File size: 120,214 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T02:10:05.240240Z"
    },
    "title": "News Aggregation with Diverse Viewpoint Identification Using Neural Embeddings and Semantic Understanding Models",
    "authors": [
        {
            "first": "Mark",
            "middle": [],
            "last": "Carlebach",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Harvard University",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Ria",
            "middle": [],
            "last": "Cheruvu",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Harvard University",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Brandon",
            "middle": [],
            "last": "Walker",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Harvard University",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Cesar",
            "middle": [],
            "last": "Ilharco",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Harvard University",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Sylvain",
            "middle": [],
            "last": "Jaume",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Harvard University",
                "location": {}
            },
            "email": "sylvain@csail.mit.edu"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Today's news volume makes it impractical for readers to get a diverse and comprehensive view of published articles written from opposing viewpoints. We introduce a transformer-based news aggregation system, composed of topic modeling, semantic clustering, claim extraction, and textual entailment that identifies viewpoints presented in articles within a semantic cluster and classifies them into positive, neutral and negative entailments. Our novel embedded topic model using BERT-based embeddings outperforms baseline topic modeling algorithms by an 11% relative improvement. We compare recent semantic similarity models in the context of news aggregation, evaluate transformer-based models for claim extraction on news data, and demonstrate the use of textual entailment models for diverse viewpoint identification.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Today's news volume makes it impractical for readers to get a diverse and comprehensive view of published articles written from opposing viewpoints. We introduce a transformer-based news aggregation system, composed of topic modeling, semantic clustering, claim extraction, and textual entailment that identifies viewpoints presented in articles within a semantic cluster and classifies them into positive, neutral and negative entailments. Our novel embedded topic model using BERT-based embeddings outperforms baseline topic modeling algorithms by an 11% relative improvement. We compare recent semantic similarity models in the context of news aggregation, evaluate transformer-based models for claim extraction on news data, and demonstrate the use of textual entailment models for diverse viewpoint identification.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "The advent of news aggregators has ushered in a new age of information, exposing readers to continuous streams of articles from diverse outlets. However, the proliferation of data makes finding viewpoints presented in different articles challenging. We introduce a novel transformer-based news aggregation system that identifies diverse viewpoints, depicted in Figure 1 . Rather than use preset criteria or learned behavior, our system provides a list of viewpoints covered in news articles and allows users to decide which viewpoints to explore. Our system consists of the following components, illustrated in Figure 2 : (i) Topic Modeling organizes articles from multiple news sources into clusters, (ii) Hypothesis Extraction extracts an opinionated summary sentence (i.e., hypothesis) from each article, (iii) Semantic Similarity identifies differing viewpoints (i.e., sub-clusters) within each topic based on the hypotheses, (iv) Premise Extraction extracts a summary sentence (i.e., premise) from a group of articles associated with a viewpoint, (v) Textual Entailment evaluates the entailment between the hypothesis of each article and the premise of its subcluster. As part of this work, we define hypothesis extraction and premise extraction as subsets of claim extraction, where a claim is defined as a sentence expressing viewpoints associated with a news article. We define a hypothesis as a single summary sentence that represents an article's viewpoint, and use the terms hypothesis extraction and single-document subjectivity analysis interchangeably. We define a premise as a single summary sentence that represents viewpoints shared by multiple articles, and use the terms premise extraction and multi-document subjectivity analysis interchangeably.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 361,
                        "end": 369,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    },
                    {
                        "start": 611,
                        "end": 619,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "News Aggregation: Thorne et al. propose a system involving Document Retrieval, Sentence Selection, and Recognizing Textual Entailment (RTE) for fact extraction and verification (Thorne et al., 2018) . Their system expects a claim as input to identify relevant documents, select sentences as evidence from the document, and finally classify the claim. Other authors evaluate the performance of transformerbased models against baseline models for debate data (Chen et al., 2019a; Chen et al., 2019b; Gretz et Ein-Dor et al., 2020) , which has applications for news data but is structured slightly differently. A single news article can be clustered under multiple topics and report multiple opinions within the same article. In contrast, debate data often directly align with one particular pre-defined topic and involve separate opinions. Our system differs from an argument search engine with indexing and retrieval (Stab et al., 2018; Wachsmuth et al., 2017) . To adjust to the dynamic incoming stream and multiple sources of news data, we explore the generalization capability of language models to automate the news aggregation and viewpoint discovery problem. We have chosen to develop our own labeled article data set targeted specifically for news applications.",
                "cite_spans": [
                    {
                        "start": 177,
                        "end": 198,
                        "text": "(Thorne et al., 2018)",
                        "ref_id": "BIBREF36"
                    },
                    {
                        "start": 457,
                        "end": 477,
                        "text": "(Chen et al., 2019a;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 478,
                        "end": 497,
                        "text": "Chen et al., 2019b;",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 498,
                        "end": 506,
                        "text": "Gretz et",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 507,
                        "end": 528,
                        "text": "Ein-Dor et al., 2020)",
                        "ref_id": null
                    },
                    {
                        "start": 916,
                        "end": 935,
                        "text": "(Stab et al., 2018;",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 936,
                        "end": 959,
                        "text": "Wachsmuth et al., 2017)",
                        "ref_id": "BIBREF37"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Topic modeling: A common approach to clustering documents based on textual content is Multinomial Latent Dirichlet Allocation (LDA) (Blei et al., 2003) . Many alternatives have been investigated to improve semantic coherence by representing words with word2vec embeddings (Mikolov et al., 2013a) . One such approach is the Embedded Topic Model (ETM) (Dieng et al., 2020), which uniquely represents each document as latent topics, where each topic is an embedding in the semantic space of the words. In this paper, we use ETM for our topic modeling and investigate using transformer-based embeddings in lieu of word2vec embeddings to improve quality of clustering.",
                "cite_spans": [
                    {
                        "start": 132,
                        "end": 151,
                        "text": "(Blei et al., 2003)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 272,
                        "end": 295,
                        "text": "(Mikolov et al., 2013a)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Semantic Similarity: Semantic Textual Similarity (STS) refers to the goal of quantifying the degree of similarity between two bodies of text by capturing the degree to which the meanings of the two inputs overlap (Cer et al., 2017) . Until recently, state-of-the-art STS systems have relied heavily on word embedding approaches (Mikolov et al., 2013b) , which lack the capability to fully capture semantic context. Methods such as InferSent were developed as a solution to embed multiples words, phrases, or sentences into a single representation (Conneau et al., 2017) . The Universal Sentence Encoder (USE) models (Cer et al., 2018) , BERT (Devlin et al., 2019) , and other models such as RoBERTa and GPT-3 (Brown et al., 2020) have since made significant improvements on InferSent.",
                "cite_spans": [
                    {
                        "start": 213,
                        "end": 231,
                        "text": "(Cer et al., 2017)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 328,
                        "end": 351,
                        "text": "(Mikolov et al., 2013b)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 547,
                        "end": 569,
                        "text": "(Conneau et al., 2017)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 616,
                        "end": 634,
                        "text": "(Cer et al., 2018)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 642,
                        "end": 663,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 703,
                        "end": 729,
