File size: 85,858 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T02:09:57.424320Z"
    },
    "title": "Key Point Analysis via Contrastive Learning and Extractive Argument Summarization",
    "authors": [
        {
            "first": "Milad",
            "middle": [],
            "last": "Alshomary",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Paderborn University",
                "location": {
                    "settlement": "Germany"
                }
            },
            "email": "milad.alshomary@upb.de"
        },
        {
            "first": "Timon",
            "middle": [],
            "last": "Gurke",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Paderborn University",
                "location": {
                    "settlement": "Germany"
                }
            },
            "email": ""
        },
        {
            "first": "Shahbaz",
            "middle": [],
            "last": "Syed",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Philipp",
            "middle": [],
            "last": "Heinisch",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Maximilian",
            "middle": [],
            "last": "Splieth\u00f6ver",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Paderborn University",
                "location": {
                    "settlement": "Germany"
                }
            },
            "email": ""
        },
        {
            "first": "Philipp",
            "middle": [],
            "last": "Cimiano",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Martin",
            "middle": [],
            "last": "Potthast",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Henning",
            "middle": [],
            "last": "Wachsmuth",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Paderborn University",
                "location": {
                    "settlement": "Germany"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Key point analysis is the task of extracting a set of concise and high-level statements from a given collection of arguments, representing the gist of these arguments. This paper presents our proposed approach to the Key Point Analysis shared task, collocated with the 8th Workshop on Argument Mining. The approach integrates two complementary components. One component employs contrastive learning via a siamese neural network for matching arguments to key points; the other is a graph-based extractive summarization model for generating key points. In both automatic and manual evaluation, our approach was ranked best among all submissions to the shared task.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Key point analysis is the task of extracting a set of concise and high-level statements from a given collection of arguments, representing the gist of these arguments. This paper presents our proposed approach to the Key Point Analysis shared task, collocated with the 8th Workshop on Argument Mining. The approach integrates two complementary components. One component employs contrastive learning via a siamese neural network for matching arguments to key points; the other is a graph-based extractive summarization model for generating key points. In both automatic and manual evaluation, our approach was ranked best among all submissions to the shared task.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Informed decision-making on a controversial issue usually requires considering several pro and con arguments. To answer the question \"Is organic food healthier?\", for example, people may query a search engine that retrieves arguments from diverse sources such as news editorials, debate portals, and social media discussions, which can then be compared and weighed. However, given the constant stream of digital information, this process may be time-intensive and overwhelming. Search engines and similar support systems may therefore benefit from employing argument summarization, that is, the generated summaries may aid the decisionmaking by helping users quickly choose relevant arguments with a specific stance towards the topic.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Argument summarization has been tackled both for single documents and multiple documents (Bhatia et al., 2014; Egan et al., 2016) . A specific multi-document scenario introduced by Bar-Haim et al. (2020a) is key point analysis where the goal is to map a collection of arguments to a set of salient key points (say, high-level arguments) to provide a quantitative summary of these arguments.",
                "cite_spans": [
                    {
                        "start": 89,
                        "end": 110,
                        "text": "(Bhatia et al., 2014;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 111,
                        "end": 129,
                        "text": "Egan et al., 2016)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 181,
                        "end": 204,
                        "text": "Bar-Haim et al. (2020a)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The Key Point Analysis (KPA) shared task by Friedman et al. (2021) 1 invited systems for two complementary subtasks: matching arguments to key points and generating key points from a given set of arguments (Section 3). As part of this shared task, we present an approach with two complementary components, one for each subtask. For key point matching, we propose a model that learns a semantic embedding space where instances that match are closer to each other while non-matching instances are further away from each other. We learn to embed instances by utilizing a contrastive loss function in a siamese neural network (Bromley et al., 1994) . For the key point generation, we present a graph-based extractive summarization approach similar to the work of Alshomary et al. (2020a) . It utilizes a PageRank variant to rank sentences in the input arguments by quality and predicts the top-ranked sentences to be key points. In an additional experiment, we also investigated an approach that performs aspect identification on arguments, followed by aspect clustering to ensure diversity. Finally, arguments with the best coverage of these diverse aspects are extracted as key points.",
                "cite_spans": [
                    {
                        "start": 44,
                        "end": 66,
                        "text": "Friedman et al. (2021)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 622,
                        "end": 644,
                        "text": "(Bromley et al., 1994)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 759,
                        "end": 783,
                        "text": "Alshomary et al. (2020a)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Our approaches yielded the top performance among all submissions to the shared task in both quantitative and qualitative evaluation conducted by the organizers of the shared task (Section 5). 2 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In summarization, arguments are relatively understudied compared to other document types such as news articles or scientific literature, but a few approaches have come up in the last years.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "In an extractive manner, argument mining has been employed to identify the main claim as the summary of an argument (Petasis and Karkaletsis, 2016; Daxenberger et al., 2017) . Wang and Ling (2016) used a sequence-to-sequence model for the abstractive summarization of arguments from online debate portals. A complementary task of generating conclusions as informative argument summaries was introduced by Syed et al. (2021) . Similar to Alshomary et al. (2020b) who inferred a conclusion's target with a triplet neural network, we rely on contrastive learning here, using a siamese network though. Also, we build upon ideas of Alshomary et al. (2020a) who proposed a graph-based model using PageRank (Page et al., 1999) that extracts the argument's conclusion and the main supporting reason as an extractive summary. All these works represent the single-document summarization paradigm where only one argument is summarized at a time, whereas the given shared task is a multi-document summarization setting.",
