File size: 121,341 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T02:10:19.094649Z"
    },
    "title": "Overview of the 2021 Key Point Analysis Shared Task",
    "authors": [
        {
            "first": "Roni",
            "middle": [],
            "last": "Friedman",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "IBM Research",
                "location": {}
            },
            "email": "roni.friedman-melamed@il.ibm.com"
        },
        {
            "first": "Lena",
            "middle": [],
            "last": "Dankin",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "IBM Research",
                "location": {}
            },
            "email": "lenad@il.ibm.com"
        },
        {
            "first": "Yufang",
            "middle": [],
            "last": "Hou",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "IBM Research",
                "location": {}
            },
            "email": "yhou@ie.ibm.com"
        },
        {
            "first": "Ranit",
            "middle": [],
            "last": "Aharonov",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "IBM Research",
                "location": {}
            },
            "email": "ranit.aharonov2@il.ibm.com"
        },
        {
            "first": "Yoav",
            "middle": [],
            "last": "Katz",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "IBM Research",
                "location": {}
            },
            "email": "katz@il.ibm.com"
        },
        {
            "first": "Noam",
            "middle": [],
            "last": "Slonim",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "IBM Research",
                "location": {}
            },
            "email": "noams@il.ibm.com"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "We describe the 2021 Key Point Analysis (KPA-2021) shared task on key point analysis that we organized as a part of the 8th Workshop on Argument Mining (ArgMining 2021) at EMNLP 2021. We outline various approaches and discuss the results of the shared task. We expect the task and the findings reported in this paper to be relevant for researchers working on text summarization and argument mining.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "We describe the 2021 Key Point Analysis (KPA-2021) shared task on key point analysis that we organized as a part of the 8th Workshop on Argument Mining (ArgMining 2021) at EMNLP 2021. We outline various approaches and discuss the results of the shared task. We expect the task and the findings reported in this paper to be relevant for researchers working on text summarization and argument mining.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Key Point Analysis (KPA) was introduced in Bar-Haim et al. (2020a,b ) as a challenging NLP task with tight relations to Computational Argumentation, Opinion Analysis, and Summarization, and with many practical applications (Bar-Haim et al., 2021) . Given a potentially large collection of relatively short, opinionated texts focused on a topic of interest, the goal of KPA is to produce a succinct list of the most prominent key-points (KPs) in the input corpus, along with their relative prevalence. Thus, the output of KPA is a bullet-like summary, with an important quantitative angle. Successful solutions to KPA can be used to gain better insights from public opinions as expressed in social media, surveys, and so forth, giving rise to a new form of a communication channel between decision makers and people that might be impacted by the decision.",
                "cite_spans": [
                    {
                        "start": 43,
                        "end": 67,
                        "text": "Bar-Haim et al. (2020a,b",
                        "ref_id": null
                    },
                    {
                        "start": 223,
                        "end": 246,
                        "text": "(Bar-Haim et al., 2021)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Various requirements govern the value of the KPA output. KPs are expected to be succinct, nonredundant, capturing points that are central to the topic of interest, and reflecting a clear stance towards that topic. Ideally, they should be at the right granularity for summarising the input data -not too specific and yet still informative and not overly general. In addition, accurate mapping of input texts to KPs is obviously essential. First, to ensure a reliable estimate of the prevalence of each key * These authors equally contributed to this work. point. And second, to enable the user to drill-down, to gain a deeper understanding of the issues underlying each key point, as expressed by the input texts mapped to that key point.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The goal of the KPA-2021 shared task was to further increase the attention of the NLP community to this emerging task, while enriching the space of existing KPA solutions. Since providing a complete KPA solution is challenging, we divided the task into two tracks, enabling teams to participate only in the first, relatively simpler track. Specifically, in the first track, referred to as Matching Track, KPs are given as part of the input, and the task is focused on mapping input text to these KPs. In contrast, in the second track, referred to as Generation Track, no KPs are provided and the task requires to further generate the KPs. The data being considered for evaluation on both tracks are crowd sourced arguments on three debatable topics.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The nature of the KPA task requires to consider various evaluation measures to estimate the quality of the results across different dimensions. In this paper we report and analyze the results of 22 models submitted by 17 teams to the KPA-2021 shared task across these different evaluation measures. We also discuss lessons learned from these multiple submissions, that can guide future development of new KPA algorithms and associated evaluation methods.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Our shared task is based on Bar-Haim et al. (2020a,b) , which introduced the problem of KPA and proposed an extractive approach to address the task. In particular, we focus on benchmarking two sub tasks: (1) Key point matching; and (2) Key point generation and matching.",
                "cite_spans": [
                    {
                        "start": 28,
                        "end": 53,
                        "text": "Bar-Haim et al. (2020a,b)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "For the matching task Bar-Haim et al. (2020b) uses RoBERTa based classifier, trained on argument-KP pairs. For the generation task (Bar-Haim et al., 2020b) employs the follow-ing steps: First, compiling a list of high quality arguments that serve as KP candidates. Next, a match confidence score is calculated between all KP candidate-argument pairs, as well as between all the KP candidates to themselves. Finally, several filtering and ordering strategies are employed to maintain the most salient, yet non-overlapping KP candidates to serve as KPs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Below we briefly review the work closely related to KPA in a few fields.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Multi-document summarization (MDS). Most prior work on MDS has been focused on the news, Wikipedia, and scientific literature domains (Dang, 2005; Baumel et al., 2016; Liu et al., 2018; Lu et al., 2020) . MDS techniques are typically querybased and extractive, where models select a set of non-redundant sentences that are most relevant to the query to include in the summary (Xu and Lapata, 2020) . A few studies (Liu et al., 2018; Shapira et al., 2021) have explored generating the most salient queries the users might be interested in. However, it is still unclear how these salient queries/points are represented in the source documents. KPA addresses this problem by reporting the prevalence of each KP in the input data.",
                "cite_spans": [
                    {
                        "start": 134,
                        "end": 146,
                        "text": "(Dang, 2005;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 147,
                        "end": 167,
                        "text": "Baumel et al., 2016;",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 168,
                        "end": 185,
                        "text": "Liu et al., 2018;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 186,
                        "end": 202,
                        "text": "Lu et al., 2020)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 376,
                        "end": 397,
                        "text": "(Xu and Lapata, 2020)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 414,
                        "end": 432,
                        "text": "(Liu et al., 2018;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 433,
                        "end": 454,
                        "text": "Shapira et al., 2021)",
                        "ref_id": "BIBREF22"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Opinion and argument summarization. Recently there has been an increasing interest in summarizing opinions expressed in various reviews (Amplayo and Lapata, 2021; Elsahar et al., 2021) or argumentative text (Wang and Ling, 2016; Syed et al., 2020) . KPA contributes to this line of work by adding a quantitative dimension which reflects the distribution of opinions in the examined data. For a detailed discussion of the relation between KPA and argument clustering and summarization see (Bar-Haim et al., 2020a,b) .",
                "cite_spans": [
                    {
                        "start": 136,
                        "end": 162,
                        "text": "(Amplayo and Lapata, 2021;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 163,
                        "end": 184,
                        "text": "Elsahar et al., 2021)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 207,
                        "end": 228,
                        "text": "(Wang and Ling, 2016;",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 229,
                        "end": 247,
                        "text": "Syed et al., 2020)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 488,
                        "end": 514,
                        "text": "(Bar-Haim et al., 2020a,b)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Given a collection of arguments, with either pro or con stance towards a certain debatable topic, the goal of the KPA-2021 task is to generate a KPbased quantitative summary. The Generation Track requires models to perform the entire task -i.e., generate a list of KPs for each topic and stance, and then predict for each argument in this topic and stance the confidence by which it is matched to each KP. Since this is rather challenging we also established the Matching Track, in which a set of KPs, generated by an expert per topic and stance, is given as part of the input, requiring models to only predict a match confidence score for each argument in the input, towards each of the provided KPs. In both tracks, the confidence score expresses the model's confidence that the KP represents the essence of the argument, and can be associated with it for the purpose of a KP-based quantitative summary. Since in the ground truth data (defined in the next section), only 5% of the arguments map to multiple KPs, we take a simplifying approach in the evaluation, where we consider for each argument only the KP with the highest confidence score as true positive.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task Description",
                "sec_num": "3.1"
            },
            {