                        "text": "GPT-3 (Brown et al., 2020)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Claim Extraction: A key component of opinion-oriented information extraction from articles is identifying sentence(s) expressing viewpoints associated with articles (Wilson et al., 2005b; Chen et al., 2019b) . Early attempts towards solving the problem of single-document subjectivity analysis involved the use of Na\u00efve Bayes classifiers, AdaBoost, and rule-based classifiers trained on the Multi-Perspective Question Answering (MPQA) Opinion Corpus (Wilson et al., 2005b) for identifying subjective expressions and similar tasks (Wilson et al., 2005a; Somasundaran and Wiebe, 2010) . Recent work (Xu et al., 2019; Hoang et al., 2019; Han and Kando, 2019) has shown fine-tuned BERT models and BERT-based models (Cer et al., 2018) perform well against baseline models for sentiment analysis and opinion mining tasks. BERT has been applied to multiple passages/documents for question and answering tasks (Wang et al., 2019) . However, few transformer-based models were applied for multi-document subjectivity analysis (Liu and Lapata, 2019) . In this work, we implement hypothesis extraction as a sentence-classification task and consider BERT-based models against a Na\u00efve Bayes classifier to determine if transformer-based models perform well for hypothesis extraction. We propose abstractive summarization models, such as BART and T5 (Raffel et al., 2019) , for premise extraction.",
                "cite_spans": [
                    {
                        "start": 165,
                        "end": 187,
                        "text": "(Wilson et al., 2005b;",
                        "ref_id": "BIBREF40"
                    },
                    {
                        "start": 188,
                        "end": 207,
                        "text": "Chen et al., 2019b)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 450,
                        "end": 472,
                        "text": "(Wilson et al., 2005b)",
                        "ref_id": "BIBREF40"
                    },
                    {
                        "start": 530,
                        "end": 552,
                        "text": "(Wilson et al., 2005a;",
                        "ref_id": "BIBREF39"
                    },
                    {
                        "start": 553,
                        "end": 582,
                        "text": "Somasundaran and Wiebe, 2010)",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 597,
                        "end": 614,
                        "text": "(Xu et al., 2019;",
                        "ref_id": "BIBREF42"
                    },
                    {
                        "start": 615,
                        "end": 634,
                        "text": "Hoang et al., 2019;",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 635,
                        "end": 655,
                        "text": "Han and Kando, 2019)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 711,
                        "end": 729,
                        "text": "(Cer et al., 2018)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 902,
                        "end": 921,
                        "text": "(Wang et al., 2019)",
                        "ref_id": "BIBREF38"
                    },
                    {
                        "start": 1016,
                        "end": 1038,
                        "text": "(Liu and Lapata, 2019)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 1334,
                        "end": 1355,
                        "text": "(Raffel et al., 2019)",
                        "ref_id": "BIBREF29"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Textual Entailment: Recognizing textual entailment (RTE) involves identifying whether a hypothesis statement supports, contradicts, or is indifferent to a premise statement, regardless of whether the premise and hypothesis lexically match (Sammons et al., 2012) . Chen et al. leverage textual entailment to find evidence paragraphs in support of viewpoints (Chen et al., 2019b) . Attempts towards RTE include Named Entity Recognition (NER) (Sammons et al., 2012) , LSTMs with word embeddings, and transformer-based models, such as BART and RoBERTa, which deliver high performance for these tasks.",
                "cite_spans": [
                    {
                        "start": 239,
                        "end": 261,
                        "text": "(Sammons et al., 2012)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 357,
                        "end": 377,
                        "text": "(Chen et al., 2019b)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 440,
                        "end": 462,
                        "text": "(Sammons et al., 2012)",
                        "ref_id": "BIBREF32"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "A demo of our system is available at https://harvard-almit.github.io/newsaggregator/. We tested this system on a dataset of over 1,000 scraped articles from various news outlets, such as Yahoo News and The Post and Courier. Figure 2 illustrates how news articles are processed across the components in our system: (i) Topic Modeling generates cluster IDs for the articles, (ii) Hypothesis Extraction generates hypotheses for the clustered articles, (iii) Semantic Similarity generates subcluster IDs using hypotheses, (iv) Premise Extraction generates premises for articles in each subcluster, and (v) Textual Entailment, consuming outputs of Hypothesis Extraction and Premise Extraction, generates entailment predictions and provides the results of our news aggregation system.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 224,
                        "end": 232,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Methods",
                "sec_num": "3"
            },
            {
                "text": "We perform topic modeling with three approaches using 20 Newsgroups data (Lang, 1995) and Adjusted Rand Index Scoring (Hubert and Arabie, 1985) : (i) Latent Dirichlet Allocation (LDA) using the gensim package (\u0158eh\u016f\u0159ek and Sojka, 2011), (ii) ETM with word2vec embeddings, and (iii) ETM with centroids of BERT based embeddings (Blei et al., 2003; Mikolov et al., 2013a; Dieng et al., 2020) , where we select a value for num bert centroids as the number of embeddings ETM will use, and use k-means clustering (k=num bert centroids) from FAISS package (Johnson et al., 2019) . For training hypothesis extraction models on the clustered articles, we use a modified version of the MPQA Opinion Corpus v3.0 consisting of expressive subjective elements (Deng and Wiebe, 2015) . We train a multinomial Na\u00efve Bayes classifier and fine-tune BERT, XLNet (Yang et al., 2019) , and ALBERT (Lan et al., 2020) models using HuggingFace's transformers library (Wolf et al., 2020) on pre-processed MPQA data for sentence-level subjectivity analysis (i.e., binary opinion classification of sentences).",
                "cite_spans": [
                    {
                        "start": 73,
                        "end": 85,
                        "text": "(Lang, 1995)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 118,
                        "end": 143,
                        "text": "(Hubert and Arabie, 1985)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 325,
                        "end": 344,
                        "text": "(Blei et al., 2003;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 345,
                        "end": 367,
                        "text": "Mikolov et al., 2013a;",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 368,
                        "end": 387,
                        "text": "Dieng et al., 2020)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 548,
                        "end": 570,
                        "text": "(Johnson et al., 2019)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 745,
                        "end": 767,
                        "text": "(Deng and Wiebe, 2015)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 842,
                        "end": 861,
                        "text": "(Yang et al., 2019)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 875,
                        "end": 893,
                        "text": "(Lan et al., 2020)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methods",
                "sec_num": "3"
            },
            {
                "text": "The semantic similarity module then clusters generated hypotheses of documents within a topic into clusters of semantically related articles, in which each article is associated with a single, more specific topic. We considered BERT, RoBERTa, and DistilBERT (Sanh et al., 2019) in a siamese network structure (Reimers and Gurevych, 2019) , in addition to USE using the Pearson correlation coefficient, for the semantic similarity module. The models were fine-tuned on the Argument Facet Similarity Corpus by (Misra et al., 2016) and the STS-Benchmark dataset provided by the SentEval (Conneau and Kiela, 2018) package. For premise extraction, we fine-tuned a large BART model (406M parameters) and a small T5 model (60M parameters) (Raffel et al., 2019 ) using the transformers library on data taken from IBM's Project Debater Claim Stance Dataset (Bar-Haim et al., 2017) . We reformatted this dataset into a summarization dataset for fine-tuning. We chose not to utilize the claims provided in the dataset, since the hypothesis extraction module already accomplishes this purpose, and used topics (statements that represent a group of articles) from the dataset instead. The final output of the system is provided by the textual entailment module. For each article in a semantic similarity sub-cluster, premises and hypotheses generated from the claim extraction module are input to the textual entailment module to predict whether the hypothesis contradicts, entails, or is unrelated to the premise. We evaluated Fairseq's pre-trained RoBERTa and BART models fine-tuned for MNLI using the transformers library for textual entailment on the claim stance dataset presented by (Bar-Haim et al., 2017) , given that BART reportedly performs similar to RoBERTa on the MNLI task .",
                "cite_spans": [
                    {
                        "start": 258,