                "cite_spans": [
                    {
                        "start": 116,
                        "end": 147,
                        "text": "(Petasis and Karkaletsis, 2016;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 148,
                        "end": 173,
                        "text": "Daxenberger et al., 2017)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 176,
                        "end": 196,
                        "text": "Wang and Ling (2016)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 405,
                        "end": 423,
                        "text": "Syed et al. (2021)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 437,
                        "end": 461,
                        "text": "Alshomary et al. (2020b)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 700,
                        "end": 719,
                        "text": "(Page et al., 1999)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "The first approaches to multi-document argument summarization aimed to identify the main points of online discussions. Among these, Egan et al. (2016) grouped verb frames into pattern clusters that serve as input to a structured summarization pipeline, whereas Misra et al. (2016) proposed a more condensed approach by directly extracting argumentative sentences, summarized by similarity clustering. Bar-Haim et al. (2020a) continued this line of research by introducing the notion of key points and contributing the ArgsKP corpus, a collection of arguments mapped to manually-created key points. These key points are concise and selfcontained sentences that capture the gist of the arguments. Later, Bar-Haim et al. (2020b) proposed a quantitative argument summarization framework that automatically extracts key points from a set of arguments. Building upon this research, our approach aims to increase the quality of such generated key points, including a strong relation identifier between arguments and key points.",
                "cite_spans": [
                    {
                        "start": 261,
                        "end": 280,
                        "text": "Misra et al. (2016)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 401,
                        "end": 424,
                        "text": "Bar-Haim et al. (2020a)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 702,
                        "end": 725,
                        "text": "Bar-Haim et al. (2020b)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "In the context of computational argumentation, Bar-Haim et al. (2020a) introduced the notion of a key point as a high-level argument that resembles a natural language summary of a collection of more descriptive arguments. Specifically, the authors defined a good key point as being \"general enough to match a significant portion of the arguments, yet informative enough to make a useful summary.\" In this context, the KPA shared task consists of two subtasks as described below:",
                "cite_spans": [
                    {
                        "start": 47,
                        "end": 70,
                        "text": "Bar-Haim et al. (2020a)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task Description",
                "sec_num": "3"
            },
            {
                "text": "1. Key point matching. Given a set of arguments on a certain topic that are grouped by their stance and a set of key points, assign each argument to a key point.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task Description",
                "sec_num": "3"
            },
            {
                "text": "2. Key point generation and matching. Given a set of arguments on a certain topic that are grouped by their stance, first generate five to ten key points summarizing the arguments. Then, match each argument in the set to the generated key points (as in the previous track).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task Description",
                "sec_num": "3"
            },
            {
                "text": "Data We start from the dataset provided by the organizers as described in Friedman et al. (2021) . The dataset contains 28 controversial topics, with 6515 arguments and a total of 243 key points. For each argument, its stance towards the topic as well as a quality score are given. Each topic is represented by at least three key points, with at least one key point per stance and at least three arguments matched to a key point. From the given arguments, 4.7% are unmatched, 67.5% belong to a single key point, and 5.0% belong to multiple key points. The remaining 22.8% of the arguments have ambiguous labels, meaning that the annotators could not agree on a correct matching to the key points. The final dataset contains 24,093 argument-key point pairs, of which 20.7% are labeled as matching. To develop our approach, we use the split as provided by the organizers with 24 topics for training, four topics for validation, and three topics for testing.",
                "cite_spans": [
                    {
                        "start": 74,
                        "end": 96,
                        "text": "Friedman et al. (2021)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task Description",
                "sec_num": "3"
            },
            {
                "text": "Our approach consists of two components, each corresponding to one subtask of the KPA shared task. The first subtask of matching arguments to key points is modeled as a contrastive learning task using a siamese neural network. The second subtask requires generating key points for a collection of arguments and then matching them to the arguments. We investigated two models for this subtask: One is a graph-based extractive summarization model utilizing PageRank (Page et al., 1999) to extract sentences representing the key points; the other identifies aspects from the arguments and selects the most representative sentences that maximize the coverage of these aspects as the key points.",
                "cite_spans": [
                    {
                        "start": 464,
                        "end": 483,
                        "text": "(Page et al., 1999)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Approach",
                "sec_num": "4"
            },
            {
                "text": "Conceptually, we consider pairs of arguments and key points that are close to each other in a semantic embedding space as possible candidates for matching. Furthermore, we seek to transform this space key point kp",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Key Point Matching",
                "sec_num": "4.1"
            },
            {
                "text": "other kp' a 1 a 2 a 3 key point f(kp) other f(kp') f(a 1 ) f(a 2 ) f(a 3 )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Key Point Matching",
                "sec_num": "4.1"
            },
            {
                "text": "Learned embedding space Figure 1 : We learn to transform an embedding space into a new space in which matching pairs of key point and argument (e.g., kp and a 1 ) are closer to each other, and the distance between non-matching pairs (e.g., kp \u2032 and a 1 ) is larger. For simplicity, kp and kp \u2032 each represent a concatenation of key point and topic.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 24,
