File size: 120,780 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 |
{
"paper_id": "2020",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T02:10:01.118266Z"
},
"title": "Aspect-Based Argument Mining",
"authors": [
{
"first": "Dietrich",
"middle": [],
"last": "Trautmann",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Ludwig Maximilian University of Munich",
"location": {
"country": "Germany"
}
},
"email": "dietrich@trautmann.me"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "Computational Argumentation in general and Argument Mining in particular are important research fields. In previous works, many of the challenges to automatically extract and to some degree reason over natural language arguments were addressed. The tools to extract argument units are increasingly available and further open problems can be addressed. In this work, we are presenting the task of Aspect-Based Argument Mining (ABAM), with the essential subtasks of Aspect Term Extraction (ATE) and Nested Segmentation (NS). At the first instance, we create and release an annotated corpus with aspect information on the token-level. We consider aspects as the main point(s) argument units are addressing. This information is important for further downstream tasks such as argument ranking, argument summarization and generation, as well as the search for counter-arguments on the aspect-level. We present several experiments using stateof-the-art supervised architectures and demonstrate their performance for both of the subtasks.",
"pdf_parse": {
"paper_id": "2020",
"_pdf_hash": "",
"abstract": [
{
"text": "Computational Argumentation in general and Argument Mining in particular are important research fields. In previous works, many of the challenges to automatically extract and to some degree reason over natural language arguments were addressed. The tools to extract argument units are increasingly available and further open problems can be addressed. In this work, we are presenting the task of Aspect-Based Argument Mining (ABAM), with the essential subtasks of Aspect Term Extraction (ATE) and Nested Segmentation (NS). At the first instance, we create and release an annotated corpus with aspect information on the token-level. We consider aspects as the main point(s) argument units are addressing. This information is important for further downstream tasks such as argument ranking, argument summarization and generation, as well as the search for counter-arguments on the aspect-level. We present several experiments using stateof-the-art supervised architectures and demonstrate their performance for both of the subtasks.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "The field of computational argumentation (Slonim et al., 2016) gained a lot of interest in the last couple of years. This is noticeable from both the number of the submitted publications related to this field and also from the high volume of emerging datasets (Aharoni et al., 2014; Levy et al., 2017; Habernal et al., 2018; Stab et al., 2018; Trautmann et al., 2020a) , specific task formulations (Wachsmuth et al., 2017; Al-Khatib et al., 2020) and models (Kuribayashi et al., 2019; Chakrabarty et al., 2019) .",
"cite_spans": [
{
"start": 41,
"end": 62,
"text": "(Slonim et al., 2016)",
"ref_id": "BIBREF25"
},
{
"start": 260,
"end": 282,
"text": "(Aharoni et al., 2014;",
"ref_id": "BIBREF0"
},
{
"start": 283,
"end": 301,
"text": "Levy et al., 2017;",
"ref_id": "BIBREF14"
},
{
"start": 302,
"end": 324,
"text": "Habernal et al., 2018;",
"ref_id": "BIBREF10"
},
{
"start": 325,
"end": 343,
"text": "Stab et al., 2018;",
"ref_id": "BIBREF26"
},
{
"start": 344,
"end": 368,
"text": "Trautmann et al., 2020a)",
"ref_id": null
},
{
"start": 398,
"end": 422,
"text": "(Wachsmuth et al., 2017;",
"ref_id": "BIBREF33"
},
{
"start": 423,
"end": 446,
"text": "Al-Khatib et al., 2020)",
"ref_id": "BIBREF2"
},
{
"start": 458,
"end": 484,
"text": "(Kuribayashi et al., 2019;",
"ref_id": "BIBREF13"
},
{
"start": 485,
"end": 510,
"text": "Chakrabarty et al., 2019)",
"ref_id": "BIBREF4"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Similar to aspect-based sentiment analysis (Pontiki et al., 2014) , we also see the possibility of breaking down arguments into smaller attributes or meaningful components in the argument mining domain. We consider these components as aspects of the arguments. Previous works already utilized aspectinformation for several subtasks within the argument mining domain (Fujii and Ishikawa, 2006; Misra et al., 2015; Gemechu and Reed, 2019) . However, these works vary significantly in the definition of aspects and do not focus on the aspect-based argument mining explicitly, e.g., employ aspects as a source of side or additional information.",
"cite_spans": [
{
"start": 43,
"end": 65,
"text": "(Pontiki et al., 2014)",
"ref_id": "BIBREF19"
},
{
"start": 366,
"end": 392,
"text": "(Fujii and Ishikawa, 2006;",
"ref_id": "BIBREF8"
},
{
"start": 393,
"end": 412,
"text": "Misra et al., 2015;",
"ref_id": "BIBREF17"
},
{
"start": 413,
"end": 436,
"text": "Gemechu and Reed, 2019)",
