs, and this also allows us to determine if a conclusion is novel or justified. While many justified conclusions are highly similar to the premise, deciding their justification is difficult if they involve novelty. We argue this is because justification cannot be determined from premises alone, but requires external knowledge. We leave this issue for future work.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 166,
                        "end": 173,
                        "text": "Table 3",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Can we predict conclusion quality?",
                "sec_num": "6.4"
            },
            {
                "text": "Finally, we revisit our Hyp2, that by extending arguments with inferred conclusions, we can support assessment of argument similarity. This raises the issue of the usefulness of a conclusion, in terms of achieving good performance and interpretability of an argument similarity method. The aspect of the usefulness of a conclusion clearly differs from the question of its quality. For one, it is possible that a good conclusion is not useful for argument similarity rating, simply because the assessment of the paired argument premises already provides a confident and precise similarity judgement. On the other hand, a mediocre conclusion could provide complementary indications that can support the similarity judgement. In this final section we aim to assess factors that can determine this usefulness.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion usefulness",
                "sec_num": "6.5"
            },
            {
                "text": "Operationalizing conclusion usefulness We define a score U for the usefulness of a conclusion, based on a human rating y, the conclusion similarity f (c, c ) and argument similarity f (a, a ), as",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion usefulness",
                "sec_num": "6.5"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "U = 1 1+(y\u2212f (c,c )) 2 + (y \u2212 f (a, a )) 2 ,",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Conclusion usefulness",
                "sec_num": "6.5"
            },
            {
                "text": "where U is maximized iff the automatic similarity rating of the conclusions does not differ from the human rating, while the automatic similarity a) Because you may save up to eight lives through organ donation and enhance many others through tissue donation. c) organ donation is a great way to save up to eight lives. a') This medical research is important to understanding diseases in humans so that lives may be saved and improved. c') medical research is important to understand diseases in humans rating of the premises differs maximally from the human rating. It is in exactly these situations that a conclusion assessment will prove most useful.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion usefulness",
                "sec_num": "6.5"
            },
            {
                "text": "Features for assessing conclusion usefulness U We assume the following features for modeling the usefulness of a conclusion, which we compute with our similarity function f : i) the similarity of the arguments f (a, a ); ii) the similarity of the conclusions f (c, c ); iii) the (signed) difference between the argument and the conclusion similarities f (a, a ) \u2212 f (c, c ); iv) we compute the (signed) difference between the similarity of (a, c) and (a , c ):",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion usefulness",
                "sec_num": "6.5"
            },
            {
                "text": "f (a,c)\u2212f (a ,c ) 2",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion usefulness",
                "sec_num": "6.5"
            },
            {
                "text": "; finally, v) y is the human rating.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion usefulness",
                "sec_num": "6.5"
            },
            {
                "text": "Results Table 4 shows that the highest predictive power for conclusion usefulness is feature iii): the similarity of the two arguments minus the similarity of the two conclusions. It exhibits a highly significant positive correlation with conclusion usefulness, and relates to the following scenario: If two arguments are considered to be similar, but the conclusions as dissimilar, this may signal that the arguments are rated dissimilar by the human, and the high initial rating may be reconsidered. Table 5 shows a data sample where the conclusions help to correct an initial, over-optimistic similarity rating of the premises. The premises are rated dissimilar by the human, but since they contain similar concepts, such as saving lives, the AMR metric assigns a high similarity rating (0.7) to the pair (a, a ). However, the automatically generated conclusions (c, c ) are assigned low(er) similarity (0.2). The low rating can be explained by the fact that the conclusion generator has distilled different conclusions from the premises that reflect the dif-ferent foci of the arguments: the first proposes that organ donations are good for saving lives, while the second argument proposes that generally more medical research should be conducted.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 8,
                        "end": 15,
                        "text": "Table 4",
                        "ref_id": "TABREF6"
                    },
                    {
                        "start": 502,
                        "end": 509,
                        "text": "Table 5",
                        "ref_id": "TABREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Conclusion usefulness",
                "sec_num": "6.5"
            },
            {
                "text": "Explanation dimensions Our argument similarity rating approach may provide explanations in various dimensions. i) First and foremost, the explicit alignment and similarity computation based on AMR and AMR graph metrics, by relating similar concepts between arguments and their conclusions, provides insight into which components of two argument AMRs relate to each other, with individual alignment scores, and to what extent they congtribute to the overall score. Especially in light of recent observations showing supervised models to be prone to superficial cues in data sets Niven and Kao, 2019; Heinzerling, 2020; Jo et al., 2021) , this property is desirable. ii) We apply the fine-grained AMR decomposition of Damonte et al. (2017) in terms of semantic phenomena, such as negation or semantic roles. This can further illuminate in which ways an argument pair is similar/dissimilar. iii) By taking into account the similarity of automatically inferred conclusions, the similarity computed for premises may be re-adjusted in case the similarity of the inferred conclusions strongly differs.",
                "cite_spans": [
                    {
                        "start": 578,
                        "end": 598,
                        "text": "Niven and Kao, 2019;",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 599,
                        "end": 617,
                        "text": "Heinzerling, 2020;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 618,
                        "end": 634,
                        "text": "Jo et al., 2021)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 716,
                        "end": 737,
                        "text": "Damonte et al. (2017)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "7"
            },
            {
                "text": "On a related note, the AMR similarity statistics enabled us to gain some first indications of what could be considered a good conclusion (without even matching against a reference): e.g., our qualitative evaluations indicate that good conclusions tend to be neither very similar, nor very dissimilar to the premise. This seems plausible, since (too) high similarity may indicate a mere summary (reducing novelty), while (too) low similarity may indicate a lack of coherence (reducing validity).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "7"
            },
            {
                "text": "A key component of our approach that influences all aspects of explainability described above, are the similarity metrics computed over AMRs. While we proposed one variant of S 2 MATCH that focuses specifically on the similarity of concepts, further variations could be explored. We may also consider more recent AMR metrics that measure meaning similarity via graph kernels .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Perspectives of improvement and future work",
                "sec_num": null
            },
            {
                "text": "Our approach also hinges on the quality of the inferred conclusions. The conclusions we obtained are often either justified or novel, but less often satisfy both conditions. In addition, we find that the degree of novelty is often rather small, perhaps reflecting that the T5 generator was pre-trained on summarization data and hence may tend to produce inferences that are not novel, since novelty is not a common characteristics of a summary. On the positive side, our approach can be fueled by an increasing amount of research on argument conclusion generation (Alshomary et al., 2020 (Alshomary et al., , 2021 . In general, and particularly for our approach, it will be interesting to work with systems that produce not only a single, but multiple valid conclusions. Considering relations across and within two conclusion sets inferred from two premises may provide key information on argument similarity.",
                "cite_spans": [
                    {
                        "start": 564,
                        "end": 587,
                        "text": "(Alshomary et al., 2020",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 588,
                        "end": 613,
                        "text": "(Alshomary et al., , 2021",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Perspectives of improvement and future work",
                "sec_num": null
            },
            {
                "text": "Finally, by measuring the similarity of premises and their conclusions, our approach could shed light on another important question: how to assess novelty and justification of a conclusion without a reference? This is an important question for research on argument conclusion generation since it lacks methods that can judge the quality of conclusions in the absence of (costly) references.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Perspectives of improvement and future work",