                "text": "Since in the ground truth data, a significant portion of the arguments are not matched to any KP, it is not enough for a model to rank the KPs per argument. Rather, it should also provide a threshold on the confidence that determines whether the highest scoring KP is matched to the argument, or whether this argument has no matching KP. In this shared task, we opted for a simpler approach, in which the submitted models are not required to determine the threshold. Rather, we evaluate all models by considering only the top 50% of the argument-KP pairs, as ranked by the confidence scores of all pairs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task Description",
                "sec_num": "3.1"
            },
            {
                "text": "The full terms of the KPA-2021 task can be found online 1 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task Description",
                "sec_num": "3.1"
            },
            {
                "text": "For KPA-2021 we use a data set covering a set of debatable topics, where for each topic and stance, a set of triplets of the form <argument, KP, label> is provided. The data set is based on the ArgKP data set (Bar-Haim et al., 2020a), which contains arguments contributed by the crowd on 28 debatable topics, split by their stance towards the topic, and KPs written by an expert for those topics. As described in (Bar-Haim et al., 2020a) , crowd annotations were collected to determine whether a KP represents an argument, i.e., is a match for an argument, and based on these annotations every argument-KP pair received a label that can take three values: (i) positive -60% or more of the annotations determined there is a match; (ii) negative -15% or less of the annotations determined there is a match; and (iii) undecided -neither positive nor negative. For example, in the pro stance towards the topic \"Homeschooling should be banned\", and for the KP \"Mainstream schools are essential to develop social skills\", the argument \"children can not learn to interact with their peers when taught at home\" was labeled as positive and the argument \"homeschooling causes a decline in education\" as negative. The arguments in ArgKP are a subset of the IBM-ArgQ-Rank-30kArgs data set (Gretz et al., 2020) , which consists of 30K crowd-sourced arguments on 71 controversial topics, where each argument is labeled for its stance towards the topic as well as for its quality.",
                "cite_spans": [
                    {
                        "start": 413,
                        "end": 437,
                        "text": "(Bar-Haim et al., 2020a)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 1277,
                        "end": 1297,
                        "text": "(Gretz et al., 2020)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The ArgKP-2021 data set",
                "sec_num": "3.2"
            },
            {
                "text": "The ArgKP data set, which is publicly available, served as the training data for our task. The 28 topics in the data set were split to train (24 topics) and dev (4 topics) sets and were offered to the participants with a recommendation to use as such in the preparation of their models. For Generation Track, in addition to the ArgKP data set, the participants were encouraged to use the remaining arguments from the IBM-ArgQ-Rank-30kArgs data set.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The ArgKP-2021 data set",
                "sec_num": "3.2"
            },
            {
                "text": "For a test set, we extended ArgKP, adding three new debatable topics, that were also not part of IBM-ArgQ-Rank-30kArgs. The test set was collected specifically for KPA-2021, and was carefully designed to be similar in various aspects to the training data 2 . For each topic, crowd sourced arguments were collected, expert KPs generated, and match/no match annotations for argument/KP pairs obtained, resulting in a data set compatible with the ArgKP format. Arguments collection strictly adhered to the guidelines, quality measures, and post processing used for the collection of arguments in IBM-ArgQ-Rank-30kArgs (Gretz et al., 2020) , while the generation of expert KPs, collection of match annotations, and final data set creation strictly adhered to the manner in which ArgKP was created (Bar-Haim et al., 2020a).",
                "cite_spans": [
                    {
                        "start": 615,
                        "end": 635,
                        "text": "(Gretz et al., 2020)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The ArgKP-2021 data set",
                "sec_num": "3.2"
            },
            {
                "text": "The full data set, i.e., ArgKP together with the test set, is termed ArgKP-2021 and is available online 3 . See Table 1 for data statistics.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 112,
                        "end": 119,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "The ArgKP-2021 data set",
                "sec_num": "3.2"
            },
            {
                "text": "For the submitted prediction files, we extract argument-KP pairs as follows. First, each argument is paired with the highest scoring KP as-signed to it (randomly chosen in case of a tie) 4 . Second, the top 50% of the argument-KP pairs are extracted for each topic and stance as an ordered list, based on the confidence score. Finally, given the ground truth data, Average Precision (AP, Turpin and Scholer (2006) ), is calculated per topic and stance. Note that a perfect score of 1 can only be achieved when all top 50% matches are correct. We chose AP as the evaluation metric, since it supports evaluating the correlation between a model's confidence and prediction success. We obtain the mean AP (mAP) by macro averaging over all topics and stances so that each topic and stance has the same effect over final score.",
                "cite_spans": [
                    {
                        "start": 388,
                        "end": 413,
                        "text": "Turpin and Scholer (2006)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Matching Track",
                "sec_num": "3.3.1"
            },
            {
                "text": "When evaluating the models, we need to address the issue of the undecided argument-KP pairs in the labeled data. Considering a prediction of undecided pairs as a false prediction is too strict, since > 15% of the annotators found this match correct, and hence it is not entirely wrong. Discarding predictions of undecided pairs from the set of a model's predictions, as was done in (Bar-Haim et al., 2020a), is not relevant for KPA-2021, as it would have rendered the evaluation process inconsistent across different models. We therefore relied on two measures for this track -relaxed and strict mAP. In the strict evaluation score, undecided pairs are considered as wrong predictions, while in the relaxed evaluation score they are considered as correct, i.e., true positives. The final rank of a model in this track is the average between the rank of the model in the strict score and its rank in the relaxed score.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Matching Track",
                "sec_num": "3.3.1"
            },
            {
                "text": "Models submitted to this track were evaluated on two aspects: The first is how well the set of generated KPs serves as a summary of possible arguments for this topic and stance. The second is how well does the model match between the arguments and the generated KPs. We note that evaluating only how well the arguments match the generated KPs is insufficient since one may obtain relatively high mAP scores by generating redundant and/or very general and non-informative KPs. It is therefore crucial to establish the quality of the set of KPs as a standalone evaluation. Due to the nature of this track, no ground truth data is available, and we therefore perform the evaluation of the submit- ted results using crowd annotations via the Appen platform 5 . The annotations were generated by a selected group of annotators which performed well in previous tasks, and further obtained good results in sanity-test questions and demonstrated high agreement with other annotators (Gretz et al. (2020) , Toledo et al. (2019) ).",
                "cite_spans": [
                    {
                        "start": 975,
                        "end": 995,
                        "text": "(Gretz et al. (2020)",
                        "ref_id": null
                    },
                    {
                        "start": 998,
                        "end": 1018,
                        "text": "Toledo et al. (2019)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Generation Track",
                "sec_num": "3.3.2"
            },
            {
                "text": "The first evaluation considers the model's ability to correctly match arguments to KPs. As in Matching Track, an argument is matched to a single KP, and only the top 50% matches are considered for evaluation. Unlike Matching Track, here the evaluation of the match must be retrospective, since the KPs are provided by the submitted models. Following Bar-Haim et al. 2020b, we presented each argument to the annotators with its top matching KP, and asked if the KP matches the argument. Possible answers are 'Yes'/'No'/'Faulty KP'. We consider 'Faulty KP' as no match. Since here we directly ask regarding the predicted match, rather than showing annotators all possible pairs (as was done when generating the ground truth data for the Matching Track), we generate a binary label from the annotations by the majority vote, and compute a single mAP score.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Generation Track",
                "sec_num": "3.3.2"
            },
            {
                "text": "The second evaluation aspect concerns the quality of the set of KPs generated by the submitted model. Here we asked annotators to perform a pairwise comparison between two sets of KPs, each taken from a different model, on the same topic and stance. We perform such pairwise comparisons between all pairs of top models according to Generation Track mAP score. Each KP set is sorted, such that the more prevalent KPs according to this model's matching are higher in the list. KPs that match 1% or less of the arguments are not presented to the annotators.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Generation Track",
                "sec_num": "3.3.2"
            },
            {
                "text": "The annotators are first asked to determine for each KP set what is the stance of the set towards the topic (All support the topic/All contest the topic/Most support the topic/Most contest the 5 www.appen.com. topic). This initial question is not positioned as a comparative question. However, annotators' answers are compared to the stance of the arguments of the KP set, and in case one model is correct and the other is not (either all or some KPs are judged not to be in the correct stance), this is counted as a win for the former. Two comparative questions follow: Which of the two summaries is less redundant? and Which of the two summaries captures points that are more central to the topic?, where the latter question aims for the relevance of the KP set. Possible answers for those questions are Summary A/Summary B/Both are equal in this respect. For each of the three questions, ranking is calculated using the Bradley-Terry model (Bradley and Terry, 1952) , which predicts the probability of a given participant to win a paired comparison, based on previous paired comparison results of multiple participants, and thus allows ranking them. The final rank of a model in the KP set quality aspect is the average of the three ranks.",
                "cite_spans": [
                    {
                        "start": 943,
                        "end": 968,
                        "text": "(Bradley and Terry, 1952)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Generation Track",
                "sec_num": "3.3.2"
            },
            {