                        "end": 277,
                        "text": "(Sanh et al., 2019)",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 309,
                        "end": 337,
                        "text": "(Reimers and Gurevych, 2019)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 508,
                        "end": 528,
                        "text": "(Misra et al., 2016)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 584,
                        "end": 609,
                        "text": "(Conneau and Kiela, 2018)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 732,
                        "end": 752,
                        "text": "(Raffel et al., 2019",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 848,
                        "end": 871,
                        "text": "(Bar-Haim et al., 2017)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 1676,
                        "end": 1699,
                        "text": "(Bar-Haim et al., 2017)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methods",
                "sec_num": "3"
            },
            {
                "text": "Our results for topic modeling show ETM with word2vec embeddings outperforming LDA by 32% on unseen data, and ETM with BERT based embeddings outperforms ETM with word2vec embeddings based on the number of BERT centroids. When predicting on unseen data, ETM trained with 100K BERT centroids outperforms ETM with 25,535 word2vec embeddings by 11%, suggesting the benefits of long sequence contextualized embeddings. We found when predicting on unseen data, the improvements of ETM trained with BERT embeddings do not continue beyond a certain number of centroids due to overfitting. However, when predicting on seen data, ETM trained with BERT embeddings's outperformance increases as the number of BERT centroids increases to 1 million centroids. When predicting on seen data, ETM trained with 1 million BERT centroids outperforms ETM with word2vec embeddings by 17%. For hypothesis extraction, on a held-out dataset of the MPQA data, we found XLNet outperforms the Na\u00efve Bayes classifier baseline by 23%, and provides better performance compared to BERT and ALBERT on the F1 score while ALBERT achieved a higher Matthews correlation coefficient score (see Table 1 ). We found the BERT-based model is capable of extracting distinct hypotheses from different entities for a particular article. In Table 2 , for the semantic similarity task, we found the BERT-based models in a siamese network outperformed USE, making them well-suited for our use-case. The results presented are the Pearson correlation of the cosine distance between the embedding vectors and the human-labeled similarity score. The results indicate that we have fairly high correlation (r \u2248 0.84) recognizing semantically similar sentences and moderate correlation (r \u2248 0.75) recognizing argument facets. This gives us an average r value across the two tasks of approximately 0.80. Additionally, we note that the smaller DistilBERT yields results similar to its larger counterparts. For premise extraction, we achieved a loss of 1.260 with T5 and a loss of 6.192 with BART on the validation dataset. The T5 model typically outputs 3 sentences. The output is further processed to include the longer sentence to prevent run-off sentences from occurring in the predicted premises. We found BART's predictions were limited to topics in the training data contra T5's predictions that were directly related to article content. Sample predictions from T5 include \"The house would be a great place to promote the liberal arts movement\" and \"The study believes that warm climates would limit the spread of the virus if people are immune from it\". For textual entailment, BART has slightly higher accuracy (67%) compared to RoBERTa (65%) on the claim stance dataset. However, for our datasets, RoBERTa outputted predictions with higher probability compared to BART. Given these results, we implemented XLNet for hypothesis extraction, SBERT for semantic similarity, T5 for premise extraction, and RoBERTA for textual entailment. As for ETM, since it proves to be highly resource-intensive, we opted for LDA instead. The following examples show two groups of premise, hypothesis and predicted entailment generated by our system.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 1156,
                        "end": 1163,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    },
                    {
                        "start": 1295,
                        "end": 1302,
                        "text": "Table 2",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "4"
            },
            {
                "text": "Health experts agree that keeping people apart, or \"social distancing,\" during the coronavirus pandemic is essential for bringing the outbreak under control. Hypothesis \"There is just no way you can be socially distant with this,\" said Carol Rosenberg Entailment Contradiction",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Premise",
                "sec_num": null
            },
            {
                "text": "Word that money would soon land in bank accounts across the country has led to a surge of scam phone calls, with fraudsters falsely claiming people had to provide personal information to collect government money. Hypothesis Clicking a link takes them to what looks like an official website asking for personal information with instructions that the step is \"necessary\" to process their check Entailment Neutral",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Premise",
                "sec_num": null
            },
            {
                "text": "We found topics generated by ETM for our dataset were more coherent compared to LDA for topic modeling. ETM with BERT based embeddings outperforms ETM with word2vec embeddings when ETM is trained with a number of BERT centroids greater than the number of word2vec embeddings associated with the corpus. Training ETM with BERT centroids involves significantly more computational work than training ETM with word2vec embeddings. On the other hand, in settings where both model creation and predictions are based on the same, full dataset, ETM with BERT-based embeddings does perform better and could be incorporated. We demonstrate that hypothesis extraction can be phrased as subjectivity analysis, and we found XLNET and ALBERT can deliver high performance for this task. A novel aspect of our methodology is that we employ the generated hypotheses as input to the semantic similarity module. Current state-of-the-art models treat semantic similarity as a pair-wise regression problem, making them computationally inefficient for clustering for news aggregation. We found that transformer-based models increased the quality of the clustering compared to USE. The results here show that we can efficiently find semantic clusters with standard clustering methods, e.g., k-Means++ (Arthur and Vassilvitskii, 2007) , or density based clustering, e.g., DBSCAN (Ester et al., 1996) , to present users with a diverse set of articles on a specific topic.",
                "cite_spans": [
                    {
                        "start": 1278,
                        "end": 1310,
                        "text": "(Arthur and Vassilvitskii, 2007)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 1355,
                        "end": 1375,
                        "text": "(Ester et al., 1996)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "5"
            },
            {
                "text": "We show that premise extraction is closely related to the task of abstractive summarization, as premises must be constructed to enable a group of articles to agree or disagree with statements. We observed the small T5 model was able to significantly outperform the larger BART model. We demonstrate that multidocument and single-document claim extractions can be informative premises and hypotheses that are inputs to a textual entailment module. From the second premise-hypothesis pair in Section 4, we see there is a small contradiction that the model does not detect, but could potentially predict if a different premise-hypothesis pair was chosen, or if predictions were validated using phrases from the hypothesis (e.g., the model based its prediction on the phrase \"what looks like an official website asking for personal information\"). Consequentially, we found that different premise-hypothesis pairs within an article can lead to different predictions from the textual entailment module for the same article, due to opposing viewpoints described in the article and distinct word phrasing between sentences.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "5"
            },
            {
                "text": "We have introduced a transformer-based news aggregation system, consisting of topic modeling, hypothesis extraction, semantic clustering, premise extraction, and textual entailment that allows readers to view articles from diverse viewpoints. Our results show relative improvements over baseline models in the range of 10-23% using Embedded Topic Modeling, semantic similarity through fine-tuned BERT models with a siamese network structure, and hypothesis extraction using large pre-trained language models for sentence-level subjectivity analysis. Our results also show a five-fold loss decrease when using a small T5 model, compared to a large BART model, for premise extraction. The system we have developed demonstrates that pre-trained BERT-based models of textual entailment can be used to identify diverse viewpoints.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "k-means++: the advantages of careful seeding",
                "authors": [
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Arthur",
                        "suffix": ""
                    },
                    {
                        "first": "Sergei",
                        "middle": [],
                        "last": "Vassilvitskii",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms",
                "volume": "",
                "issue": "",