                "sec_num": null
            },
            {
                "text": "In this paper, we investigated two hypotheses: i) AMR meaning representation and graph metrics help in assessing argument similarity, ii) automatically inferred conclusions can aid or reinforce the similarity assessment of arguments. We find solid evidence for the first hypothesis, especially when slightly adapting AMR metrics to focus more on concrete concepts found in arguments. We find weak evidence that supports the second hypothesis, i.e., metrics improve consistently, but by small margins, when they are allowed to additionally consider the AMRs of automatically inferred conclusions. We believe, however, that more substantial gains may be obtained in future work, by improving conclusion generation models such that they produce content that is both valid and novel. Finally, we have made first steps towards a reference-less metric for assessing novelty and justification of generated conclusions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "8"
            },
            {
                "text": "https://github.com/Heidelberg-nlp/ amr-argument-sim",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "We choose a high value of \u03bb since, clearly, the premises are bound to host the primary evidence for similarity, while a conclusion may serve as auxiliary information. In our experiments, we also consider extreme decompositions (\u03bb \u2208 {0, 1}).3 https://github.com/bjascob/amrlib",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "If the cosine similarity exceeds \u03c4 = 0.95. and rational conclusions of high linguistic quality.5",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "For further detail on this fine-tuning step see Appendix.6 Strictly speaking, this is not a fully unsupervised setup, however, we stick to this framing of the task to facilitate comparison to the previous work(Reimers et al., 2019).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Motivated by this result, we conduct two extreme ablations: concept-only and structure-only metrics. While the structure-only variant shows worse results than AMR S-focus (macro F1 \u2206f (a, a ): -2.7), concept-only variant and conceptfocused are more or less on par (macro F1 \u2206f (a, a ): -0.2).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "AMR metrics have been previously used in NLG evaluation by.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "I.e., given the mean \u00b5 of a feature x, the new valuex i of datum i is x i = 1 \u2212 (\u00b5 \u2212 xi) 2 .11 We average all results over 25 runs of leave-one-out cross validations. When predicting either justification, or novelty, we average over the two annotators; when predicting justification and novelty, to increase the positive class labels slightly, the gold target are cases where one or two annotators annotated both novel and justified.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Whenever we encounter multiple premises or supportive claims of a single claim, we concatenate them in document order.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "We are grateful to the anonymous reviewers for their valuable comments. This work has been partially funded by the DFG through the project AC-CEPT as part of the Priority Program \"Robust Argumentation Machines\" (SPP1999).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            },
            {
                "text": "To fine-tune the sequence to sequence language model T5 for conclusion generation, we create training data from the the persuasive essays dataset of Stab and Gurevych (2017) as follows: From all premise-conclusion-pairs annotated in this dataset, we retrieved all claims with their annotated premises. In addition, we employ all annotated major claims with their supportive claims as premise-conclusion-pairs. 12 We discarded samples for which we cannot retrieve any premise. Each resulting premises-conclusion-sample has 3.1 premises on average.We split the data into 80% instances for training, and 10% for validation and testing, each. For each sample, we input the concatenated premises by encoding summarize:<premises> and train with the conclusion as a target by applying a crossentropy loss for each token. We guide the training process with an early stopping mechanism to ensure the best accuracy (ignoring padding tokens) on our validation dataset. In inference, we apply a 5-beam-search in combination with sampling over the 20 most probable tokens per inference step.To assess the quality and relatedness of the generated conclusions, we manually compared the predicted conclusions with their premises in our test split. Since we observed promising and appropriate conclusion generations, we were encouraged to utilize the learned capabilities of the fine-tuned language model to generate conclusions for the argumentative sentences in the UKP aspect corpus.",
                "cite_spans": [
                    {
                        "start": 149,
                        "end": 173,
                        "text": "Stab and Gurevych (2017)",
                        "ref_id": "BIBREF46"
                    },
                    {
                        "start": 410,
                        "end": 412,
                        "text": "12",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A.1 Fine-tuning the conclusion generator",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Data acquisition for argument search: The args. me corpus",
                "authors": [
                    {
                        "first": "Yamen",
                        "middle": [],
                        "last": "Ajjour",
                        "suffix": ""
                    },
                    {
                        "first": "Henning",
                        "middle": [],
                        "last": "Wachsmuth",
                        "suffix": ""
                    },
                    {
                        "first": "Johannes",
                        "middle": [],
                        "last": "Kiesel",
                        "suffix": ""
                    },
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Potthast",
                        "suffix": ""
                    },
                    {
                        "first": "Matthias",
                        "middle": [],
                        "last": "Hagen",
                        "suffix": ""
                    },
                    {
                        "first": "Benno",
                        "middle": [],
                        "last": "Stein",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Joint German/Austrian Conference on Artificial Intelligence (K\u00fcnstliche Intelligenz)",
                "volume": "",
                "issue": "",
                "pages": "48--59",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yamen Ajjour, Henning Wachsmuth, Johannes Kiesel, Martin Potthast, Matthias Hagen, and Benno Stein. 2019. Data acquisition for argument search: The args. me corpus. In Joint German/Austrian Con- ference on Artificial Intelligence (K\u00fcnstliche Intelli- genz), pages 48-59. Springer.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "What works and what does not: Classifier and feature analysis for argument mining",
                "authors": [
                    {
                        "first": "Ahmet",
                        "middle": [],
                        "last": "Aker",
                        "suffix": ""
                    },
                    {
                        "first": "Alfred",
                        "middle": [],
                        "last": "Sliwa",
                        "suffix": ""
                    },
                    {
                        "first": "Yuan",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Ruishen",
                        "middle": [],
                        "last": "Lui",
                        "suffix": ""
                    },
                    {
                        "first": "Niravkumar",
                        "middle": [],
                        "last": "Borad",
                        "suffix": ""
                    },
                    {
                        "first": "Seyedeh",
                        "middle": [],
                        "last": "Ziyaei",
                        "suffix": ""
                    },
                    {
                        "first": "Mina",
                        "middle": [],
                        "last": "Ghobadi",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 4th Workshop on Argument Mining",
                "volume": "",
                "issue": "",
                "pages": "91--96",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W17-5112"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ahmet Aker, Alfred Sliwa, Yuan Ma, Ruishen Lui, Niravkumar Borad, Seyedeh Ziyaei, and Mina Ghobadi. 2017. What works and what does not: Classifier and feature analysis for argument mining. In Proceedings of the 4th Workshop on Argument Mining, pages 91-96, Copenhagen, Denmark. Asso- ciation for Computational Linguistics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "End-to-end argumentation knowledge graph construction",
                "authors": [
                    {
                        "first": "Khalid",
                        "middle": [],
                        "last": "Al-Khatib",
                        "suffix": ""
                    },
                    {
                        "first": "Yufang",
                        "middle": [],
                        "last": "Hou",
                        "suffix": ""
                    },
                    {
                        "first": "Henning",
                        "middle": [],
                        "last": "Wachsmuth",
                        "suffix": ""
                    },
                    {
                        "first": "Charles",
                        "middle": [],
                        "last": "Jochim",
                        "suffix": ""
                    },
                    {
                        "first": "Francesca",
                        "middle": [],
                        "last": "Bonin",
                        "suffix": ""
                    },
                    {
                        "first": "Benno",
                        "middle": [],
