File size: 120,214 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 |
{
"paper_id": "2020",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T02:10:05.240240Z"
},
"title": "News Aggregation with Diverse Viewpoint Identification Using Neural Embeddings and Semantic Understanding Models",
"authors": [
{
"first": "Mark",
"middle": [],
"last": "Carlebach",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Harvard University",
"location": {}
},
"email": ""
},
{
"first": "Ria",
"middle": [],
"last": "Cheruvu",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Harvard University",
"location": {}
},
"email": ""
},
{
"first": "Brandon",
"middle": [],
"last": "Walker",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Harvard University",
"location": {}
},
"email": ""
},
{
"first": "Cesar",
"middle": [],
"last": "Ilharco",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Harvard University",
"location": {}
},
"email": ""
},
{
"first": "Sylvain",
"middle": [],
"last": "Jaume",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Harvard University",
"location": {}
},
"email": "sylvain@csail.mit.edu"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "Today's news volume makes it impractical for readers to get a diverse and comprehensive view of published articles written from opposing viewpoints. We introduce a transformer-based news aggregation system, composed of topic modeling, semantic clustering, claim extraction, and textual entailment that identifies viewpoints presented in articles within a semantic cluster and classifies them into positive, neutral and negative entailments. Our novel embedded topic model using BERT-based embeddings outperforms baseline topic modeling algorithms by an 11% relative improvement. We compare recent semantic similarity models in the context of news aggregation, evaluate transformer-based models for claim extraction on news data, and demonstrate the use of textual entailment models for diverse viewpoint identification.",
"pdf_parse": {
"paper_id": "2020",
"_pdf_hash": "",
"abstract": [
{
"text": "Today's news volume makes it impractical for readers to get a diverse and comprehensive view of published articles written from opposing viewpoints. We introduce a transformer-based news aggregation system, composed of topic modeling, semantic clustering, claim extraction, and textual entailment that identifies viewpoints presented in articles within a semantic cluster and classifies them into positive, neutral and negative entailments. Our novel embedded topic model using BERT-based embeddings outperforms baseline topic modeling algorithms by an 11% relative improvement. We compare recent semantic similarity models in the context of news aggregation, evaluate transformer-based models for claim extraction on news data, and demonstrate the use of textual entailment models for diverse viewpoint identification.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "The advent of news aggregators has ushered in a new age of information, exposing readers to continuous streams of articles from diverse outlets. However, the proliferation of data makes finding viewpoints presented in different articles challenging. We introduce a novel transformer-based news aggregation system that identifies diverse viewpoints, depicted in Figure 1 . Rather than use preset criteria or learned behavior, our system provides a list of viewpoints covered in news articles and allows users to decide which viewpoints to explore. Our system consists of the following components, illustrated in Figure 2 : (i) Topic Modeling organizes articles from multiple news sources into clusters, (ii) Hypothesis Extraction extracts an opinionated summary sentence (i.e., hypothesis) from each article, (iii) Semantic Similarity identifies differing viewpoints (i.e., sub-clusters) within each topic based on the hypotheses, (iv) Premise Extraction extracts a summary sentence (i.e., premise) from a group of articles associated with a viewpoint, (v) Textual Entailment evaluates the entailment between the hypothesis of each article and the premise of its subcluster. As part of this work, we define hypothesis extraction and premise extraction as subsets of claim extraction, where a claim is defined as a sentence expressing viewpoints associated with a news article. We define a hypothesis as a single summary sentence that represents an article's viewpoint, and use the terms hypothesis extraction and single-document subjectivity analysis interchangeably. We define a premise as a single summary sentence that represents viewpoints shared by multiple articles, and use the terms premise extraction and multi-document subjectivity analysis interchangeably.",
"cite_spans": [],
"ref_spans": [
{
"start": 361,
"end": 369,
"text": "Figure 1",
"ref_id": "FIGREF0"
},
{
"start": 611,
"end": 619,
"text": "Figure 2",
"ref_id": "FIGREF1"
}
],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "News Aggregation: Thorne et al. propose a system involving Document Retrieval, Sentence Selection, and Recognizing Textual Entailment (RTE) for fact extraction and verification (Thorne et al., 2018) . Their system expects a claim as input to identify relevant documents, select sentences as evidence from the document, and finally classify the claim. Other authors evaluate the performance of transformerbased models against baseline models for debate data (Chen et al., 2019a; Chen et al., 2019b; Gretz et Ein-Dor et al., 2020) , which has applications for news data but is structured slightly differently. A single news article can be clustered under multiple topics and report multiple opinions within the same article. In contrast, debate data often directly align with one particular pre-defined topic and involve separate opinions. Our system differs from an argument search engine with indexing and retrieval (Stab et al., 2018; Wachsmuth et al., 2017) . To adjust to the dynamic incoming stream and multiple sources of news data, we explore the generalization capability of language models to automate the news aggregation and viewpoint discovery problem. We have chosen to develop our own labeled article data set targeted specifically for news applications.",
"cite_spans": [
{
"start": 177,
"end": 198,
"text": "(Thorne et al., 2018)",
"ref_id": "BIBREF36"
},
{
"start": 457,
"end": 477,
"text": "(Chen et al., 2019a;",
"ref_id": "BIBREF6"
},
{
"start": 478,
"end": 497,
"text": "Chen et al., 2019b;",
"ref_id": "BIBREF7"
},
{
"start": 498,
"end": 506,
"text": "Gretz et",
"ref_id": "BIBREF15"
},
{
"start": 507,
"end": 528,
"text": "Ein-Dor et al., 2020)",
"ref_id": null
},
{
"start": 916,
"end": 935,
"text": "(Stab et al., 2018;",
"ref_id": "BIBREF35"
},
{
"start": 936,
"end": 959,
"text": "Wachsmuth et al., 2017)",
"ref_id": "BIBREF37"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Topic modeling: A common approach to clustering documents based on textual content is Multinomial Latent Dirichlet Allocation (LDA) (Blei et al., 2003) . Many alternatives have been investigated to improve semantic coherence by representing words with word2vec embeddings (Mikolov et al., 2013a) . One such approach is the Embedded Topic Model (ETM) (Dieng et al., 2020), which uniquely represents each document as latent topics, where each topic is an embedding in the semantic space of the words. In this paper, we use ETM for our topic modeling and investigate using transformer-based embeddings in lieu of word2vec embeddings to improve quality of clustering.",
"cite_spans": [
{
"start": 132,
"end": 151,
"text": "(Blei et al., 2003)",
"ref_id": "BIBREF2"
},
{
"start": 272,
"end": 295,