                "pages": "1027--1035",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "David Arthur and Sergei Vassilvitskii. 2007. k-means++: the advantages of careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1027-1035. Society for Industrial and Applied Mathematics.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Stance classification of context-dependent claims",
                "authors": [
                    {
                        "first": "Roy",
                        "middle": [],
                        "last": "Bar-Haim",
                        "suffix": ""
                    },
                    {
                        "first": "Indrajit",
                        "middle": [],
                        "last": "Bhattacharya",
                        "suffix": ""
                    },
                    {
                        "first": "Francesco",
                        "middle": [],
                        "last": "Dinuzzo",
                        "suffix": ""
                    },
                    {
                        "first": "Amrita",
                        "middle": [],
                        "last": "Saha",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Slonim",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL)",
                "volume": "1",
                "issue": "",
                "pages": "251--261",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Roy Bar-Haim, Indrajit Bhattacharya, Francesco Dinuzzo, Amrita Saha, and Noam Slonim. 2017. Stance clas- sification of context-dependent claims. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL), volume 1, pages 251-261, Valencia, Spain, April 3-7.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Latent dirichlet allocation",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "David",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Blei",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Andrew",
                        "suffix": ""
                    },
                    {
                        "first": "Michael I Jordan",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Journal of Machine Learning Research",
                "volume": "3",
                "issue": "",
                "pages": "993--1022",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet allocation. Journal of Machine Learning Research, 3:993-1022, January.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "SemEval-2017 task 1: Semantic textual similarity multilingual and crosslingual focused evaluation",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Cer",
                        "suffix": ""
                    },
                    {
                        "first": "Mona",
                        "middle": [],
                        "last": "Diab",
                        "suffix": ""
                    },
                    {
                        "first": "Eneko",
                        "middle": [],
                        "last": "Agirre",
                        "suffix": ""
                    },
                    {
                        "first": "I\u00f1igo",
                        "middle": [],
                        "last": "Lopez-Gazpio",
                        "suffix": ""
                    },
                    {
                        "first": "Lucia",
                        "middle": [],
                        "last": "Specia",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)",
                "volume": "",
                "issue": "",
                "pages": "1--14",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Daniel Cer, Mona Diab, Eneko Agirre, I\u00f1igo Lopez-Gazpio, and Lucia Specia. 2017. SemEval-2017 task 1: Se- mantic textual similarity multilingual and crosslingual focused evaluation. In Proceedings of the 11th Interna- tional Workshop on Semantic Evaluation (SemEval-2017), pages 1-14, Vancouver, Canada, August. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Chris Tar, Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Cer",
                        "suffix": ""
                    },
                    {
                        "first": "Yinfei",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Sheng-Yi",
                        "middle": [],
                        "last": "Kong",
                        "suffix": ""
                    },
                    {
                        "first": "Nan",
                        "middle": [],
                        "last": "Hua",
                        "suffix": ""
                    },
                    {
                        "first": "Nicole",
                        "middle": [],
                        "last": "Limtiaco",
                        "suffix": ""
                    },
                    {
                        "first": "Rhomni",
                        "middle": [],
                        "last": "St",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [],
                        "last": "John",
                        "suffix": ""
                    },
                    {
                        "first": "Mario",
                        "middle": [],
                        "last": "Constant",
                        "suffix": ""
                    },
                    {
                        "first": "Steve",
                        "middle": [],
                        "last": "Guajardo-Cespedes",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Yuan",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St. John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil. 2018. Universal sentence encoder. CoRR, abs/1803.11175.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Perspectroscope: A window to the world of diverse perspectives. ACL system demonstration track",
                "authors": [
                    {
                        "first": "Sihao",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Khashabi",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Callison-Burch",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Roth",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sihao Chen, Daniel Khashabi, Chris Callison-Burch, and Dan Roth. 2019a. Perspectroscope: A window to the world of diverse perspectives. ACL system demonstration track, abs/1906.04761.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Seeing things from a different angle: Discovering diverse perspectives about claims",
                "authors": [
                    {
                        "first": "Sihao",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Khashabi",
                        "suffix": ""
                    },
                    {
                        "first": "Wenpeng",
                        "middle": [],
                        "last": "Yin",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Callison-Burch",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Roth",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "542--557",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sihao Chen, Daniel Khashabi, Wenpeng Yin, Chris Callison-Burch, and Dan Roth. 2019b. Seeing things from a different angle: Discovering diverse perspectives about claims. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 542-557, Minneapolis, Minnesota, June. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "SentEval: An evaluation toolkit for universal sentence representations",
                "authors": [
                    {
                        "first": "Alexis",
                        "middle": [],
                        "last": "Conneau",
                        "suffix": ""
                    },
                    {
                        "first": "Douwe",
                        "middle": [],
                        "last": "Kiela",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alexis Conneau and Douwe Kiela. 2018. SentEval: An evaluation toolkit for universal sentence representations. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan, May. European Language Resources Association (ELRA).",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Supervised learning of universal sentence representations from natural language inference data",
                "authors": [
                    {
                        "first": "Alexis",
                        "middle": [],
                        "last": "Conneau",
                        "suffix": ""
                    },
                    {
                        "first": "Douwe",
                        "middle": [],
                        "last": "Kiela",
                        "suffix": ""
                    },
                    {
                        "first": "Holger",
                        "middle": [],
                        "last": "Schwenk",
                        "suffix": ""
                    },
                    {
                        "first": "Lo\u00efc",
                        "middle": [],
                        "last": "Barrault",
                        "suffix": ""
                    },
                    {
                        "first": "Antoine",
                        "middle": [],
                        "last": "Bordes",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "670--680",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alexis Conneau, Douwe Kiela, Holger Schwenk, Lo\u00efc Barrault, and Antoine Bordes. 2017. Supervised learning of universal sentence representations from natural language inference data. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 670-680, Copenhagen, Denmark, September. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Mpqa 3.0: An entity/event-level sentiment corpus",
                "authors": [
                    {
                        "first": "Lingjia",
                        "middle": [],
                        "last": "Deng",
                        "suffix": ""
                    },
                    {
                        "first": "Janyce",
                        "middle": [],
                        "last": "Wiebe",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "1323--1328",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lingjia Deng and Janyce Wiebe. 2015. Mpqa 3.0: An entity/event-level sentiment corpus. In Proceedings of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 1323-1328, Denver, Colorado, May 31 -June 5.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Bert: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of North American Association for Computational Linguistics: Human Language Translation (NAACL-HLT) 2019",