                        "end": 32,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Default embedding space",
                "sec_num": null
            },
            {
                "text": "into a new embedding space where matching pairs are closer and the non-matching ones are more distant from each other (Figure 1 ). To do so, we utilize a siamese neural network with a contrastive loss function. Specifically, in the training phase, the input is a topic along with a key point, an argument, and a label (matching or not). First, we use a pretrained language model to encode the tokens of the argument as well as those of the concatenation of the topic and the key point. Then, we pass their embeddings through a siamese neural network, which is a mean-pooling layer that aggregates the token embeddings of each input, resulting in two sentencelevel embeddings. We compute the contrastive loss using these embeddings as follows:",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 118,
                        "end": 127,
                        "text": "(Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Default embedding space",
                "sec_num": null
            },
            {
                "text": "L = \u2212y \u2022 log(\u0177) + (1 \u2212 y) \u2022 log(1 \u2212\u0177)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Default embedding space",
                "sec_num": null
            },
            {
                "text": "where\u0177 is the cosine similarity of the embeddings, and y reflects whether a pair matches (1) or not (0).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Default embedding space",
                "sec_num": null
            },
            {
                "text": "Our primary model for key point generation is a graph-based extractive summarization model. Additionally, we also investigate clustering the aspects of the given collection of arguments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Key Point Generation",
                "sec_num": "4.2"
            },
            {
                "text": "Graph-based Summarization Following the work of Alshomary et al. (2020a), we first construct an undirected graph with the arguments' sentences as nodes. As a filtering step, we compute argument quality scores for each sentence as Toledo et al. (2019) and exclude low-quality arguments from the graph. Next, we employ our key point matching model (Section 4.1) to compute the edge weight between two nodes as the pairwise matching score of the corresponding sentences. Only nodes with a score above a defined threshold are connected via an edge. An example graph is sketched in Figure 2 . Finally, we use a variant of PageRank (Page et al., 1999) to compute an importance score P (s i ) for each sentence s i as follows:",
                "cite_spans": [
                    {
                        "start": 230,
                        "end": 250,
                        "text": "Toledo et al. (2019)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 626,
                        "end": 645,
                        "text": "(Page et al., 1999)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 577,
                        "end": 585,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Key Point Generation",
                "sec_num": "4.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P (si) = (1 \u2212 d) \u2022 s j \u0338 =s i match(si, sj) s k \u0338 =s j match(sj, s k ) P (sj) + d \u2022 qual(si) s k qual(s k )",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Key Point Generation",
                "sec_num": "4.2"
            },
            {
                "text": "where d is a damping factor that can be configured to bias the algorithm towards the argument quality score qual or the matching score match. To ensure diversity, we iterate through the ranked list of sentences (in descending order), adding a sentence to the final set of key points if its maximum matching score with the already selected candidates is below a certain threshold.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Key Point Generation",
                "sec_num": "4.2"
            },
            {
                "text": "Aspect Clustering Extracting key points is conceptually similar to identifying aspects (Bar-Haim et al., 2020a) , which inspired our clustering approach that selects representative sentences from multiple aspect clusters as the final key points. We employ the tagger of Schiller et al. (2021) to extract the arguments' aspects (on average, 2.1 aspects per argument). To tackle the lack of diversity, we follow Heinisch and Cimiano (2021) and create k diverse aspect clusters by projecting the extracted aspect phrases to an embedding space. Next, we model the candidate selection of argument sentences as the set cover problem. Specifically, the",
                "cite_spans": [
                    {
                        "start": 87,
                        "end": 111,
                        "text": "(Bar-Haim et al., 2020a)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 270,
                        "end": 292,
                        "text": "Schiller et al. (2021)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 410,
                        "end": 437,
                        "text": "Heinisch and Cimiano (2021)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Key Point Generation",
                "sec_num": "4.2"
            },
            {
                "text": "Approach R-1 R-2 R-L",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Key Point Generation",
                "sec_num": "4.2"
            },
            {
                "text": "Graph-based Summarization 19.8 3.5 18.0 Aspect Clustering 18.9 4.7 17.1 Table 1 : ROUGE scores on the test set for our two approaches to key point generation.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 72,
                        "end": 79,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Key Point Generation",
                "sec_num": "4.2"
            },
            {
                "text": "final set of key points summarizing the arguments for a given topic and stance maximizes the coverage of the set of arguments' aspects. To this end, we apply greedy approximation for selecting our candidates, where an argument sentence is chosen if it covers the maximum number of unique aspect clusters while having the smallest overlap with the clusters covered by the already selected candidates. Also, to avoid redundant key points, we compute its semantic similarity to the already selected candidates in each candidate selection step, and we add it to the final set if its score is below a certain threshold.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Key Point Generation",
                "sec_num": "4.2"
            },
            {
                "text": "In the following, we present implementation details of our two components, and we report on their quantitative and qualitative results.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments and Evaluation",
                "sec_num": "5"
            },
            {
                "text": "We employed RoBERTa-large (Liu and Lapata, 2019) for encoding the tokens of the two inputs of key point matching to the siamese neural network, which acts as a mean-pooling layer and projects the encoder outputs (matrix of token embeddings) into a sentence embedding of size 768. We used Sentence-BERT (Reimers and Gurevych, 2019) to train our model for 10 epochs, with batch size 32, and maximum input length of 70, leaving all other parameters to their defaults. For automatic evaluation, we computed both strict and relaxed mean Average Precision (mAP) following Friedman et al. (2021) . In cases where there is no majority label for matching, the relaxed mAP considers them to be a match while the strict mAP considers them as not matching. In the development phase, we trained our model on the training split and evaluated on the validation split provided by the organizers. The strict and relaxed mAP on the validation set were 0.84 and 0.96 respectively. For the final submission, we did a five-fold cross validation on the combined data (training and validation splits) creating an ensemble for the matching (as per the mean score).",