"text": "(Mikolov et al., 2013a)",
"ref_id": "BIBREF25"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Semantic Similarity: Semantic Textual Similarity (STS) refers to the goal of quantifying the degree of similarity between two bodies of text by capturing the degree to which the meanings of the two inputs overlap (Cer et al., 2017) . Until recently, state-of-the-art STS systems have relied heavily on word embedding approaches (Mikolov et al., 2013b) , which lack the capability to fully capture semantic context. Methods such as InferSent were developed as a solution to embed multiples words, phrases, or sentences into a single representation (Conneau et al., 2017) . The Universal Sentence Encoder (USE) models (Cer et al., 2018) , BERT (Devlin et al., 2019) , and other models such as RoBERTa and GPT-3 (Brown et al., 2020) have since made significant improvements on InferSent.",
"cite_spans": [
{
"start": 213,
"end": 231,
"text": "(Cer et al., 2017)",
"ref_id": "BIBREF4"
},
{
"start": 328,
"end": 351,
"text": "(Mikolov et al., 2013b)",
"ref_id": "BIBREF26"
},
{
"start": 547,
"end": 569,
"text": "(Conneau et al., 2017)",
"ref_id": "BIBREF9"
},
{
"start": 616,
"end": 634,
"text": "(Cer et al., 2018)",
"ref_id": "BIBREF5"
},
{
"start": 642,
"end": 663,
"text": "(Devlin et al., 2019)",
"ref_id": "BIBREF11"
},
{
"start": 703,
"end": 729,
"text": "GPT-3 (Brown et al., 2020)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Claim Extraction: A key component of opinion-oriented information extraction from articles is identifying sentence(s) expressing viewpoints associated with articles (Wilson et al., 2005b; Chen et al., 2019b) . Early attempts towards solving the problem of single-document subjectivity analysis involved the use of Na\u00efve Bayes classifiers, AdaBoost, and rule-based classifiers trained on the Multi-Perspective Question Answering (MPQA) Opinion Corpus (Wilson et al., 2005b) for identifying subjective expressions and similar tasks (Wilson et al., 2005a; Somasundaran and Wiebe, 2010) . Recent work (Xu et al., 2019; Hoang et al., 2019; Han and Kando, 2019) has shown fine-tuned BERT models and BERT-based models (Cer et al., 2018) perform well against baseline models for sentiment analysis and opinion mining tasks. BERT has been applied to multiple passages/documents for question and answering tasks (Wang et al., 2019) . However, few transformer-based models were applied for multi-document subjectivity analysis (Liu and Lapata, 2019) . In this work, we implement hypothesis extraction as a sentence-classification task and consider BERT-based models against a Na\u00efve Bayes classifier to determine if transformer-based models perform well for hypothesis extraction. We propose abstractive summarization models, such as BART and T5 (Raffel et al., 2019) , for premise extraction.",
"cite_spans": [
{
"start": 165,
"end": 187,
"text": "(Wilson et al., 2005b;",
"ref_id": "BIBREF40"
},
{
"start": 188,
"end": 207,
"text": "Chen et al., 2019b)",
"ref_id": "BIBREF7"
},
{
"start": 450,
"end": 472,
"text": "(Wilson et al., 2005b)",
"ref_id": "BIBREF40"
},
{
"start": 530,
"end": 552,
"text": "(Wilson et al., 2005a;",
"ref_id": "BIBREF39"
},
{
"start": 553,
"end": 582,
"text": "Somasundaran and Wiebe, 2010)",
"ref_id": "BIBREF34"
},
{
"start": 597,
"end": 614,
"text": "(Xu et al., 2019;",
"ref_id": "BIBREF42"
},
{
"start": 615,
"end": 634,
"text": "Hoang et al., 2019;",
"ref_id": "BIBREF17"
},
{
"start": 635,
"end": 655,
"text": "Han and Kando, 2019)",
"ref_id": "BIBREF16"
},
{
"start": 711,
"end": 729,
"text": "(Cer et al., 2018)",
"ref_id": "BIBREF5"
},
{
"start": 902,
"end": 921,
"text": "(Wang et al., 2019)",
"ref_id": "BIBREF38"
},
{
"start": 1016,
"end": 1038,
"text": "(Liu and Lapata, 2019)",
"ref_id": "BIBREF23"
},
{
"start": 1334,
"end": 1355,
"text": "(Raffel et al., 2019)",
"ref_id": "BIBREF29"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Textual Entailment: Recognizing textual entailment (RTE) involves identifying whether a hypothesis statement supports, contradicts, or is indifferent to a premise statement, regardless of whether the premise and hypothesis lexically match (Sammons et al., 2012) . Chen et al. leverage textual entailment to find evidence paragraphs in support of viewpoints (Chen et al., 2019b) . Attempts towards RTE include Named Entity Recognition (NER) (Sammons et al., 2012) , LSTMs with word embeddings, and transformer-based models, such as BART and RoBERTa, which deliver high performance for these tasks.",
"cite_spans": [
{
"start": 239,
"end": 261,
"text": "(Sammons et al., 2012)",
"ref_id": "BIBREF32"
},
{
"start": 357,
"end": 377,
"text": "(Chen et al., 2019b)",
"ref_id": "BIBREF7"
},
{
"start": 440,
"end": 462,
"text": "(Sammons et al., 2012)",
"ref_id": "BIBREF32"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "A demo of our system is available at https://harvard-almit.github.io/newsaggregator/. We tested this system on a dataset of over 1,000 scraped articles from various news outlets, such as Yahoo News and The Post and Courier. Figure 2 illustrates how news articles are processed across the components in our system: (i) Topic Modeling generates cluster IDs for the articles, (ii) Hypothesis Extraction generates hypotheses for the clustered articles, (iii) Semantic Similarity generates subcluster IDs using hypotheses, (iv) Premise Extraction generates premises for articles in each subcluster, and (v) Textual Entailment, consuming outputs of Hypothesis Extraction and Premise Extraction, generates entailment predictions and provides the results of our news aggregation system.",
"cite_spans": [],
"ref_spans": [
{
"start": 224,
"end": 232,
"text": "Figure 2",
"ref_id": "FIGREF1"
}
],
"eq_spans": [],
"section": "Methods",
"sec_num": "3"
},
{
"text": "We perform topic modeling with three approaches using 20 Newsgroups data (Lang, 1995) and Adjusted Rand Index Scoring (Hubert and Arabie, 1985) : (i) Latent Dirichlet Allocation (LDA) using the gensim package (\u0158eh\u016f\u0159ek and Sojka, 2011), (ii) ETM with word2vec embeddings, and (iii) ETM with centroids of BERT based embeddings (Blei et al., 2003; Mikolov et al., 2013a; Dieng et al., 2020) , where we select a value for num bert centroids as the number of embeddings ETM will use, and use k-means clustering (k=num bert centroids) from FAISS package (Johnson et al., 2019) . For training hypothesis extraction models on the clustered articles, we use a modified version of the MPQA Opinion Corpus v3.0 consisting of expressive subjective elements (Deng and Wiebe, 2015) . We train a multinomial Na\u00efve Bayes classifier and fine-tune BERT, XLNet (Yang et al., 2019) , and ALBERT (Lan et al., 2020) models using HuggingFace's transformers library (Wolf et al., 2020) on pre-processed MPQA data for sentence-level subjectivity analysis (i.e., binary opinion classification of sentences).",
"cite_spans": [
{
"start": 73,
"end": 85,
"text": "(Lang, 1995)",
"ref_id": "BIBREF21"
},
{
"start": 118,
"end": 143,
"text": "(Hubert and Arabie, 1985)",
"ref_id": "BIBREF18"
},
{
"start": 325,
"end": 344,
"text": "(Blei et al., 2003;",
"ref_id": "BIBREF2"
},
{
"start": 345,
"end": 367,
"text": "Mikolov et al., 2013a;",
"ref_id": "BIBREF25"
},
{
"start": 368,
"end": 387,
"text": "Dieng et al., 2020)",
"ref_id": "BIBREF12"
},
{
"start": 548,
"end": 570,
"text": "(Johnson et al., 2019)",
"ref_id": "BIBREF19"
},
{
"start": 745,
"end": 767,
"text": "(Deng and Wiebe, 2015)",
"ref_id": "BIBREF10"
},
{
"start": 842,
"end": 861,
"text": "(Yang et al., 2019)",
"ref_id": "BIBREF23"
},
{
"start": 875,
"end": 893,
"text": "(Lan et al., 2020)",
