File size: 127,900 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T02:09:48.663641Z"
    },
    "title": "Matching The Statements: A Simple and Accurate Model for Key Point Analysis",
    "authors": [
        {
            "first": "Viet",
            "middle": [
                "Hoang"
            ],
            "last": "Phan",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Hanoi University of Science and Technology",
                "location": {
                    "addrLine": "{hoang.pv180086, long.nt180129, long.nd183583"
                }
            },
            "email": ""
        },
        {
            "first": "Tien",
            "middle": [],
            "last": "Long",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Hanoi University of Science and Technology",
                "location": {
                    "addrLine": "{hoang.pv180086, long.nt180129, long.nd183583"
                }
            },
            "email": ""
        },
        {
            "first": "Nguyen",
            "middle": [],
            "last": "Duc",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Hanoi University of Science and Technology",
                "location": {
                    "addrLine": "{hoang.pv180086, long.nt180129, long.nd183583"
                }
            },
            "email": ""
        },
        {
            "first": "Long",
            "middle": [],
            "last": "Nguyen",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Hanoi University of Science and Technology",
                "location": {
                    "addrLine": "{hoang.pv180086, long.nt180129, long.nd183583"
                }
            },
            "email": ""
        },
        {
            "first": "Ngoc",
            "middle": [
                "Khanh"
            ],
            "last": "Doan",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Hanoi University of Science and Technology",
                "location": {
                    "addrLine": "{hoang.pv180086, long.nt180129, long.nd183583"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Key Point Analysis (KPA) is one of the most essential tasks in building an Opinion Summarization system, which is capable of generating key points for a collection of arguments toward a particular topic. Furthermore, KPA allows quantifying the coverage of each summary by counting its matched arguments. With the aim of creating high-quality summaries, it is necessary to have an in-depth understanding of each individual argument as well as its universal semantic in a specified context. In this paper, we introduce a promising model, named Matching the Statements (MTS) that incorporates the discussed topic information into arguments/key points comprehension to fully understand their meanings, thus accurately performing ranking and retrieving best-match key points for an input argument. Our approach 1 has achieved the 4 th place in Track 1 of the Quantitative Summarization-Key Point Analysis Shared Task by IBM, yielding a competitive performance of 0.8956 (3 rd) and 0.9632 (7 th) strict and relaxed mean Average Precision, respectively.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Key Point Analysis (KPA) is one of the most essential tasks in building an Opinion Summarization system, which is capable of generating key points for a collection of arguments toward a particular topic. Furthermore, KPA allows quantifying the coverage of each summary by counting its matched arguments. With the aim of creating high-quality summaries, it is necessary to have an in-depth understanding of each individual argument as well as its universal semantic in a specified context. In this paper, we introduce a promising model, named Matching the Statements (MTS) that incorporates the discussed topic information into arguments/key points comprehension to fully understand their meanings, thus accurately performing ranking and retrieving best-match key points for an input argument. Our approach 1 has achieved the 4 th place in Track 1 of the Quantitative Summarization-Key Point Analysis Shared Task by IBM, yielding a competitive performance of 0.8956 (3 rd) and 0.9632 (7 th) strict and relaxed mean Average Precision, respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Prior work in Opinion Summarization often followed the extractive strategy, which identifies the most representative pieces of information from the source text and copies them verbatim to serve as summaries (Angelidis and Lapata, 2018; Brazinskas et al., 2019) . Abstractive summarization is a less popular strategy compared to the previous one yet offers more coherent output texts. Approaches governed by this vein could generate new phrases, sentences or even paragraphs that may not appear in the input documents (Ganesan et al., 2010; Isonuma et al., 2021) . Both extractive and abstractive methods are the straightforward applications of multi-document summarization (Liu et al., 2018; Fabbri et al., 2019) , which has been an emerging research domain of natural language processing in recent years.",
                "cite_spans": [
                    {
                        "start": 207,
                        "end": 235,
                        "text": "(Angelidis and Lapata, 2018;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 236,
                        "end": 260,
                        "text": "Brazinskas et al., 2019)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 517,
                        "end": 539,
                        "text": "(Ganesan et al., 2010;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 540,
                        "end": 561,
                        "text": "Isonuma et al., 2021)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 673,
                        "end": 691,
                        "text": "(Liu et al., 2018;",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 692,
                        "end": 712,
                        "text": "Fabbri et al., 2019)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "As is well known, in traditional multi-document summarization methods, the role of an individual or a subset of key points among the summaries is often neglected. To be more specific, Bar-Haim et al. (2020) posed a question regarding the summarized ability of a small group of key points, and to some extent answered that question on their own by developing baseline models that could produce a concise bullet-like summary for the crowd-contributed arguments. With a pre-defined list of summaries, this task is known as Key Point Matching (KPM). Figure 1 provides a simple illustration of the KPM problem, where the most relevant key points are retrieved for each given argument within a certain topic (i.e. context).",
                "cite_spans": [
                    {
                        "start": 184,
                        "end": 206,
                        "text": "Bar-Haim et al. (2020)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 546,
                        "end": 554,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Inspired by the previous work that studied the problem of learning sentence representation (Cer et al., 2018; Reimers and Gurevych, 2019) and semantic similarity (Yan et al., 2021) , we propose Matching The Statements (MTS), which further takes the topic information into account and effectively utilizes such proper features to learn a high performance unified model. Our approach has benefited from the recent developments of pre-trained language models such as BERT (Devlin et al., 2018) , ALBERT (Lan et al., 2019) or RoBERTa (Liu et al., 2019) .",
                "cite_spans": [
                    {
                        "start": 91,
                        "end": 109,
                        "text": "(Cer et al., 2018;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 110,
                        "end": 137,
                        "text": "Reimers and Gurevych, 2019)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 162,
                        "end": 180,
                        "text": "(Yan et al., 2021)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 469,
                        "end": 490,
                        "text": "(Devlin et al., 2018)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 500,
                        "end": 518,
                        "text": "(Lan et al., 2019)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 530,
                        "end": 548,
                        "text": "(Liu et al., 2019)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Our contributions in this paper could be depicted as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Firstly, we design a simple yet efficient network architecture to fuse the context into sentence-level representations. Instead of letting the model infer the implicit reasoning structure, we provide our model with the information on whether an argument or key point (which are collectively referred to as statements in the remainder of this paper) supports its main topic or not. We should let everyone retire when they are ready Figure 1 : Overview of the Key Point Matching workflow in the Quantitative Summarization -Key Point Analysis Shared Task Track 1. From the information retrieval perspective, this task is to identify the most salient point that reinforces a given query.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 433,
                        "end": 441,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Secondly, our method adopts the pseudolabels mechanism (Ge et al., 2020; , where we label arguments that belong to the same key point (and the key point itself) by the same index. The goal is to learn an embedding space in which the embedded vectors of mutual supportive statement pairs (i.e. having the same label) are pulled closer whereas unrelated ones are pushed apart.",
                "cite_spans": [
                    {
                        "start": 57,
                        "end": 74,
                        "text": "(Ge et al., 2020;",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Finally, we validate the proposed MTS on the ArgKP-2021 (Bar-Haim et al., 2020) dataset in a variety of protocols. Extensive experiment results show that our proposed method strongly outperforms other baselines without using external data, thus becoming a potential method for the Key Point Matching problem.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The rest of this paper is organized in the following way: Section 2 briefly reviews the related work, while section 3 formulates the KPM problem. Next, we describe our methodology in section 4, followed by the experimental results in section 5. Finally, section 6 will conclude our work and discuss future directions for further improvements.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "A standard approach for key points and arguments analysis is properly extracting their meaningful semantics. Our model stems from recent literatures that are based on siamese neural networks (Reimers and Gurevych, 2019; Gao et al., 2021) to measure the semantic similarity between documents. Even though, MTS has its own unique characteristics to incorporate context information.",