"ref_id": "BIBREF9"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "For instance, Fujii and Ishikawa (2006) are mainly focusing on the summarization of opinions, visualizing pro and contra arguments for a given topic. Thereby, the authors are extracting aspects, calling them points at issue, and ranking the arguments according to them. However, their approach relies on rule-based extraction solely. In Misra et al. (2015) , the authors are proposing summarization methods to recognize specific arguments and counter-arguments in social media texts, to further group them across discussions into facets (i.e., aspects) on which that issue is argued. Still, this work is limited to a couple of topics and samples. Finally, Gemechu and Reed (2019) also mention aspects as part of four functional components, where the authors interchangeably label aspects and concepts for the specific words. However, to the best of our knowledge, the authors did not publish their labeled data, making a comparative evaluation of aspect extraction methods impossible. We, in contrast, specifically address the aspect term Supporters say it is an unnecessary regulation designed to force clinics to shut down, while opponents say the prohibition protects women's health.",
"cite_spans": [
{
"start": 14,
"end": 39,
"text": "Fujii and Ishikawa (2006)",
"ref_id": "BIBREF8"
},
{
"start": 337,
"end": 356,
"text": "Misra et al. (2015)",
"ref_id": "BIBREF17"
},
{
"start": 656,
"end": 679,
"text": "Gemechu and Reed (2019)",
"ref_id": "BIBREF9"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Granted, the initial construction costs of a nuclear plant are huge, but the ongoing maintenance and fuel costs have proven to be far lower than that of other energy sources.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Topic: Abortion",
"sec_num": null
},
{
"text": "Figure 1: Example annotation of argumentative spans, the corresponding stances (green: supporting/pro; red: opposing/contra) and the aspects (underlined) for the topics abortion and nuclear energy.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Topic: Nuclear Energy",
"sec_num": null
},
{
"text": "extraction, concentrate on the proper definition of aspects and therefore directly emphasize and present the task of Aspect-Based Argument Mining (ABAM) in this work.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Topic: Nuclear Energy",
"sec_num": null
},
{
"text": "One of the potential applications for the ABAM is the ability to search for specific subtopics within a larger controversial area. For instance, for the topic abortion, one can particularly be interested in regulation or health-related aspects (first example in Figure 1 ). Whereas for the topic of nuclear energy, one can care for solely enviromental, costor safety-related aspects (second example in Figure 1 ). By searching or filtering for the particular aspects, one has the possibility to select for specific information and, therefore, to get more fine-grained results. Another benefit is the ability to compare opposing arguments on the aspect-level.",
"cite_spans": [],
"ref_spans": [
{
"start": 262,
"end": 270,
"text": "Figure 1",
"ref_id": null
},
{
"start": 402,
"end": 410,
"text": "Figure 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Topic: Nuclear Energy",
"sec_num": null
},
{
"text": "In this regard, necessary subtasks within the ABAM include the explicit Aspect Term Extraction (ATE) on token-level and the Nested Segmentation (NS) of argumentative parts along with their aspects within a given sentence. Our work is based on Trautmann et al. (2020a) , where the authors already addressed the task of argument unit segmentation. We extend their benchmark with aspect term extraction on these argument units. The ABAM task can be performed in two ways: first, as a two-step pipeline approach with argument unit recognition and classification (AURC) followed by aspect term extraction, or as an end-to-end approach in the form of the nested segmentation task. Since the argument units are already provided by Trautmann et al. (2020a) , we can use them directly for the second step in the pipeline, namely the ATE task. Whereas in the end-to-end scenario we adress both tasks (i.e., AURC and ATE) simultaneously for argumentative sentences.",
"cite_spans": [
{
"start": 243,
"end": 267,
"text": "Trautmann et al. (2020a)",
"ref_id": null
},
{
"start": 724,
"end": 748,
"text": "Trautmann et al. (2020a)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Topic: Nuclear Energy",
"sec_num": null
},
{
"text": "One of the main challenges we faced during this work was the absence of publicly available benchmarks containing the aspect terms. Existing argument mining datasets do not contain the required information and therefore could not be directly applied for Aspect-Based Argument Mining. We address this challenge by extending an existing fine-grained argument corpus (Trautmann et al., 2020a) with crowdsourced token-level aspect information. This is our focused main contribution. While annotating the corpus, we were faced multiple difficulties, including the proper definition of aspects and the creation of rules required for the aspect extraction. It is important to note, that within this work, we refer to aspects as the main point(s) arguments are addressing.",
"cite_spans": [
{
"start": 363,
"end": 388,
"text": "(Trautmann et al., 2020a)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Topic: Nuclear Energy",