"ref_id": "BIBREF20"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Methods",
"sec_num": "3"
},
{
"text": "The semantic similarity module then clusters generated hypotheses of documents within a topic into clusters of semantically related articles, in which each article is associated with a single, more specific topic. We considered BERT, RoBERTa, and DistilBERT (Sanh et al., 2019) in a siamese network structure (Reimers and Gurevych, 2019) , in addition to USE using the Pearson correlation coefficient, for the semantic similarity module. The models were fine-tuned on the Argument Facet Similarity Corpus by (Misra et al., 2016) and the STS-Benchmark dataset provided by the SentEval (Conneau and Kiela, 2018) package. For premise extraction, we fine-tuned a large BART model (406M parameters) and a small T5 model (60M parameters) (Raffel et al., 2019 ) using the transformers library on data taken from IBM's Project Debater Claim Stance Dataset (Bar-Haim et al., 2017) . We reformatted this dataset into a summarization dataset for fine-tuning. We chose not to utilize the claims provided in the dataset, since the hypothesis extraction module already accomplishes this purpose, and used topics (statements that represent a group of articles) from the dataset instead. The final output of the system is provided by the textual entailment module. For each article in a semantic similarity sub-cluster, premises and hypotheses generated from the claim extraction module are input to the textual entailment module to predict whether the hypothesis contradicts, entails, or is unrelated to the premise. We evaluated Fairseq's pre-trained RoBERTa and BART models fine-tuned for MNLI using the transformers library for textual entailment on the claim stance dataset presented by (Bar-Haim et al., 2017) , given that BART reportedly performs similar to RoBERTa on the MNLI task .",
"cite_spans": [
{
"start": 258,
"end": 277,
"text": "(Sanh et al., 2019)",
"ref_id": "BIBREF33"
},
{
"start": 309,
"end": 337,
"text": "(Reimers and Gurevych, 2019)",
"ref_id": "BIBREF31"
},
{
"start": 508,
"end": 528,
"text": "(Misra et al., 2016)",
"ref_id": "BIBREF27"
},
{
"start": 584,
"end": 609,
"text": "(Conneau and Kiela, 2018)",
"ref_id": "BIBREF8"
},
{
"start": 732,
"end": 752,
"text": "(Raffel et al., 2019",
"ref_id": "BIBREF29"
},
{
"start": 848,
"end": 871,
"text": "(Bar-Haim et al., 2017)",
"ref_id": "BIBREF1"
},
{
"start": 1676,
"end": 1699,
"text": "(Bar-Haim et al., 2017)",
"ref_id": "BIBREF1"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Methods",
"sec_num": "3"
},
{
"text": "Our results for topic modeling show ETM with word2vec embeddings outperforming LDA by 32% on unseen data, and ETM with BERT based embeddings outperforms ETM with word2vec embeddings based on the number of BERT centroids. When predicting on unseen data, ETM trained with 100K BERT centroids outperforms ETM with 25,535 word2vec embeddings by 11%, suggesting the benefits of long sequence contextualized embeddings. We found when predicting on unseen data, the improvements of ETM trained with BERT embeddings do not continue beyond a certain number of centroids due to overfitting. However, when predicting on seen data, ETM trained with BERT embeddings's outperformance increases as the number of BERT centroids increases to 1 million centroids. When predicting on seen data, ETM trained with 1 million BERT centroids outperforms ETM with word2vec embeddings by 17%. For hypothesis extraction, on a held-out dataset of the MPQA data, we found XLNet outperforms the Na\u00efve Bayes classifier baseline by 23%, and provides better performance compared to BERT and ALBERT on the F1 score while ALBERT achieved a higher Matthews correlation coefficient score (see Table 1 ). We found the BERT-based model is capable of extracting distinct hypotheses from different entities for a particular article. In Table 2 , for the semantic similarity task, we found the BERT-based models in a siamese network outperformed USE, making them well-suited for our use-case. The results presented are the Pearson correlation of the cosine distance between the embedding vectors and the human-labeled similarity score. The results indicate that we have fairly high correlation (r \u2248 0.84) recognizing semantically similar sentences and moderate correlation (r \u2248 0.75) recognizing argument facets. This gives us an average r value across the two tasks of approximately 0.80. Additionally, we note that the smaller DistilBERT yields results similar to its larger counterparts. For premise extraction, we achieved a loss of 1.260 with T5 and a loss of 6.192 with BART on the validation dataset. The T5 model typically outputs 3 sentences. The output is further processed to include the longer sentence to prevent run-off sentences from occurring in the predicted premises. We found BART's predictions were limited to topics in the training data contra T5's predictions that were directly related to article content. Sample predictions from T5 include \"The house would be a great place to promote the liberal arts movement\" and \"The study believes that warm climates would limit the spread of the virus if people are immune from it\". For textual entailment, BART has slightly higher accuracy (67%) compared to RoBERTa (65%) on the claim stance dataset. However, for our datasets, RoBERTa outputted predictions with higher probability compared to BART. Given these results, we implemented XLNet for hypothesis extraction, SBERT for semantic similarity, T5 for premise extraction, and RoBERTA for textual entailment. As for ETM, since it proves to be highly resource-intensive, we opted for LDA instead. The following examples show two groups of premise, hypothesis and predicted entailment generated by our system.",
"cite_spans": [],
"ref_spans": [
{
"start": 1156,
"end": 1163,
"text": "Table 1",
"ref_id": "TABREF1"
},
{
"start": 1295,
"end": 1302,
"text": "Table 2",
"ref_id": "TABREF2"
}
],
"eq_spans": [],
"section": "Results",
"sec_num": "4"
},
{
"text": "Health experts agree that keeping people apart, or \"social distancing,\" during the coronavirus pandemic is essential for bringing the outbreak under control. Hypothesis \"There is just no way you can be socially distant with this,\" said Carol Rosenberg Entailment Contradiction",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Premise",
"sec_num": null
},
{
"text": "Word that money would soon land in bank accounts across the country has led to a surge of scam phone calls, with fraudsters falsely claiming people had to provide personal information to collect government money. Hypothesis Clicking a link takes them to what looks like an official website asking for personal information with instructions that the step is \"necessary\" to process their check Entailment Neutral",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Premise",
"sec_num": null
},
{