                "cite_spans": [
                    {
                        "start": 191,
                        "end": 219,
                        "text": "(Reimers and Gurevych, 2019;",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 220,
                        "end": 237,
                        "text": "Gao et al., 2021)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "The representation of sentences in a fixeddimensional vector space plays a crucial role in enhancing a model's performance on downstream tasks. Early methods relied on static word embeddings (Pennington et al., 2014; Bojanowski et al., 2017) , which encoded a sentence by directly averaging its word vectors or employing recurrent neural network (RNN) encoders (Conneau et al., 2017) and taking the pooled output from the hidden units. Despite the fact that these methods can leverage both syntactic and semantic features, they often fail to retain the contextual information or suffer from slow training (due to the sequential nature of RNNs).",
                "cite_spans": [
                    {
                        "start": 191,
                        "end": 216,
                        "text": "(Pennington et al., 2014;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 217,
                        "end": 241,
                        "text": "Bojanowski et al., 2017)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 361,
                        "end": 383,
                        "text": "(Conneau et al., 2017)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sentence Embeddings",
                "sec_num": "2.1"
            },
            {
                "text": "That is where BERT (Devlin et al., 2018) as well as its variants come in and dominate the modern NLP research. Training these architectures can exploit the parallel computational capacity of GPUs/TPUs hardware accelerators. In SBERT, Reimers and Gurevych (2019) proposed a sentence embedding method via fine-tuning BERT models on natural language inference (NLI) datasets. More recent studies in learning sentence representation followed the contrastive learning paradigm and achieved state-of-the-art performance on numerous of benchmark tasks (Liao, 2021; Yan et al., 2021) . ",
                "cite_spans": [
                    {
                        "start": 19,
                        "end": 40,
                        "text": "(Devlin et al., 2018)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 234,
                        "end": 261,
                        "text": "Reimers and Gurevych (2019)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 545,
                        "end": 557,
                        "text": "(Liao, 2021;",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 558,
                        "end": 575,
                        "text": "Yan et al., 2021)",
                        "ref_id": "BIBREF32"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sentence Embeddings",
                "sec_num": "2.1"
            },
            {
                "text": "Semantic matching is a long-standing problem and has a wide range of applications, such as: questionanswering (Yang et al., 2015 ), text summarization (Zhong et al., 2020) and especially, information retrieval (Huang et al., 2013; Guo et al., 2016) . Jiang et al. (2019) introduced a hierarchical recurrent neural network that could capture long-term dependency and synthesize information from different granularities (i.e. words, sentences or paragraphs). Similarly, Yang et al. (2020) replaced the RNN backbones with transformer-based models and modified self-attention architectures to adapt with long document inputs.",
                "cite_spans": [
                    {
                        "start": 110,
                        "end": 128,
                        "text": "(Yang et al., 2015",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 151,
                        "end": 171,
                        "text": "(Zhong et al., 2020)",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 210,
                        "end": 230,
                        "text": "(Huang et al., 2013;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 231,
                        "end": 248,
                        "text": "Guo et al., 2016)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 251,
                        "end": 270,
                        "text": "Jiang et al. (2019)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 468,
                        "end": 486,
                        "text": "Yang et al. (2020)",
                        "ref_id": "BIBREF33"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic matching",
                "sec_num": "2.2"
            },
            {
                "text": "However, most of the existing work focuses only on assessing the similarity between pairs of sentences without paying attention to their contextwhich can help the reader to get an overview of the discussed topic. Recently, the ArgKP-2021 dataset has been published by Bar-Haim et al. (2020) , which consists of annotations about whether two statements and their stances towards a specific topic match or not. The next sections will provide an overview of this dataset and how our model is applicable in the Quantitative Summarization -Key Point Analysis Shared Task 2 .",
                "cite_spans": [
                    {
                        "start": 268,
                        "end": 290,
                        "text": "Bar-Haim et al. (2020)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic matching",
                "sec_num": "2.2"
            },
            {
                "text": "In this shared task, we are provided with a dataset consisting of 28 different topics. Each topic con-tains a set of associated arguments and key points in the form of matching (with label 1) or nonmatching (with label 0) pairs. The stances of these statements (whether a claim agrees or disagrees with its topic) are also exposed, we further evaluate the impact of this information in section 5.6.2.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Problem definition",
                "sec_num": "3"
            },
            {
                "text": "In short, the Key Point Matching problem is formulated as follows: Given a controversial topic T with a list of m arguments and n key points",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Problem definition",
                "sec_num": "3"
            },
            {
                "text": "A 1 , A 2 , . . . , A m ; K 1 , K 2 , . . . , K n , along with their corresponding stances S 1 , S 2 , . . . , S m+n (S i \u2208 {\u22121, 1})",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Problem definition",
                "sec_num": "3"
            },
            {
                "text": ", which imply the attack or support relationships against the topic, our task is to rank key points that have the same stance with an input argument by the matching score. This priority is dependent on both the topic and the semantic of statements.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Problem definition",
                "sec_num": "3"
            },
            {
                "text": "The proposed MTS architecture is graphically shown in figure 2. It takes four separate inputs: (i) discussed topic, (ii) first statement, (iii) second statement, and (iv) their stance toward the topic. The final output is the similarity score of the fed in statements with respect to the main context. In the remainder of this section, we would like to describe three main components of MTS: encoding, context integration and statement encoding layers.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "4"
            },
            {
                "text": "We observe that a small percentage of the arguments (4.71%) belong to two or more key points, while the rest are matched with at most one. For that reason, a straightforward idea is gathering arguments, which belong to the same key point, and label the clusters in order. In other words, each cluster is represented by a key point K i , contains K i and its matching arguments. Our clustering technique results in the fact that there are a small number of arguments that belong to multiple clusters. Arguments that do not match any of the key points are grouped into the NON-MATCH set.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data preparation",
                "sec_num": "4.1"
            },
            {
                "text": "Intuitively, if two different arguments support the same key point, they tend to convey similar meanings and should be considered as a matching pair of statements. Conversely, statements from different clusters are considered non-match in our approach. This pseudo-label method thus utilizes the similar semantic of within-cluster documents and enhances the model robustness. In the remainder of this paper, those arguments that come from the same cluster are referred to as positive pairs, otherwise, they are negative pairs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data preparation",
                "sec_num": "4.1"
            },
            {
                "text": "During training, we use each key point and its matching/non-matching arguments (based on the annotation in the ArgKP-2021 dataset) in a minibatch. Moreover, we also sample a small proportion of the NON-MATCH arguments and merge them into the mini-batch. Specifically, all the NON-MATCH arguments are considered to come from different and novel clusters. Because the definition of positive/negative statement pairs is well-defined, we can easily compute the loss in each mini-batch with a usual metric learning loss (Chopra et al., 2005; Yu and Tao, 2019) .",
                "cite_spans": [
                    {
                        "start": 515,
                        "end": 536,
                        "text": "(Chopra et al., 2005;",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 537,
                        "end": 554,
                        "text": "Yu and Tao, 2019)",
                        "ref_id": "BIBREF35"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data preparation",
                "sec_num": "4.1"
            },
            {
                "text": "We first extract the contextualized representation for textual inputs using the RoBERTa (Liu et al., 2019) model. We adopt a canonical method (Sun et al., 2019) to achieve the final embedding of a given input, which is concatenating the last four hidden states of the [CLS] token. These embeddings are fed into the context integration layer as an aggregate representation for topics, arguments and key points. For example, a statement vector at this point is denoted as 3 :",
                "cite_spans": [
                    {
                        "start": 88,
                        "end": 106,