"sec_num": null
},
{
"text": "Last but not least, since we are extending the existing corpus, we do not explicitly concentrate on the stance definition and its annotation. Furthermore, as stated in Trautmann et al. (2020a) , there are two main argument mining directions: closed domain discourse-level and the argument mining from the information seeking perspective. The authors of the underlying corpora follow the latter and provide the reasons for that in their work. We, therefore, adopt their vision on that point.",
"cite_spans": [
{
"start": 168,
"end": 192,
"text": "Trautmann et al. (2020a)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Topic: Nuclear Energy",
"sec_num": null
},
{
"text": "Summarizing the abovementioned points, our contribution within this work is as follows:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Topic: Nuclear Energy",
"sec_num": null
},
{
"text": "\u2022 We are emphasizing and presenting the task of Aspect-Based Argument Mining on its own.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Topic: Nuclear Energy",
"sec_num": null
},
{
"text": "\u2022 We are extending an existing corpus with token-level aspect terms, making a comparative evaluation of ABAM methods possible.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Topic: Nuclear Energy",
"sec_num": null
},
{
"text": "\u2022 We are presenting a number of strong baselines with a corresponding error analysis.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Topic: Nuclear Energy",
"sec_num": null
},
{
"text": "We define the ABAM task as following: Given a list of several topic related texts (documents or paragraphs), we segment the texts into N sentences",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Problem Statement",
"sec_num": "2"
},
{
"text": "sentence i = [t 1 , t 2 , t 3 , . . . , t n ]",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Problem Statement",
"sec_num": "2"
},
{
"text": "(1)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Problem Statement",
"sec_num": "2"
},
{
"text": "The problem is to select, if available, one (or several) span(s)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Problem Statement",
"sec_num": "2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "span j = [t k , . . . , t l ]",
"eq_num": "(2)"
}
],
"section": "Problem Statement",
"sec_num": "2"
},
{
"text": "inside each sentence i , with k >= 1, l <= n, l \u2212 k >= SEG min and l \u2212 k <= SEG max (with SEG min = 3 tokens and SEG max = n tokens in a segment), and a corresponding stance",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Problem Statement",
"sec_num": "2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "stance j \u2208 [P RO, CON ]",
"eq_num": "(3)"
}
],
"section": "Problem Statement",
"sec_num": "2"
},
{
"text": "Tokens outside of argumentative spans are assigned the N ON stance label. Furthermore, regularly there is at least one aspect in every selected span with",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Problem Statement",
"sec_num": "2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "aspect j = [t p , . . . , t q ]",
"eq_num": "(4)"
}
],
"section": "Problem Statement",
"sec_num": "2"
},
{
"text": "where p >= k, q <= l, q \u2212 p >= ASP min and q \u2212 p <= ASP max (with ASP min = 1 token and ASP max = 5 tokens per aspect).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Problem Statement",
"sec_num": "2"
},
{
"text": "Regarding the abovementioned problem definition ( \u00a72), we selected three research areas as thematically closed to our task.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "3"
},
{
"text": "Sentiment Analysis: The SemEval workshop organized the task of aspect-based sentiment analysis (Pontiki et al., 2014; Pontiki et al., 2015; Pontiki et al., 2016) . Its subtasks also involved the aspect term extraction, which mainly inspired our approach and definition of the aspect term. Recent works applied adversarial training of pretrained language models (Karimi et al., 2020 ) and a combination of contextualized embeddings and hierarchical attention (Trusca et al., 2020) for new state-of-the-art results on this tasks.",
"cite_spans": [
{
"start": 95,
"end": 117,
"text": "(Pontiki et al., 2014;",
"ref_id": "BIBREF19"
},
{
"start": 118,
"end": 139,
"text": "Pontiki et al., 2015;",
"ref_id": "BIBREF20"
},
{
"start": 140,
"end": 161,
"text": "Pontiki et al., 2016)",
"ref_id": "BIBREF21"
},
{
"start": 361,
"end": 381,
"text": "(Karimi et al., 2020",
"ref_id": "BIBREF11"
},
{
"start": 458,
"end": 479,
"text": "(Trusca et al., 2020)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "3"
},
{
"text": "Argument Mining: In our work we adopt the definition of argument facets from the previous work and adjust it for our task. For instance, Misra et al. (2015) used the information on argument facets for the summarization of arguments in social media. Furthermore, the authors used argument facets for the argument similarity task (Misra et al., 2016) . The abovementioned works were a first approach in the area of argument facet extraction and were limited to solely a couple of topics and samples. Recent work extended this approach to 28 topics and used the aspect information for the argument similarity task and argument clustering (Reimers et al., 2019) . However, the focus of Reimers et al. (2019) was on the pairwise classification of argumentative sentences and not on the aspect term extraction task itself. Lastly, the work by Bar-Haim et al. (2020) defined argument key-points to create concise summaries from a large set of arguments.",