"text": "We found topics generated by ETM for our dataset were more coherent compared to LDA for topic modeling. ETM with BERT based embeddings outperforms ETM with word2vec embeddings when ETM is trained with a number of BERT centroids greater than the number of word2vec embeddings associated with the corpus. Training ETM with BERT centroids involves significantly more computational work than training ETM with word2vec embeddings. On the other hand, in settings where both model creation and predictions are based on the same, full dataset, ETM with BERT-based embeddings does perform better and could be incorporated. We demonstrate that hypothesis extraction can be phrased as subjectivity analysis, and we found XLNET and ALBERT can deliver high performance for this task. A novel aspect of our methodology is that we employ the generated hypotheses as input to the semantic similarity module. Current state-of-the-art models treat semantic similarity as a pair-wise regression problem, making them computationally inefficient for clustering for news aggregation. We found that transformer-based models increased the quality of the clustering compared to USE. The results here show that we can efficiently find semantic clusters with standard clustering methods, e.g., k-Means++ (Arthur and Vassilvitskii, 2007) , or density based clustering, e.g., DBSCAN (Ester et al., 1996) , to present users with a diverse set of articles on a specific topic.",
"cite_spans": [
{
"start": 1278,
"end": 1310,
"text": "(Arthur and Vassilvitskii, 2007)",
"ref_id": "BIBREF0"
},
{
"start": 1355,
"end": 1375,
"text": "(Ester et al., 1996)",
"ref_id": "BIBREF14"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Discussion",
"sec_num": "5"
},
{
"text": "We show that premise extraction is closely related to the task of abstractive summarization, as premises must be constructed to enable a group of articles to agree or disagree with statements. We observed the small T5 model was able to significantly outperform the larger BART model. We demonstrate that multidocument and single-document claim extractions can be informative premises and hypotheses that are inputs to a textual entailment module. From the second premise-hypothesis pair in Section 4, we see there is a small contradiction that the model does not detect, but could potentially predict if a different premise-hypothesis pair was chosen, or if predictions were validated using phrases from the hypothesis (e.g., the model based its prediction on the phrase \"what looks like an official website asking for personal information\"). Consequentially, we found that different premise-hypothesis pairs within an article can lead to different predictions from the textual entailment module for the same article, due to opposing viewpoints described in the article and distinct word phrasing between sentences.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Discussion",
"sec_num": "5"
},
{
"text": "We have introduced a transformer-based news aggregation system, consisting of topic modeling, hypothesis extraction, semantic clustering, premise extraction, and textual entailment that allows readers to view articles from diverse viewpoints. Our results show relative improvements over baseline models in the range of 10-23% using Embedded Topic Modeling, semantic similarity through fine-tuned BERT models with a siamese network structure, and hypothesis extraction using large pre-trained language models for sentence-level subjectivity analysis. Our results also show a five-fold loss decrease when using a small T5 model, compared to a large BART model, for premise extraction. The system we have developed demonstrates that pre-trained BERT-based models of textual entailment can be used to identify diverse viewpoints.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "6"
}
],
"back_matter": [],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "k-means++: the advantages of careful seeding",
"authors": [
{
"first": "David",
"middle": [],
"last": "Arthur",
"suffix": ""
},
{
"first": "Sergei",
"middle": [],
"last": "Vassilvitskii",
"suffix": ""
}
],
"year": 2007,
"venue": "Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms",
"volume": "",
"issue": "",
"pages": "1027--1035",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "David Arthur and Sergei Vassilvitskii. 2007. k-means++: the advantages of careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1027-1035. Society for Industrial and Applied Mathematics.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Stance classification of context-dependent claims",
"authors": [
{
"first": "Roy",
"middle": [],
"last": "Bar-Haim",
"suffix": ""
},
{
"first": "Indrajit",
"middle": [],
"last": "Bhattacharya",
"suffix": ""
},
{
"first": "Francesco",
"middle": [],
"last": "Dinuzzo",
"suffix": ""
},
{
"first": "Amrita",
"middle": [],
"last": "Saha",
"suffix": ""
},
{
"first": "Noam",
"middle": [],
"last": "Slonim",
"suffix": ""
}
],
"year": 2007,
"venue": "Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL)",
"volume": "1",
"issue": "",
"pages": "251--261",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Roy Bar-Haim, Indrajit Bhattacharya, Francesco Dinuzzo, Amrita Saha, and Noam Slonim. 2017. Stance clas- sification of context-dependent claims. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL), volume 1, pages 251-261, Valencia, Spain, April 3-7.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Latent dirichlet allocation",
"authors": [
{
"first": "M",
"middle": [],
"last": "David",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Blei",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Andrew",
"suffix": ""
},
{
"first": "Michael I Jordan",
"middle": [],
"last": "Ng",
"suffix": ""
}
],
"year": 2003,
"venue": "Journal of Machine Learning Research",
"volume": "3",
"issue": "",
"pages": "993--1022",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "David M Blei, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet allocation. Journal of Machine Learning Research, 3:993-1022, January.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "SemEval-2017 task 1: Semantic textual similarity multilingual and crosslingual focused evaluation",
"authors": [
{
"first": "Daniel",
"middle": [],
"last": "Cer",
"suffix": ""
},
{
"first": "Mona",
"middle": [],
"last": "Diab",
"suffix": ""
},
{
"first": "Eneko",
"middle": [],
"last": "Agirre",
"suffix": ""
},
{
"first": "I\u00f1igo",
"middle": [],
"last": "Lopez-Gazpio",
"suffix": ""
},
{
"first": "Lucia",
"middle": [],
"last": "Specia",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)",
"volume": "",
"issue": "",
"pages": "1--14",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Daniel Cer, Mona Diab, Eneko Agirre, I\u00f1igo Lopez-Gazpio, and Lucia Specia. 2017. SemEval-2017 task 1: Se- mantic textual similarity multilingual and crosslingual focused evaluation. In Proceedings of the 11th Interna- tional Workshop on Semantic Evaluation (SemEval-2017), pages 1-14, Vancouver, Canada, August. Association for Computational Linguistics.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Chris Tar, Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil",
"authors": [
{
"first": "Daniel",
"middle": [],
"last": "Cer",
"suffix": ""
},
{
"first": "Yinfei",
"middle": [],
"last": "Yang",
"suffix": ""
},
{
"first": "Sheng-Yi",
"middle": [],
"last": "Kong",
"suffix": ""
},
{
"first": "Nan",
"middle": [],
"last": "Hua",
"suffix": ""
},
{
"first": "Nicole",
"middle": [],
"last": "Limtiaco",
"suffix": ""
},
{
"first": "Rhomni",
"middle": [],
"last": "St",
"suffix": ""
},
{
"first": "Noah",
"middle": [],
"last": "John",
"suffix": ""
},
{
"first": "Mario",
"middle": [],
"last": "Constant",
"suffix": ""
},
{
"first": "Steve",
"middle": [],
"last": "Guajardo-Cespedes",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Yuan",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St. John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil. 2018. Universal sentence encoder. CoRR, abs/1803.11175.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Perspectroscope: A window to the world of diverse perspectives. ACL system demonstration track",
"authors": [
{
"first": "Sihao",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "Khashabi",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Callison-Burch",