                        "text": "(Liu et al., 2019)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 142,
                        "end": 160,
                        "text": "(Sun et al., 2019)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Encoding layer",
                "sec_num": "4.2"
            },
            {
                "text": "h X = [ h X 1 , h X 2 , . . . , h X 4\u00d7768 ] (h X i \u2208 R) = [ h X 1 , h X 2 , . . . , h X 3072 ]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Encoding layer",
                "sec_num": "4.2"
            },
            {
                "text": "with 768 is the number of hidden layers produced by the RoBERTa-base model. For the stance encoding, we employ a fullyconnected network with no activation function to map the scalar input to a N -dimensional vector space. The representation of each topic, statement and stance are denoted as h T , h X and h S , respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Encoding layer",
                "sec_num": "4.2"
            },
            {
                "text": "After using the RoBERTa backbone and a shallow neural network to extract the embeddings acquired from multiple inputs, we conduct a simple concatenation with the aim of incorporating the topic (i.e. context) and stance information into its argument/key point representations. After this step, the obtained vector for each statement is ([; ] notation indicates the concatenation operator):",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Context integration layer",
                "sec_num": "4.3"
            },
            {
                "text": "v X = [h S ; h T ; h X ] where v X \u2208 R N +2\u00d73072",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Context integration layer",
                "sec_num": "4.3"
            },
            {
                "text": "The statement encoding component has another fully-connected network on top of the context integration layer to get the final D-dimensional embeddings for key points or arguments:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Statement encoding layer",
                "sec_num": "4.4"
            },
            {
                "text": "e X = v X W + b",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Statement encoding layer",
                "sec_num": "4.4"
            },
            {
                "text": "where W \u2208 R (N +6144)\u00d7D and b \u2208 R D are the weight and bias parameters.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Statement encoding layer",
                "sec_num": "4.4"
            },
            {
                "text": "Concretely, training our model is equivalent to learning a function f (S, T, X) that maps the similar statements onto close points and dissimilar ones onto distant points in R (N +6144)\u00d7D .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Statement encoding layer",
                "sec_num": "4.4"
            },
            {
                "text": "In each iteration, we consider each input statement from the incoming mini-batch as an anchor document and sample positive/negative documents from within/inter clusters. For calculating the matching score between two statements, we compute the cosine distance of their embeddings:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "4.5"
            },
            {
                "text": "D cosine (e X 1 , e X 2 ) = 1 \u2212 cos(e X 1 , e X 2 ) (1) = 1 \u2212 e X 1 T e X 2 ||e X 1 || 2 ||e X 2 || 2",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "4.5"
            },
            {
                "text": "Empirical results show that cosine distance yields the best performance compared to Manhattan distance (||e X 1 \u2212 e X 2 || 1 ) and Euclidean distance (||e X 1 \u2212 e X 2 || 2 ). Hence, we use cosine as the default distance metric throughout our experiments. We also revisit several loss functions, such as contrastive loss (Chopra et al., 2005) , triplet loss (Dong and Shen, 2018) and tuplet margin loss (Yu and Tao, 2019) . Unlike previous work, Yu and Tao (2019) use another distance metric, which will be described below.",
                "cite_spans": [
                    {
                        "start": 320,
                        "end": 341,
                        "text": "(Chopra et al., 2005)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 357,
                        "end": 378,
                        "text": "(Dong and Shen, 2018)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 402,
                        "end": 420,
                        "text": "(Yu and Tao, 2019)",
                        "ref_id": "BIBREF35"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "4.5"
            },
            {
                "text": "Assume that a mini-batch consists of k + 1 samples {X a , X p , X n 1 , X n 2 , . . . , X n k\u22121 }, which satisfies the tuplet constraint: X p is a positive statement whereas X n i are X a 's negative statements w.r.t X a . Mathematically, the tuplet margin loss function is defined as:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "4.5"
            },
            {
                "text": "L tuplet = log(1 + k\u22121 i=1 e s(cos \u03b8an i \u2212cos (\u03b8ap\u2212\u03b2)) )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "4.5"
            },
            {
                "text": "where \u03b8 ap is the angle between e Xa and e Xp ; \u03b8 an i is the angle between e Xa and e Xn i . \u03b2 is the margin hyper-parameter, which imposes the distance between negative pair to be larger than \u03b2. Finally, s acts like a scaling factor.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "4.5"
            },
            {
                "text": "Additionally, Yu and Tao (2019) also introduced the intra-pair variance loss, which was theoretically proven to mitigate the intra-pair variation and improve the generalizability. In MTS, we use a weighted combination of both tuplet margin and intra-pair variance as our loss function. The formulation of the latter one is:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "4.5"
            },
            {
                "text": "L pos = E[(1 \u2212 ) E[cos \u03b8 ap ] \u2212 cos \u03b8 ap ] 2 + L neg = E[cos \u03b8 an \u2212 (1 + ) E[cos \u03b8 an ] 2 + L intra\u2212pair = L pos + L neg where [\u2022] + = max(0, \u2022).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "4.5"
            },
            {
                "text": "As pointed out by Hermans et al. (2017) ; Wu et al. 2017, training these siamese neural networks raises a couple of issues regarding easy/uninformative examples bias. In fact, if we keep feeding random pairs, more easy ones are included and prevent models from training. Hence, a hard mining strategy becomes crucial for avoiding learning from such redundant pairs. In MTS, we adapt the multi-similarity mining from Wang et al. (2019) , which identifies a sample's hard pairs using its neighbors.",
                "cite_spans": [
                    {
                        "start": 18,
                        "end": 39,
                        "text": "Hermans et al. (2017)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 416,
                        "end": 434,
                        "text": "Wang et al. (2019)",
                        "ref_id": "BIBREF29"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "4.5"
            },
            {
                "text": "Given a pre-defined threshold , we select the negative pairs if they have the cosine similarity greater than the hardest positive pair, minus . For instance, let X a be a statement, which has its positive and negative sets of statements denoted by P Xa and N Xa , respectively. A negative pair of statements {X a , X n } is chosen if:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "4.5"
            },
            {
                "text": "cosine(e Xa , e Xn ) \u2265 min",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "4.5"
            },
            {
                "text": "X i \u2208P Xa",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "4.5"
            },
            {
                "text": "cosine(e Xa , e X i ) \u2212 Such pairs are referred to as hard negative pairs, we carry out a similar process to form hard positive pairs. If a positive pair {X a , X p } is selected, then:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "4.5"
            },
            {
                "text": "cosine(e Xa , e Xp ) \u2264 max",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "4.5"
            },
            {
                "text": "X i \u2208N Xa",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "4.5"
            },
            {
                "text": "cosine(e Xa , e X i ) +",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "4.5"
            },
            {
                "text": "At inference time, we pair up the arguments and key points that debate on a topic under the same stance. Afterward, we compute the matching score based on the angle between their embeddings. For instance, an argument A and key point K will have a matching score of:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inference",
                "sec_num": "4.6"
            },
            {
                "text": "score(e A , e K ) = 1 \u2212 D cosine (e A , e K ) = cos(e A , e K )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inference",
                "sec_num": "4.6"
            },
            {
                "text": "The right-hand side function squashes the score into the probability interval of [0, 1) and compatible with the presented loss function in section 4.5.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inference",
                "sec_num": "4.6"
            },
            {
                "text": "To verify the effectiveness of the Matching The Statements model, we conduct extensive experiments on the ArgKP-2021 (Bar-Haim et al., 2020) dataset and compare the performance of MTS against baselines.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment",
                "sec_num": "5"
            },
            {
                "text": "ArgKP-2021 (Bar-Haim et al., 2020) , the data set used in the Quantitative Summarization -Key Point Analysis Shared Task, is split into training and development sets with the ratio of 24 : 4. The training set is composed of 5583 arguments and 207 key points while those figures in the development set are 932 and 36. Each argument could be matched to one or more key points, yet the latter ones account for a small proportion of the data, as stated in section 4.1. The texts presented in ArgKP-2021 are relatively short, with approximately 18.22 \u00b1 7.76 by words or 108.20 \u00b1 43.51 by characters.",
                "cite_spans": [
                    {
                        "start": 11,
                        "end": 34,
                        "text": "(Bar-Haim et al., 2020)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ArgKP-2021 Dataset",
                "sec_num": "5.1"
            },
            {