                "volume": "",
                "issue": "",
                "pages": "4171--4186",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidi- rectional transformers for language understanding. In Proceedings of North American Association for Com- putational Linguistics: Human Language Translation (NAACL-HLT) 2019, pages 4171-4186, Minneapolis, Minnesota, June 2-7.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Topic modeling in embedding spaces",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Adji",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Dieng",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "R"
                        ],
                        "last": "Francisco",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [
                            "M"
                        ],
                        "last": "Ruiz",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Blei",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "In Transactions of the Association for Computational Linguistics",
                "volume": "8",
                "issue": "",
                "pages": "439--453",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Adji B Dieng, Francisco JR Ruiz, and David M Blei. 2020. Topic modeling in embedding spaces. In Transactions of the Association for Computational Linguistics, volume 8, pages 439-453.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Ranit Aharonov, and Noam Slonim. 2020. Corpus wide argument mining -a working solution",
                "authors": [
                    {
                        "first": "Eyal",
                        "middle": [],
                        "last": "Liat Ein-Dor",
                        "suffix": ""
                    },
                    {
                        "first": "Lena",
                        "middle": [],
                        "last": "Shnarch",
                        "suffix": ""
                    },
                    {
                        "first": "Alon",
                        "middle": [],
                        "last": "Dankin",
                        "suffix": ""
                    },
                    {
                        "first": "Benjamin",
                        "middle": [],
                        "last": "Halfon",
                        "suffix": ""
                    },
                    {
                        "first": "Ariel",
                        "middle": [],
                        "last": "Sznajder",
                        "suffix": ""
                    },
                    {
                        "first": "Carlos",
                        "middle": [],
                        "last": "Gera",
                        "suffix": ""
                    },
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Alzate",
                        "suffix": ""
                    },
                    {
                        "first": "Leshem",
                        "middle": [],
                        "last": "Gleize",
                        "suffix": ""
                    },
                    {
                        "first": "Yufang",
                        "middle": [],
                        "last": "Choshen",
                        "suffix": ""
                    },
                    {
                        "first": "Yonatan",
                        "middle": [],
                        "last": "Hou",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Bilu",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "Thirty-Fourth AAAI Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Liat Ein-Dor, Eyal Shnarch, Lena Dankin, Alon Halfon, Benjamin Sznajder, Ariel Gera, Carlos Alzate, Martin Gleize, Leshem Choshen, Yufang Hou, Yonatan Bilu, Ranit Aharonov, and Noam Slonim. 2020. Corpus wide argument mining -a working solution. In Thirty-Fourth AAAI Conference on Artificial Intelligence.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "A density-based algorithm for discovering clusters in large spatial databases with noise",
                "authors": [
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Ester",
                        "suffix": ""
                    },
                    {
                        "first": "Hans-Peter",
                        "middle": [],
                        "last": "Kriegel",
                        "suffix": ""
                    },
                    {
                        "first": "J\u00f6rg",
                        "middle": [],
                        "last": "Sander",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaowei",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96)",
                "volume": "",
                "issue": "",
                "pages": "226--231",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Martin Ester, Hans-Peter Kriegel, J\u00f6rg Sander, and Xiaowei Xu. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In Evangelos Simoudis, Jiawei Han, and Usama M. Fayyad, editors, Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD- 96), pages 226-231. AAAI Press.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Ranit Aharonov, and Noam Slonim. 2020. A large-scale dataset for argument quality ranking: Construction and analysis",
                "authors": [
                    {
                        "first": "Shai",
                        "middle": [],
                        "last": "Gretz",
                        "suffix": ""
                    },
                    {
                        "first": "Roni",
                        "middle": [],
                        "last": "Friedman",
                        "suffix": ""
                    },
                    {
                        "first": "Edo",
                        "middle": [],
                        "last": "Cohen-Karlik",
                        "suffix": ""
                    },
                    {
                        "first": "Assaf",
                        "middle": [],
                        "last": "Toledo",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Lahav",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "Thirty-Fourth AAAI Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shai Gretz, Roni Friedman, Edo Cohen-Karlik, Assaf Toledo, Dan Lahav, Ranit Aharonov, and Noam Slonim. 2020. A large-scale dataset for argument quality ranking: Construction and analysis. In Thirty-Fourth AAAI Conference on Artificial Intelligence.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Opinion mining with deep contextualized embeddings",
                "authors": [
                    {
                        "first": "Wen-Bin",
                        "middle": [],
                        "last": "Han",
                        "suffix": ""
                    },
                    {
                        "first": "Noriko",
                        "middle": [],
                        "last": "Kando",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop",
                "volume": "",
                "issue": "",
                "pages": "35--42",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wen-Bin Han and Noriko Kando. 2019. Opinion mining with deep contextualized embeddings. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop, pages 35-42.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Aspect-based sentiment analysis using bert",
                "authors": [
                    {
                        "first": "Mickel",
                        "middle": [],
                        "last": "Hoang",
                        "suffix": ""
                    },
                    {
                        "first": "Alija",
                        "middle": [],
                        "last": "Oskar",
                        "suffix": ""
                    },
                    {
                        "first": "Jacobo",
                        "middle": [],
                        "last": "Bihorac",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Rouces",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "NEAL Proceedings of the 22nd Nordic Conference on Computional Linguistics (NoDaLiDa)",
                "volume": "167",
                "issue": "",
                "pages": "187--196",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mickel Hoang, Oskar Alija Bihorac, and Jacobo Rouces. 2019. Aspect-based sentiment analysis using bert. In NEAL Proceedings of the 22nd Nordic Conference on Computional Linguistics (NoDaLiDa), September 30- October 2, Turku, Finland, 167, pages 187-196. Link\u00f6ping University Electronic Press.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Comparing clusterings",
                "authors": [
                    {
                        "first": "Lawrence",
                        "middle": [],
                        "last": "Hubert",
                        "suffix": ""
                    },
                    {
                        "first": "Phipps",
                        "middle": [],
                        "last": "Arabie",
                        "suffix": ""
                    }
                ],
                "year": 1985,
                "venue": "Journal of Classification",
                "volume": "2",
                "issue": "",
                "pages": "193--218",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lawrence Hubert and Phipps Arabie. 1985. Comparing clusterings. Journal of Classification, 2:193-218.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Billion-scale similarity search with gpus",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Johnson",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Douze",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "J\u00e9gou",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "IEEE Transactions on Big Data",
                "volume": "",
                "issue": "",
                "pages": "1--1",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Johnson, M. Douze, and H. J\u00e9gou. 2019. Billion-scale similarity search with gpus. IEEE Transactions on Big Data, pages 1-1.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Albert: A lite bert for self-supervised learning of language representations",