                "text": "Finally, a model's rank in the Generation Track is the average of its rank in the mAP evaluation aspect and its rank in the evaluation of the KP set quality. In case of a tie between the two ranks, mAP score is given preference.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Generation Track",
                "sec_num": "3.3.2"
            },
            {
                "text": "In total, 17 models were submitted to Matching Track, and 5 models to Generation Track. Note that some teams did not provide description for their model. Still, we show their results in the results section, but we cannot provide their descriptions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Submitted models",
                "sec_num": "4"
            },
            {
                "text": "As in other NLP related tasks, transformer based approaches are preferable among the participants, with a clear dominance of RoBERTa (Liu and Lapata, 2019) . None of the participants found the undecided pairs as useful for training, thus training was focused only on positive and negative pairs. Most of the participants used the topic as an in-put to their models, and ignored the stance. We also note that some of the models (SMatchToPR, MatchTStm) utilized contrastive learning, taking advantage of the fact that arguments are provided with matched and unmatched KPs. SiamBERT, though not directly by contrastive learning, also shows two key points for one argument in training.",
                "cite_spans": [
                    {
                        "start": 133,
                        "end": 155,
                        "text": "(Liu and Lapata, 2019)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Matching Track",
                "sec_num": "4.1"
            },
            {
                "text": "SMatchToPageRank (hereafter as SMatch-ToPR) (Alshomary et al., 2021) aims to learn an embedding space where matching argument-KP pairs are closer than non-matching pairs. This model has two inputs: (1) the argument; and (2) the concatenation of the KP and the topic. The tokens of each input are embedded using RoBERTa-large. Next, those inputs are passed to a siamese Sentence-BERT network that is trained with a contrastive loss.",
                "cite_spans": [
                    {
                        "start": 44,
                        "end": 68,
                        "text": "(Alshomary et al., 2021)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Matching Track",
                "sec_num": "4.1"
            },
            {
                "text": "Team NLP@UIT use ALBERT XXLarge (Lan et al., 2019 ) pre-trained model for sentence-pair classification for pairs of argument and KP. Five models are fine-tuned on different cross-validation splits, and for inference the average of all models is considered as the final score.",
                "cite_spans": [
                    {
                        "start": 32,
                        "end": 49,
                        "text": "(Lan et al., 2019",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Matching Track",
                "sec_num": "4.1"
            },
            {
                "text": "Modern Talking -RoBERTa-Base (hereafter as ModrnTalk) (Reimer et al., 2021) is a RoBERTa-Base model fine-tuned on the concatenation of arguments-kps pairs. At training, the model is warmed up on 6% of the data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Matching Track",
                "sec_num": "4.1"
            },
            {
                "text": "Enigma (Kapadnis et al., 2021) is based on a DeBERTa-Large (He et al., 2020 ) pre-trained model. The input to the model is the concatenation of KP, argument, and topic. The output of the DeBerta model is concatenated with the POS tags representation of the three text pieces, and then fed to two more dense layers.",
                "cite_spans": [
                    {
                        "start": 59,
                        "end": 75,
                        "text": "(He et al., 2020",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Matching Track",
                "sec_num": "4.1"
            },
            {
                "text": "Matching the statement (hereafter as MatchT-Stm (Phan et al., 2021) embeds each argument and KP separately along with their context that is represented by the topic and stance. RoBERTa is utilized to extract all text embeddings. Next, the statement pairs are passed to a fully connected network. Finally, a contrastive learning is employed by grouping matching and non matching arguments for the same KP in a single batch.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Matching Track",
                "sec_num": "4.1"
            },
            {
                "text": "poledro (Cosenza, 2021 ) is a fine-tuned ALBERT-XXLarge model, similarly to NLP@UIT. The input to the model is a concatenated argument-KP pair.",
                "cite_spans": [
                    {
                        "start": 8,
                        "end": 22,
                        "text": "(Cosenza, 2021",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Matching Track",
                "sec_num": "4.1"
            },
            {
                "text": "XLNet is a vanilla XLNet-Large auto-regressive model (Yang et al., 2019) fine-tuned on argument-KP pairs.",
                "cite_spans": [
                    {
                        "start": 53,
                        "end": 72,
                        "text": "(Yang et al., 2019)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Matching Track",
                "sec_num": "4.1"
            },
            {
                "text": "RoBERTa-large-concat (hereafter as RoBER-TaLC) is a fined tuned RoBERTa-large model. The input to the model is the concatenation of the topic, the KP, and the argument. Training data is balanced between positive and negative match examples by over sampling positive instances.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Matching Track",
                "sec_num": "4.1"
            },
            {
                "text": "Siamese BERT classifier (hereafter as SiamBERT) is a siamese BERT (Devlin et al., 2019) based model trained on pairs of arguments and KPs. At each training step, the same argument with two different KPs, one that matches and one that doesn't, is passed to the model, and it learns to prefer the matching pair.",
                "cite_spans": [
                    {
                        "start": 66,
                        "end": 87,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Matching Track",
                "sec_num": "4.1"
            },
            {
                "text": "SMatchToPR applies an extractive approach. First, arguments with high quality scores (using (Toledo et al., 2019; Gretz et al., 2020) ) are selected as KP candidates. Next, arguments with high matching score (using Matching Track models) are connected to form an undirected graph, where the nodes are the arguments. Finally, an importance score is calculated for each node, and most important nodes are selected as KPs. Note that KP candidates that have high confidence scores with other candidate are ignored, to ensure diversity.",
                "cite_spans": [
                    {
                        "start": 92,
                        "end": 113,
                        "text": "(Toledo et al., 2019;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 114,
                        "end": 133,
                        "text": "Gretz et al., 2020)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Generation Track",
                "sec_num": "4.2"
            },
            {
                "text": "Enigma approaches this task as an abstractive summarization task. First, Pegasus (Zhang et al., 2020) is fine-tuned with an input of concatenated arguments and topics. The set of corresponding KPs are provided as a ground truth summary. For each pair of arguments and the corresponding topic, several summaries were generated. Next, those summaries are ranked by the ROUGE-1 score with respect to the input pair, and the top 5 summaries are selected as KPs for each stance.",
                "cite_spans": [
                    {
                        "start": 81,
                        "end": 101,
                        "text": "(Zhang et al., 2020)",
                        "ref_id": "BIBREF29"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Generation Track",
                "sec_num": "4.2"
            },
            {
                "text": "XLNet applies the XLNet model developed for Matching Track on all possible pairs of arguments, so that each argument is evaluated as a potential KP summarizing another argument. Arguments with the highest average confidence scores are selected as KPs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Generation Track",
                "sec_num": "4.2"
            },
            {
                "text": "In addition to the submitted models, we evaluate the state of the art RoBERTa based model described in (Bar-Haim et al., 2020b) and in section 2, termed hereafter BarH. Table 2 describes the evaluation results for the Matching Track. By definition, the relaxed mAP is higher than the strict mAP. Still, it is interesting to note that many models achieve a high relaxed mAP, while differences between models are more evident when considering the strict mAP. The topranked model in this track, SMatchToPR, is also ranked first when considering the average value of the mAP scores, as well as p@50%. However, the other models tend to swap positions when considering different measures, though there is a distinct group of high performing models. Figure 1(a) depicts strict mAP scores for each topic and stance, for the top performing models and for BarH. Evidently, some topic/stance pairs are easier than others for all models.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 169,
                        "end": 176,
                        "text": "Table 2",
                        "ref_id": "TABREF3"
                    },
                    {
                        "start": 743,
                        "end": 754,
                        "text": "Figure 1(a)",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5"
            },
            {
                "text": "The results of the Generation Track are presented in Table 3 for both the matching aspect (mAP) as well as the quality of the generated KPs. The full results of the comparative annotation of the sets can be found in Table 6 in the appendix. In general, BarH clearly outperformed all submitted models, while SMatchToPR obtained the best results amongst the submitted models. Figure 1(b) shows the mAP scores for each topic and stance, for the top performing models and for BarH. We note that the inconsistent ranking of XLNet, namely first rank on relevance, while scoring much worse on other quality questions, stems from the fact that the model provided the set of KPs of the positive stance arguments for both the positive and negative stance. Although such a result can achieve high relevance, it fails when considering stance and redundancy, as indicated by the results.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 53,
                        "end": 60,
                        "text": "Table 3",
                        "ref_id": "TABREF5"
                    },
                    {
                        "start": 216,
                        "end": 223,
                        "text": "Table 6",
                        "ref_id": null
                    },
                    {
                        "start": 374,
                        "end": 385,
                        "text": "Figure 1(b)",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Generation Track",
                "sec_num": "5.2"
            },
            {
                "text": "It is interesting to note that BarH outperformed all submitted models by a significant margin, even though it had a relatively low rank in Matching Track. This could be due to its specific failure in matching to expert KPs in one of the topic/stance pairs (see Figure 1(a) , second set of bars) coupled with the usage of macro-averaging.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 261,