"suffix": ""
},
{
"first": "Dan",
"middle": [],
"last": "Roth",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sihao Chen, Daniel Khashabi, Chris Callison-Burch, and Dan Roth. 2019a. Perspectroscope: A window to the world of diverse perspectives. ACL system demonstration track, abs/1906.04761.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Seeing things from a different angle: Discovering diverse perspectives about claims",
"authors": [
{
"first": "Sihao",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "Khashabi",
"suffix": ""
},
{
"first": "Wenpeng",
"middle": [],
"last": "Yin",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Callison-Burch",
"suffix": ""
},
{
"first": "Dan",
"middle": [],
"last": "Roth",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "542--557",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sihao Chen, Daniel Khashabi, Wenpeng Yin, Chris Callison-Burch, and Dan Roth. 2019b. Seeing things from a different angle: Discovering diverse perspectives about claims. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 542-557, Minneapolis, Minnesota, June. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "SentEval: An evaluation toolkit for universal sentence representations",
"authors": [
{
"first": "Alexis",
"middle": [],
"last": "Conneau",
"suffix": ""
},
{
"first": "Douwe",
"middle": [],
"last": "Kiela",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Alexis Conneau and Douwe Kiela. 2018. SentEval: An evaluation toolkit for universal sentence representations. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan, May. European Language Resources Association (ELRA).",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Supervised learning of universal sentence representations from natural language inference data",
"authors": [
{
"first": "Alexis",
"middle": [],
"last": "Conneau",
"suffix": ""
},
{
"first": "Douwe",
"middle": [],
"last": "Kiela",
"suffix": ""
},
{
"first": "Holger",
"middle": [],
"last": "Schwenk",
"suffix": ""
},
{
"first": "Lo\u00efc",
"middle": [],
"last": "Barrault",
"suffix": ""
},
{
"first": "Antoine",
"middle": [],
"last": "Bordes",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "670--680",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Alexis Conneau, Douwe Kiela, Holger Schwenk, Lo\u00efc Barrault, and Antoine Bordes. 2017. Supervised learning of universal sentence representations from natural language inference data. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 670-680, Copenhagen, Denmark, September. Association for Computational Linguistics.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Mpqa 3.0: An entity/event-level sentiment corpus",
"authors": [
{
"first": "Lingjia",
"middle": [],
"last": "Deng",
"suffix": ""
},
{
"first": "Janyce",
"middle": [],
"last": "Wiebe",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "",
"issue": "",
"pages": "1323--1328",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Lingjia Deng and Janyce Wiebe. 2015. Mpqa 3.0: An entity/event-level sentiment corpus. In Proceedings of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 1323-1328, Denver, Colorado, May 31 -June 5.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Bert: Pre-training of deep bidirectional transformers for language understanding",
"authors": [
{
"first": "Jacob",
"middle": [],
"last": "Devlin",
"suffix": ""
},
{
"first": "Ming-Wei",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Kristina",
"middle": [],
"last": "Toutanova",
"suffix": ""
}
],
"year": 2007,
"venue": "Proceedings of North American Association for Computational Linguistics: Human Language Translation (NAACL-HLT) 2019",
"volume": "",
"issue": "",
"pages": "4171--4186",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidi- rectional transformers for language understanding. In Proceedings of North American Association for Com- putational Linguistics: Human Language Translation (NAACL-HLT) 2019, pages 4171-4186, Minneapolis, Minnesota, June 2-7.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Topic modeling in embedding spaces",
"authors": [
{
"first": "B",
"middle": [],
"last": "Adji",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Dieng",
"suffix": ""
},
{
"first": "J",
"middle": [
"R"
],
"last": "Francisco",
"suffix": ""
},
{
"first": "David",
"middle": [
"M"
],
"last": "Ruiz",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Blei",
"suffix": ""
}
],
"year": 2020,
"venue": "In Transactions of the Association for Computational Linguistics",
"volume": "8",
"issue": "",
"pages": "439--453",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Adji B Dieng, Francisco JR Ruiz, and David M Blei. 2020. Topic modeling in embedding spaces. In Transactions of the Association for Computational Linguistics, volume 8, pages 439-453.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Ranit Aharonov, and Noam Slonim. 2020. Corpus wide argument mining -a working solution",
"authors": [
{
"first": "Eyal",
"middle": [],
"last": "Liat Ein-Dor",
"suffix": ""
},
{
"first": "Lena",
"middle": [],
"last": "Shnarch",
"suffix": ""
},
{
"first": "Alon",
"middle": [],
"last": "Dankin",
"suffix": ""
},
{
"first": "Benjamin",
"middle": [],
"last": "Halfon",
"suffix": ""
},
{
"first": "Ariel",
"middle": [],
"last": "Sznajder",
"suffix": ""
},
{
"first": "Carlos",
"middle": [],
"last": "Gera",
"suffix": ""
},
{
"first": "Martin",
"middle": [],
"last": "Alzate",
"suffix": ""
},
{
"first": "Leshem",
"middle": [],
"last": "Gleize",
"suffix": ""
},
{
"first": "Yufang",
"middle": [],
"last": "Choshen",
"suffix": ""
},
{
"first": "Yonatan",
"middle": [],
"last": "Hou",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Bilu",
"suffix": ""
}
],
"year": null,
"venue": "Thirty-Fourth AAAI Conference on Artificial Intelligence",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Liat Ein-Dor, Eyal Shnarch, Lena Dankin, Alon Halfon, Benjamin Sznajder, Ariel Gera, Carlos Alzate, Martin Gleize, Leshem Choshen, Yufang Hou, Yonatan Bilu, Ranit Aharonov, and Noam Slonim. 2020. Corpus wide argument mining -a working solution. In Thirty-Fourth AAAI Conference on Artificial Intelligence.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "A density-based algorithm for discovering clusters in large spatial databases with noise",
"authors": [
{
"first": "Martin",
"middle": [],
"last": "Ester",
"suffix": ""
},
{
"first": "Hans-Peter",
"middle": [],
"last": "Kriegel",
"suffix": ""
},
{
"first": "J\u00f6rg",
"middle": [],
"last": "Sander",
"suffix": ""
},
{
"first": "Xiaowei",
"middle": [],
"last": "Xu",
"suffix": ""
}
],
"year": 1996,
"venue": "Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96)",
"volume": "",
"issue": "",
"pages": "226--231",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Martin Ester, Hans-Peter Kriegel, J\u00f6rg Sander, and Xiaowei Xu. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In Evangelos Simoudis, Jiawei Han, and Usama M. Fayyad, editors, Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD- 96), pages 226-231. AAAI Press.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Ranit Aharonov, and Noam Slonim. 2020. A large-scale dataset for argument quality ranking: Construction and analysis",
"authors": [
{
"first": "Shai",
"middle": [],
"last": "Gretz",
"suffix": ""
},
{
"first": "Roni",
"middle": [],
"last": "Friedman",
"suffix": ""
},
{
"first": "Edo",
"middle": [],
"last": "Cohen-Karlik",
"suffix": ""
},
{
"first": "Assaf",
"middle": [],
"last": "Toledo",
"suffix": ""
},
{
"first": "Dan",
"middle": [],
"last": "Lahav",
"suffix": ""
}
],
"year": null,