                        "last": "Stein",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the AAAI Conference on Artificial Intelligence",
                "volume": "34",
                "issue": "",
                "pages": "7367--7374",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Khalid Al-Khatib, Yufang Hou, Henning Wachsmuth, Charles Jochim, Francesca Bonin, and Benno Stein. 2020. End-to-end argumentation knowledge graph construction. In Proceedings of the AAAI Confer- ence on Artificial Intelligence, volume 34, pages 7367-7374.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Belief-based generation of argumentative claims",
                "authors": [
                    {
                        "first": "Milad",
                        "middle": [],
                        "last": "Alshomary",
                        "suffix": ""
                    },
                    {
                        "first": "Wei-Fan",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Timon",
                        "middle": [],
                        "last": "Gurcke",
                        "suffix": ""
                    },
                    {
                        "first": "Henning",
                        "middle": [],
                        "last": "Wachsmuth",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
                "volume": "",
                "issue": "",
                "pages": "224--233",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Milad Alshomary, Wei-Fan Chen, Timon Gurcke, and Henning Wachsmuth. 2021. Belief-based genera- tion of argumentative claims. In Proceedings of the 16th Conference of the European Chapter of the As- sociation for Computational Linguistics: Main Vol- ume, pages 224-233, Online. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Target inference in argument conclusion generation",
                "authors": [
                    {
                        "first": "Milad",
                        "middle": [],
                        "last": "Alshomary",
                        "suffix": ""
                    },
                    {
                        "first": "Shahbaz",
                        "middle": [],
                        "last": "Syed",
                        "suffix": ""
                    },
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Potthast",
                        "suffix": ""
                    },
                    {
                        "first": "Henning",
                        "middle": [],
                        "last": "Wachsmuth",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "4334--4345",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.acl-main.399"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Milad Alshomary, Shahbaz Syed, Martin Potthast, and Henning Wachsmuth. 2020. Target inference in argument conclusion generation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4334-4345, On- line. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Abstract Meaning Representation for sembanking",
                "authors": [
                    {
                        "first": "Laura",
                        "middle": [],
                        "last": "Banarescu",
                        "suffix": ""
                    },
                    {
                        "first": "Claire",
                        "middle": [],
                        "last": "Bonial",
                        "suffix": ""
                    },
                    {
                        "first": "Shu",
                        "middle": [],
                        "last": "Cai",
                        "suffix": ""
                    },
                    {
                        "first": "Madalina",
                        "middle": [],
                        "last": "Georgescu",
                        "suffix": ""
                    },
                    {
                        "first": "Kira",
                        "middle": [],
                        "last": "Griffitt",
                        "suffix": ""
                    },
                    {
                        "first": "Ulf",
                        "middle": [],
                        "last": "Hermjakob",
                        "suffix": ""
                    },
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Knight",
                        "suffix": ""
                    },
                    {
                        "first": "Philipp",
                        "middle": [],
                        "last": "Koehn",
                        "suffix": ""
                    },
                    {
                        "first": "Martha",
                        "middle": [],
                        "last": "Palmer",
                        "suffix": ""
                    },
                    {
                        "first": "Nathan",
                        "middle": [],
                        "last": "Schneider",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse",
                "volume": "",
                "issue": "",
                "pages": "178--186",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider. 2013. Abstract Meaning Representation for sembanking. In Proceedings of the 7th Linguis- tic Annotation Workshop and Interoperability with Discourse, pages 178-186, Sofia, Bulgaria. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Reconstructing implicit knowledge with language models",
                "authors": [
                    {
                        "first": "Maria",
                        "middle": [],
                        "last": "Becker",
                        "suffix": ""
                    },
                    {
                        "first": "Siting",
                        "middle": [],
                        "last": "Liang",
                        "suffix": ""
                    },
                    {
                        "first": "Anette",
                        "middle": [],
                        "last": "Frank",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of Deep Learning Inside Out (DeeLIO): The 2nd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures",
                "volume": "",
                "issue": "",
                "pages": "11--24",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2021.deelio-1.2"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Maria Becker, Siting Liang, and Anette Frank. 2021. Reconstructing implicit knowledge with language models. In Proceedings of Deep Learning Inside Out (DeeLIO): The 2nd Workshop on Knowledge Ex- traction and Integration for Deep Learning Architec- tures, pages 11-24, Online. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Enriching word vectors with subword information",
                "authors": [
                    {
                        "first": "Piotr",
                        "middle": [],
                        "last": "Bojanowski",
                        "suffix": ""
                    },
                    {
                        "first": "Edouard",
                        "middle": [],
                        "last": "Grave",
                        "suffix": ""
                    },
                    {
                        "first": "Armand",
                        "middle": [],
                        "last": "Joulin",
                        "suffix": ""
                    },
                    {
                        "first": "Tomas",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1607.04606"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016. Enriching word vec- tors with subword information. arXiv preprint arXiv:1607.04606.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Smatch: an evaluation metric for semantic feature structures",
                "authors": [
                    {
                        "first": "Shu",
                        "middle": [],
                        "last": "Cai",
                        "suffix": ""
                    },
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Knight",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics",
                "volume": "2",
                "issue": "",
                "pages": "748--752",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shu Cai and Kevin Knight. 2013. Smatch: an evalua- tion metric for semantic feature structures. In Pro- ceedings of the 51st Annual Meeting of the Associa- tion for Computational Linguistics (Volume 2: Short Papers), pages 748-752, Sofia, Bulgaria. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Arguenet: An argument-based recommender system for solving web search queries",
                "authors": [
                    {
                        "first": "Ana",
                        "middle": [
                            "G"
                        ],
                        "last": "Carlos Iv\u00e1n Chesnevar",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Maguitman",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "2nd International IEEE Conference on'Intelligent Systems'. Proceedings (IEEE Cat. No. 04EX791)",
                "volume": "1",
                "issue": "",
                "pages": "282--287",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Carlos Iv\u00e1n Chesnevar and Ana G Maguitman. 2004. Arguenet: An argument-based recommender system for solving web search queries. In 2004 2nd Inter- national IEEE Conference on'Intelligent Systems'. Proceedings (IEEE Cat. No. 04EX791), volume 1, pages 282-287. IEEE.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Supervised learning of universal sentence representations from natural language inference data",
                "authors": [
                    {
                        "first": "Alexis",
                        "middle": [],
                        "last": "Conneau",
                        "suffix": ""
                    },
                    {
                        "first": "Douwe",
                        "middle": [],
                        "last": "Kiela",
                        "suffix": ""
                    },
                    {
                        "first": "Holger",
                        "middle": [],
                        "last": "Schwenk",
                        "suffix": ""
                    },
                    {
                        "first": "Lo\u00efc",
                        "middle": [],
                        "last": "Barrault",
                        "suffix": ""