                        "end": 272,
                        "text": "Figure 1(a)",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Generation Track",
                "sec_num": "5.2"
            },
            {
                "text": "When designing the task, we did not direct the participants regarding whether to use an extractive or abstractive approach for generating the KPs. Indeed, three models, BarH, SMatchToPR, and XLNet used an extractive approach, selecting specific arguments as KPs, while three models, Enigma, pa_vincent, and mozhiwen opted for an abstractive approach, generating KPs de novo. Evidently, the extractive approach prevailed. Out of the three models taking the abstractive approach, only Enigma generated comprehensible KPs. The other two, received near zero scores in the matching evaluation, and hence, according the to KPA-2021 terms, were not included in the KP set evaluation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Generation Track",
                "sec_num": "5.2"
            },
            {
                "text": "Accurate matching of arguments to KPs aims to properly reflect the prevalence of each KP in the data to facilitate more informed decision making. In this section we analyze how well different models were able to reproduce the presumably true distribution of KPs in the input data. To that end, we focus on the Matching Track, and consider the distribution of the expert KPs as the ground truth distribution. As can be seen in the top row of Figure 2(a) , the five KPs provided by the expert for this topic and stance are not equally represented in the argument set. Nearly 40% of the arguments were matched by the annotators to \"Social media regulation is required to deal with malicious users\" (kp-1-9); around 30% were matched to \"Social media regulation can help to deal with negative content\" (kp-1-8); and so on. Correspondingly, for each model submitted in this track, we compare the distribution of KPs as predicted by its matching to the manually obtained ground truth distribution. To that end, we use the Jensen Shannon divergence (JSd). The smaller the divergence, the more accurate is the summary generated by a model (based on the 50% of the arguments that pass the threshold). We find that the average topic-stance JSd for the top 5 ranking models ranges from 0.152 to 0.238 (see Table 7 in the appendix for more details). Interestingly, the models which perform best in the Matching Track evaluation, i.e., have the highest mAP scores, are not those with the lowest JSd scores. This can also be seen in Figure 2(b) . The rank of all models based on their JSd score is plotted vs. their rank in the matching task, for all topics and stances. Although it is evident that models which perform poorly on the matching task are also ranked low by JSd, the overall correlation is low. In other words, a model with sub-optimal matching capabilities may still perform relatively well in capturing the overall distribution of the KPs in the input data.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 441,
                        "end": 452,
                        "text": "Figure 2(a)",
                        "ref_id": null
                    },
                    {
                        "start": 1294,
                        "end": 1301,
                        "text": "Table 7",
                        "ref_id": "TABREF9"
                    },
                    {
                        "start": 1518,
                        "end": 1529,
                        "text": "Figure 2(b)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Additional Analysis",
                "sec_num": "6"
            },
            {
                "text": "In the Generation Track, there is no single set of KPs, since each model generates its own set. It is In addition to the official evaluation metrics, two more scores are provided: the average value of the strict and relaxed mAP values, and p@50% for the strict view. Submissions that provided a descriptions are marked with (*). Figure 2: (a): The distribution of KPs among the arguments, in the pro stance on the topic Social media platforms should be regulated by the government, for the expert ground truth (strict view) and selected models, normalized to the number of arguments that match to a KP. The JSd vs. the expert distribution is given in brackets. (b) JSd rank vs. AP rank for all models in the Matching Track, per topic and stance. The map between topic id, and topic text can be found at therefore not relevant to compare the distributions over KPs as done above. However, it is possible to perform a qualitative anecdotal analysis. Table 8 in the appendix lists the KPs generated for one topic and stance, by the expert and the different models. Importantly, the expert produced KPs a priori, without seeing the actual set of arguments; while the models generated KPs based on the input arguments. Inspection of the generated KPs suggests that correspondingly, some KPs were perhaps overlooked by the expert. For example, BarH generated a KP concerning keeping schools safe, and another one concerning prevention of pandemic outbreaks, both of which are not in the expert set, even though there are expert KPs that are related. In Table 5 we show an example of one expert KP, to which we manually matched generated KPs from the top 3 models, as an anecdotal distribution comparison. In this example, BarH and SMatchToPR extracted the exact same KP, yet in BarH it maps to 35% of the arguments, which is in line with the weight of this KP in the expert ground truth, while SMatchToPR maps it to a much larger fraction of the arguments.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 948,
                        "end": 955,
                        "text": "Table 8",
                        "ref_id": null
                    },
                    {
                        "start": 1547,
                        "end": 1554,
                        "text": "Table 5",
                        "ref_id": "TABREF8"
                    }
                ],
                "eq_spans": [],
                "section": "Additional Analysis",
                "sec_num": "6"
            },
            {
                "text": "We presented KPA-2021, the first shared task focused on key point analysis. The shared task received 22 submissions from 17 teams, covering both the Matching Track and the Generation Track.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "7"
            },
            {
                "text": "We presented the submitted models, their performance on different evaluation measures, and further analyzed the results. As expected by its simpler nature, Matching Track received more submissions. However, ev-idently, success in this intermediate matching task, does not guarantee success in the overall KPA task, which also requires generating the KPs. Future work should determine whether future KPA shared tasks should focus on the Generation Track, or perhaps modify the evaluation measures of the intermediate Matching Track, such that they better reflect the model performance in the full KPA task.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "7"
            },
            {
                "text": "Given the inherent subjective nature of matching arguments to KPs, we opted for a ternary label, allowing argument-KP pairs to receive an \"undecided\" label, if the annotators votes were inconclusive. These undecided pairs are eventually considered either as positive or as negative matches, resulting with two gold standards, one potentially too strict, while the other perhaps too lenient. In future tasks, it may be valuable to consider a binary labeling scheme that will give rise to a single gold standard. Such labeling may be created conditionally, such that an undecided pair is marked as a positive match if and only if a minimum number of annotators marked it as positive and no other KP was labeled as matching to that argument.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "7"
            },
            {
                "text": "A further point for future consideration, is the choice of a pre-defined threshold of 50%, that guided our evaluation. Although, this has the advantage of not requiring submissions to tune a confidence threshold, it has the limitation that it complicates the evaluation, since the ground truth coverage depends on the arguments, topic and stance. A possible alternative would be to require each model to set its own minimum confidence threshold to determine if an input argument should not be matched to any KP. Finally, in this task, we used comparative evaluations to determine the quality of the sets of generated KPs. Obviously, this results with rankingbased evaluation. Establishing an absolute evaluation metric in this context merits further investigation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "7"
            },
            {
                "text": "We thank all participating teams for taking the time to participate in this challenging new shared task. We believe that these contributions, along with the data collected and shared in this report, will be valuable to further advance the research around KPA and related tasks. 4 Child vaccination should be mandatory to provide decent healthcare equally 2",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "7"
            },
            {
                "text": "Vaccines help children grow up healthy and avoid dangerous diseases 77 child vaccinations should be mandatory to provide decent health care to all. 12 child vaccinations should be mandatory so our children will be safe and protected. 9",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "SMatchToPR",
                "sec_num": null
            },
            {
                "text": "Child vaccinations are necessary to protect against diseases in the child 50 A mandatory vaccination is important to protect against diseases in the child 25 Children should be vaccinated against diseases 23 Children should be vaccinated against diseases as soon as possible 2",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Enigma",
                "sec_num": null
            },
            {
                "text": "It is important to protect the health of the next generation so to do that means the routine child vaccinations have to be mandatory. 57 vaccines must be compulsory for children because in this way we prevent later diseases in infants",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "XLNet",
                "sec_num": null
            },
            {
                "text": "Making routine child vaccinations mandatory would prevent the unnecessary deaths and suffering that currently result from the diseases that the vaccines prevent. 8 child vaccinations should be mandatory so our children will be safe and protected. 8 Child vaccination has to be mandatory since it takes care of our children to be immune to any type of disease so I think it has to be mandatory 4 childhood vaccines should be mandatory because a child at an early age needs to strengthen their immune system and the state should be in the power to provide such protection 4",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "11",
                "sec_num": null
            },
            {
                "text": "If routine infallible vaccinations are mandatory, that way we avoid the spread and make our children immune from any disease.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "11",
                "sec_num": null
            },
            {
                "text": "The main reason is that many diseases have been prevented thanks to vaccines, thus millions of lives have been saved. 2 pa_vincent vaccines have be able to protect diseases 46 child are be used to prevent diseases 33 parents vaccines should be safe for children 7 vaccines harms risk of the child 6 vaccines is important for protection 6 Table 8 : Expert and generated key points for Routine child vaccinations should be mandatory pro stance. Fraction is out of all arguments with a matched KP (for expert we use the strict view).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 338,