"cite_spans": [
{
"start": 137,
"end": 156,
"text": "Misra et al. (2015)",
"ref_id": "BIBREF17"
},
{
"start": 328,
"end": 348,
"text": "(Misra et al., 2016)",
"ref_id": "BIBREF18"
},
{
"start": 635,
"end": 657,
"text": "(Reimers et al., 2019)",
"ref_id": "BIBREF23"
},
{
"start": 682,
"end": 703,
"text": "Reimers et al. (2019)",
"ref_id": "BIBREF23"
},
{
"start": 837,
"end": 859,
"text": "Bar-Haim et al. (2020)",
"ref_id": "BIBREF3"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "3"
},
{
"text": "Nested Named Entity Recognition: The task of nested-NER is similar to the nested segmentation task ( \u00a75.1.2) that we propose. Early work (Finkel and Manning, 2009) presented newspaper and biomedical corpora, and modeled the data by manual feature extraction. Recent works proposed recurrent neural networks (Katiyar and Cardie, 2018) and sequence-to-sequence (Strakov\u00e1 et al., 2019) approaches. The latter modeled nested labels as multilabels, a method that we also adopted for our task with overlapping stance and aspect labels. ",
"cite_spans": [
{
"start": 137,
"end": 163,
"text": "(Finkel and Manning, 2009)",
"ref_id": "BIBREF7"
},
{
"start": 307,
"end": 333,
"text": "(Katiyar and Cardie, 2018)",
"ref_id": "BIBREF12"
},
{
"start": 359,
"end": 382,
"text": "(Strakov\u00e1 et al., 2019)",
"ref_id": "BIBREF27"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "3"
},
{
"text": "The creation of the ABAM benchmark is based on the argument units from the AURC corpus (Trautmann et al., 2020a) and is divided into two main parts. The first part addresses two studies for the annotation task formulation, whereas the second part describes the final corpus creation. We outsourced the data annotation to independent (crowd-)annotators and based on their results we created the gold labels.",
"cite_spans": [
{
"start": 87,
"end": 112,
"text": "(Trautmann et al., 2020a)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Corpus Creation",
"sec_num": "4"
},
{
"text": "We conducted two expert studies on random samples of ten argument units per stance and topic, selected from the AURC corpus. The resulting sets contained 160 samples for each study.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Expert Study",
"sec_num": "4.1"
},
{
"text": "The first expert study task was to select explicit aspect terms from a given argument unit on the tokenlevel. Two graduate domain experts performed the annotation. Experts were free to select every inputtoken which fits the following task description: \"The aspects are defined as the most important point(s) the argument unit is addressing\". After the annotation step, the Inter-Annotator Agreement (IAA) for the 160 samples was computed. We decided for Cohen's \u03ba (Cohen, 1960) as our agreement measure, that resulted in the initial score of 0.538. According to Viera et al. (2005) , this score is in the moderate agreement range. Furthermore, the primary analysis of the selected aspect terms from both annotators yielded a list of especially frequent part-of-speech (PoS) patterns for the selected tokens. To further improve the annotation process, the PoS information was employed in the second expert study.",
"cite_spans": [
{
"start": 464,
"end": 477,
"text": "(Cohen, 1960)",
"ref_id": "BIBREF5"
},
{
"start": 562,
"end": 581,
"text": "Viera et al. (2005)",
"ref_id": "BIBREF32"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Token-Level Annotation",
"sec_num": "4.1.1"
},
{
"text": "The aspect candidate selection step is crucial for the correct aspect term extraction task. To select the aspect candidates for the second study, we rely on the part-of-speech information. Specifically, the PoS patterns that occurred more than twice in the previous expert study (i.e., token-level annotation) where picked, and some additional PoS patterns were defined (e.g., the singular and plural form of nouns). The tag set is based on the Part-of-Speech tags used in the Penn Treebank Project 1 and the stanza NLP library 2 . The final PoS pattern list is comprehensive and representative (includes 44 patterns, see Table 1) , and ensures linguistically and grammatically correct candidates, without affecting the actual discourse. These PoS patterns were applied on a different set of 160 random samples to create a list of aspect term candidates for every argument unit. The total count of unique aspects for all topics is 4525, but the sum of all unique aspects per topic is 5485. This is due to some aspects appearing in several topics (c.f. Table 3 ).",
"cite_spans": [],
"ref_spans": [
{
"start": 622,
"end": 630,
"text": "Table 1)",
"ref_id": "TABREF1"
},
{
"start": 1052,
"end": 1059,
"text": "Table 3",
"ref_id": "TABREF5"
}
],
"eq_spans": [],
"section": "Candidates Selection",
"sec_num": "4.1.2"
},
{