                "text": "For evaluation, only the most likely key point is chosen for each argument based on the predicted scores. These pairs are then sorted by their matching scores in descending order, and only the first half of them are included in the assessment. According to Friedman et al. (2021) ",
                "cite_spans": [
                    {
                        "start": 257,
                        "end": 279,
                        "text": "Friedman et al. (2021)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation protocol",
                "sec_num": "5.2"
            },
            {
                "text": "Figure 3 depicts the qualitative representation learning result of MTS before and after training. In the beginning, the similarity scores between matched/non-match key point-argument pairs are extremely high (\u2248 0.999). That means, almost all the statements are projected into a small region of the embedding space, and it is difficult to derive a cut-off threshold to get rid of the non-matching pairs. Therefore, the mean Average Precision scores when we directly use the untrained model with RoBERTa backbone are relatively low. Though, our training procedure improves the model's distinguishability and reduces the collapsed representation phenomenon. Indeed, the similarity scores at this point are stretched out and the mAP scores significantly increase (strict mAP 0.45 \u2192 0.84; relaxed mAP 0.62 \u2192 0.94).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Embeddings quality",
                "sec_num": "5.3"
            },
            {
                "text": "For performance benchmarking, we implement two different baselines and their variations, namely Simple Argument-Key point matching (SimAKP) The \"T-\" prefix denotes the models that use triplet loss (Dong and Shen, 2018) while the rest are trained with the contrastive loss (Chopra et al., 2005) .",
                "cite_spans": [
                    {
                        "start": 197,
                        "end": 218,
                        "text": "(Dong and Shen, 2018)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 272,
                        "end": 293,
                        "text": "(Chopra et al., 2005)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Baselines",
                "sec_num": "5.4"
            },
            {
                "text": "and Question Answering-liked Argument-Key point matching (QA) models. We construct a sampling strategy in an online manner: in each minibatch, we select the hardest positive/negative pairs according to the method discussed in Section 4.5 to compute the loss. Simple Argument-Key point matching: The architecture of SimAKP is the same as MTS with the main difference in the data preparation. Instead of clustering similar statements, SimAKP simply performs pair-wise classification on the ArgKP-2021 dataset. Equivalently, each input to the SimAKP model consists of an argument-key point pair. This approach will not make use of the analogous nature of these claims that matched with the same key point.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Baselines",
                "sec_num": "5.4"
            },
            {
                "text": "Question Answering-liked Argument-Key point matching: Inspired by the Question Answering, we format the arguments and key points fed to the RoBERTa model in order to incorporate the context into statements as below:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Baselines",
                "sec_num": "5.4"
            },
            {
                "text": "[ In particular, obtained outputs of RoBERTa model with the above inputs are then concatenated with the stance representations to produce a tensor with shape (batch size, N + 3072), which is fed to a fully connected layer to embed the semantic meaning of each individual statement.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Baselines",
                "sec_num": "5.4"
            },
            {
                "text": "To facilitate evaluation, we set up a 7-fold crossvalidation, each contains 24 topics for training and 4 topics for development. The train-dev split in Track 1 of Quantitative Summarization -Key Point Analysis Shared Task is replicated in fold 1.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5.5"
            },
            {
                "text": "As can be seen in Figure 4 , we observe that our proposed MTS (we use triplet loss for a fair comparison) consistently outperforms other baselines in both mAP scores (higher is better). It achieved competitive scores on all splits, except fold 7. The reason is that the number of labeled argument-key point pairs of the development set in this part is the smallest among 7 folds, and there are substantial drops in terms of performance for all baselines. We also examine the impact of hard negative mining in Table 1 , the baselines are compared against themselves when using the hard mining strategy (i.e. avoid learning the embeddings of trivial samples). With the employment of hard mining, there is an improvement in performance for most baselines. Except for a small decrease in terms of relaxed mAP in SimAKP, both contrastive and triplet loss Simple Argument-Key point matching models have an average increase of 0.005% in mAP scores.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 18,
                        "end": 26,
                        "text": "Figure 4",
                        "ref_id": "FIGREF3"
                    },
                    {
                        "start": 509,
                        "end": 516,
                        "text": "Table 1",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5.5"
            },
            {
                "text": "To provide insight analysis in the setting of Matching The Statements, we therefore create four different setups: original MTS, MTS with batch normalization (Ioffe and Szegedy, 2015) immediately after context integration layer, MTS without mining strategy, and triplet-loss MTS. Although tuplet margin loss has an up/down weighting hard/easy samples mechanism, we find that MTS with multisimilarity mining (Wang et al., 2019) Figure 5 : Switching off different setups shows that each component of the original MTS's setting contributes to its performance. Figure 5 summarizes the average score for all setups. Overall, MTS performs similarly or better than its variants (without multi-similarity mining or adding a batch normalization layer). Replacing triplet loss with tuplet margin loss helps to boost both strict mAP and relaxed mAP by 0.2. Eventually, in an attempt to produce a consistent and accurate prediction on the test dataset, an ensemble of 4/7 best models from splits was used for final submission. As shown in Table 2 , among the performances of the top-10 team, our proposed model achieved the third position in terms of strict mAP, 7 th position in relaxed mAP and 4 th overall. ",
                "cite_spans": [
                    {
                        "start": 157,
                        "end": 182,
                        "text": "(Ioffe and Szegedy, 2015)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 406,
                        "end": 425,
                        "text": "(Wang et al., 2019)",
                        "ref_id": "BIBREF29"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 426,
                        "end": 434,
                        "text": "Figure 5",
                        "ref_id": null
                    },
                    {
                        "start": 556,
                        "end": 564,
                        "text": "Figure 5",
                        "ref_id": null
                    },
                    {
                        "start": 1026,
                        "end": 1033,
                        "text": "Table 2",
                        "ref_id": "TABREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Differential Analysis",
                "sec_num": "5.6"
            },
            {
                "text": "Here, we showcase the benefit of taking the concatenation of the last four hidden state layers of the [CLS] token as the aggregate representation for the whole document. The first part of Table 3 is a clear proof for this advantage, using only the last hidden layer of [CLS] can hurt the overall performance. Likewise, the mean-pooling or summing up the token embeddings has worse results, compared to our method. To show the generality and applicability of our proposed model, we retain the MTS configuration when experimenting with other transformers-based backbones, such as: BERT (Devlin et al., 2018) , ALBERT (Lan et al., 2019) , DistilBERT (Sanh et al., 2019) , LUKE (Yamada et al., 2020) or MP-Net (Song et al., 2020) . According to the second part of Table 3 , among six pre-trained language models, MPNet yields a comparable result with RoBERTa (\u2248 0.84 & 0.94) while requiring 10% less number of parameters. We also note that, the increase in model size of Language Understanding with Knowledge-based Embeddings (LUKE) compared with RoBERTa results in unexpected performance reduction.",
                "cite_spans": [
                    {
                        "start": 584,
                        "end": 605,
                        "text": "(Devlin et al., 2018)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 615,
                        "end": 633,
                        "text": "(Lan et al., 2019)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 647,
                        "end": 666,
                        "text": "(Sanh et al., 2019)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 674,
                        "end": 695,
                        "text": "(Yamada et al., 2020)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 706,
                        "end": 725,
                        "text": "(Song et al., 2020)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 188,
                        "end": 195,
                        "text": "Table 3",
                        "ref_id": null
                    },
                    {
                        "start": 760,
                        "end": 767,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "BERT embeddings",
                "sec_num": "5.6.1"
            },
            {
                "text": "Up till now, we have almost finished the needed experiments to examine the effectiveness of our methodology. In this subsection, we further investigate the importance of the stance factor in building the MTS model by posing a question: \"How good is MTS when it has to predict the implicit relation between claims and topic\". Since the topic information is incorporated in encoding the statements, so perhaps it is sufficient to learn meaningful representations, without explicitly providing the stance information.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Stance effect",
                "sec_num": "5.6.2"
            },
            {