                        "end": 345,
                        "text": "Table 8",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "2",
                "sec_num": null
            },
            {
                "text": "https://github.com/ibm/KPA_2021_ shared_task",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Those aspects include, among others -number of arguments in each topic; the distribution of their quality and length; the amount and style of expert KPs produced for them; as well the coverage of those as obtained by crowd labeling.3 https://www.research.ibm.com/haifa/ dept/vst/debating_data.shtml",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "In such cases, each experiment was repeated 10 times with different random seeds, and we report the resulting average. Standard deviation for those rare cases is insignificant.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "We would like to thank Roy Bar-Haim for his helpful comments and suggestions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Key point analysis via contrastive learning and extractive argument summarization",
                "authors": [
                    {
                        "first": "Milad",
                        "middle": [],
                        "last": "Alshomary",
                        "suffix": ""
                    },
                    {
                        "first": "Timon",
                        "middle": [],
                        "last": "Gurcke",
                        "suffix": ""
                    },
                    {
                        "first": "Shahbaz",
                        "middle": [],
                        "last": "Syed",
                        "suffix": ""
                    },
                    {
                        "first": "Philipp",
                        "middle": [],
                        "last": "Heinisch",
                        "suffix": ""
                    },
                    {
                        "first": "Maximilian",
                        "middle": [],
                        "last": "Splieth\u00f6ver",
                        "suffix": ""
                    },
                    {
                        "first": "Philipp",
                        "middle": [],
                        "last": "Cimiano",
                        "suffix": ""
                    },
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Potthast",
                        "suffix": ""
                    },
                    {
                        "first": "Henning",
                        "middle": [],
                        "last": "Wachsmuth",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the 8th Workshop on Argument Mining, Online",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Milad Alshomary, Timon Gurcke, Shahbaz Syed, Philipp Heinisch, Maximilian Splieth\u00f6ver, Philipp Cimiano, Martin Potthast, and Henning Wachsmuth. 2021. Key point analysis via contrastive learning and extractive argument summarization. In Proceed- ings of the 8th Workshop on Argument Mining, On- line. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Informative and controllable opinion summarization",
                "authors": [
                    {
                        "first": "Reinald",
                        "middle": [],
                        "last": "Kim Amplayo",
                        "suffix": ""
                    },
                    {
                        "first": "Mirella",
                        "middle": [],
                        "last": "Lapata",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
                "volume": "",
                "issue": "",
                "pages": "2662--2672",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Reinald Kim Amplayo and Mirella Lapata. 2021. Infor- mative and controllable opinion summarization. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Lin- guistics: Main Volume, pages 2662-2672, Online. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "From arguments to key points: Towards automatic argument summarization",
                "authors": [
                    {
                        "first": "Roy",
                        "middle": [],
                        "last": "Bar-Haim",
                        "suffix": ""
                    },
                    {
                        "first": "Lilach",
                        "middle": [],
                        "last": "Eden",
                        "suffix": ""
                    },
                    {
                        "first": "Roni",
                        "middle": [],
                        "last": "Friedman",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Kantor",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Lahav",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Slonim",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "4029--4039",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.acl-main.371"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Roy Bar-Haim, Lilach Eden, Roni Friedman, Yoav Kantor, Dan Lahav, and Noam Slonim. 2020a. From arguments to key points: Towards automatic argu- ment summarization. In Proceedings of the 58th An- nual Meeting of the Association for Computational Linguistics, pages 4029-4039, Online. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Every bite is an experience: Key Point Analysis of business reviews",
                "authors": [
                    {
                        "first": "Roy",
                        "middle": [],
                        "last": "Bar-Haim",
                        "suffix": ""
                    },
                    {
                        "first": "Lilach",
                        "middle": [],
                        "last": "Eden",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Kantor",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing",
                "volume": "1",
                "issue": "",
                "pages": "3376--3386",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2021.acl-long.262"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Roy Bar-Haim, Lilach Eden, Yoav Kantor, Roni Fried- man, and Noam Slonim. 2021. Every bite is an ex- perience: Key Point Analysis of business reviews. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Lan- guage Processing (Volume 1: Long Papers), pages 3376-3386, Online. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Roni Friedman, Dan Lahav, and Noam Slonim. 2020b. Quantitative argument summarization and beyond: Crossdomain key point analysis",
                "authors": [
                    {
                        "first": "Roy",
                        "middle": [],
                        "last": "Bar-Haim",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Kantor",
                        "suffix": ""
                    },
                    {
                        "first": "Lilach",
                        "middle": [],
                        "last": "Eden",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "39--49",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.emnlp-main.3"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Roy Bar-Haim, Yoav Kantor, Lilach Eden, Roni Fried- man, Dan Lahav, and Noam Slonim. 2020b. Quan- titative argument summarization and beyond: Cross- domain key point analysis. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 39-49, On- line. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Topic concentration in query focused summarization datasets",
                "authors": [
                    {
                        "first": "Tal",
                        "middle": [],
                        "last": "Baumel",
                        "suffix": ""
                    },
                    {
                        "first": "Raphael",
                        "middle": [],
                        "last": "Cohen",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Elhadad",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI'16",
                "volume": "",
                "issue": "",
                "pages": "2573--2579",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tal Baumel, Raphael Cohen, and Michael Elhadad. 2016. Topic concentration in query focused sum- marization datasets. In Proceedings of the Thir- tieth AAAI Conference on Artificial Intelligence, AAAI'16, page 2573-2579. AAAI Press.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS: THE METHOD OF PAIRED COMPAR-ISONS",
                "authors": [
                    {
                        "first": "Allan",
                        "middle": [],
                        "last": "Ralph",
                        "suffix": ""
                    },
                    {
                        "first": "Milton",
                        "middle": [
                            "E"
                        ],
                        "last": "Bradley",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Terry",
                        "suffix": ""
                    }
                ],
                "year": 1952,
                "venue": "Biometrika",
                "volume": "39",
                "issue": "3-4",
                "pages": "324--345",
                "other_ids": {
                    "DOI": [
                        "10.1093/biomet/39.3-4.324"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ralph Allan Bradley and Milton E. Terry. 1952. RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS: THE METHOD OF PAIRED COMPAR- ISONS. Biometrika, 39(3-4):324-345.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Seeing things from a different angle:discovering diverse perspectives about claims",
                "authors": [
                    {
                        "first": "Sihao",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Khashabi",
                        "suffix": ""
                    },
                    {
                        "first": "Wenpeng",
                        "middle": [],
                        "last": "Yin",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Callison-Burch",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Roth",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "542--557",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1053"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Sihao Chen, Daniel Khashabi, Wenpeng Yin, Chris Callison-Burch, and Dan Roth. 2019. Seeing things from a different angle:discovering diverse perspec- tives about claims. In Proceedings of the 2019 Con- ference of the North American Chapter of the Asso- ciation for Computational Linguistics: Human Lan- guage Technologies, Volume 1 (Long and Short Pa- pers), pages 542-557, Minneapolis, Minnesota. As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Key point matching with transformers",
                "authors": [
                    {
                        "first": "Emanuele",
                        "middle": [],
                        "last": "Cosenza",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the 8th Workshop on Argument Mining, Online. Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Emanuele Cosenza. 2021. Key point matching with transformers. In Proceedings of the 8th Workshop on Argument Mining, Online. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Overview of duc",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Dang",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H. Dang. 2005. Overview of duc 2005.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "4171--4186",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1423"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Self-supervised and controlled multi-document opinion summarization",