"venue": "Thirty-Fourth AAAI Conference on Artificial Intelligence",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Shai Gretz, Roni Friedman, Edo Cohen-Karlik, Assaf Toledo, Dan Lahav, Ranit Aharonov, and Noam Slonim. 2020. A large-scale dataset for argument quality ranking: Construction and analysis. In Thirty-Fourth AAAI Conference on Artificial Intelligence.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Opinion mining with deep contextualized embeddings",
"authors": [
{
"first": "Wen-Bin",
"middle": [],
"last": "Han",
"suffix": ""
},
{
"first": "Noriko",
"middle": [],
"last": "Kando",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop",
"volume": "",
"issue": "",
"pages": "35--42",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Wen-Bin Han and Noriko Kando. 2019. Opinion mining with deep contextualized embeddings. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop, pages 35-42.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Aspect-based sentiment analysis using bert",
"authors": [
{
"first": "Mickel",
"middle": [],
"last": "Hoang",
"suffix": ""
},
{
"first": "Alija",
"middle": [],
"last": "Oskar",
"suffix": ""
},
{
"first": "Jacobo",
"middle": [],
"last": "Bihorac",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Rouces",
"suffix": ""
}
],
"year": 2019,
"venue": "NEAL Proceedings of the 22nd Nordic Conference on Computional Linguistics (NoDaLiDa)",
"volume": "167",
"issue": "",
"pages": "187--196",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mickel Hoang, Oskar Alija Bihorac, and Jacobo Rouces. 2019. Aspect-based sentiment analysis using bert. In NEAL Proceedings of the 22nd Nordic Conference on Computional Linguistics (NoDaLiDa), September 30- October 2, Turku, Finland, 167, pages 187-196. Link\u00f6ping University Electronic Press.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Comparing clusterings",
"authors": [
{
"first": "Lawrence",
"middle": [],
"last": "Hubert",
"suffix": ""
},
{
"first": "Phipps",
"middle": [],
"last": "Arabie",
"suffix": ""
}
],
"year": 1985,
"venue": "Journal of Classification",
"volume": "2",
"issue": "",
"pages": "193--218",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Lawrence Hubert and Phipps Arabie. 1985. Comparing clusterings. Journal of Classification, 2:193-218.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Billion-scale similarity search with gpus",
"authors": [
{
"first": "J",
"middle": [],
"last": "Johnson",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Douze",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "J\u00e9gou",
"suffix": ""
}
],
"year": 2019,
"venue": "IEEE Transactions on Big Data",
"volume": "",
"issue": "",
"pages": "1--1",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. Johnson, M. Douze, and H. J\u00e9gou. 2019. Billion-scale similarity search with gpus. IEEE Transactions on Big Data, pages 1-1.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Albert: A lite bert for self-supervised learning of language representations",
"authors": [
{
"first": "Zhenzhong",
"middle": [],
"last": "Lan",
"suffix": ""
},
{
"first": "Mingda",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Sebastian",
"middle": [],
"last": "Goodman",
"suffix": ""
},
{
"first": "Kevin",
"middle": [],
"last": "Gimpel",
"suffix": ""
},
{
"first": "Piyush",
"middle": [],
"last": "Sharma",
"suffix": ""
},
{
"first": "Radu",
"middle": [],
"last": "Soricut",
"suffix": ""
}
],
"year": 2020,
"venue": "International Conference on Learning Representations",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. 2020. Albert: A lite bert for self-supervised learning of language representations. In International Conference on Learning Representations.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Newsweeder: Learning to filter netnews",
"authors": [
{
"first": "Ken",
"middle": [],
"last": "Lang",
"suffix": ""
}
],
"year": 1995,
"venue": "Proceedings of the Twelfth International Conference on Machine Learning",
"volume": "",
"issue": "",
"pages": "331--339",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ken Lang. 1995. Newsweeder: Learning to filter netnews. In Proceedings of the Twelfth International Conference on Machine Learning, pages 331-339.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension",
"authors": [
{
"first": "Mike",
"middle": [],
"last": "Lewis",
"suffix": ""
},
{
"first": "Yinhan",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Naman",
"middle": [],
"last": "Goyal",
"suffix": ""
},
{
"first": "Marjan",
"middle": [],
"last": "Ghazvininejad",
"suffix": ""
},
{
"first": "Abdelrahman",
"middle": [],
"last": "Mohamed",
"suffix": ""
},
{
"first": "Omer",
"middle": [],
"last": "Levy",
"suffix": ""
},
{
"first": "Ves",
"middle": [],
"last": "Stoyanov",
"suffix": ""
},
{
"first": "Luke",
"middle": [],
"last": "Zettlemoyer",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoy- anov, and Luke Zettlemoyer. 2019. Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. ArXiv, abs/1910.13461.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Hierarchical transformers for multi-document summarization",
"authors": [
{
"first": "Yang",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Mirella",
"middle": [],
"last": "Lapata",
"suffix": ""
}
],
"year": 2019,
"venue": "ArXiv",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yang Liu and Mirella Lapata. 2019. Hierarchical transformers for multi-document summarization. ArXiv, abs/1905.13164.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Roberta: A robustly optimized bert pretraining approach",
"authors": [
{
"first": "Yinhan",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Myle",
"middle": [],
"last": "Ott",
"suffix": ""
},
{
"first": "Naman",
"middle": [],
"last": "Goyal",
"suffix": ""
},
{
"first": "Jingfei",
"middle": [],
"last": "Du",
"suffix": ""
},
{
"first": "Mandar",
"middle": [],
"last": "Joshi",
"suffix": ""
},
{
"first": "Danqi",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Omer",
"middle": [],
"last": "Levy",
"suffix": ""
},
{
"first": "Mike",
"middle": [],
"last": "Lewis",
"suffix": ""
},
{
"first": "Luke",
"middle": [],
"last": "Zettlemoyer",
"suffix": ""
},
{
"first": "Veselin",
"middle": [],
"last": "Stoyanov",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1907.11692"
]
},
"num": null,
"urls": [],
"raw_text": "Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Efficient estimation of word representations in vector space",
"authors": [
{
"first": "Tomas",
"middle": [],
"last": "Mikolov",
"suffix": ""
},
{
"first": "Kai",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Greg",
"middle": [],
"last": "Corrado",
"suffix": ""
},
{
"first": "Jeffrey",
"middle": [],
"last": "Dean",
"suffix": ""
}
],
"year": 2013,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1301.3781"
]
},
"num": null,
"urls": [],
"raw_text": "Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Distributed representations of words and phrases and their compositionality",
"authors": [
{
"first": "Tomas",
"middle": [],
"last": "Mikolov",
"suffix": ""
},
{
"first": "Ilya",
"middle": [],
"last": "Sutskever",
"suffix": ""
},
{
"first": "Kai",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Greg",
"middle": [
"S"
],
"last": "Corrado",
"suffix": ""
},
{
"first": "Jeff",
"middle": [],
"last": "Dean",
"suffix": ""
}
],
"year": 2013,
"venue": "Advances in Neural Information Processing Systems",
"volume": "26",
"issue": "",
"pages": "3111--3119",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013b. Distributed representations of words and phrases and their compositionality. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 26, pages 3111-3119. Curran Associates, Inc.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Measuring the similarity of sentential arguments in dialogue",