"text": "The annotators were asked to solve the same task as before, but now by selecting one or several options from the aspect term candidates list. If none of the aspect term candidates were appropriate, the option NONE was selected. This simplification of the task, compared to the first study, led to a raised Cohen's \u03ba of 0.790. This is considered as a substantial agreement (Viera et al., 2005) and we deem this as a viable approach for the aspect term extraction.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Candidates Selection",
"sec_num": "4.1.2"
},
{
"text": "Based on the insights from the first two studies, the annotation guidelines ( \u00a7A) were extended with clearer task formulations and examples. Additionally, the final set of PoS patterns (full list in Table 1 ) was applied on all argument units from the AURC corpus. The AURC corpus was slightly preprocessed to account for duplicates on the sentence-and segment-level, as well as on some minor errors on span boundaries.",
"cite_spans": [],
"ref_spans": [
{
"start": 199,
"end": 206,
"text": "Table 1",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "Corpus Annotation",
"sec_num": "4.2"
},
{
"text": "Two independent (crowd-)annotators with a linguistic background and a minimum professional working proficiency in English were recruited for the aspect term extraction task. The annotation procedure was the same as described in \u00a74.1.2. The inter-annotator agreement score for the two expert annotators resulted in a Cohen's \u03ba of 0.874 for all eight (8) topics. This is considered as an almost perfect agreement (Viera et al., 2005) .",
"cite_spans": [
{
"start": 411,
"end": 431,
"text": "(Viera et al., 2005)",
"ref_id": "BIBREF32"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Corpus Annotation",
"sec_num": "4.2"
},
{
"text": "Annotation Merge For the gold standard we selected the annotations where both of the annotators agreed on the token-level. This ensured that we always had a selection of aspects if neither of the annotators selected the NONE option. Additionally, shorter aspect terms are favoured by this annotation merge.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Corpus Annotation",
"sec_num": "4.2"
},
{
"text": "The final descriptive statistics of the ABAM corpus are depicted in the Table 2 . There are 12040 aspects in total and 4525 unique (lemmatized) aspects. The topic with the most segments (T8 in Table 2 ), also yielded the most total aspects (2019). Furthermore, there are 58.10% of the aspects with only one token, 32.12% with 2 tokens, 7.94% with 3 tokens, 1.73% with 4 tokens and only 0.12% with 5 tokens.",
"cite_spans": [],
"ref_spans": [
{
"start": 72,
"end": 79,
"text": "Table 2",
"ref_id": "TABREF3"
},
{
"start": 193,
"end": 200,
"text": "Table 2",
"ref_id": "TABREF3"
}
],
"eq_spans": [],
"section": "Gold Standard",
"sec_num": null
},
{
"text": "Common Aspects In further aspect analysis we aggregated the most common aspects for the eight topics. The top five aspects and the absolute occurence counts per topic, are shown in Table 3 . Furthermore, three aspects (life, problem, government) appeared in all eight topics and the aspects people, cost, society, risk, law appeared in seven topics.",
"cite_spans": [],
"ref_spans": [
{
"start": 181,
"end": 188,
"text": "Table 3",
"ref_id": "TABREF5"
}
],
"eq_spans": [],
"section": "Gold Standard",
"sec_num": null
},
{
"text": "This section presents our experimental setup regarding the two tasks, the employed models and the data set splits. : The top 5 most common aspects per topic and for aspects that appear in several topics.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Experimental Setup",
"sec_num": "5"
},
{
"text": "In this work we apply the two different, but related, sub-tasks for ABAM in the sequence labeling formulation, following Akhundov et al. (2018) .",
"cite_spans": [
{
"start": 121,
"end": 143,
"text": "Akhundov et al. (2018)",
"ref_id": "BIBREF1"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Tasks",
"sec_num": "5.1"
},
{
"text": "In the first task (ATE), we employ only the aspect term information within the segments (argument untis). This sequence labeling task is a binary classification problem per token.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Aspect Term Extraction",
"sec_num": "5.1.1"
},
{
"text": "In the second task (NS), we utilize full argumentative sentences (like the examples in Figure 1 ) with the stance (PRO, CON, NON) and aspect (O, ASP) information for every token as our input. We extend the stance labels with the aspect information for a total set of five possible combinations ([NON,O] , [PRO,O] , [PRO,ASP] , [CON,O] , [CON,ASP] ). 3 This is a multiclass sequence labeling problem, which solves both the argument unit segmentation and the aspect term extraction tasks.",
"cite_spans": [
{
"start": 294,
"end": 302,
"text": "([NON,O]",
"ref_id": null
},
{
"start": 305,
"end": 312,
"text": "[PRO,O]",
"ref_id": null
},
{
"start": 315,
"end": 324,
"text": "[PRO,ASP]",
"ref_id": null
},
{
"start": 327,
"end": 334,
"text": "[CON,O]",
"ref_id": null
},
{
"start": 337,
"end": 346,
"text": "[CON,ASP]",
"ref_id": null
}
],
"ref_spans": [
{
"start": 87,
"end": 95,
"text": "Figure 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Nested Segmentation",
"sec_num": "5.1.2"
},
{