                "authors": [
                    {
                        "first": "Zhenzhong",
                        "middle": [],
                        "last": "Lan",
                        "suffix": ""
                    },
                    {
                        "first": "Mingda",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "Goodman",
                        "suffix": ""
                    },
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Gimpel",
                        "suffix": ""
                    },
                    {
                        "first": "Piyush",
                        "middle": [],
                        "last": "Sharma",
                        "suffix": ""
                    },
                    {
                        "first": "Radu",
                        "middle": [],
                        "last": "Soricut",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. 2020. Albert: A lite bert for self-supervised learning of language representations. In International Conference on Learning Representations.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Newsweeder: Learning to filter netnews",
                "authors": [
                    {
                        "first": "Ken",
                        "middle": [],
                        "last": "Lang",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "Proceedings of the Twelfth International Conference on Machine Learning",
                "volume": "",
                "issue": "",
                "pages": "331--339",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ken Lang. 1995. Newsweeder: Learning to filter netnews. In Proceedings of the Twelfth International Conference on Machine Learning, pages 331-339.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension",
                "authors": [
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Lewis",
                        "suffix": ""
                    },
                    {
                        "first": "Yinhan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Naman",
                        "middle": [],
                        "last": "Goyal",
                        "suffix": ""
                    },
                    {
                        "first": "Marjan",
                        "middle": [],
                        "last": "Ghazvininejad",
                        "suffix": ""
                    },
                    {
                        "first": "Abdelrahman",
                        "middle": [],
                        "last": "Mohamed",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "Ves",
                        "middle": [],
                        "last": "Stoyanov",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoy- anov, and Luke Zettlemoyer. 2019. Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. ArXiv, abs/1910.13461.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Hierarchical transformers for multi-document summarization",
                "authors": [
                    {
                        "first": "Yang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Mirella",
                        "middle": [],
                        "last": "Lapata",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "ArXiv",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yang Liu and Mirella Lapata. 2019. Hierarchical transformers for multi-document summarization. ArXiv, abs/1905.13164.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Roberta: A robustly optimized bert pretraining approach",
                "authors": [
                    {
                        "first": "Yinhan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Myle",
                        "middle": [],
                        "last": "Ott",
                        "suffix": ""
                    },
                    {
                        "first": "Naman",
                        "middle": [],
                        "last": "Goyal",
                        "suffix": ""
                    },
                    {
                        "first": "Jingfei",
                        "middle": [],
                        "last": "Du",
                        "suffix": ""
                    },
                    {
                        "first": "Mandar",
                        "middle": [],
                        "last": "Joshi",
                        "suffix": ""
                    },
                    {
                        "first": "Danqi",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Lewis",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    },
                    {
                        "first": "Veselin",
                        "middle": [],
                        "last": "Stoyanov",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1907.11692"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Efficient estimation of word representations in vector space",
                "authors": [
                    {
                        "first": "Tomas",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    },
                    {
                        "first": "Kai",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Greg",
                        "middle": [],
                        "last": "Corrado",
                        "suffix": ""
                    },
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Dean",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1301.3781"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Distributed representations of words and phrases and their compositionality",
                "authors": [
                    {
                        "first": "Tomas",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    },
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Sutskever",
                        "suffix": ""
                    },
                    {
                        "first": "Kai",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Greg",
                        "middle": [
                            "S"
                        ],
                        "last": "Corrado",
                        "suffix": ""
                    },
                    {
                        "first": "Jeff",
                        "middle": [],
                        "last": "Dean",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Advances in Neural Information Processing Systems",
                "volume": "26",
                "issue": "",
                "pages": "3111--3119",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013b. Distributed representations of words and phrases and their compositionality. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 26, pages 3111-3119. Curran Associates, Inc.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Measuring the similarity of sentential arguments in dialogue",
                "authors": [
                    {
                        "first": "Amita",
                        "middle": [],
                        "last": "Misra",
                        "suffix": ""
                    },
                    {
                        "first": "Brian",
                        "middle": [],
                        "last": "Ecker",
                        "suffix": ""
                    },
                    {
                        "first": "Marilyn",
                        "middle": [],
                        "last": "Walker",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue",
                "volume": "",
                "issue": "",
                "pages": "276--287",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Amita Misra, Brian Ecker, and Marilyn Walker. 2016. Measuring the similarity of sentential arguments in dia- logue. In Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 276-287, Los Angeles, September. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "fairseq: A fast, extensible toolkit for sequence modeling",
                "authors": [
                    {
                        "first": "Myle",
                        "middle": [],
                        "last": "Ott",
                        "suffix": ""
                    },
                    {
                        "first": "Sergey",
                        "middle": [],
                        "last": "Edunov",
                        "suffix": ""
                    },
                    {
                        "first": "Alexei",
                        "middle": [],
                        "last": "Baevski",
                        "suffix": ""
                    },
                    {
                        "first": "Angela",
                        "middle": [],
                        "last": "Fan",
                        "suffix": ""
                    },
                    {
                        "first": "Sam",
                        "middle": [],
                        "last": "Gross",
                        "suffix": ""
                    },
                    {
                        "first": "Nathan",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Grangier",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Auli",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "NAACL-HLT",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and Michael Auli. 2019. fairseq: A fast, extensible toolkit for sequence modeling. In NAACL-HLT.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Exploring the limits of transfer learning with a unified text-to-text transformer",
                "authors": [
                    {
                        "first": "Colin",
                        "middle": [],
                        "last": "Raffel",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Shazeer",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Roberts",
                        "suffix": ""
                    },
                    {
                        "first": "Katherine",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Sharan",
                        "middle": [],
                        "last": "Narang",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Matena",
                        "suffix": ""
                    },
                    {