"authors": [
{
"first": "Amita",
"middle": [],
"last": "Misra",
"suffix": ""
},
{
"first": "Brian",
"middle": [],
"last": "Ecker",
"suffix": ""
},
{
"first": "Marilyn",
"middle": [],
"last": "Walker",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue",
"volume": "",
"issue": "",
"pages": "276--287",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Amita Misra, Brian Ecker, and Marilyn Walker. 2016. Measuring the similarity of sentential arguments in dia- logue. In Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 276-287, Los Angeles, September. Association for Computational Linguistics.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "fairseq: A fast, extensible toolkit for sequence modeling",
"authors": [
{
"first": "Myle",
"middle": [],
"last": "Ott",
"suffix": ""
},
{
"first": "Sergey",
"middle": [],
"last": "Edunov",
"suffix": ""
},
{
"first": "Alexei",
"middle": [],
"last": "Baevski",
"suffix": ""
},
{
"first": "Angela",
"middle": [],
"last": "Fan",
"suffix": ""
},
{
"first": "Sam",
"middle": [],
"last": "Gross",
"suffix": ""
},
{
"first": "Nathan",
"middle": [],
"last": "Ng",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Grangier",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Auli",
"suffix": ""
}
],
"year": 2019,
"venue": "NAACL-HLT",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and Michael Auli. 2019. fairseq: A fast, extensible toolkit for sequence modeling. In NAACL-HLT.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Exploring the limits of transfer learning with a unified text-to-text transformer",
"authors": [
{
"first": "Colin",
"middle": [],
"last": "Raffel",
"suffix": ""
},
{
"first": "Noam",
"middle": [],
"last": "Shazeer",
"suffix": ""
},
{
"first": "Adam",
"middle": [],
"last": "Roberts",
"suffix": ""
},
{
"first": "Katherine",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Sharan",
"middle": [],
"last": "Narang",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Matena",
"suffix": ""
},
{
"first": "Yanqi",
"middle": [],
"last": "Zhou",
"suffix": ""
},
{
"first": "Wei",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Peter",
"middle": [
"J"
],
"last": "Liu",
"suffix": ""
}
],
"year": 2019,
"venue": "ArXiv",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2019. Exploring the limits of transfer learning with a unified text-to-text transformer. ArXiv, abs/1910.10683.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Gensim-statistical semantics in python",
"authors": [
{
"first": "Petr",
"middle": [],
"last": "Radim\u0159eh\u016f\u0159ek",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Sojka",
"suffix": ""
}
],
"year": 2011,
"venue": "Proceedings of EuroScipy",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Radim\u0158eh\u016f\u0159ek and Petr Sojka. 2011. Gensim-statistical semantics in python. In Proceedings of EuroScipy.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "Sentence-bert: Sentence embeddings using siamese bert-networks",
"authors": [
{
"first": "Nils",
"middle": [],
"last": "Reimers",
"suffix": ""
},
{
"first": "Iryna",
"middle": [],
"last": "Gurevych",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-networks. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP).",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "Recognizing textual entailment. Multilingual Natural Language Applications: From Theory to Practice",
"authors": [
{
"first": "Mark",
"middle": [],
"last": "Sammons",
"suffix": ""
},
{
"first": "Vinod",
"middle": [],
"last": "Vydiswaran",
"suffix": ""
},
{
"first": "Dan",
"middle": [],
"last": "Roth",
"suffix": ""
}
],
"year": 2012,
"venue": "",
"volume": "",
"issue": "",
"pages": "209--258",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mark Sammons, Vinod Vydiswaran, and Dan Roth. 2012. Recognizing textual entailment. Multilingual Natural Language Applications: From Theory to Practice, pages 209-258.",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter",
"authors": [
{
"first": "Victor",
"middle": [],
"last": "Sanh",
"suffix": ""
},
{
"first": "Lysandre",
"middle": [],
"last": "Debut",
"suffix": ""
},
{
"first": "Julien",
"middle": [],
"last": "Chaumond",
"suffix": ""
},
{
"first": "Thomas",
"middle": [],
"last": "Wolf",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "2",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. In EMC2: 5th Edition co-located with NeurIPS.",
"links": null
},
"BIBREF34": {
"ref_id": "b34",
"title": "Recognizing stances in ideological on-line debates",
"authors": [
{
"first": "Swapna",
"middle": [],
"last": "Somasundaran",
"suffix": ""
},
{
"first": "Janyce",
"middle": [],
"last": "Wiebe",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text",
"volume": "",
"issue": "",
"pages": "116--124",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Swapna Somasundaran and Janyce Wiebe. 2010. Recognizing stances in ideological on-line debates. In Proceed- ings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, pages 116-124. Association for Computational Linguistics.",
"links": null
},
"BIBREF35": {
"ref_id": "b35",
"title": "Argumentext: Searching for arguments in heterogeneous sources",
"authors": [
{
"first": "Christian",
"middle": [],
"last": "Stab",
"suffix": ""
},
{
"first": "Johannes",
"middle": [],
"last": "Daxenberger",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Stahlhut",
"suffix": ""
},
{
"first": "Tristan",
"middle": [],
"last": "Miller",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Schiller",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "Tauchmann",
"suffix": ""
},
{
"first": "Steffen",
"middle": [],
"last": "Eger",
"suffix": ""
},
{
"first": "Iryna",
"middle": [],
"last": "Gurevych",
"suffix": ""
}
],
"year": 2018,
"venue": "NAACL-HLT",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Christian Stab, Johannes Daxenberger, Chris Stahlhut, Tristan Miller, B. Schiller, Christopher Tauchmann, Steffen Eger, and Iryna Gurevych. 2018. Argumentext: Searching for arguments in heterogeneous sources. In NAACL- HLT.",
"links": null
},
"BIBREF36": {
"ref_id": "b36",
"title": "FEVER: a large-scale dataset for fact extraction and VERification",
"authors": [
{
"first": "James",
"middle": [],
"last": "Thorne",
"suffix": ""
},
{
"first": "Andreas",
"middle": [],
"last": "Vlachos",
"suffix": ""
},
{
"first": "Christos",
"middle": [],
"last": "Christodoulopoulos",
"suffix": ""
},
{
"first": "Arpit",
"middle": [],
"last": "Mittal",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "809--819",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. 2018. FEVER: a large-scale dataset for fact extraction and VERification. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 809-819, New Orleans, Louisiana, June. Association for Computational Linguistics.",
"links": null
},
"BIBREF37": {
"ref_id": "b37",
"title": "Building an argument search engine for the web",
"authors": [
{
"first": "Henning",
"middle": [],
"last": "Wachsmuth",
"suffix": ""
},
{
"first": "Martin",
"middle": [],
"last": "Potthast",
"suffix": ""
},
{
"first": "Khalid",
"middle": [
"Al"
],
"last": "Khatib",
"suffix": ""
},
{
"first": "Yamen",
"middle": [],
"last": "Ajjour",
"suffix": ""
},
{
"first": "Jana",
"middle": [],
"last": "Puschmann",
"suffix": ""
},
{
"first": "Jiani",
"middle": [],
"last": "Qu",
"suffix": ""
},
{
"first": "Jonas",
"middle": [],
"last": "Dorsch",
"suffix": ""
},
{
"first": "Viorel",
"middle": [],
"last": "Morari",
"suffix": ""
},
{
"first": "Janek",
"middle": [],
"last": "Bevendorff",
"suffix": ""
},
{