                "text": "By discarding the stance-involved components in MTS 2, the averaged result in 7 folds conceivably degrades to 0.741 \u00b1 0.094 in strict mAP but rises up to 0.952\u00b10.019 in relaxed mAP. This is because each argument now can be matched with key points that have different stances. According to this exploration, an open challenge for future research is finding a better way to comprehend statements within a topic (i.e. let the model infer the stance itself). For instance, one could consider employing the attention mechanism between a topic and its arguments and key points to characterize the relationship between them.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Stance effect",
                "sec_num": "5.6.2"
            },
            {
                "text": "In this paper, we present an efficient key point matching method based on supervised contrastive learning. We suppose that clustering the statements will be beneficial for the model training, and empirically verify this conclusion in the experiments. In addition, we found a simple and effective technique to encode these statements, and thus yields superior performance. In terms of model architecture, the components are carefully designed to ensure productivity. Results on Track 1 of Quantitative Summarization -Key Point Analysis show our method is a conceptually simple approach yet achieves promising performance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "The code is available at: https://github.com/ VietHoang1512/KPA",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://2021.argmining.org/shared_ task_ibm.html",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "For a consistent notation, statements and stances are denoted by uppercase letters: X and S",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": " Table 3 : Comparison between different embedding strategies and pre-trained language models. In this experiment, we report the result of the base version.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 1,
                        "end": 8,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "annex",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Summarizing opinions: Aspect extraction meets sentiment prediction and they are both weakly supervised",
                "authors": [
                    {
                        "first": "Stefanos",
                        "middle": [],
                        "last": "Angelidis",
                        "suffix": ""
                    },
                    {
                        "first": "Mirella",
                        "middle": [],
                        "last": "Lapata",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "3675--3686",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D18-1403"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Stefanos Angelidis and Mirella Lapata. 2018. Sum- marizing opinions: Aspect extraction meets senti- ment prediction and they are both weakly super- vised. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3675-3686, Brussels, Belgium. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "From arguments to key points: Towards automatic argument summarization",
                "authors": [
                    {
                        "first": "Roy",
                        "middle": [],
                        "last": "Bar-Haim",
                        "suffix": ""
                    },
                    {
                        "first": "Lilach",
                        "middle": [],
                        "last": "Eden",
                        "suffix": ""
                    },
                    {
                        "first": "Roni",
                        "middle": [],
                        "last": "Friedman",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Kantor",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Lahav",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Slonim",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "4029--4039",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.acl-main.371"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Roy Bar-Haim, Lilach Eden, Roni Friedman, Yoav Kantor, Dan Lahav, and Noam Slonim. 2020. From arguments to key points: Towards automatic argu- ment summarization. In Proceedings of the 58th An- nual Meeting of the Association for Computational Linguistics, pages 4029-4039, Online. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Enriching word vectors with subword information",
                "authors": [
                    {
                        "first": "Piotr",
                        "middle": [],
                        "last": "Bojanowski",
                        "suffix": ""
                    },
                    {
                        "first": "Edouard",
                        "middle": [],
                        "last": "Grave",
                        "suffix": ""
                    },
                    {
                        "first": "Armand",
                        "middle": [],
                        "last": "Joulin",
                        "suffix": ""
                    },
                    {
                        "first": "Tomas",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Transactions of the Association for Computational Linguistics",
                "volume": "5",
                "issue": "",
                "pages": "135--146",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors with subword information. Transactions of the Associa- tion for Computational Linguistics, 5:135-146.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Unsupervised multi-document opinion summarization as copycat-review generation",
                "authors": [
                    {
                        "first": "Arthur",
                        "middle": [],
                        "last": "Brazinskas",
                        "suffix": ""
                    },
                    {
                        "first": "Mirella",
                        "middle": [],
                        "last": "Lapata",
                        "suffix": ""
                    },
                    {
                        "first": "Ivan",
                        "middle": [],
                        "last": "Titov",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1911.02247"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Arthur Brazinskas, Mirella Lapata, and Ivan Titov. 2019. Unsupervised multi-document opinion sum- marization as copycat-review generation. arXiv preprint arXiv:1911.02247.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Universal sentence encoder",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Cer",
                        "suffix": ""
                    },
                    {
                        "first": "Yinfei",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Sheng-Yi",
                        "middle": [],
                        "last": "Kong",
                        "suffix": ""
                    },
                    {
                        "first": "Nan",
                        "middle": [],
                        "last": "Hua",
                        "suffix": ""
                    },
                    {
                        "first": "Nicole",
                        "middle": [],
                        "last": "Limtiaco",
                        "suffix": ""
                    },
                    {
                        "first": "Rhomni",
                        "middle": [],
                        "last": "St John",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [],
                        "last": "Constant",
                        "suffix": ""
                    },
                    {
                        "first": "Mario",
                        "middle": [],
                        "last": "Guajardo-C\u00e9spedes",
                        "suffix": ""
                    },
                    {
                        "first": "Steve",
                        "middle": [],
                        "last": "Yuan",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Tar",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1803.11175"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John, Noah Constant, Mario Guajardo-C\u00e9spedes, Steve Yuan, Chris Tar, et al. 2018. Universal sentence encoder. arXiv preprint arXiv:1803.11175.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Learning a similarity metric discriminatively, with application to face verification",
                "authors": [
                    {
                        "first": "Sumit",
                        "middle": [],
                        "last": "Chopra",
                        "suffix": ""
                    },
                    {
                        "first": "Raia",
                        "middle": [],
                        "last": "Hadsell",
                        "suffix": ""
                    },
                    {
                        "first": "Yann",
                        "middle": [],
                        "last": "Lecun",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)",
                "volume": "1",
                "issue": "",
                "pages": "539--546",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sumit Chopra, Raia Hadsell, and Yann LeCun. 2005. Learning a similarity metric discriminatively, with application to face verification. In 2005 IEEE Com- puter Society Conference on Computer Vision and Pattern Recognition (CVPR'05), volume 1, pages 539-546. IEEE.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Supervised learning of universal sentence representations from natural language inference data",
                "authors": [
                    {
                        "first": "Alexis",
                        "middle": [],
                        "last": "Conneau",
                        "suffix": ""
                    },
                    {
                        "first": "Douwe",
                        "middle": [],
                        "last": "Kiela",
                        "suffix": ""
                    },
                    {
                        "first": "Holger",
                        "middle": [],
                        "last": "Schwenk",
                        "suffix": ""
                    },
                    {
                        "first": "Lo\u00efc",
                        "middle": [],
                        "last": "Barrault",
                        "suffix": ""
                    },
                    {
                        "first": "Antoine",
                        "middle": [],
                        "last": "Bordes",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "670--680",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D17-1070"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Alexis Conneau, Douwe Kiela, Holger Schwenk, Lo\u00efc Barrault, and Antoine Bordes. 2017. Supervised learning of universal sentence representations from natural language inference data. In Proceedings of the 2017 Conference on Empirical Methods in Nat- ural Language Processing, pages 670-680, Copen- hagen, Denmark. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Bert: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1810.04805"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understand- ing. arXiv preprint arXiv:1810.04805.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Triplet loss in siamese network for object tracking",