"text": "BERT For the two subtasks, we decided for the BERT model (Devlin et al., 2019) as a recent state-ofthe-art system on a number of natural language processing tasks. We utilize the base and large versions of BERT, as well as both versions of the models with an additional CRF-Layer (Sutton et al., 2012) as the final classification layer in the architecture. Further information about hyperparameter search and computing infrastructure are in \u00a76.2, \u00a7B and \u00a7C.",
"cite_spans": [
{
"start": 57,
"end": 78,
"text": "(Devlin et al., 2019)",
"ref_id": "BIBREF6"
},
{
"start": 280,
"end": 301,
"text": "(Sutton et al., 2012)",
"ref_id": "BIBREF28"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Models",
"sec_num": "5.2"
},
{
"text": "PoS Patterns Additionally, we applied the PoS-patterns from the aspect candidates creation step we used in \u00a74. For the ATE task we labeled all tokens that match the PoS-patterns and report the results as the lower boundary of our approaches.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Models",
"sec_num": "5.2"
},
{
"text": "As the evaluation metric, we report the macro-F1 scores 4 for both of our tasks. Further information about accuracy, precision and recall can be found in \u00a7D. Table 5 : Sample counts per set and domain for the nested segmentation task.",
"cite_spans": [],
"ref_spans": [
{
"start": 158,
"end": 165,
"text": "Table 5",
"ref_id": null
}
],
"eq_spans": [],
"section": "Evaluation",
"sec_num": "5.3"
},
{
"text": "For a better understanding of the model performance, we followed the two different dataset splits (domains) as they were defined for the AURC corpus (Trautmann et al., 2020a) . In the inner-topic split we trained, evaluated and tested our models on the same set of topics (T1-T6, Table 2 ). In the cross-topic split we trained our model on T1-T5, selected the best hyperparameter from the evaluation on T6 and tested on T7 and T8. Detailed sample counts are shown in Table 4 and Table 5 for each task, domain and set.",
"cite_spans": [
{
"start": 149,
"end": 174,
"text": "(Trautmann et al., 2020a)",
"ref_id": null
}
],
"ref_spans": [
{
"start": 280,
"end": 287,
"text": "Table 2",
"ref_id": "TABREF3"
},
{
"start": 467,
"end": 474,
"text": "Table 4",
"ref_id": "TABREF7"
},
{
"start": 479,
"end": 486,
"text": "Table 5",
"ref_id": null
}
],
"eq_spans": [],
"section": "Inner-Topic & Cross-Topic",
"sec_num": "5.4"
},
{
"text": "This section presents the results for our tasks as described in \u00a75.1.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Results",
"sec_num": "6"
},
{
"text": "The best performing options are the BERT LARGE models (Table 6 ). Both of them perform similar, but the one with the CRF-layer is slightly better on the development set for inner-topic and the test set for the cross-topic. The inner-topic scores are higher compared to the more challenging cross-topic set-up, were we evaluate the models on unseen topics. All the models performed much better than the lower boundary from the PoS-Patterns Matches. However, this scores are still bellow the human performance of 0.895. The human performance on this task is based on the results from the second expert study ( \u00a74.1.2)",
"cite_spans": [],
"ref_spans": [
{
"start": 54,
"end": 62,
"text": "(Table 6",
"ref_id": "TABREF9"
}
],
"eq_spans": [],
"section": "Aspect Term Extraction",
"sec_num": "6.1.1"
},
{
"text": "The results for NS (Table 7) , show that the BERT LARGE model outperforms the other listed approaches, except for the development set in the inner-topic set-up. Furthermore, the cross-topic set-up is also more challenging for this task, compared to the inner-topic setting. Table 7 : F1 results on the dev and test sets for the inner-topic (INNER) and cross-topic (CROSS) set-ups for the nested segmentation task.",
"cite_spans": [],
"ref_spans": [
{
"start": 19,
"end": 28,
"text": "(Table 7)",
"ref_id": null
},
{
"start": 274,
"end": 281,
"text": "Table 7",
"ref_id": null
}
],
"eq_spans": [],
"section": "Nested Segmentation",
"sec_num": "6.1.2"
},
{
"text": "For our experimental setup with BERT, we fine-tuned the whole (standard) base and large models, as well as both models with an additional final CRF-Layer. We selected the hyperparameters on the development sets and in particular the learning rate (range: 0.00001 -0.00009 in 0.00001 steps) and the dropout rate (range: 0 -0.5 in 0.1 steps). We used grid search, to cover all possible combinations. The model parameters were optimized with AdamW (Loshchilov and Hutter, 2018) . The training batch size was 32.",
"cite_spans": [
{
"start": 445,
"end": 474,
"text": "(Loshchilov and Hutter, 2018)",
"ref_id": "BIBREF15"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Hyperparameters",
"sec_num": "6.2"
},
{
"text": "Our reported results are the averages from three runs and one epoch took about 1 minute for the base models and less than 2 minutes for the large models on average. We fine-tuned for 10 epochs in the ATE task and for 20 epochs in the NS task. Detailed numbers of the final hyperparameters for each model and task can be found in the tables in the appendix \u00a7B.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Hyperparameters",
"sec_num": "6.2"
},
{