                "authors": [
                    {
                        "first": "Hady",
                        "middle": [],
                        "last": "Elsahar",
                        "suffix": ""
                    },
                    {
                        "first": "Maximin",
                        "middle": [],
                        "last": "Coavoux",
                        "suffix": ""
                    },
                    {
                        "first": "Jos",
                        "middle": [],
                        "last": "Rozen",
                        "suffix": ""
                    },
                    {
                        "first": "Matthias",
                        "middle": [],
                        "last": "Gall\u00e9",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
                "volume": "",
                "issue": "",
                "pages": "1646--1662",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hady Elsahar, Maximin Coavoux, Jos Rozen, and Matthias Gall\u00e9. 2021. Self-supervised and con- trolled multi-document opinion summarization. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Lin- guistics: Main Volume, pages 1646-1662, Online. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Ranit Aharonov, and Noam Slonim. 2020. A large-scale dataset for argument quality ranking: Construction and analysis. Proceedings of the AAAI Conference on Artificial Intelligence",
                "authors": [
                    {
                        "first": "Shai",
                        "middle": [],
                        "last": "Gretz",
                        "suffix": ""
                    },
                    {
                        "first": "Roni",
                        "middle": [],
                        "last": "Friedman",
                        "suffix": ""
                    },
                    {
                        "first": "Edo",
                        "middle": [],
                        "last": "Cohen-Karlik",
                        "suffix": ""
                    },
                    {
                        "first": "Assaf",
                        "middle": [],
                        "last": "Toledo",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Lahav",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "34",
                "issue": "",
                "pages": "7805--7813",
                "other_ids": {
                    "DOI": [
                        "10.1609/aaai.v34i05.6285"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Shai Gretz, Roni Friedman, Edo Cohen-Karlik, As- saf Toledo, Dan Lahav, Ranit Aharonov, and Noam Slonim. 2020. A large-scale dataset for argument quality ranking: Construction and analysis. Pro- ceedings of the AAAI Conference on Artificial Intel- ligence, 34(05):7805-7813.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Deberta: Decoding-enhanced bert with disentangled attention",
                "authors": [
                    {
                        "first": "Pengcheng",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaodong",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Weizhu",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. 2020. Deberta: Decoding-enhanced bert with disentangled attention.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Team enigma at argmining-emnlp 2021: Leveraging pre-trained language models for key point matching",
                "authors": [
                    {
                        "first": "Sohan",
                        "middle": [],
                        "last": "Manav Nitin Kapadnis",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Patnaik",
                        "suffix": ""
                    },
                    {
                        "first": "Varun",
                        "middle": [],
                        "last": "Siba Smarak Panigrahi",
                        "suffix": ""
                    },
                    {
                        "first": "Abhilash",
                        "middle": [],
                        "last": "Madhavan",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Nandy",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the 8th Workshop on Argument Mining, Online. Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Manav Nitin Kapadnis, Sohan Patnaik, Siba Smarak Panigrahi, Varun Madhavan, and Abhilash Nandy. 2021. Team enigma at argmining-emnlp 2021: Leveraging pre-trained language models for key point matching. In Proceedings of the 8th Workshop on Argument Mining, Online. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "ALBERT: A lite BERT for selfsupervised learning of language representations",
                "authors": [
                    {
                        "first": "Zhenzhong",
                        "middle": [],
                        "last": "Lan",
                        "suffix": ""
                    },
                    {
                        "first": "Mingda",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "Goodman",
                        "suffix": ""
                    },
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Gimpel",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori- cut. 2019. ALBERT: A lite BERT for self- supervised learning of language representations. CoRR, abs/1909.11942.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Generating wikipedia by summarizing long sequences",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Peter",
                        "suffix": ""
                    },
                    {
                        "first": "Mohammad",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Etienne",
                        "middle": [],
                        "last": "Saleh",
                        "suffix": ""
                    },
                    {
                        "first": "Ben",
                        "middle": [],
                        "last": "Pot",
                        "suffix": ""
                    },
                    {
                        "first": "Ryan",
                        "middle": [],
                        "last": "Goodrich",
                        "suffix": ""
                    },
                    {
                        "first": "Lukasz",
                        "middle": [],
                        "last": "Sepassi",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Kaiser",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Shazeer",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam Shazeer. 2018. Generating wikipedia by summariz- ing long sequences. In International Conference on Learning Representations.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Text summarization with pretrained encoders",
                "authors": [
                    {
                        "first": "Yang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Mirella",
                        "middle": [],
                        "last": "Lapata",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "3730--3740",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1387"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yang Liu and Mirella Lapata. 2019. Text summariza- tion with pretrained encoders. In Proceedings of the 2019 Conference on Empirical Methods in Nat- ural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3730-3740, Hong Kong, China. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Roberta: A robustly optimized bert pretraining approach",
                "authors": [
                    {
                        "first": "Yinhan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Myle",
                        "middle": [],
                        "last": "Ott",
                        "suffix": ""
                    },
                    {
                        "first": "Naman",
                        "middle": [],
                        "last": "Goyal",
                        "suffix": ""
                    },
                    {
                        "first": "Jingfei",
                        "middle": [],
                        "last": "Du",
                        "suffix": ""
                    },
                    {
                        "first": "Mandar",
                        "middle": [],
                        "last": "Joshi",
                        "suffix": ""
                    },
                    {
                        "first": "Danqi",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Lewis",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    },
                    {
                        "first": "Veselin",
                        "middle": [],
                        "last": "Stoyanov",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- dar Joshi, Danqi Chen, Omer Levy, M. Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. ArXiv, abs/1907.11692.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Multi-XScience: A large-scale dataset for extreme multidocument summarization of scientific articles",
                "authors": [
                    {
                        "first": "Yao",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    },
                    {
                        "first": "Yue",
                        "middle": [],
                        "last": "Dong",
                        "suffix": ""
                    },
                    {
                        "first": "Laurent",
                        "middle": [],
                        "last": "Charlin",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "8068--8074",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.emnlp-main.648"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yao Lu, Yue Dong, and Laurent Charlin. 2020. Multi- XScience: A large-scale dataset for extreme multi- document summarization of scientific articles. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 8068-8074, Online. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Matching the statements: A simple and accurate model for key point analysis",
                "authors": [
                    {
                        "first": "Long",
                        "middle": [
                            "Tien"
                        ],
                        "last": "Hoang Viet Phan",
                        "suffix": ""
                    },
                    {
                        "first": "Long",
                        "middle": [
                            "Duc"
                        ],
                        "last": "Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "Khanh",
                        "middle": [],
                        "last": "Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Doan",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the 8th Workshop on Argument Mining, Online. Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hoang Viet Phan, Long Tien Nguyen, Long Duc Nguyen, and Khanh Doan. 2021. Matching the state- ments: A simple and accurate model for key point analysis. In Proceedings of the 8th Workshop on Argument Mining, Online. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Modern talking in key point analysis: Key point matching using pretrained encoders",
                "authors": [
                    {
                        "first": "Jan",
                        "middle": [],
                        "last": "Heinrich Reimer",
                        "suffix": ""
                    },
                    {
                        "first": "Thi",
                        "middle": [
                            "Kim"
                        ],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Hanh",
                        "middle": [],
                        "last": "Luu",
                        "suffix": ""
                    },
                    {
                        "first": "Max",
                        "middle": [],
                        "last": "Henze",