                "cite_spans": [
                    {
                        "start": 26,
                        "end": 48,
                        "text": "(Liu and Lapata, 2019)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 302,
                        "end": 330,
                        "text": "(Reimers and Gurevych, 2019)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 566,
                        "end": 588,
                        "text": "Friedman et al. (2021)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Key Point Matching",
                "sec_num": "5.1"
            },
            {
                "text": "For the graph-based summarization model, we employed Spacy (Honnibal et al., 2020) to split the arguments into sentences. Similar to (Bar-Haim et al., 2020b) , only sentences with a minimum of 5 and a maximum of 20 tokens, and not starting with a pronoun, were used for building the graph. Argument quality scores for each sentence were obtained from Project Debater's API (Toledo et al., 2019) 3 . We selected the thresholds for the parameters d, qual and match in Equation 1 as 0.2, 0.8 and 0.4 respectively, optimizing for ROUGE (Lin, 2004) . In particular, we computed ROUGE-L between the ground-truth key points and the top 10 ranked sentences as our predictions, averaged over all the topic and stance combinations in the training split. We excluded sentences with a matching score higher than 0.8 with the selected candidates to minimize redundancy.",
                "cite_spans": [
                    {
                        "start": 59,
                        "end": 82,
                        "text": "(Honnibal et al., 2020)",
                        "ref_id": null
                    },
                    {
                        "start": 133,
                        "end": 157,
                        "text": "(Bar-Haim et al., 2020b)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 373,
                        "end": 394,
                        "text": "(Toledo et al., 2019)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 532,
                        "end": 543,
                        "text": "(Lin, 2004)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Key Point Generation",
                "sec_num": "5.2"
            },
            {
                "text": "For aspect clustering, we created 15 clusters per topic and stance combination. After greedy approximation of the candidate sentences, we removed redundant ones using a threshold of 0.65 for the normalized BERTScore (Zhang et al., 2020) with the previously selected candidates.",
                "cite_spans": [
                    {
                        "start": 216,
                        "end": 236,
                        "text": "(Zhang et al., 2020)",
                        "ref_id": "BIBREF22"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Key Point Generation",
                "sec_num": "5.2"
            },
            {
                "text": "Comparison of both approaches To select our primary approach for key point generation, we first performed an automatic evaluation of the aforementioned models on the test set using ROUGE (Table 1) . Additionally, we performed a manual evaluation via pairwise comparison of the extracted key points for both models for a given topic and stance.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 187,
                        "end": 196,
                        "text": "(Table 1)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Key Point Generation",
                "sec_num": "5.2"
            },
            {
                "text": "Examples of key points from both the models are shown in Table 2 . The key points from graph-based summarization model are relatively longer. This also improves their informativeness, matching findings of Syed et al. (2021) . For the aspect clustering, we observe that the key points are more focused on specific aspects such as \"disease\" (for Pro) and \"effectiveness\" (for Con). In a real-world application, this may provide the flexibility to choose key points by aspects of interest to the end-user, especially with further improvement of aspect tagger by avoiding non-essential extracted phrases as \"mandatory\". Hence, given the task of generating a quantitative summary of a collection of arguments, we believe that the graph-based summary provides",
                "cite_spans": [
                    {
                        "start": 205,
                        "end": 223,
                        "text": "Syed et al. (2021)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 57,
                        "end": 64,
                        "text": "Table 2",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Key Point Generation",
                "sec_num": "5.2"
            },
            {
                "text": "Stance Graph-based Summarization Aspect Clustering",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Topic",
                "sec_num": null
            },
            {
                "text": "Routine child vaccinations should be mandatory",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Topic",
                "sec_num": null
            },
            {
                "text": "(1) Child vaccinations should be mandatory to provide decent health care to all. (2) Vaccines help children grow up healthy and avoid dangerous diseases.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Pro",
                "sec_num": null
            },
            {
                "text": "(3) Child vaccinations should be mandatory so our children will be safe and protected.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Pro",
                "sec_num": null
            },
            {
                "text": "(1) Child vaccination is needed for children, they get sick too. (2) Routine child vaccinations should be mandatory to prevent the disease. (3) Yes as they protect children from life threatening and highly infectious diseases.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Pro",
                "sec_num": null
            },
            {
                "text": "Routine child vaccinations should be mandatory",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Pro",
                "sec_num": null
            },
            {
                "text": "(1) Vaccination should exclude children to avoid the side effects that can appear on them.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Con",
                "sec_num": null
            },
            {
                "text": "(2) Parents should have the freedom to decide what they consider best for their children.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Con",
                "sec_num": null
            },
            {
                "text": "(3) The child population has a low degree of vulnerability, so vaccination is not urgent yet.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Con",
                "sec_num": null
            },
            {
                "text": "(1) Child vaccination shouldn't be mandatory because the virus isn't effective in children.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Con",
                "sec_num": null
            },
            {