                "authors": [
                    {
                        "first": "Xingping",
                        "middle": [],
                        "last": "Dong",
                        "suffix": ""
                    },
                    {
                        "first": "Jianbing",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the European conference on computer vision (ECCV)",
                "volume": "",
                "issue": "",
                "pages": "459--474",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xingping Dong and Jianbing Shen. 2018. Triplet loss in siamese network for object tracking. In Proceed- ings of the European conference on computer vision (ECCV), pages 459-474.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Multi-news: A large-scale multi-document summarization dataset and abstractive hierarchical model",
                "authors": [
                    {
                        "first": "Alexander",
                        "middle": [],
                        "last": "Fabbri",
                        "suffix": ""
                    },
                    {
                        "first": "Irene",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Tianwei",
                        "middle": [],
                        "last": "She",
                        "suffix": ""
                    },
                    {
                        "first": "Suyi",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Dragomir",
                        "middle": [],
                        "last": "Radev",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "1074--1084",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1102"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Alexander Fabbri, Irene Li, Tianwei She, Suyi Li, and Dragomir Radev. 2019. Multi-news: A large-scale multi-document summarization dataset and abstrac- tive hierarchical model. In Proceedings of the 57th Annual Meeting of the Association for Computa- tional Linguistics, pages 1074-1084, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Overview of kpa-2021 shared task: Key point based quantitative summarization",
                "authors": [
                    {
                        "first": "Roni",
                        "middle": [],
                        "last": "Friedman",
                        "suffix": ""
                    },
                    {
                        "first": "Lena",
                        "middle": [],
                        "last": "Dankin",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Katz",
                        "suffix": ""
                    },
                    {
                        "first": "Yufang",
                        "middle": [],
                        "last": "Hou",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Slonim",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the 8th Workshop on Argumentation Mining",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Roni Friedman, Lena Dankin, Yoav Katz, Yufang Hou, and Noam Slonim. 2021. Overview of kpa-2021 shared task: Key point based quantitative summa- rization. In Proceedings of the 8th Workshop on Ar- gumentation Mining. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Opinosis: A graph based approach to abstractive summarization of highly redundant opinions",
                "authors": [
                    {
                        "first": "Kavita",
                        "middle": [],
                        "last": "Ganesan",
                        "suffix": ""
                    },
                    {
                        "first": "Chengxiang",
                        "middle": [],
                        "last": "Zhai",
                        "suffix": ""
                    },
                    {
                        "first": "Jiawei",
                        "middle": [],
                        "last": "Han",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the 23rd International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "340--348",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kavita Ganesan, ChengXiang Zhai, and Jiawei Han. 2010. Opinosis: A graph based approach to abstrac- tive summarization of highly redundant opinions. In Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010), pages 340-348, Beijing, China. Coling 2010 Organizing Committee.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Simcse: Simple contrastive learning of sentence embeddings",
                "authors": [
                    {
                        "first": "Tianyu",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Xingcheng",
                        "middle": [],
                        "last": "Yao",
                        "suffix": ""
                    },
                    {
                        "first": "Danqi",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2104.08821"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. Simcse: Simple contrastive learning of sentence em- beddings. arXiv preprint arXiv:2104.08821.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Mutual mean-teaching: Pseudo label refinery for unsupervised domain adaptation on person reidentification",
                "authors": [
                    {
                        "first": "Yixiao",
                        "middle": [],
                        "last": "Ge",
                        "suffix": ""
                    },
                    {
                        "first": "Dapeng",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Hongsheng",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2001.01526"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yixiao Ge, Dapeng Chen, and Hongsheng Li. 2020. Mutual mean-teaching: Pseudo label refinery for unsupervised domain adaptation on person re- identification. arXiv preprint arXiv:2001.01526.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "A deep relevance matching model for ad-hoc retrieval",
                "authors": [
                    {
                        "first": "Jiafeng",
                        "middle": [],
                        "last": "Guo",
                        "suffix": ""
                    },
                    {
                        "first": "Yixing",
                        "middle": [],
                        "last": "Fan",
                        "suffix": ""
                    },
                    {
                        "first": "Qingyao",
                        "middle": [],
                        "last": "Ai",
                        "suffix": ""
                    },
                    {
                        "first": "W Bruce",
                        "middle": [],
                        "last": "Croft",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 25th ACM international on conference on information and knowledge management",
                "volume": "",
                "issue": "",
                "pages": "55--64",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce Croft. 2016. A deep relevance matching model for ad-hoc retrieval. In Proceedings of the 25th ACM in- ternational on conference on information and knowl- edge management, pages 55-64.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "defense of the triplet loss for person reidentification",
                "authors": [
                    {
                        "first": "Alexander",
                        "middle": [],
                        "last": "Hermans",
                        "suffix": ""
                    },
                    {
                        "first": "Lucas",
                        "middle": [],
                        "last": "Beyer",
                        "suffix": ""
                    },
                    {
                        "first": "Bastian",
                        "middle": [],
                        "last": "Leibe",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1703.07737"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Alexander Hermans, Lucas Beyer, and Bastian Leibe. 2017. In defense of the triplet loss for person re- identification. arXiv preprint arXiv:1703.07737.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Learning deep structured semantic models for web search using clickthrough data",
                "authors": [
                    {
                        "first": "Po-Sen",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaodong",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Li",
                        "middle": [],
                        "last": "Deng",
                        "suffix": ""
                    },
                    {
                        "first": "Alex",
                        "middle": [],
                        "last": "Acero",
                        "suffix": ""
                    },
                    {
                        "first": "Larry",
                        "middle": [],
                        "last": "Heck",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the 22nd ACM international conference on Information & Knowledge Management",
                "volume": "",
                "issue": "",
                "pages": "2333--2338",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck. 2013. Learning deep structured semantic models for web search using clickthrough data. In Proceedings of the 22nd ACM international conference on Information & Knowl- edge Management, pages 2333-2338.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Batch normalization: Accelerating deep network training by reducing internal covariate shift",
                "authors": [
                    {
                        "first": "Sergey",
                        "middle": [],
                        "last": "Ioffe",
                        "suffix": ""
                    },
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Szegedy",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "International conference on machine learning",
                "volume": "",
                "issue": "",
                "pages": "448--456",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sergey Ioffe and Christian Szegedy. 2015. Batch nor- malization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning, pages 448-456. PMLR.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Unsupervised abstractive opinion summarization by generating sentences with tree-structured topic guidance",
                "authors": [
                    {
                        "first": "Masaru",
                        "middle": [],
                        "last": "Isonuma",
                        "suffix": ""
                    },
                    {
                        "first": "Junichiro",