                        "first": "Yanqi",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [
                            "J"
                        ],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "ArXiv",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2019. Exploring the limits of transfer learning with a unified text-to-text transformer. ArXiv, abs/1910.10683.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Gensim-statistical semantics in python",
                "authors": [
                    {
                        "first": "Petr",
                        "middle": [],
                        "last": "Radim\u0159eh\u016f\u0159ek",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Sojka",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of EuroScipy",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Radim\u0158eh\u016f\u0159ek and Petr Sojka. 2011. Gensim-statistical semantics in python. In Proceedings of EuroScipy.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Sentence-bert: Sentence embeddings using siamese bert-networks",
                "authors": [
                    {
                        "first": "Nils",
                        "middle": [],
                        "last": "Reimers",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-networks. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP).",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Recognizing textual entailment. Multilingual Natural Language Applications: From Theory to Practice",
                "authors": [
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Sammons",
                        "suffix": ""
                    },
                    {
                        "first": "Vinod",
                        "middle": [],
                        "last": "Vydiswaran",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Roth",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "209--258",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mark Sammons, Vinod Vydiswaran, and Dan Roth. 2012. Recognizing textual entailment. Multilingual Natural Language Applications: From Theory to Practice, pages 209-258.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter",
                "authors": [
                    {
                        "first": "Victor",
                        "middle": [],
                        "last": "Sanh",
                        "suffix": ""
                    },
                    {
                        "first": "Lysandre",
                        "middle": [],
                        "last": "Debut",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Chaumond",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Wolf",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "2",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. In EMC2: 5th Edition co-located with NeurIPS.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "Recognizing stances in ideological on-line debates",
                "authors": [
                    {
                        "first": "Swapna",
                        "middle": [],
                        "last": "Somasundaran",
                        "suffix": ""
                    },
                    {
                        "first": "Janyce",
                        "middle": [],
                        "last": "Wiebe",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text",
                "volume": "",
                "issue": "",
                "pages": "116--124",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Swapna Somasundaran and Janyce Wiebe. 2010. Recognizing stances in ideological on-line debates. In Proceed- ings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, pages 116-124. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "Argumentext: Searching for arguments in heterogeneous sources",
                "authors": [
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Stab",
                        "suffix": ""
                    },
                    {
                        "first": "Johannes",
                        "middle": [],
                        "last": "Daxenberger",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Stahlhut",
                        "suffix": ""
                    },
                    {
                        "first": "Tristan",
                        "middle": [],
                        "last": "Miller",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Schiller",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Tauchmann",
                        "suffix": ""
                    },
                    {
                        "first": "Steffen",
                        "middle": [],
                        "last": "Eger",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "NAACL-HLT",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christian Stab, Johannes Daxenberger, Chris Stahlhut, Tristan Miller, B. Schiller, Christopher Tauchmann, Steffen Eger, and Iryna Gurevych. 2018. Argumentext: Searching for arguments in heterogeneous sources. In NAACL- HLT.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "FEVER: a large-scale dataset for fact extraction and VERification",
                "authors": [
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Thorne",
                        "suffix": ""
                    },
                    {
                        "first": "Andreas",
                        "middle": [],
                        "last": "Vlachos",
                        "suffix": ""
                    },
                    {
                        "first": "Christos",
                        "middle": [],
                        "last": "Christodoulopoulos",
                        "suffix": ""
                    },
                    {
                        "first": "Arpit",
                        "middle": [],
                        "last": "Mittal",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "809--819",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. 2018. FEVER: a large-scale dataset for fact extraction and VERification. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 809-819, New Orleans, Louisiana, June. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "Building an argument search engine for the web",
                "authors": [
                    {
                        "first": "Henning",
                        "middle": [],
                        "last": "Wachsmuth",
                        "suffix": ""
                    },
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Potthast",
                        "suffix": ""
                    },
                    {
                        "first": "Khalid",
                        "middle": [
                            "Al"
                        ],
                        "last": "Khatib",
                        "suffix": ""
                    },
                    {
                        "first": "Yamen",
                        "middle": [],
                        "last": "Ajjour",
                        "suffix": ""
                    },
                    {
                        "first": "Jana",
                        "middle": [],
                        "last": "Puschmann",
                        "suffix": ""
                    },
                    {
                        "first": "Jiani",
                        "middle": [],
                        "last": "Qu",
                        "suffix": ""
                    },
                    {
                        "first": "Jonas",
                        "middle": [],
                        "last": "Dorsch",
                        "suffix": ""
                    },
                    {
                        "first": "Viorel",
                        "middle": [],
                        "last": "Morari",
                        "suffix": ""
                    },
                    {
                        "first": "Janek",
                        "middle": [],
                        "last": "Bevendorff",
                        "suffix": ""
                    },
                    {
                        "first": "Benno",
                        "middle": [],
                        "last": "Stein",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Henning Wachsmuth, Martin Potthast, Khalid Al Khatib, Yamen Ajjour, Jana Puschmann, Jiani Qu, Jonas Dorsch, Viorel Morari, Janek Bevendorff, and Benno Stein. 2017. Building an argument search engine for the web. In ArgMining@EMNLP.",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "Multi-passage bert: A globally normalized bert model for open-domain question answering",
                "authors": [
                    {
                        "first": "Zhiguo",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Patrick",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaofei",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Ramesh",
                        "middle": [],
                        "last": "Nallapati",
                        "suffix": ""
                    },
                    {
                        "first": "Bing",
                        "middle": [],
                        "last": "Xiang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "EMNLP/IJCNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhiguo Wang, Patrick Ng, Xiaofei Ma, Ramesh Nallapati, and Bing Xiang. 2019. Multi-passage bert: A globally normalized bert model for open-domain question answering. In EMNLP/IJCNLP.",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "Opinionfinder: A system for subjectivity analysis",
                "authors": [
                    {
                        "first": "Theresa",
                        "middle": [],
                        "last": "Wilson",
                        "suffix": ""
                    },
                    {
                        "first": "Paul",
                        "middle": [],
                        "last": "Hoffmann",
                        "suffix": ""
                    },
                    {
                        "first": "Swapna",
                        "middle": [],
                        "last": "Somasundaran",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Kessler",
                        "suffix": ""