                "text": "(2) Child vaccinations should not be mandatory because vaccines are expensive. (3) It has not been 100% proven if the vaccine is effective. Table 3 : Final evaluation results of both tracks, comparing our approach (mspl) to the top two submitted approaches, along with Bar-Haim et al. (2020b) approach (bar_h). The generated key points were ranked in terms of how relevant (Rel.) and representative (Rep.) of the input arguments, as well as their polarity (Pol.) a more comprehensive overview and chose this as our preferred approach for key point generation.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 140,
                        "end": 147,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Con",
                "sec_num": null
            },
            {
                "text": "In key point matching, our approach obtained a strict mAP of 0.789 and a relaxed mAP of 0.927 on the test set, the best result among all participating approaches. For the second track, in addition to evaluating the key point matching task, the shared task organizers manually evaluated the generated key points through a crowdsourcing study in which submitted approaches were ranked according to the quality of their generated key points. Table  3 presents the evaluation results of the top three submitted approaches, along with the reference approach of Bar-Haim et al. (2020b) . Among the submitted approaches, our approach was ranked the best in both the key point generation task as well as the key point matching task. For complete details on the evaluation, we refer to the task organizers' report (Friedman et al., 2021) .",
                "cite_spans": [
                    {
                        "start": 556,
                        "end": 579,
                        "text": "Bar-Haim et al. (2020b)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 805,
                        "end": 828,
                        "text": "(Friedman et al., 2021)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 439,
                        "end": 447,
                        "text": "Table  3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Shared Task's Evaluation Results",
                "sec_num": "5.3"
            },
            {
                "text": "This paper has presented a framework to tackle the key point analysis of arguments. For matching arguments to key points, we achieved the best performance in the KPA shared task via contrastive learning. For key point generation, we developed a graph-based extractive summarization model that output informative key points of high quality for a collection of arguments. We see abstractive key point generation as part of our future work.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "https://2021.argmining.org/shared_task_ibm, last accessed: 2021-08-08 2 The code is available under https://github.com/webis-de/ ArgMining-21",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Available under: https://early-access-program.debater.res. ibm.com/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Extractive snippet generation for arguments",
                "authors": [
                    {
                        "first": "Milad",
                        "middle": [],
                        "last": "Alshomary",
                        "suffix": ""
                    },
                    {
                        "first": "Nick",
                        "middle": [],
                        "last": "D\u00fcsterhus",
                        "suffix": ""
                    },
                    {
                        "first": "Henning",
                        "middle": [],
                        "last": "Wachsmuth",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval, SIGIR 2020, Virtual Event",
                "volume": "",
                "issue": "",
                "pages": "1969--1972",
                "other_ids": {
                    "DOI": [
                        "10.1145/3397271.3401186"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Milad Alshomary, Nick D\u00fcsterhus, and Henning Wachsmuth. 2020a. Extractive snippet generation for arguments. In Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval, SIGIR 2020, Virtual Event, China, July 25-30, 2020, pages 1969-1972. ACM.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Target inference in argument conclusion generation",
                "authors": [
                    {
                        "first": "Milad",
                        "middle": [],
                        "last": "Alshomary",
                        "suffix": ""
                    },
                    {
                        "first": "Shahbaz",
                        "middle": [],
                        "last": "Syed",
                        "suffix": ""
                    },
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Potthast",
                        "suffix": ""
                    },
                    {
                        "first": "Henning",
                        "middle": [],
                        "last": "Wachsmuth",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "2020",
                "issue": "",
                "pages": "4334--4345",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.acl-main.399"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Milad Alshomary, Shahbaz Syed, Martin Potthast, and Henning Wachsmuth. 2020b. Target inference in ar- gument conclusion generation. In Proceedings of the 58th Annual Meeting of the Association for Compu- tational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 4334-4345. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "From arguments to key points: Towards automatic argument summarization",
                "authors": [
                    {
                        "first": "Roy",
                        "middle": [],
                        "last": "Bar-Haim",
                        "suffix": ""
                    },
                    {
                        "first": "Lilach",
                        "middle": [],
                        "last": "Eden",
                        "suffix": ""
                    },
                    {
                        "first": "Roni",
                        "middle": [],
                        "last": "Friedman",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Kantor",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Lahav",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Slonim",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "4029--4039",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Roy Bar-Haim, Lilach Eden, Roni Friedman, Yoav Kan- tor, Dan Lahav, and Noam Slonim. 2020a. From arguments to key points: Towards automatic argu- ment summarization. In Proceedings of the 58th An- nual Meeting of the Association for Computational Linguistics, pages 4029-4039. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Quantitative argument summarization and beyond: Crossdomain key point analysis",
                "authors": [
                    {
                        "first": "Roy",
                        "middle": [],
                        "last": "Bar-Haim",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Kantor",
                        "suffix": ""
                    },
                    {
                        "first": "Lilach",
                        "middle": [],
                        "last": "Eden",
                        "suffix": ""
                    },
                    {
                        "first": "Roni",
                        "middle": [],
                        "last": "Friedman",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Lahav",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Slonim",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
                "volume": "2020",
                "issue": "",