                        "middle": [],
                        "last": "Mori",
                        "suffix": ""
                    },
                    {
                        "first": "Danushka",
                        "middle": [],
                        "last": "Bollegala",
                        "suffix": ""
                    },
                    {
                        "first": "Ichiro",
                        "middle": [],
                        "last": "Sakata",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2106.08007"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Masaru Isonuma, Junichiro Mori, Danushka Bollegala, and Ichiro Sakata. 2021. Unsupervised abstrac- tive opinion summarization by generating sentences with tree-structured topic guidance. arXiv preprint arXiv:2106.08007.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Semantic text matching for long-form documents",
                "authors": [
                    {
                        "first": "Jyun-Yu",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "Mingyang",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Cheng",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Bendersky",
                        "suffix": ""
                    },
                    {
                        "first": "Nadav",
                        "middle": [],
                        "last": "Golbandi",
                        "suffix": ""
                    },
                    {
                        "first": "Marc",
                        "middle": [],
                        "last": "Najork",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "The World Wide Web Conference",
                "volume": "",
                "issue": "",
                "pages": "795--806",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jyun-Yu Jiang, Mingyang Zhang, Cheng Li, Michael Bendersky, Nadav Golbandi, and Marc Najork. 2019. Semantic text matching for long-form docu- ments. In The World Wide Web Conference, pages 795-806.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Albert: A lite bert for self-supervised learning of language representations",
                "authors": [
                    {
                        "first": "Zhenzhong",
                        "middle": [],
                        "last": "Lan",
                        "suffix": ""
                    },
                    {
                        "first": "Mingda",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "Goodman",
                        "suffix": ""
                    },
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Gimpel",
                        "suffix": ""
                    },
                    {
                        "first": "Piyush",
                        "middle": [],
                        "last": "Sharma",
                        "suffix": ""
                    },
                    {
                        "first": "Radu",
                        "middle": [],
                        "last": "Soricut",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1909.11942"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. 2019. Albert: A lite bert for self-supervised learn- ing of language representations. arXiv preprint arXiv:1909.11942.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Sentence embeddings using supervised contrastive learning",
                "authors": [
                    {
                        "first": "Danqi",
                        "middle": [],
                        "last": "Liao",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2106.04791"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Danqi Liao. 2021. Sentence embeddings using supervised contrastive learning. arXiv preprint arXiv:2106.04791.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Generating wikipedia by summarizing long sequences",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Peter",
                        "suffix": ""
                    },
                    {
                        "first": "Mohammad",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Etienne",
                        "middle": [],
                        "last": "Saleh",
                        "suffix": ""
                    },
                    {
                        "first": "Ben",
                        "middle": [],
                        "last": "Pot",
                        "suffix": ""
                    },
                    {
                        "first": "Ryan",
                        "middle": [],
                        "last": "Goodrich",
                        "suffix": ""
                    },
                    {
                        "first": "Lukasz",
                        "middle": [],
                        "last": "Sepassi",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Kaiser",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Shazeer",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1801.10198"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam Shazeer. 2018. Generating wikipedia by summarizing long sequences. arXiv preprint arXiv:1801.10198.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Roberta: A robustly optimized bert pretraining approach",
                "authors": [
                    {
                        "first": "Yinhan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Myle",
                        "middle": [],
                        "last": "Ott",
                        "suffix": ""
                    },
                    {
                        "first": "Naman",
                        "middle": [],
                        "last": "Goyal",
                        "suffix": ""
                    },
                    {
                        "first": "Jingfei",
                        "middle": [],
                        "last": "Du",
                        "suffix": ""
                    },
                    {
                        "first": "Mandar",
                        "middle": [],
                        "last": "Joshi",
                        "suffix": ""
                    },
                    {
                        "first": "Danqi",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Lewis",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    },
                    {
                        "first": "Veselin",
                        "middle": [],
                        "last": "Stoyanov",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1907.11692"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining ap- proach. arXiv preprint arXiv:1907.11692.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "GloVe: Global vectors for word representation",
                "authors": [
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Pennington",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Socher",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "1532--1543",
                "other_ids": {
                    "DOI": [
                        "10.3115/v1/D14-1162"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe: Global vectors for word representation. In Proceedings of the 2014 Confer- ence on Empirical Methods in Natural Language Processing (EMNLP), pages 1532-1543, Doha, Qatar. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Sentence-BERT: Sentence embeddings using Siamese BERTnetworks",
                "authors": [
                    {
                        "first": "Nils",
                        "middle": [],
                        "last": "Reimers",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "3982--3992",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1410"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Nils Reimers and Iryna Gurevych. 2019. Sentence- BERT: Sentence embeddings using Siamese BERT- networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natu- ral Language Processing (EMNLP-IJCNLP), pages 3982-3992, Hong Kong, China. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter",
                "authors": [
                    {
                        "first": "Victor",
                        "middle": [],
                        "last": "Sanh",
                        "suffix": ""
                    },
                    {
                        "first": "Lysandre",
                        "middle": [],
                        "last": "Debut",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Chaumond",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Wolf",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1910.01108"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Mpnet: Masked and permuted pretraining for language understanding",
                "authors": [
                    {
                        "first": "Kaitao",
                        "middle": [],
                        "last": "Song",
                        "suffix": ""
                    },
                    {
                        "first": "Xu",
                        "middle": [],
                        "last": "Tan",
                        "suffix": ""
                    },
                    {
                        "first": "Tao",
                        "middle": [],
                        "last": "Qin",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    },
                    {
                        "first": "Tie-Yan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2004.09297"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie- Yan Liu. 2020. Mpnet: Masked and permuted pre- training for language understanding. arXiv preprint arXiv:2004.09297.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "How to fine-tune bert for text classification?",
                "authors": [
                    {
                        "first": "Chi",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "Xipeng",
                        "middle": [],
                        "last": "Qiu",
                        "suffix": ""
                    },
                    {
                        "first": "Yige",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Xuanjing",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "China National Conference on Chinese Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "194--206",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. 2019. How to fine-tune bert for text classification? In China National Conference on Chinese Computa- tional Linguistics, pages 194-206. Springer.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Multi-similarity loss with general pair weighting for deep metric learning",
                "authors": [
                    {
                        "first": "Xun",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Xintong",
                        "middle": [],
                        "last": "Han",
                        "suffix": ""
                    },
                    {
                        "first": "Weilin",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Dengke",
                        "middle": [],