                    },
                    {
                        "first": "Antoine",
                        "middle": [],
                        "last": "Bordes",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "670--680",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D17-1070"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Alexis Conneau, Douwe Kiela, Holger Schwenk, Lo\u00efc Barrault, and Antoine Bordes. 2017. Supervised learning of universal sentence representations from natural language inference data. In Proceedings of the 2017 Conference on Empirical Methods in Nat- ural Language Processing, pages 670-680, Copen- hagen, Denmark. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "An incremental parser for Abstract Meaning Representation",
                "authors": [
                    {
                        "first": "Marco",
                        "middle": [],
                        "last": "Damonte",
                        "suffix": ""
                    },
                    {
                        "first": "Shay",
                        "middle": [
                            "B"
                        ],
                        "last": "Cohen",
                        "suffix": ""
                    },
                    {
                        "first": "Giorgio",
                        "middle": [],
                        "last": "Satta",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "536--546",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Marco Damonte, Shay B. Cohen, and Giorgio Satta. 2017. An incremental parser for Abstract Mean- ing Representation. In Proceedings of the 15th Con- ference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Pa- pers, pages 536-546, Valencia, Spain. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "4171--4186",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1423"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games",
                "authors": [
                    {
                        "first": "Dung",
                        "middle": [],
                        "last": "Phan Minh",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "Artificial intelligence",
                "volume": "77",
                "issue": "2",
                "pages": "321--357",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Phan Minh Dung. 1995. On the acceptability of argu- ments and its fundamental role in nonmonotonic rea- soning, logic programming and n-person games. Ar- tificial intelligence, 77(2):321-357.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Argument from expert opinion as legal evidence: Critical questions and admissibility criteria of expert testimony in the american legal system",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "David",
                        "suffix": ""
                    },
                    {
                        "first": "Douglas",
                        "middle": [],
                        "last": "Godden",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Walton",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Ratio Juris",
                "volume": "19",
                "issue": "3",
                "pages": "261--286",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "David M Godden and Douglas Walton. 2006. Argu- ment from expert opinion as legal evidence: Criti- cal questions and admissibility criteria of expert tes- timony in the american legal system. Ratio Juris, 19(3):261-286.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Nlp's clever hans moment has arrived",
                "authors": [
                    {
                        "first": "Benjamin",
                        "middle": [],
                        "last": "Heinzerling",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Journal of Cognitive Science",
                "volume": "21",
                "issue": "1",
                "pages": "159--168",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Benjamin Heinzerling. 2020. Nlp's clever hans mo- ment has arrived. Journal of Cognitive Science, 21(1):159-168.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Classifying argumentative relations using logical mechanisms and argumentation schemes",
                "authors": [
                    {
                        "first": "Yohan",
                        "middle": [],
                        "last": "Jo",
                        "suffix": ""
                    },
                    {
                        "first": "Seojin",
                        "middle": [],
                        "last": "Bang",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Reed",
                        "suffix": ""
                    },
                    {
                        "first": "Eduard",
                        "middle": [
                            "H"
                        ],
                        "last": "Hovy",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yohan Jo, Seojin Bang, Chris Reed, and Eduard H. Hovy. 2021. Classifying argumentative relations us- ing logical mechanisms and argumentation schemes. CoRR, abs/2105.07571.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "From treebank to propbank",
                "authors": [
                    {
                        "first": "Paul",
                        "middle": [],
                        "last": "Kingsbury",
                        "suffix": ""
                    },
                    {
                        "first": "Martha",
                        "middle": [],
                        "last": "Palmer",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of the Third International Conference on Language Resources and Evaluation (LREC'02)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Paul Kingsbury and Martha Palmer. 2002. From tree- bank to propbank. In Proceedings of the Third In- ternational Conference on Language Resources and Evaluation (LREC'02).",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Exploiting Background Knowledge for Argumentative Relation Classification",
                "authors": [
                    {
                        "first": "Jonathan",
                        "middle": [],
                        "last": "Kobbe",
                        "suffix": ""
                    },
                    {
                        "first": "Juri",
                        "middle": [],
                        "last": "Opitz",
                        "suffix": ""
                    },
                    {
                        "first": "Maria",
                        "middle": [],
                        "last": "Becker",
                        "suffix": ""
                    },
                    {
                        "first": "Ioana",
                        "middle": [],
                        "last": "Hulpus",
                        "suffix": ""
                    },
                    {
                        "first": "Heiner",
                        "middle": [],
                        "last": "Stuckenschmidt",
                        "suffix": ""
                    },
                    {
                        "first": "Anette",
                        "middle": [],
                        "last": "Frank",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "2nd Conference on Language, Data and Knowledge (LDK 2019",
                "volume": "70",
                "issue": "",
                "pages": "1--8",
                "other_ids": {
                    "DOI": [
                        "10.4230/OASIcs.LDK.2019.8"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jonathan Kobbe, Juri Opitz, Maria Becker, Ioana Hulpus, Heiner Stuckenschmidt, and Anette Frank. 2019. Exploiting Background Knowledge for Ar- gumentative Relation Classification. In 2nd Con- ference on Language, Data and Knowledge (LDK 2019), volume 70 of OpenAccess Series in Informat- ics (OASIcs), pages 8:1-8:14, Dagstuhl, Germany. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Scientia potentia est -on the role of knowledge in computational argumentation",
                "authors": [
                    {
                        "first": "Anne",
                        "middle": [],
                        "last": "Lauscher",
                        "suffix": ""
                    },
                    {
                        "first": "Henning",
                        "middle": [],
                        "last": "Wachsmuth",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    },
                    {
                        "first": "Goran",
                        "middle": [],
                        "last": "Glava\u0161",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Anne Lauscher, Henning Wachsmuth, Iryna Gurevych, and Goran Glava\u0161. 2021. Scientia potentia est -on the role of knowledge in computational argumenta- tion.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Explainable argument mining",
                "authors": [
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Lawrence",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "John Lawrence. 2021. Explainable argument mining. Ph.D. thesis, University of Dundee.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Semantic textual similarity measures for case-based retrieval of argument graphs",
                "authors": [
                    {
                        "first": "Mirko",
                        "middle": [],
                        "last": "Lenz",
                        "suffix": ""
                    },
                    {
                        "first": "Stefan",
                        "middle": [],
                        "last": "Ollinger",
                        "suffix": ""
                    },
                    {
                        "first": "Premtim",
                        "middle": [],
                        "last": "Sahitaj",
                        "suffix": ""
                    },
                    {
                        "first": "Ralph",
                        "middle": [],
                        "last": "Bergmann",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "International Conference on Case-Based Reasoning",
                "volume": "",
                "issue": "",
                "pages": "219--234",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mirko Lenz, Stefan Ollinger, Premtim Sahitaj, and Ralph Bergmann. 2019. Semantic textual similar- ity measures for case-based retrieval of argument graphs. In International Conference on Case-Based Reasoning, pages 219-234. Springer.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Towards an argument mining pipeline transforming texts to argument graphs",