                "pages": "39--49",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.emnlp-main.3"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Roy Bar-Haim, Yoav Kantor, Lilach Eden, Roni Fried- man, Dan Lahav, and Noam Slonim. 2020b. Quanti- tative argument summarization and beyond: Cross- domain key point analysis. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, Novem- ber 16-20, 2020, pages 39-49. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Summarizing online forum discussions -can dialog acts of individual messages help?",
                "authors": [
                    {
                        "first": "Sumit",
                        "middle": [],
                        "last": "Bhatia",
                        "suffix": ""
                    },
                    {
                        "first": "Prakhar",
                        "middle": [],
                        "last": "Biyani",
                        "suffix": ""
                    },
                    {
                        "first": "Prasenjit",
                        "middle": [],
                        "last": "Mitra",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "2127--2131",
                "other_ids": {
                    "DOI": [
                        "10.3115/v1/d14-1226"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Sumit Bhatia, Prakhar Biyani, and Prasenjit Mitra. 2014. Summarizing online forum discussions -can dialog acts of individual messages help? In Proceedings of the 2014 Conference on Empirical Methods in Nat- ural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pages 2127-2131. ACL.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Signature verification using a \"siamese\" time delay neural network",
                "authors": [
                    {
                        "first": "Jane",
                        "middle": [],
                        "last": "Bromley",
                        "suffix": ""
                    },
                    {
                        "first": "Isabelle",
                        "middle": [],
                        "last": "Guyon",
                        "suffix": ""
                    },
                    {
                        "first": "Yann",
                        "middle": [],
                        "last": "Lecun",
                        "suffix": ""
                    },
                    {
                        "first": "Eduard",
                        "middle": [],
                        "last": "S\u00e4ckinger",
                        "suffix": ""
                    },
                    {
                        "first": "Roopak",
                        "middle": [],
                        "last": "Shah",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "Advances in neural information processing systems",
                "volume": "",
                "issue": "",
                "pages": "737--744",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard S\u00e4ckinger, and Roopak Shah. 1994. Signature verifi- cation using a \"siamese\" time delay neural network. In Advances in neural information processing sys- tems, pages 737-744.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "What is the essence of a claim? cross-domain claim identification",
                "authors": [
                    {
                        "first": "Johannes",
                        "middle": [],
                        "last": "Daxenberger",
                        "suffix": ""
                    },
                    {
                        "first": "Steffen",
                        "middle": [],
                        "last": "Eger",
                        "suffix": ""
                    },
                    {
                        "first": "Ivan",
                        "middle": [],
                        "last": "Habernal",
                        "suffix": ""
                    },
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Stab",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "2055--2066",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D17-1218"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Johannes Daxenberger, Steffen Eger, Ivan Habernal, Christian Stab, and Iryna Gurevych. 2017. What is the essence of a claim? cross-domain claim identi- fication. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2055-2066, Copenhagen, Denmark. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Summarising the points made in online political debates",
                "authors": [
                    {
                        "first": "Charlie",
                        "middle": [],
                        "last": "Egan",
                        "suffix": ""
                    },
                    {
                        "first": "Advaith",
                        "middle": [],
                        "last": "Siddharthan",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [
                            "Z"
                        ],
                        "last": "Wyner",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the Third Workshop on Argument Mining, hosted by the 54th Annual Meeting of the Association for Computational Linguistics, ArgMining@ACL 2016",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/w16-2816"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Charlie Egan, Advaith Siddharthan, and Adam Z. Wyner. 2016. Summarising the points made in online politi- cal debates. In Proceedings of the Third Workshop on Argument Mining, hosted by the 54th Annual Meet- ing of the Association for Computational Linguistics, ArgMining@ACL 2016, August 12, Berlin, Germany. The Association for Computer Linguistics.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Overview of KPA-2021 shared task: Key point based quantitative summarization",
                "authors": [
                    {
                        "first": "Roni",
                        "middle": [],
                        "last": "Friedman",
                        "suffix": ""
                    },
                    {
                        "first": "Lena",
                        "middle": [],
                        "last": "Dankin",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Katz",
                        "suffix": ""
                    },
                    {
                        "first": "Yufang",
                        "middle": [],
                        "last": "Hou",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Slonim",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Roni Friedman, Lena Dankin, Yoav Katz, Yufang Hou, and Noam Slonim. 2021. Overview of KPA-2021 shared task: Key point based quantitative summariza- tion.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "A multitask approach to argument frame classification at variable granularity levels. it -Information Technology",
                "authors": [
                    {
                        "first": "Philipp",
                        "middle": [],
                        "last": "Heinisch",
                        "suffix": ""
                    },
                    {
                        "first": "Philipp",
                        "middle": [],
                        "last": "Cimiano",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "63",
                "issue": "",
                "pages": "59--72",
                "other_ids": {
                    "DOI": [
                        "10.1515/itit-2020-0054"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Philipp Heinisch and Philipp Cimiano. 2021. A multi- task approach to argument frame classification at vari- able granularity levels. it -Information Technology, 63(1):59-72.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Sofie Van Landeghem, and Adriane Boyd. 2020. spaCy: Industrialstrength Natural Language Processing in Python",
                "authors": [
                    {
                        "first": "Matthew",