                    },
                    {
                        "first": "Janyce",
                        "middle": [],
                        "last": "Wiebe",
                        "suffix": ""
                    },
                    {
                        "first": "Yejin",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    },
                    {
                        "first": "Claire",
                        "middle": [],
                        "last": "Cardie",
                        "suffix": ""
                    },
                    {
                        "first": "Ellen",
                        "middle": [],
                        "last": "Riloff",
                        "suffix": ""
                    },
                    {
                        "first": "Siddharth",
                        "middle": [],
                        "last": "Patwardhan",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of HLT/EMNLP 2005 Interactive Demonstrations",
                "volume": "",
                "issue": "",
                "pages": "34--35",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Theresa Wilson, Paul Hoffmann, Swapna Somasundaran, Jason Kessler, Janyce Wiebe, Yejin Choi, Claire Cardie, Ellen Riloff, and Siddharth Patwardhan. 2005a. Opinionfinder: A system for subjectivity analysis. In Proceed- ings of HLT/EMNLP 2005 Interactive Demonstrations, pages 34-35.",
                "links": null
            },
            "BIBREF40": {
                "ref_id": "b40",
                "title": "Recognizing contextual polarity in phrase-level sentiment analysis",
                "authors": [
                    {
                        "first": "Theresa",
                        "middle": [],
                        "last": "Wilson",
                        "suffix": ""
                    },
                    {
                        "first": "Janyce",
                        "middle": [],
                        "last": "Wiebe",
                        "suffix": ""
                    },
                    {
                        "first": "Paul",
                        "middle": [],
                        "last": "Hoffmann",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Theresa Wilson, Janyce Wiebe, and Paul Hoffmann. 2005b. Recognizing contextual polarity in phrase-level sentiment analysis. In Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing.",
                "links": null
            },
            "BIBREF41": {
                "ref_id": "b41",
                "title": "Huggingface's transformers: State-of-the-art natural language processing",
                "authors": [
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Wolf",
                        "suffix": ""
                    },
                    {
                        "first": "Lysandre",
                        "middle": [],
                        "last": "Debut",
                        "suffix": ""
                    },
                    {
                        "first": "Victor",
                        "middle": [],
                        "last": "Sanh",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Chaumond",
                        "suffix": ""
                    },
                    {
                        "first": "Clement",
                        "middle": [],
                        "last": "Delangue",
                        "suffix": ""
                    },
                    {
                        "first": "Anthony",
                        "middle": [],
                        "last": "Moi",
                        "suffix": ""
                    },
                    {
                        "first": "Pierric",
                        "middle": [],
                        "last": "Cistac",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Rault",
                        "suffix": ""
                    },
                    {
                        "first": "R\u00e9mi",
                        "middle": [],
                        "last": "Louf",
                        "suffix": ""
                    },
                    {
                        "first": "Morgan",
                        "middle": [],
                        "last": "Funtowicz",
                        "suffix": ""
                    },
                    {
                        "first": "Joe",
                        "middle": [],
                        "last": "Davison",
                        "suffix": ""
                    },
                    {
                        "first": "Sam",
                        "middle": [],
                        "last": "Shleifer",
                        "suffix": ""
                    },
                    {
                        "first": "Clara",
                        "middle": [],
                        "last": "Patrick Von Platen",
                        "suffix": ""
                    },
                    {
                        "first": "Yacine",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Jernite",
                        "suffix": ""
                    },
                    {
                        "first": "Canwen",
                        "middle": [],
                        "last": "Plu",
                        "suffix": ""
                    },
                    {
                        "first": "Teven",
                        "middle": [
                            "Le"
                        ],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Sylvain",
                        "middle": [],
                        "last": "Scao",
                        "suffix": ""
                    },
                    {
                        "first": "Mariama",
                        "middle": [],
                        "last": "Gugger",
                        "suffix": ""
                    },
                    {
                        "first": "Quentin",
                        "middle": [],
                        "last": "Drame",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [
                            "M"
                        ],
                        "last": "Lhoest",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Rush",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cis- tac, Tim Rault, R\u00e9mi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2020. Huggingface's transformers: State-of-the-art natural language processing. ArXiv, abs/1910.03771.",
                "links": null
            },
            "BIBREF42": {
                "ref_id": "b42",
                "title": "Bert post-training for review reading comprehension and aspect-based sentiment analysis",
                "authors": [
                    {
                        "first": "Hu",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Bing",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Lei",
                        "middle": [],
                        "last": "Shu",
                        "suffix": ""
                    },
                    {
                        "first": "Philip S",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of North American Association for Computational Linguistic -Human Language Translation (NAACL-HLT) 2019",
                "volume": "",
                "issue": "",
                "pages": "2324--2335",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hu Xu, Bing Liu, Lei Shu, and Philip S Yu. 2019. Bert post-training for review reading comprehension and aspect-based sentiment analysis. Proceedings of North American Association for Computational Linguistic - Human Language Translation (NAACL-HLT) 2019, pages 2324-2335, June.",
                "links": null
            },
            "BIBREF43": {
                "ref_id": "b43",
                "title": "Xlnet: Generalized autoregressive pretraining for language understanding",
                "authors": [
                    {
                        "first": "Zhilin",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Zihang",
                        "middle": [],
                        "last": "Dai",
                        "suffix": ""
                    },
                    {
                        "first": "Yiming",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Jaime",
                        "middle": [
                            "G"
                        ],
                        "last": "Carbonell",
                        "suffix": ""
                    },
                    {
                        "first": "Ruslan",
                        "middle": [],
                        "last": "Salakhutdinov",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Quoc",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Le",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "33rd Conference on Neural Information Processing Systems",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019. Xlnet: Generalized autoregressive pretraining for language understanding. In 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "type_str": "figure",
                "num": null,
                "text": "Architecture of our transformer-based system showing inference examples"
            },
            "FIGREF1": {
                "uris": null,
                "type_str": "figure",
                "num": null,
                "text": "Our system processes news articles in five steps and generates entailment predictions."
            },
            "TABREF1": {
                "content": "<table><tr><td>MODEL</td><td>STS-B</td><td>AFS</td></tr><tr><td>USE</td><td colspan=\"2\">0.78413 0.44501</td></tr><tr><td>SBERT</td><td colspan=\"2\">0.84195 0.75800</td></tr><tr><td>SROBERTA</td><td colspan=\"2\">0.84266 0.75502</td></tr><tr><td colspan=\"3\">SDISTILBERT 0.84135 0.73400</td></tr></table>",
                "html": null,
                "num": null,
                "type_str": "table",
                "text": "XLNet outperforms other models on F1 using held-out MPQA data."
            },
            "TABREF2": {
                "content": "<table/>",
                "html": null,
                "num": null,
                "type_str": "table",
                "text": "Siamese BERT-based models outperform USE on STS-B and AFS by 6%."
            }
        }
    }
}