                "authors": [
                    {
                        "first": "Mirko",
                        "middle": [],
                        "last": "Lenz",
                        "suffix": ""
                    },
                    {
                        "first": "Premtim",
                        "middle": [],
                        "last": "Sahitaj",
                        "suffix": ""
                    },
                    {
                        "first": "Sean",
                        "middle": [],
                        "last": "Kallenberg",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Coors",
                        "suffix": ""
                    },
                    {
                        "first": "Lorik",
                        "middle": [],
                        "last": "Dumani",
                        "suffix": ""
                    },
                    {
                        "first": "Ralf",
                        "middle": [],
                        "last": "Schenkel",
                        "suffix": ""
                    },
                    {
                        "first": "Ralph",
                        "middle": [],
                        "last": "Bergmann",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Computational Models of Argument: Proceedings",
                "volume": "2020",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mirko Lenz, Premtim Sahitaj, Sean Kallenberg, Christopher Coors, Lorik Dumani, Ralf Schenkel, and Ralph Bergmann. 2020. Towards an argu- ment mining pipeline transforming texts to argument graphs. Computational Models of Argument: Pro- ceedings of COMMA 2020, 326:263.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Conceptnet-a practical commonsense reasoning tool-kit",
                "authors": [
                    {
                        "first": "Hugo",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Push",
                        "middle": [],
                        "last": "Singh",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "BT technology journal",
                "volume": "22",
                "issue": "4",
                "pages": "211--226",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hugo Liu and Push Singh. 2004. Conceptnet-a practi- cal commonsense reasoning tool-kit. BT technology journal, 22(4):211-226.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Argument component classification for classroom discussions",
                "authors": [
                    {
                        "first": "Luca",
                        "middle": [],
                        "last": "Lugini",
                        "suffix": ""
                    },
                    {
                        "first": "Diane",
                        "middle": [],
                        "last": "Litman",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 5th Workshop on Argument Mining",
                "volume": "",
                "issue": "",
                "pages": "57--67",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W18-5208"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Luca Lugini and Diane Litman. 2018. Argument com- ponent classification for classroom discussions. In Proceedings of the 5th Workshop on Argument Min- ing, pages 57-67, Brussels, Belgium. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Reality: The search for objectivity or the quest for a compelling argument",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Humberto R Maturana",
                        "suffix": ""
                    }
                ],
                "year": 1988,
                "venue": "The Irish journal of psychology",
                "volume": "9",
                "issue": "1",
                "pages": "25--82",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Humberto R Maturana. 1988. Reality: The search for objectivity or the quest for a compelling argument. The Irish journal of psychology, 9(1):25-82.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "DBpedia: A multilingual cross-domain knowledge base",
                "authors": [
                    {
                        "first": "Pablo",
                        "middle": [],
                        "last": "Mendes",
                        "suffix": ""
                    },
                    {
                        "first": "Max",
                        "middle": [],
                        "last": "Jakob",
                        "suffix": ""
                    },
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Bizer",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)",
                "volume": "",
                "issue": "",
                "pages": "1813--1817",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Pablo Mendes, Max Jakob, and Christian Bizer. 2012. DBpedia: A multilingual cross-domain knowledge base. In Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12), pages 1813-1817, Istanbul, Turkey. Eu- ropean Language Resources Association (ELRA).",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Concrete vs. abstract semantics: from mental representations to functional brain mapping",
                "authors": [
                    {
                        "first": "Nadezhda",
                        "middle": [],
                        "last": "Mkrtychian",
                        "suffix": ""
                    },
                    {
                        "first": "Evgeny",
                        "middle": [],
                        "last": "Blagovechtchenski",
                        "suffix": ""
                    },
                    {
                        "first": "Diana",
                        "middle": [],
                        "last": "Kurmakaeva",
                        "suffix": ""
                    },
                    {
                        "first": "Daria",
                        "middle": [],
                        "last": "Gnedykh",
                        "suffix": ""
                    },
                    {
                        "first": "Svetlana",
                        "middle": [],
                        "last": "Kostromina",
                        "suffix": ""
                    },
                    {
                        "first": "Yury",
                        "middle": [],
                        "last": "Shtyrov",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Frontiers in human neuroscience",
                "volume": "13",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nadezhda Mkrtychian, Evgeny Blagovechtchenski, Di- ana Kurmakaeva, Daria Gnedykh, Svetlana Kostro- mina, and Yury Shtyrov. 2019. Concrete vs. ab- stract semantics: from mental representations to functional brain mapping. Frontiers in human neu- roscience, 13:267.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Probing neural network comprehension of natural language arguments",
                "authors": [
                    {
                        "first": "Timothy",
                        "middle": [],
                        "last": "Niven",
                        "suffix": ""
                    },
                    {
                        "first": "Hung-Yu",
                        "middle": [],
                        "last": "Kao",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "4658--4664",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1459"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Timothy Niven and Hung-Yu Kao. 2019. Probing neu- ral network comprehension of natural language ar- guments. In Proceedings of the 57th Annual Meet- ing of the Association for Computational Linguis- tics, pages 4658-4664, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Argumentative relation classification as plausibility ranking",
                "authors": [
                    {
                        "first": "Juri",
                        "middle": [],
                        "last": "Opitz",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 15th Conference on Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "193--202",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Juri Opitz. 2019. Argumentative relation classification as plausibility ranking. In Proceedings of the 15th Conference on Natural Language Processing (KON- VENS 2019): Long Papers, pages 193-202, Erlan- gen, Germany. German Society for Computational Linguistics & Language Technology.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Weisfeiler-leman in the bamboo: Novel amr graph metrics and a benchmark for amr graph similarity",
                "authors": [
                    {
                        "first": "Juri",
                        "middle": [],
                        "last": "Opitz",
                        "suffix": ""
                    },
                    {
                        "first": "Angel",
                        "middle": [],
                        "last": "Daza",
                        "suffix": ""
                    },
                    {
                        "first": "Anette",
                        "middle": [],
                        "last": "Frank",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2108.11949"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Juri Opitz, Angel Daza, and Anette Frank. 2021. Weisfeiler-leman in the bamboo: Novel amr graph metrics and a benchmark for amr graph similarity. arXiv preprint arXiv:2108.11949.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Dissecting content and context in argumentative relation analysis",
                "authors": [
                    {
                        "first": "Juri",
                        "middle": [],
                        "last": "Opitz",
                        "suffix": ""
                    },
                    {
                        "first": "Anette",
                        "middle": [],
                        "last": "Frank",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 6th Workshop on Argument Mining",
                "volume": "",
                "issue": "",