"text": "Recalling our definition of aspects: They are defined as the main point(s) argument units are addressing. Furthermore, considering our annotation guidelines in \u00a7A, the most important point is usually not equal to the given main topic. An overview of the main errors found during the evaluation of the development sets for the best performing models in the inner-and cross-topic set-ups, is given below.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Error Analysis",
"sec_num": "7"
},
{
"text": "Aspect Term Extraction During the evaluation of ATE results, we observed a number of errors, which we grouped into the following categories:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Error Analysis",
"sec_num": "7"
},
{
"text": "\u2022 The models tend to favour NOUNS in general.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Error Analysis",
"sec_num": "7"
},
{
"text": "\u2022 Topic words, such as abortion or marijuana legalization, are often selected as aspects, which is in conflict with our guidelines. \u2022 Phrase constructions like thread of ... are often selected as a whole aspect by the models. For the benchmark, we, in contrast, focus on the main representative word of such constructions (e.g., suicide vs. thread of suicide). \u2022 In the case of ADJECTIVE+NOUN, we suggest to avoid general adjectives (e.g. new in new treatments), whereas focused adjectives that are part of the concept should be selected (e.g. recreational in recreational marijuana). Our observation is, that models in general could not sufficiently differentiate between such adjectives. \u2022 Models lack the understanding of domain-specific phrasems like in vitro fertilisation or life without parole and tend to select only the nominalized part of them (e.g., fertilisation, parole). Overall the inner-topic set-up achieved much better performace compared to the cross-topic set-up and both models showed significantly better results over the PoS-Patterns Matches baseline. However, in the cross-topic set-up we faced more repeated errors, such as the tendency to select topic words as aspects and not sufficient understanding of domain-specific phrasems.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Error Analysis",
"sec_num": "7"
},
{
"text": "Nested Segmentation The typology of the main errors in the NS task is similar to the ATE task. Additionally, in the NS task, a number of errors occured due to the wrong assigment of the stance labels, especially in the cross-topic set-up. These results confirm the insight from Trautmann et al. (2020a) , where most of the errors arose due to the wrong stance classification. Apparently, the BERT-based models tend to attach to sentiment words for the stance predictions, which is not always correlated.",
"cite_spans": [
{
"start": 278,
"end": 302,
"text": "Trautmann et al. (2020a)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Error Analysis",
"sec_num": "7"
},
{
"text": "ABAM is a challenging task that, to the best of our knowledge, was not directly addressed before. We made two important contributions: First, we created and released a publicly available benchmark for Aspect-Based Argument Mining. Second, we showcased several baselines for the two subtasks, namely the Aspect Term Extraction and the Nested Segmentation, and performed an elaborative error analysis. We believe that these findings as well as the benchmark are of high potential for further downstream tasks, such as argument ranking, argument summarization and the search for counter-arguments on the aspect-level.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "8"
},
{
"text": "For the future work, we foresee the investigation of unsupervised approaches for the Aspect Term Extraction task, since they showed promising results within the Aspect-Based Sentiment Analysis domain.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "8"
},
{
"text": "Furthermore, it would be of high interest to incorporate topic-specific knowledge (e.g., understanding of phrasems) into the models to address the discussed error types. In another line of work, one could also explore distant supervision (Rakhmetullina et al., 2018) or domain adaptation methods (M\u00e4rz et al., 2019) , as well as relational approaches (Trautmann et al., 2020b) Table 9 : Hyperparameters (learning rate) for the NS task.",
"cite_spans": [
{
"start": 238,
"end": 266,
"text": "(Rakhmetullina et al., 2018)",
"ref_id": "BIBREF22"
},
{
"start": 296,
"end": 315,
"text": "(M\u00e4rz et al., 2019)",
"ref_id": "BIBREF16"
},
{
"start": 351,
"end": 376,
"text": "(Trautmann et al., 2020b)",
"ref_id": null
}
],
"ref_spans": [
{
"start": 377,
"end": 384,
"text": "Table 9",
"ref_id": null
}
],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "8"
},
{
"text": "We used Kaggle's Kernels 5 for the processing of the data and Google's Colab 6 for the training (finetuning) of our models. The former service offers a single 12GB NVIDIA Tesla K80 GPU, while the latter a single 16GB NVIDIA Tesla P100 GPU.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "C Compute Resources",
"sec_num": null
},
{