"first": "Benno",
"middle": [],
"last": "Stein",
"suffix": ""
}
],
"year": 2017,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Henning Wachsmuth, Martin Potthast, Khalid Al Khatib, Yamen Ajjour, Jana Puschmann, Jiani Qu, Jonas Dorsch, Viorel Morari, Janek Bevendorff, and Benno Stein. 2017. Building an argument search engine for the web. In ArgMining@EMNLP.",
"links": null
},
"BIBREF38": {
"ref_id": "b38",
"title": "Multi-passage bert: A globally normalized bert model for open-domain question answering",
"authors": [
{
"first": "Zhiguo",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Patrick",
"middle": [],
"last": "Ng",
"suffix": ""
},
{
"first": "Xiaofei",
"middle": [],
"last": "Ma",
"suffix": ""
},
{
"first": "Ramesh",
"middle": [],
"last": "Nallapati",
"suffix": ""
},
{
"first": "Bing",
"middle": [],
"last": "Xiang",
"suffix": ""
}
],
"year": 2019,
"venue": "EMNLP/IJCNLP",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zhiguo Wang, Patrick Ng, Xiaofei Ma, Ramesh Nallapati, and Bing Xiang. 2019. Multi-passage bert: A globally normalized bert model for open-domain question answering. In EMNLP/IJCNLP.",
"links": null
},
"BIBREF39": {
"ref_id": "b39",
"title": "Opinionfinder: A system for subjectivity analysis",
"authors": [
{
"first": "Theresa",
"middle": [],
"last": "Wilson",
"suffix": ""
},
{
"first": "Paul",
"middle": [],
"last": "Hoffmann",
"suffix": ""
},
{
"first": "Swapna",
"middle": [],
"last": "Somasundaran",
"suffix": ""
},
{
"first": "Jason",
"middle": [],
"last": "Kessler",
"suffix": ""
},
{
"first": "Janyce",
"middle": [],
"last": "Wiebe",
"suffix": ""
},
{
"first": "Yejin",
"middle": [],
"last": "Choi",
"suffix": ""
},
{
"first": "Claire",
"middle": [],
"last": "Cardie",
"suffix": ""
},
{
"first": "Ellen",
"middle": [],
"last": "Riloff",
"suffix": ""
},
{
"first": "Siddharth",
"middle": [],
"last": "Patwardhan",
"suffix": ""
}
],
"year": 2005,
"venue": "Proceedings of HLT/EMNLP 2005 Interactive Demonstrations",
"volume": "",
"issue": "",
"pages": "34--35",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Theresa Wilson, Paul Hoffmann, Swapna Somasundaran, Jason Kessler, Janyce Wiebe, Yejin Choi, Claire Cardie, Ellen Riloff, and Siddharth Patwardhan. 2005a. Opinionfinder: A system for subjectivity analysis. In Proceed- ings of HLT/EMNLP 2005 Interactive Demonstrations, pages 34-35.",
"links": null
},
"BIBREF40": {
"ref_id": "b40",
"title": "Recognizing contextual polarity in phrase-level sentiment analysis",
"authors": [
{
"first": "Theresa",
"middle": [],
"last": "Wilson",
"suffix": ""
},
{
"first": "Janyce",
"middle": [],
"last": "Wiebe",
"suffix": ""
},
{
"first": "Paul",
"middle": [],
"last": "Hoffmann",
"suffix": ""
}
],
"year": 2005,
"venue": "Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Theresa Wilson, Janyce Wiebe, and Paul Hoffmann. 2005b. Recognizing contextual polarity in phrase-level sentiment analysis. In Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing.",
"links": null
},
"BIBREF41": {
"ref_id": "b41",
"title": "Huggingface's transformers: State-of-the-art natural language processing",
"authors": [
{
"first": "Thomas",
"middle": [],
"last": "Wolf",
"suffix": ""
},
{
"first": "Lysandre",
"middle": [],
"last": "Debut",
"suffix": ""
},
{
"first": "Victor",
"middle": [],
"last": "Sanh",
"suffix": ""
},
{
"first": "Julien",
"middle": [],
"last": "Chaumond",
"suffix": ""
},
{
"first": "Clement",
"middle": [],
"last": "Delangue",
"suffix": ""
},
{
"first": "Anthony",
"middle": [],
"last": "Moi",
"suffix": ""
},
{
"first": "Pierric",
"middle": [],
"last": "Cistac",
"suffix": ""
},
{
"first": "Tim",
"middle": [],
"last": "Rault",
"suffix": ""
},
{
"first": "R\u00e9mi",
"middle": [],
"last": "Louf",
"suffix": ""
},
{
"first": "Morgan",
"middle": [],
"last": "Funtowicz",
"suffix": ""
},
{
"first": "Joe",
"middle": [],
"last": "Davison",
"suffix": ""
},
{
"first": "Sam",
"middle": [],
"last": "Shleifer",
"suffix": ""
},
{
"first": "Clara",
"middle": [],
"last": "Patrick Von Platen",
"suffix": ""
},
{
"first": "Yacine",
"middle": [],
"last": "Ma",
"suffix": ""
},
{
"first": "Julien",
"middle": [],
"last": "Jernite",
"suffix": ""
},
{
"first": "Canwen",
"middle": [],
"last": "Plu",
"suffix": ""
},
{
"first": "Teven",
"middle": [
"Le"
],
"last": "Xu",
"suffix": ""
},
{
"first": "Sylvain",
"middle": [],
"last": "Scao",
"suffix": ""
},
{
"first": "Mariama",
"middle": [],
"last": "Gugger",
"suffix": ""
},
{
"first": "Quentin",
"middle": [],
"last": "Drame",
"suffix": ""
},
{
"first": "Alexander",
"middle": [
"M"
],
"last": "Lhoest",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Rush",
"suffix": ""
}
],
"year": 2020,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cis- tac, Tim Rault, R\u00e9mi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2020. Huggingface's transformers: State-of-the-art natural language processing. ArXiv, abs/1910.03771.",
"links": null
},
"BIBREF42": {
"ref_id": "b42",
"title": "Bert post-training for review reading comprehension and aspect-based sentiment analysis",
"authors": [
{
"first": "Hu",
"middle": [],
"last": "Xu",
"suffix": ""
},
{
"first": "Bing",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Lei",
"middle": [],
"last": "Shu",
"suffix": ""
},
{
"first": "Philip S",
"middle": [],
"last": "Yu",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of North American Association for Computational Linguistic -Human Language Translation (NAACL-HLT) 2019",
"volume": "",
"issue": "",
"pages": "2324--2335",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hu Xu, Bing Liu, Lei Shu, and Philip S Yu. 2019. Bert post-training for review reading comprehension and aspect-based sentiment analysis. Proceedings of North American Association for Computational Linguistic - Human Language Translation (NAACL-HLT) 2019, pages 2324-2335, June.",
"links": null
},
"BIBREF43": {
"ref_id": "b43",
"title": "Xlnet: Generalized autoregressive pretraining for language understanding",
"authors": [
{
"first": "Zhilin",
"middle": [],
"last": "Yang",
"suffix": ""
},
{
"first": "Zihang",
"middle": [],
"last": "Dai",
"suffix": ""
},
{
"first": "Yiming",
"middle": [],
"last": "Yang",
"suffix": ""
},
{
"first": "Jaime",
"middle": [
"G"
],
"last": "Carbonell",
"suffix": ""
},
{
"first": "Ruslan",
"middle": [],
"last": "Salakhutdinov",
"suffix": ""
},
{
"first": "V",
"middle": [],
"last": "Quoc",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Le",
"suffix": ""
}
],
"year": 2019,
"venue": "33rd Conference on Neural Information Processing Systems",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019. Xlnet: Generalized autoregressive pretraining for language understanding. In 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"uris": null,
"type_str": "figure",
"num": null,
"text": "Architecture of our transformer-based system showing inference examples"
},
"FIGREF1": {
"uris": null,
"type_str": "figure",
"num": null,
"text": "Our system processes news articles in five steps and generates entailment predictions."
},
"TABREF1": {
"content": "<table><tr><td>MODEL</td><td>STS-B</td><td>AFS</td></tr><tr><td>USE</td><td colspan=\"2\">0.78413 0.44501</td></tr><tr><td>SBERT</td><td colspan=\"2\">0.84195 0.75800</td></tr><tr><td>SROBERTA</td><td colspan=\"2\">0.84266 0.75502</td></tr><tr><td colspan=\"3\">SDISTILBERT 0.84135 0.73400</td></tr></table>",
"html": null,
"num": null,
"type_str": "table",
"text": "XLNet outperforms other models on F1 using held-out MPQA data."
},
"TABREF2": {
"content": "<table/>",
"html": null,
"num": null,
"type_str": "table",
"text": "Siamese BERT-based models outperform USE on STS-B and AFS by 6%."
}
}
}
} |