                "pages": "25--34",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W19-4503"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Juri Opitz and Anette Frank. 2019. Dissecting content and context in argumentative relation analysis. In Proceedings of the 6th Workshop on Argument Min- ing, pages 25-34, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Towards a decomposable metric for explainable evaluation of text generation from AMR",
                "authors": [
                    {
                        "first": "Juri",
                        "middle": [],
                        "last": "Opitz",
                        "suffix": ""
                    },
                    {
                        "first": "Anette",
                        "middle": [],
                        "last": "Frank",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
                "volume": "",
                "issue": "",
                "pages": "1504--1518",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Juri Opitz and Anette Frank. 2021. Towards a decom- posable metric for explainable evaluation of text gen- eration from AMR. In Proceedings of the 16th Con- ference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 1504-1518, Online. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "AMR similarity metrics from principles",
                "authors": [
                    {
                        "first": "Juri",
                        "middle": [],
                        "last": "Opitz",
                        "suffix": ""
                    },
                    {
                        "first": "Letitia",
                        "middle": [],
                        "last": "Parcalabescu",
                        "suffix": ""
                    },
                    {
                        "first": "Anette",
                        "middle": [],
                        "last": "Frank",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Transactions of the Association for Computational Linguistics",
                "volume": "8",
                "issue": "",
                "pages": "522--538",
                "other_ids": {
                    "DOI": [
                        "10.1162/tacl_a_00329"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Juri Opitz, Letitia Parcalabescu, and Anette Frank. 2020. AMR similarity metrics from principles. Transactions of the Association for Computational Linguistics, 8:522-538.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "Argumentative relation classification with background knowledge",
                "authors": [
                    {
                        "first": "Debjit",
                        "middle": [],
                        "last": "Paul",
                        "suffix": ""
                    },
                    {
                        "first": "Juri",
                        "middle": [],
                        "last": "Opitz",
                        "suffix": ""
                    },
                    {
                        "first": "Maria",
                        "middle": [],
                        "last": "Becker",
                        "suffix": ""
                    },
                    {
                        "first": "Jonathan",
                        "middle": [],
                        "last": "Kobbe",
                        "suffix": ""
                    },
                    {
                        "first": "Graeme",
                        "middle": [],
                        "last": "Hirst",
                        "suffix": ""
                    },
                    {
                        "first": "Anette",
                        "middle": [],
                        "last": "Frank",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Computational Models of Argument",
                "volume": "",
                "issue": "",
                "pages": "319--330",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Debjit Paul, Juri Opitz, Maria Becker, Jonathan Kobbe, Graeme Hirst, and Anette Frank. 2020. Argumen- tative relation classification with background knowl- edge. In Computational Models of Argument, pages 319-330. IOS Press.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "GloVe: Global vectors for word representation",
                "authors": [
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Pennington",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Socher",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "1532--1543",
                "other_ids": {
                    "DOI": [
                        "10.3115/v1/D14-1162"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe: Global vectors for word representation. In Proceedings of the 2014 Confer- ence on Empirical Methods in Natural Language Processing (EMNLP), pages 1532-1543, Doha, Qatar. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "Deep contextualized word representations",
                "authors": [
                    {
                        "first": "Matthew",
                        "middle": [
                            "E"
                        ],
                        "last": "Peters",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Neumann",
                        "suffix": ""
                    },
                    {
                        "first": "Mohit",
                        "middle": [],
                        "last": "Iyyer",
                        "suffix": ""
                    },
                    {
                        "first": "Matt",
                        "middle": [],
                        "last": "Gardner",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "2227--2237",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N18-1202"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word rep- resentations. In Proceedings of the 2018 Confer- ence of the North American Chapter of the Associ- ation for Computational Linguistics: Human Lan- guage Technologies, Volume 1 (Long Papers), pages 2227-2237, New Orleans, Louisiana. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "Exploring the limits of transfer learning with a unified text-totext transformer",
                "authors": [
                    {
                        "first": "Colin",
                        "middle": [],
                        "last": "Raffel",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Shazeer",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Roberts",
                        "suffix": ""
                    },
                    {
                        "first": "Katherine",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Sharan",
                        "middle": [],
                        "last": "Narang",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Matena",
                        "suffix": ""
                    },
                    {
                        "first": "Yanqi",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [
                            "J"
                        ],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Journal of Machine Learning Research",
                "volume": "21",
                "issue": "140",
                "pages": "1--67",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Colin Raffel, Noam Shazeer, Adam Roberts, Kather- ine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the limits of transfer learning with a unified text-to- text transformer. Journal of Machine Learning Re- search, 21(140):1-67.",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "Argumentative explanations for interactive recommendations",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Rago",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Cocarascu",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Bechlivanidis",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Lagnado",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Toni",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Artificial Intelligence",
                "volume": "296",
                "issue": "",
                "pages": "1--22",
                "other_ids": {
                    "DOI": [
                        "10.1016/j.artint.2021.103506"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "A Rago, O Cocarascu, C Bechlivanidis, D Lagnado, and F Toni. 2021. Argumentative explanations for interactive recommendations. Artificial Intelligence, 296:1-22.",
                "links": null
            },
            "BIBREF40": {
                "ref_id": "b40",
                "title": "Classification and clustering of arguments with contextualized word embeddings",
                "authors": [
                    {
                        "first": "Nils",
                        "middle": [],
                        "last": "Reimers",
                        "suffix": ""
                    },
                    {
                        "first": "Benjamin",
                        "middle": [],
                        "last": "Schiller",
                        "suffix": ""
                    },
                    {
                        "first": "Tilman",
                        "middle": [],
                        "last": "Beck",
                        "suffix": ""
                    },
                    {
                        "first": "Johannes",
                        "middle": [],
                        "last": "Daxenberger",
                        "suffix": ""
                    },
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Stab",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "567--578",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1054"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Nils Reimers, Benjamin Schiller, Tilman Beck, Jo- hannes Daxenberger, Christian Stab, and Iryna Gurevych. 2019. Classification and clustering of ar- guments with contextualized word embeddings. In Proceedings of the 57th Annual Meeting of the As- sociation for Computational Linguistics, pages 567- 578, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF41": {
                "ref_id": "b41",
                "title": "Bankxx: a program to generate argument through case-base search",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Edwina L Rissland",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "David",
                        "suffix": ""
                    },
                    {
                        "first": "M Timur",
                        "middle": [],
                        "last": "Skalak",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Friedman",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "Proceedings of the 4th international conference on Artificial intelligence and law",