                        "suffix": ""
                    },
                    {
                        "first": "Yamen",
                        "middle": [],
                        "last": "Ajjour",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the 8th Workshop on Argument Mining, Online. Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jan Heinrich Reimer, Thi Kim Hanh Luu, Max Henze, and Yamen Ajjour. 2021. Modern talking in key point analysis: Key point matching using pretrained encoders. In Proceedings of the 8th Workshop on Argument Mining, Online. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Extending multi-document summarization evaluation to the interactive setting",
                "authors": [
                    {
                        "first": "Ori",
                        "middle": [],
                        "last": "Shapira",
                        "suffix": ""
                    },
                    {
                        "first": "Ramakanth",
                        "middle": [],
                        "last": "Pasunuru",
                        "suffix": ""
                    },
                    {
                        "first": "Hadar",
                        "middle": [],
                        "last": "Ronen",
                        "suffix": ""
                    },
                    {
                        "first": "Mohit",
                        "middle": [],
                        "last": "Bansal",
                        "suffix": ""
                    },
                    {
                        "first": "Yael",
                        "middle": [],
                        "last": "Amsterdamer",
                        "suffix": ""
                    },
                    {
                        "first": "Ido",
                        "middle": [],
                        "last": "Dagan",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "657--677",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2021.naacl-main.54"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ori Shapira, Ramakanth Pasunuru, Hadar Ronen, Mo- hit Bansal, Yael Amsterdamer, and Ido Dagan. 2021. Extending multi-document summarization evalua- tion to the interactive setting. In Proceedings of the 2021 Conference of the North American Chap- ter of the Association for Computational Linguistics: Human Language Technologies, pages 657-677, On- line. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "News editorials: Towards summarizing long argumentative texts",
                "authors": [
                    {
                        "first": "Shahbaz",
                        "middle": [],
                        "last": "Syed",
                        "suffix": ""
                    },
                    {
                        "first": "Roxanne",
                        "middle": [
                            "El"
                        ],
                        "last": "Baff",
                        "suffix": ""
                    },
                    {
                        "first": "Johannes",
                        "middle": [],
                        "last": "Kiesel",
                        "suffix": ""
                    },
                    {
                        "first": "Khalid",
                        "middle": [
                            "Al"
                        ],
                        "last": "Khatib",
                        "suffix": ""
                    },
                    {
                        "first": "Benno",
                        "middle": [],
                        "last": "Stein",
                        "suffix": ""
                    },
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Potthast",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 28th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "5384--5396",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.coling-main.470"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Shahbaz Syed, Roxanne El Baff, Johannes Kiesel, Khalid Al Khatib, Benno Stein, and Martin Potthast. 2020. News editorials: Towards summarizing long argumentative texts. In Proceedings of the 28th In- ternational Conference on Computational Linguis- tics, pages 5384-5396, Barcelona, Spain (Online). International Committee on Computational Linguis- tics.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Automatic argument quality assessment -new datasets and methods",
                "authors": [
                    {
                        "first": "Assaf",
                        "middle": [],
                        "last": "Toledo",
                        "suffix": ""
                    },
                    {
                        "first": "Shai",
                        "middle": [],
                        "last": "Gretz",
                        "suffix": ""
                    },
                    {
                        "first": "Edo",
                        "middle": [],
                        "last": "Cohen-Karlik",
                        "suffix": ""
                    },
                    {
                        "first": "Roni",
                        "middle": [],
                        "last": "Friedman",
                        "suffix": ""
                    },
                    {
                        "first": "Elad",
                        "middle": [],
                        "last": "Venezian",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Lahav",
                        "suffix": ""
                    },
                    {
                        "first": "Michal",
                        "middle": [],
                        "last": "Jacovi",
                        "suffix": ""
                    },
                    {
                        "first": "Ranit",
                        "middle": [],
                        "last": "Aharonov",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Slonim",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "5625--5635",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1564"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Assaf Toledo, Shai Gretz, Edo Cohen-Karlik, Roni Friedman, Elad Venezian, Dan Lahav, Michal Ja- covi, Ranit Aharonov, and Noam Slonim. 2019. Au- tomatic argument quality assessment -new datasets and methods. In Proceedings of the 2019 Confer- ence on Empirical Methods in Natural Language Processing and the 9th International Joint Confer- ence on Natural Language Processing (EMNLP- IJCNLP), pages 5625-5635, Hong Kong, China. As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "User performance versus precision measures for simple search tasks",
                "authors": [
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Turpin",
                        "suffix": ""
                    },
                    {
                        "first": "Falk",
                        "middle": [],
                        "last": "Scholer",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR '06",
                "volume": "",
                "issue": "",
                "pages": "11--18",
                "other_ids": {
                    "DOI": [
                        "10.1145/1148170.1148176"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Andrew Turpin and Falk Scholer. 2006. User perfor- mance versus precision measures for simple search tasks. In Proceedings of the 29th Annual Interna- tional ACM SIGIR Conference on Research and De- velopment in Information Retrieval, SIGIR '06, page 11-18, New York, NY, USA. Association for Com- puting Machinery.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Neural network-based abstract generation for opinions and arguments",
                "authors": [
                    {
                        "first": "Lu",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Wang",
                        "middle": [],
                        "last": "Ling",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "47--57",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N16-1007"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Lu Wang and Wang Ling. 2016. Neural network-based abstract generation for opinions and arguments. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computa- tional Linguistics: Human Language Technologies, pages 47-57, San Diego, California. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Coarse-to-fine query focused multi-document summarization",
                "authors": [
                    {
                        "first": "Yumo",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Mirella",
                        "middle": [],
                        "last": "Lapata",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "3632--3645",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.emnlp-main.296"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yumo Xu and Mirella Lapata. 2020. Coarse-to-fine query focused multi-document summarization. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 3632-3645, Online. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Xlnet: Generalized autoregressive pretraining for language understanding",
                "authors": [
                    {
                        "first": "Zhilin",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Zihang",
                        "middle": [],
                        "last": "Dai",
                        "suffix": ""
                    },
                    {
                        "first": "Yiming",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Jaime",
                        "middle": [],
                        "last": "Carbonell",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Russ",
                        "suffix": ""
                    },
                    {
                        "first": "Quoc V",
                        "middle": [],
                        "last": "Salakhutdinov",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Le",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Advances in Neural Information Processing Systems",
                "volume": "32",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car- bonell, Russ R Salakhutdinov, and Quoc V Le. 2019. Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in Neural In- formation Processing Systems, volume 32. Curran Associates, Inc.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "PEGASUS: Pre-training with extracted gap-sentences for abstractive summarization",
                "authors": [
                    {
                        "first": "Jingqing",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Yao",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Mohammad",
                        "middle": [],
                        "last": "Saleh",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 37th International Conference on Machine Learning",
                "volume": "119",
                "issue": "",
                "pages": "11328--11339",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter Liu. 2020. PEGASUS: Pre-training with ex- tracted gap-sentences for abstractive summarization. In Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages 11328-11339. PMLR.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "uris": null,
                "text": "AP per topic and stance for the top models and BarH. (a) Matching Track. (b) Generation Track. Missing bars mean a value of 0.",
                "num": null
            },
            "TABREF1": {
                "html": null,
                "num": null,
                "type_str": "table",
                "content": "<table/>",
                "text": "The ArgKP-2021 data set. The number of topics in each split is given in brackets. Coverage represents the fraction of arguments that have at least one matching KP. The strict view considers only argument-KP pairs with a positive label, while the relaxed view considers all pairs with a positive or undecided label. See text for details."