                        "last": "Dong",
                        "suffix": ""
                    },
                    {
                        "first": "Matthew R",
                        "middle": [],
                        "last": "Scott",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition",
                "volume": "",
                "issue": "",
                "pages": "5022--5030",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and Matthew R Scott. 2019. Multi-similarity loss with general pair weighting for deep metric learn- ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5022-5030.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Sampling matters in deep embedding learning",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Chao-Yuan",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [
                            "J"
                        ],
                        "last": "Manmatha",
                        "suffix": ""
                    },
                    {
                        "first": "Philipp",
                        "middle": [],
                        "last": "Smola",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Krahenbuhl",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the IEEE International Conference on Computer Vision",
                "volume": "",
                "issue": "",
                "pages": "2840--2848",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chao-Yuan Wu, R Manmatha, Alexander J Smola, and Philipp Krahenbuhl. 2017. Sampling matters in deep embedding learning. In Proceedings of the IEEE International Conference on Computer Vision, pages 2840-2848.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Luke: deep contextualized entity representations with entity-aware self-attention",
                "authors": [
                    {
                        "first": "Ikuya",
                        "middle": [],
                        "last": "Yamada",
                        "suffix": ""
                    },
                    {
                        "first": "Akari",
                        "middle": [],
                        "last": "Asai",
                        "suffix": ""
                    },
                    {
                        "first": "Hiroyuki",
                        "middle": [],
                        "last": "Shindo",
                        "suffix": ""
                    },
                    {
                        "first": "Hideaki",
                        "middle": [],
                        "last": "Takeda",
                        "suffix": ""
                    },
                    {
                        "first": "Yuji",
                        "middle": [],
                        "last": "Matsumoto",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2010.01057"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, and Yuji Matsumoto. 2020. Luke: deep con- textualized entity representations with entity-aware self-attention. arXiv preprint arXiv:2010.01057.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Consert: A contrastive framework for self-supervised sentence representation transfer",
                "authors": [
                    {
                        "first": "Yuanmeng",
                        "middle": [],
                        "last": "Yan",
                        "suffix": ""
                    },
                    {
                        "first": "Rumei",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Sirui",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Fuzheng",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Weiran",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2105.11741"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yuanmeng Yan, Rumei Li, Sirui Wang, Fuzheng Zhang, Wei Wu, and Weiran Xu. 2021. Con- sert: A contrastive framework for self-supervised sentence representation transfer. arXiv preprint arXiv:2105.11741.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Beyond 512 tokens: Siamese multi-depth transformer-based hierarchical encoder for long-form document matching",
                "authors": [
                    {
                        "first": "Liu",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Mingyang",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Cheng",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Bendersky",
                        "suffix": ""
                    },
                    {
                        "first": "Marc",
                        "middle": [],
                        "last": "Najork",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 29th ACM International Conference on Information & Knowledge Management",
                "volume": "",
                "issue": "",
                "pages": "1725--1734",
                "other_ids": {
                    "DOI": [
                        "https://dl.acm.org/doi/pdf/10.1145/3340531.3411908"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Liu Yang, Mingyang Zhang, Cheng Li, Michael Ben- dersky, and Marc Najork. 2020. Beyond 512 tokens: Siamese multi-depth transformer-based hierarchical encoder for long-form document matching. In Pro- ceedings of the 29th ACM International Conference on Information & Knowledge Management, pages 1725-1734.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "WikiQA: A challenge dataset for open-domain question answering",
                "authors": [
                    {
                        "first": "Yi",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Yih",
                        "middle": [],
                        "last": "Wen-Tau",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Meek",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "2013--2018",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D15-1237"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yi Yang, Wen-tau Yih, and Christopher Meek. 2015. WikiQA: A challenge dataset for open-domain ques- tion answering. In Proceedings of the 2015 Con- ference on Empirical Methods in Natural Language Processing, pages 2013-2018, Lisbon, Portugal. As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "Deep metric learning with tuplet margin loss",
                "authors": [
                    {
                        "first": "Baosheng",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "Dacheng",
                        "middle": [],
                        "last": "Tao",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the IEEE/CVF International Conference on Computer Vision",
                "volume": "",
                "issue": "",
                "pages": "6490--6499",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Baosheng Yu and Dacheng Tao. 2019. Deep metric learning with tuplet margin loss. In Proceedings of the IEEE/CVF International Conference on Com- puter Vision, pages 6490-6499.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "Refining pseudo labels with clustering consensus over generations for unsupervised object reidentification",
                "authors": [
                    {
                        "first": "Xiao",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Yixiao",
                        "middle": [],
                        "last": "Ge",
                        "suffix": ""
                    },
                    {
                        "first": "Yu",
                        "middle": [],
                        "last": "Qiao",
                        "suffix": ""
                    },
                    {
                        "first": "Hongsheng",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition",
                "volume": "",
                "issue": "",
                "pages": "3436--3445",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xiao Zhang, Yixiao Ge, Yu Qiao, and Hongsheng Li. 2021. Refining pseudo labels with clustering con- sensus over generations for unsupervised object re- identification. In Proceedings of the IEEE/CVF Con- ference on Computer Vision and Pattern Recogni- tion, pages 3436-3445.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "Extractive summarization as text matching",
                "authors": [
                    {
                        "first": "Ming",
                        "middle": [],
                        "last": "Zhong",
                        "suffix": ""
                    },
                    {
                        "first": "Pengfei",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Yiran",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Danqing",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Xipeng",
                        "middle": [],
                        "last": "Qiu",
                        "suffix": ""
                    },
                    {
                        "first": "Xuanjing",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "6197--6208",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.acl-main.552"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ming Zhong, Pengfei Liu, Yiran Chen, Danqing Wang, Xipeng Qiu, and Xuanjing Huang. 2020. Extrac- tive summarization as text matching. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6197-6208, On- line. Association for Computational Linguistics.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "The overall design of our Matching The Statements architecture.",
                "num": null,
                "type_str": "figure",
                "uris": null
            },
            "FIGREF1": {
                "text": ", there are two metrics used in Track 1, namely relaxed and strict mean Average Precision (mAP): Precision = True Positive True Positive + False Positive Since there are some argument-key point pairs in the ArgKP-2021 dataset that have indecisive annotations (i.e. their label is neither matched nor nonmatched): in the relaxed mAP evaluation, these pairs are considered as matched whereas strict mAP treats them as non-matched pairs.",
                "num": null,
                "type_str": "figure",
                "uris": null
            },
            "FIGREF2": {
                "text": "Statement representation before (left) and after (right) training.",
                "num": null,
                "type_str": "figure",
                "uris": null
            },
            "FIGREF3": {
                "text": "Mean Average Precision scores over 7 folds.",
                "num": null,
                "type_str": "figure",
                "uris": null
            },
            "TABREF4": {
                "num": null,
                "html": null,
                "text": "The effect of hard sample mining in baselines.",
                "content": "<table/>",
                "type_str": "table"
            },
            "TABREF7": {
                "num": null,
                "html": null,
                "text": "Leaderboard of the Track 1 Quantitative Summarization -Key Point Analysis.",
                "content": "<table/>",
                "type_str": "table"
            }
        }
    }
}