                "volume": "",
                "issue": "",
                "pages": "117--124",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Edwina L Rissland, David B Skalak, and M Timur Friedman. 1993. Bankxx: a program to generate ar- gument through case-base search. In Proceedings of the 4th international conference on Artificial intelli- gence and law, pages 117-124.",
                "links": null
            },
            "BIBREF42": {
                "ref_id": "b42",
                "title": "End-to-end argument generation system in debating",
                "authors": [
                    {
                        "first": "Misa",
                        "middle": [],
                        "last": "Sato",
                        "suffix": ""
                    },
                    {
                        "first": "Kohsuke",
                        "middle": [],
                        "last": "Yanai",
                        "suffix": ""
                    },
                    {
                        "first": "Toshinori",
                        "middle": [],
                        "last": "Miyoshi",
                        "suffix": ""
                    },
                    {
                        "first": "Toshihiko",
                        "middle": [],
                        "last": "Yanase",
                        "suffix": ""
                    },
                    {
                        "first": "Makoto",
                        "middle": [],
                        "last": "Iwayama",
                        "suffix": ""
                    },
                    {
                        "first": "Qinghua",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "Yoshiki",
                        "middle": [],
                        "last": "Niwa",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of ACL-IJCNLP 2015 System Demonstrations",
                "volume": "",
                "issue": "",
                "pages": "109--114",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Misa Sato, Kohsuke Yanai, Toshinori Miyoshi, Toshi- hiko Yanase, Makoto Iwayama, Qinghua Sun, and Yoshiki Niwa. 2015. End-to-end argument gener- ation system in debating. In Proceedings of ACL- IJCNLP 2015 System Demonstrations, pages 109- 114.",
                "links": null
            },
            "BIBREF43": {
                "ref_id": "b43",
                "title": "Aspect-controlled neural argument generation",
                "authors": [
                    {
                        "first": "Benjamin",
                        "middle": [],
                        "last": "Schiller",
                        "suffix": ""
                    },
                    {
                        "first": "Johannes",
                        "middle": [],
                        "last": "Daxenberger",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2005.00084"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Benjamin Schiller, Johannes Daxenberger, and Iryna Gurevych. 2020. Aspect-controlled neural argument generation. arXiv preprint arXiv:2005.00084.",
                "links": null
            },
            "BIBREF44": {
                "ref_id": "b44",
                "title": "An autonomous debating system",
                "authors": [
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Slonim",
                        "suffix": ""
                    },
                    {
                        "first": "Yonatan",
                        "middle": [],
                        "last": "Bilu",
                        "suffix": ""
                    },
                    {
                        "first": "Carlos",
                        "middle": [],
                        "last": "Alzate",
                        "suffix": ""
                    },
                    {
                        "first": "Roy",
                        "middle": [],
                        "last": "Bar-Haim",
                        "suffix": ""
                    },
                    {
                        "first": "Ben",
                        "middle": [],
                        "last": "Bogin",
                        "suffix": ""
                    },
                    {
                        "first": "Francesca",
                        "middle": [],
                        "last": "Bonin",
                        "suffix": ""
                    },
                    {
                        "first": "Leshem",
                        "middle": [],
                        "last": "Choshen",
                        "suffix": ""
                    },
                    {
                        "first": "Edo",
                        "middle": [],
                        "last": "Cohen-Karlik",
                        "suffix": ""
                    },
                    {
                        "first": "Lena",
                        "middle": [],
                        "last": "Dankin",
                        "suffix": ""
                    },
                    {
                        "first": "Lilach",
                        "middle": [],
                        "last": "Edelstein",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Nature",
                "volume": "591",
                "issue": "7850",
                "pages": "379--384",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Noam Slonim, Yonatan Bilu, Carlos Alzate, Roy Bar-Haim, Ben Bogin, Francesca Bonin, Leshem Choshen, Edo Cohen-Karlik, Lena Dankin, Lilach Edelstein, et al. 2021. An autonomous debating sys- tem. Nature, 591(7850):379-384.",
                "links": null
            },
            "BIBREF45": {
                "ref_id": "b45",
                "title": "Conceptnet 5.5: An open multilingual graph of general knowledge",
                "authors": [
                    {
                        "first": "Robyn",
                        "middle": [],
                        "last": "Speer",
                        "suffix": ""
                    },
                    {
                        "first": "Joshua",
                        "middle": [],
                        "last": "Chin",
                        "suffix": ""
                    },
                    {
                        "first": "Catherine",
                        "middle": [],
                        "last": "Havasi",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Thirty-first AAAI conference on artificial intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Robyn Speer, Joshua Chin, and Catherine Havasi. 2017. Conceptnet 5.5: An open multilingual graph of gen- eral knowledge. In Thirty-first AAAI conference on artificial intelligence.",
                "links": null
            },
            "BIBREF46": {
                "ref_id": "b46",
                "title": "Parsing argumentation structures in persuasive essays",
                "authors": [
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Stab",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Computational Linguistics",
                "volume": "43",
                "issue": "3",
                "pages": "619--659",
                "other_ids": {
                    "DOI": [
                        "10.1162/COLI_a_00295"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Christian Stab and Iryna Gurevych. 2017. Parsing ar- gumentation structures in persuasive essays. Com- putational Linguistics, 43(3):619-659.",
                "links": null
            },
            "BIBREF47": {
                "ref_id": "b47",
                "title": "The uses of argument",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Stephen E Toulmin",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Stephen E Toulmin. 2003. The uses of argument. Cam- bridge university press.",
                "links": null
            },
            "BIBREF48": {
                "ref_id": "b48",
                "title": "Argumentation and explainable artificial intelligence: a survey. The Knowledge Engineering Review",
                "authors": [
                    {
                        "first": "Alexandros",
                        "middle": [],
                        "last": "Vassiliades",
                        "suffix": ""
                    },
                    {
                        "first": "Nick",
                        "middle": [],
                        "last": "Bassiliades",
                        "suffix": ""
                    },
                    {
                        "first": "Theodore",
                        "middle": [],
                        "last": "Patkos",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alexandros Vassiliades, Nick Bassiliades, and Theodore Patkos. 2021. Argumentation and explain- able artificial intelligence: a survey. The Knowledge Engineering Review, 36.",
                "links": null
            },
            "BIBREF49": {
                "ref_id": "b49",
                "title": "Building an argument search engine for the web",
                "authors": [
                    {
                        "first": "Henning",
                        "middle": [],
                        "last": "Wachsmuth",
                        "suffix": ""
                    },
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Potthast",
                        "suffix": ""
                    },
                    {
                        "first": "Khalid",
                        "middle": [
                            "Al"
                        ],
                        "last": "Khatib",
                        "suffix": ""
                    },
                    {
                        "first": "Yamen",
                        "middle": [],
                        "last": "Ajjour",
                        "suffix": ""
                    },
                    {
                        "first": "Jana",
                        "middle": [],
                        "last": "Puschmann",
                        "suffix": ""
                    },
                    {
                        "first": "Jiani",
                        "middle": [],
                        "last": "Qu",
                        "suffix": ""
                    },
                    {
                        "first": "Jonas",
                        "middle": [],
                        "last": "Dorsch",
                        "suffix": ""