            },
            "TABREF3": {
                "html": null,
                "num": null,
                "type_str": "table",
                "content": "<table/>",
                "text": "Matching Track results. Ranks on each measure are in brackets."
            },
            "TABREF4": {
                "html": null,
                "num": null,
                "type_str": "table",
                "content": "<table><tr><td>Model</td><td>Rank</td><td>mAP (r)</td><td>KP set rank</td></tr><tr><td>BarH</td><td>1</td><td>0.885 (1)</td><td>1 / (1,1,2)</td></tr><tr><td>SMatchToPR</td><td>2</td><td>0.818 (2)</td><td>2 / (2,1,2)</td></tr><tr><td>Enigma</td><td>3</td><td>0.491 (3)</td><td>4 / (2,4,3)</td></tr><tr><td>XLNet</td><td>4</td><td>0.443 (4)</td><td>3 / (4,3,1)</td></tr><tr><td>pa_vincent</td><td>5</td><td>0.096 (5)</td><td>None</td></tr><tr><td>mozhiwen</td><td>6</td><td>0 (6)</td><td>None</td></tr></table>",
                "text": "Rank 1 means best performance."
            },
            "TABREF5": {
                "html": null,
                "num": null,
                "type_str": "table",
                "content": "<table><tr><td colspan=\"2\">Topic id Text</td></tr><tr><td>0</td><td>Routine child vaccinations should be mandatory</td></tr><tr><td>1</td><td>Social media platforms should be regulated by</td></tr><tr><td/><td>the government</td></tr><tr><td>2</td><td>The USA is a good country to live in</td></tr></table>",
                "text": "Generation Track results. KP set rank shows the overall rank and in brackets the rank on each of the three questions: stance, redundancy, relevance."
            },
            "TABREF6": {
                "html": null,
                "num": null,
                "type_str": "table",
                "content": "<table/>",
                "text": "Topics of the test set."
            },
            "TABREF7": {
                "html": null,
                "num": null,
                "type_str": "table",
                "content": "<table><tr><td>Model</td><td>KP</td><td>Fraction</td></tr><tr><td>expert</td><td>Children should not suffer from preventable diseases</td><td>29.0</td></tr><tr><td>BarH</td><td>Vaccines help children grow up healthy and avoid dangerous diseases</td><td>35.0</td></tr></table>",
                "text": "SMatchToPR Vaccines help children grow up healthy and avoid dangerous diseases 77.0EnigmaChild vaccinations are necessary to protect against diseases in the child 50.0 A mandatory vaccination is important to protect against diseases in the child 25.0"
            },
            "TABREF8": {
                "html": null,
                "num": null,
                "type_str": "table",
                "content": "<table><tr><td/><td colspan=\"2\">Routine child vaccina-</td><td colspan=\"2\">Social media platforms</td><td colspan=\"2\">The USA is a good</td><td/></tr><tr><td>Model</td><td colspan=\"2\">tions should be manda-</td><td colspan=\"2\">should be regulated by</td><td colspan=\"2\">country to live in</td><td>Average</td></tr><tr><td/><td>tory</td><td/><td colspan=\"2\">the government</td><td/><td/><td/></tr><tr><td/><td>pos</td><td>neg</td><td>pos</td><td>neg</td><td>pos</td><td>neg</td><td/></tr><tr><td>SMatchToPR</td><td>0.29</td><td>0.13</td><td>0.247</td><td>0.245</td><td>0.157</td><td>0.252</td><td>0.22</td></tr><tr><td>NLP@UIT</td><td>0.328</td><td>0.144</td><td>0.0455</td><td>0.205</td><td>0.0585</td><td>0.153</td><td>0.156</td></tr><tr><td>ModrnTalk</td><td>0.238</td><td>0.131</td><td>0.242</td><td>0.216</td><td>0.125</td><td>0.263</td><td>0.202</td></tr><tr><td>Enigma</td><td>0.223</td><td>0.131</td><td>0.232</td><td>0.158</td><td>0.146</td><td>0.118</td><td>0.168</td></tr><tr><td>MatchTStm</td><td>0.181</td><td>0.105</td><td>0.0797</td><td>0.245</td><td>0.107</td><td>0.196</td><td>0.152</td></tr><tr><td>BarH</td><td>0.431</td><td>0.172</td><td>0.236</td><td>0.205</td><td>0.121</td><td>0.261</td><td>0.238</td></tr></table>",
                "text": "KPs for Routine child vaccinations should be mandatory in the pro stance, related to the expert KP on the top row. Fraction is out of all arguments with a matched KP (for expert we use the strict view)."
            },
            "TABREF9": {
                "html": null,
                "num": null,
                "type_str": "table",
                "content": "<table><tr><td>model</td><td>key point</td><td>%</td></tr><tr><td/><td colspan=\"2\">Routine child vaccinations should be mandatory to prevent virus/disease spreading 37</td></tr><tr><td/><td>Children should not suffer from preventable diseases</td><td>29</td></tr><tr><td>Expert</td><td>Child vaccination saves lives</td><td>20</td></tr><tr><td/><td>Routine child vaccinations are necessary to protect others</td><td>8</td></tr><tr><td/><td>Routine child vaccinations are effective</td><td>6</td></tr></table>",
                "text": "Jansen-Shannon divergence for top five models and the state of the art model. The divergence is reported for each motion, and is also averaged. Best score for each model is bolded.BarH to keep schools safe children must be vaccinated 35 Vaccines help children grow up healthy and avoid dangerous diseases 35 The use of child vaccines saves lives 11 our children have the right to be vaccinated 6 in this way, pandemic outbreaks are avoided 5 After getting vaccinated, our immune system produces antibodies."
            }
        }
    }
}