                        "middle": [],
                        "last": "Honnibal",
                        "suffix": ""
                    },
                    {
                        "first": "Ines",
                        "middle": [],
                        "last": "Montani",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.5281/zenodo.1212303"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Matthew Honnibal, Ines Montani, Sofie Van Lan- deghem, and Adriane Boyd. 2020. spaCy: Industrial- strength Natural Language Processing in Python.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "ROUGE: A package for automatic evaluation of summaries",
                "authors": [
                    {
                        "first": "Chin-Yew",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Text Summarization Branches Out",
                "volume": "",
                "issue": "",
                "pages": "74--81",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chin-Yew Lin. 2004. ROUGE: A package for auto- matic evaluation of summaries. In Text Summariza- tion Branches Out, pages 74-81, Barcelona, Spain. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Text summarization with pretrained encoders",
                "authors": [
                    {
                        "first": "Yang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Mirella",
                        "middle": [],
                        "last": "Lapata",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "3730--3740",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1387"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yang Liu and Mirella Lapata. 2019. Text summariza- tion with pretrained encoders. In Proceedings of the 2019 Conference on Empirical Methods in Natu- ral Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3730-3740, Hong Kong, China. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Measuring the similarity of sentential arguments in dialogue",
                "authors": [
                    {
                        "first": "Amita",
                        "middle": [],
                        "last": "Misra",
                        "suffix": ""
                    },
                    {
                        "first": "Brian",
                        "middle": [],
                        "last": "Ecker",
                        "suffix": ""
                    },
                    {
                        "first": "Marilyn",
                        "middle": [],
                        "last": "Walker",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue",
                "volume": "",
                "issue": "",
                "pages": "276--287",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W16-3636"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Amita Misra, Brian Ecker, and Marilyn Walker. 2016. Measuring the similarity of sentential arguments in dialogue. In Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dia- logue, pages 276-287, Los Angeles. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "The pageRank citation ranking: Bringing order to the web",
                "authors": [
                    {
                        "first": "Lawrence",
                        "middle": [],
                        "last": "Page",
                        "suffix": ""
                    },
                    {
                        "first": "Sergey",
                        "middle": [],
                        "last": "Brin",
                        "suffix": ""
                    },
                    {
                        "first": "Rajeev",
                        "middle": [],
                        "last": "Motwani",
                        "suffix": ""
                    },
                    {
                        "first": "Terry",
                        "middle": [],
                        "last": "Winograd",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The pageRank citation rank- ing: Bringing order to the web. Technical report, Stanford InfoLab.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Identifying argument components through textrank",
                "authors": [
                    {
                        "first": "Georgios",
                        "middle": [],
                        "last": "Petasis",
                        "suffix": ""
                    },
                    {
                        "first": "Vangelis",
                        "middle": [],
                        "last": "Karkaletsis",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the Third Workshop on Argument Mining, hosted by the 54th Annual Meeting of the Association for Computational Linguistics, ArgMining@ACL 2016",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Georgios Petasis and Vangelis Karkaletsis. 2016. Identi- fying argument components through textrank. In Pro- ceedings of the Third Workshop on Argument Mining, hosted by the 54th Annual Meeting of the Associa- tion for Computational Linguistics, ArgMining@ACL 2016, August 12, Berlin, Germany.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Sentence-bert: Sentence embeddings using siamese bert-networks",
                "authors": [
                    {
                        "first": "Nils",
                        "middle": [],
                        "last": "Reimers",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Aspect-controlled neural argument generation",
                "authors": [
                    {
                        "first": "Benjamin",
                        "middle": [],
                        "last": "Schiller",
                        "suffix": ""
                    },
                    {
                        "first": "Johannes",
                        "middle": [],
                        "last": "Daxenberger",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021",
                "volume": "",
                "issue": "",
                "pages": "380--396",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Benjamin Schiller, Johannes Daxenberger, and Iryna Gurevych. 2021. Aspect-controlled neural argument generation. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online, June 6-11, 2021, pages 380-396. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "News editorials: Towards summarizing long argumentative texts",
                "authors": [
                    {
                        "first": "Shahbaz",
                        "middle": [],
                        "last": "Syed",
                        "suffix": ""
                    },
                    {
                        "first": "Roxanne",
                        "middle": [
                            "El"
                        ],
                        "last": "Baff",
                        "suffix": ""
                    },
                    {
                        "first": "Johannes",
                        "middle": [],
                        "last": "Kiesel",
                        "suffix": ""
                    },
                    {
                        "first": "Khalid",
                        "middle": [
                            "Al"
                        ],
                        "last": "Khatib",
                        "suffix": ""
                    },
                    {
                        "first": "Benno",
                        "middle": [],
                        "last": "Stein",
                        "suffix": ""
                    },
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Potthast",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 28th International Conference on Computational Linguistics",
                "volume": "2020",
                "issue": "",