                    },
                    {
                        "first": "Viorel",
                        "middle": [],
                        "last": "Morari",
                        "suffix": ""
                    },
                    {
                        "first": "Janek",
                        "middle": [],
                        "last": "Bevendorff",
                        "suffix": ""
                    },
                    {
                        "first": "Benno",
                        "middle": [],
                        "last": "Stein",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 4th Workshop on Argument Mining",
                "volume": "",
                "issue": "",
                "pages": "49--59",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Henning Wachsmuth, Martin Potthast, Khalid Al Khatib, Yamen Ajjour, Jana Puschmann, Jiani Qu, Jonas Dorsch, Viorel Morari, Janek Bevendorff, and Benno Stein. 2017. Building an argument search engine for the web. In Proceedings of the 4th Workshop on Argument Mining, pages 49-59.",
                "links": null
            },
            "BIBREF50": {
                "ref_id": "b50",
                "title": "Retrieval of the best counterargument without prior topic knowledge",
                "authors": [
                    {
                        "first": "Henning",
                        "middle": [],
                        "last": "Wachsmuth",
                        "suffix": ""
                    },
                    {
                        "first": "Shahbaz",
                        "middle": [],
                        "last": "Syed",
                        "suffix": ""
                    },
                    {
                        "first": "Benno",
                        "middle": [],
                        "last": "Stein",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "241--251",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P18-1023"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Henning Wachsmuth, Shahbaz Syed, and Benno Stein. 2018. Retrieval of the best counterargument with- out prior topic knowledge. In Proceedings of the 56th Annual Meeting of the Association for Com- putational Linguistics (Volume 1: Long Papers), pages 241-251, Melbourne, Australia. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF51": {
                "ref_id": "b51",
                "title": "The assessment of argumentation from expert opinion. Argumentation",
                "authors": [
                    {
                        "first": "H",
                        "middle": [
                            "M"
                        ],
                        "last": "Jean",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Wagemans",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "",
                "volume": "25",
                "issue": "",
                "pages": "329--339",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jean HM Wagemans. 2011. The assessment of ar- gumentation from expert opinion. Argumentation, 25(3):329-339.",
                "links": null
            },
            "BIBREF52": {
                "ref_id": "b52",
                "title": "Justification of argumentation schemes",
                "authors": [
                    {
                        "first": "Douglas",
                        "middle": [],
                        "last": "Walton",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "The Australasian Journal of Logic",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Douglas Walton. 2005. Justification of argumentation schemes. The Australasian Journal of Logic, 3.",
                "links": null
            },
            "BIBREF53": {
                "ref_id": "b53",
                "title": "Argumentation schemes",
                "authors": [
                    {
                        "first": "Douglas",
                        "middle": [],
                        "last": "Walton",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Reed",
                        "suffix": ""
                    },
                    {
                        "first": "Fabrizio",
                        "middle": [],
                        "last": "Macagno",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Douglas Walton, Christopher Reed, and Fabrizio Macagno. 2008. Argumentation schemes. Cam- bridge University Press.",
                "links": null
            },
            "BIBREF54": {
                "ref_id": "b54",
                "title": "Leveraging argumentation knowledge graph for interactive argument pair identification",
                "authors": [
                    {
                        "first": "Jian",
                        "middle": [],
                        "last": "Yuan",
                        "suffix": ""
                    },
                    {
                        "first": "Zhongyu",
                        "middle": [],
                        "last": "Wei",
                        "suffix": ""
                    },
                    {
                        "first": "Donghua",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Qi",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Changjian",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
                "volume": "",
                "issue": "",
                "pages": "2310--2319",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2021.findings-acl.203"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jian Yuan, Zhongyu Wei, Donghua Zhao, Qi Zhang, and Changjian Jiang. 2021. Leveraging argumen- tation knowledge graph for interactive argument pair identification. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 2310-2319, Online. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF55": {
                "ref_id": "b55",
                "title": "Bayesian argumentation: The practical side of probability",
                "authors": [
                    {
                        "first": "Frank",
                        "middle": [],
                        "last": "Zenker",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Bayesian Argumentation",
                "volume": "",
                "issue": "",
                "pages": "1--11",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Frank Zenker. 2013. Bayesian argumentation: The practical side of probability. In Bayesian Argumen- tation, pages 1-11. Springer.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "num": null,
                "uris": null,
                "text": "Standard, concept-focus and structure focus."
            },
            "FIGREF3": {
                "type_str": "figure",
                "num": null,
                "uris": null,
                "text": "Full example (edge-labels omitted for simplified display) of explicit alignments between argument graphs (top) and automatically induced conclusions (bottom). Here, the conclusions help explaining argument similarity, since the alignment connects fracking in both graphs, as well as water wells and toxic wastewater, showing how contaminating of the wells (left graphs) actually happens: wells are polluted with toxic wastewater (right graphs).not justif. nov.justif. jus. & nov. not nov. Annotation results of two quality aspects with IAA: K=0.49 (justification) and K=0.57 (novelty)."
            },
            "TABREF0": {
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table><tr><td/><td/><td/><td/><td>F1 score</td><td/><td>rank</td></tr><tr><td/><td>metric</td><td>model type</td><td>macro</td><td>sim</td><td>not sim</td></tr><tr><td/><td>human</td><td>?</td><td>78.34</td><td>74.74</td><td>81.94</td><td>0</td></tr><tr><td/><td>random</td><td>-</td><td>48.01</td><td>34.31</td><td>61.71</td><td>16</td></tr><tr><td/><td>Tf-Idf</td><td>f (a, a )</td><td>61.18</td><td>52.30</td><td>70.07</td><td>10</td></tr><tr><td>Baselines</td><td colspan=\"2\">InfSnt-fText InfSnt-GloVe f (a, a ) f (a, a ) GloVe Emb. f (a, a ) ELMo Emb. f (a, a )</td><td>66.21 64.94 64.68 64.47</td><td>58.66 54.72 56.32 53.55</td><td>73.76 75.17 73.04 75.38</td><td>3/4 9 8 7</td></tr><tr><td/><td colspan=\"2\">BERT Embe. f (a, a )</td><td>65.39</td><td>52.32</td><td>78.48</td><td>6</td></tr><tr><td/><td>AMR</td><td>f (a, a )</td><td>65.44</td><td/><td/></tr></table>",
                "text": "\u00b10.5 55.23 \u00b10.8 75.66 \u00b10.4 5 AMR f (c, c ) 57.31 \u00b10.6 45.73 \u00b11.2 68.89 \u00b10.4 14 AMR f (a \u2295 c, a \u2295 c ) 66.21 \u00b10.3 56.98 \u00b10.6 75.42 \u00b10.1 3/4 AMR C-focus f (a, a ) 68.17 \u00b10.3 59.2 \u00b10.6 77.14 \u00b10.2 2 \u2666\u2663 AMR C-focus f (c, c ) 60.29 \u00b10.5 49.33 \u00b10.4 71.26 \u00b10.8 13 Ours AMR C-focus f (a \u2295 c, a \u2295 c ) 68.70 \u00b10.5 60.35 \u00b11.0 77.04 \u00b10.1 1 \u2666\u2663 AMR S-focus f (a, a ) 60.74 \u00b10.5 49.94 \u00b10.8 71.55 \u00b10.5 12 AMR S-focus f (c, c ) 56.48 \u00b10.3 44.96 \u00b10.6 67.99 \u00b10.2 15 AMR S-focus f (a \u2295 c, a \u2295 c ) 61.14 \u00b10.3 49.74 \u00b10.5 72.55 \u00b10.5 11"
            },
            "TABREF1": {
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table/>",
                "text": "Main results."
            },
            "TABREF2": {
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table><tr><td>cupying rank 3-5 of all examined methods. 7</td></tr><tr><td>6 Analyses &amp; Explainability</td></tr><tr><td>While these model ablations provide a global view</td></tr><tr><td>of what matters in argument similarity rating, we</td></tr><tr><td>now analyze the impact of finer semantic features.</td></tr></table>",
                "text": "Semantic predictors of human argument similarity. \u2020/ \u2021: significant with p<0.05/p<0.005."
            },
            "TABREF4": {
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table><tr><td>: Macro F1 scores for predicted conclusion qual-</td></tr><tr><td>ity using AMR-based models f (a, c), assessing various</td></tr><tr><td>aspects. For single features, + show positive correla-</td></tr><tr><td>tion; -negative correlation (levels 0.05, 0.005, 0.0005).</td></tr></table>",
                "text": ""
            },
            "TABREF6": {
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table/>",
                "text": "Predictors of conclusion usefulness."
            },
            "TABREF7": {
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table/>",
                "text": "AMR metrics detecting dissimilar arguments."
            }
        }
    }
}