                "pages": "5384--5396",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.coling-main.470"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Shahbaz Syed, Roxanne El Baff, Johannes Kiesel, Khalid Al Khatib, Benno Stein, and Martin Potthast. 2020. News editorials: Towards summarizing long argumentative texts. In Proceedings of the 28th Inter- national Conference on Computational Linguistics, COLING 2020, Barcelona, Spain (Online), Decem- ber 8-13, 2020, pages 5384-5396. International Com- mittee on Computational Linguistics.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Generating informative conclusions for argumentative texts",
                "authors": [
                    {
                        "first": "Shahbaz",
                        "middle": [],
                        "last": "Syed",
                        "suffix": ""
                    },
                    {
                        "first": "Khalid",
                        "middle": [
                            "Al"
                        ],
                        "last": "Khatib",
                        "suffix": ""
                    },
                    {
                        "first": "Milad",
                        "middle": [],
                        "last": "Alshomary",
                        "suffix": ""
                    },
                    {
                        "first": "Henning",
                        "middle": [],
                        "last": "Wachsmuth",
                        "suffix": ""
                    },
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Potthast",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shahbaz Syed, Khalid Al Khatib, Milad Alshomary, Henning Wachsmuth, and Martin Potthast. 2021. Generating informative conclusions for argumenta- tive texts. CoRR, abs/2106.01064.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Automatic argument quality assessment-new datasets and methods",
                "authors": [
                    {
                        "first": "Assaf",
                        "middle": [],
                        "last": "Toledo",
                        "suffix": ""
                    },
                    {
                        "first": "Shai",
                        "middle": [],
                        "last": "Gretz",
                        "suffix": ""
                    },
                    {
                        "first": "Edo",
                        "middle": [],
                        "last": "Cohen-Karlik",
                        "suffix": ""
                    },
                    {
                        "first": "Roni",
                        "middle": [],
                        "last": "Friedman",
                        "suffix": ""
                    },
                    {
                        "first": "Elad",
                        "middle": [],
                        "last": "Venezian",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Lahav",
                        "suffix": ""
                    },
                    {
                        "first": "Michal",
                        "middle": [],
                        "last": "Jacovi",
                        "suffix": ""
                    },
                    {
                        "first": "Ranit",
                        "middle": [],
                        "last": "Aharonov",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Slonim",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "5625--5635",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Assaf Toledo, Shai Gretz, Edo Cohen-Karlik, Roni Friedman, Elad Venezian, Dan Lahav, Michal Jacovi, Ranit Aharonov, and Noam Slonim. 2019. Auto- matic argument quality assessment-new datasets and methods. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natu- ral Language Processing (EMNLP-IJCNLP), pages 5625-5635.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Neural network-based abstract generation for opinions and arguments",
                "authors": [
                    {
                        "first": "Lu",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Wang",
                        "middle": [],
                        "last": "Ling",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "47--57",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N16-1007"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Lu Wang and Wang Ling. 2016. Neural network-based abstract generation for opinions and arguments. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computa- tional Linguistics: Human Language Technologies, pages 47-57, San Diego, California. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Bertscore: Evaluating text generation with bert",
                "authors": [
                    {
                        "first": "Tianyi",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Varsha",
                        "middle": [],
                        "last": "Kishore",
                        "suffix": ""
                    },
                    {
                        "first": "Felix",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Kilian",
                        "middle": [
                            "Q"
                        ],
                        "last": "Weinberger",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Artzi",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. 2020. Bertscore: Eval- uating text generation with bert. In International Conference on Learning Representations.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "num": null,
                "text": "cause unwanted side effects Children should not be vaccinated because they can have serious side effects Does not need it as children have better immune systems Vaccination should exclude children to avoid the side effects that can appear on them Linking a measure as good as vaccination to coercive measures would cause serious harm Forcing people to have their children vaccinated goes against free will As long as vaccines are not free of side effects, it cannot make them mandatory for our children The child population has a low degree of vulnerability, so vaccination is not urgent yet I as a parent should decide Vaccination in the child population is not yet a vulnerable age so it is not a priority Parents should be allowed to choose if their child is vaccinated or not Parents should have the freedom to decide what they consider best for their children Let them decide if they want to be vaccinatedVaccination is an option, not everyone thinks they really are important and free will must be respected[...]",
                "type_str": "figure"
            },
            "FIGREF1": {
                "uris": null,
                "num": null,
                "text": "Example graph of our key point generation approach. Nodes with high saturation are considered to be key points (bold text). Nodes with dashed lines have lower argument quality. Edge thickness represents similarity between two nodes. Notice that the shown arguments do not reflect the view of the authors.",
                "type_str": "figure"
            },
            "TABREF0": {
                "content": "<table><tr><td/><td>KP Matching</td><td colspan=\"3\">KP Generation</td></tr><tr><td>Approach</td><td>mAP/Rank</td><td colspan=\"3\">Rel. Rep. Pol.</td></tr><tr><td>bar_h</td><td>0.885/1</td><td>2</td><td>1</td><td>1</td></tr><tr><td>mspl (ours)</td><td>0.818/2</td><td>2</td><td>1</td><td>2</td></tr><tr><td>sohanpat</td><td>0.491/3</td><td>4</td><td>4</td><td>2</td></tr><tr><td>peratham</td><td>0.443/4</td><td>1</td><td>3</td><td>4</td></tr></table>",
                "text": "Examples of keypoints from our proposed approaches. Only the top three key points are shown for brevity.",
                "type_str": "table",
                "html": null,
                "num": null
            }
        }
    }
}