"text": "The additionally reported numbers for accuracy, precision and recall can be found in the Table 10 for the ATE task, in the Table 11 for the NS task. The numbers are the average from three runs. Table 10 : Accuracy (acc.), precision (pre.) and recall (rec.) results on the dev and test sets for the inner-topic (INNER) and cross-topic (CROSS) set-ups for the aspect term extraction task. These are the average scores from three runs. Table 11 : Accuracy (acc.), precision (pre.) and recall (rec.) results on the dev and test sets for the innertopic (INNER) and cross-topic (CROSS) set-ups for the nested segmentation task (args). These are the average scores from three runs.",
"cite_spans": [],
"ref_spans": [
{
"start": 89,
"end": 97,
"text": "Table 10",
"ref_id": "TABREF1"
},
{
"start": 123,
"end": 131,
"text": "Table 11",
"ref_id": "TABREF1"
},
{
"start": 194,
"end": 202,
"text": "Table 10",
"ref_id": "TABREF1"
},
{
"start": 433,
"end": 441,
"text": "Table 11",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "D Additional Results",
"sec_num": null
},
{
"text": "https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html 2 https://stanfordnlp.github.io/stanza/",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "Tokens that are not part of argument units (spans) get the stance-label NON in this sequence labeling task and aspects are always within argumentative spans.4 https://github.com/chakki-works/seqeval",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "https://www.kaggle.com/kernels 6 https://colab.research.google.com/signup",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "Annotation guidelines defined for the Aspect Term Extraction task in Aspect-Based Argument Mining.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "A Annotation Guidelines",
"sec_num": null
},
{
"text": "\u2022 Given a main topic and an argumentative segment (unit), please select one or several options from the aspect candidates list.\u2022 If no aspect candidate could be selected from the list, pick the option None.While selecting the aspects, please consider the following rules:\u2022 An aspect is defined as the most important/relevant point for the argument made.\u2022 The most important point is usually not equal to the given main topic.\u2022 In case of doubt, shorter aspects candidates (generic terms; e.g. \"life span\") are prefered over longer candidates (e.g. \"prolonged life span\").",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Task Description",
"sec_num": null
},
{
"text": "\u2022 The selected aspect(s) should be related to the topic in general.\u2022 The presence of AND/OR (usually) denote multiple aspects:-If a sentence contains multiple phrases (e.g., \"abortion causes breast cancer AND it kills unborn children.\"); -If there is an enumeration and objects connected by AND/OR (e.g. \"abortion causes breast cancer, infertility and pain.\");\u2022 In the case of ADJECTIVE+NOUN, general adjectives should be avoided (e.g. \"new\" in \"new treatments\"), whereas focused adjectives that are part of the concept should be selected (e.g. \"recreational\" in \"recreational marijuana\").\u2022 Please, use these test-questions for yourself while annotating:-Do you want this argument to be shown to someone, if they select this aspect(s) of the topic, or are other aspect terms in this argument more relevant for the point made? -Which words make you understand the argument most? -Which words are the most relevant and mainly form the meaning of the argument made? -If you would compress the argument into a few most relevant words, which words would that be?",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "General Hints",
"sec_num": null
},
{
"text": "The dropout rate of 0.1 was always the best option. The learning rates for the different models are displayed in Table 8 for the ATE task and in Table 9 for the NS task.",
"cite_spans": [],
"ref_spans": [
{
"start": 113,
"end": 120,
"text": "Table 8",
"ref_id": null
},
{
"start": 145,
"end": 152,
"text": "Table 9",
"ref_id": null
}
],
"eq_spans": [],
"section": "B Hyperparameters",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "A benchmark dataset for automatic detection of claims and evidence in the context of controversial topics",
"authors": [
{
"first": "Ehud",
"middle": [],
"last": "Aharoni",
"suffix": ""
},
{
"first": "Anatoly",
"middle": [],
"last": "Polnarov",
"suffix": ""
},
{
"first": "Tamar",
"middle": [],
"last": "Lavee",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "Hershcovich",
"suffix": ""
},
{
"first": "Ran",
"middle": [],
"last": "Levy",
"suffix": ""
},
{
"first": "Ruty",
"middle": [],
"last": "Rinott",
"suffix": ""
},
{
"first": "Dan",
"middle": [],
"last": "Gutfreund",
"suffix": ""
},
{
"first": "Noam",
"middle": [],
"last": "Slonim",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the First Workshop on Argumentation Mining",
"volume": "",
"issue": "",
"pages": "64--68",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ehud Aharoni, Anatoly Polnarov, Tamar Lavee, Daniel Hershcovich, Ran Levy, Ruty Rinott, Dan Gutfreund, and Noam Slonim. 2014. A benchmark dataset for automatic detection of claims and evidence in the context of controversial topics. In Proceedings of the First Workshop on Argumentation Mining, pages 64-68, Baltimore, Maryland, June. Association for Computational Linguistics.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Sequence labeling: A practical approach",
"authors": [
{
"first": "Adnan",
"middle": [],
"last": "Akhundov",
"suffix": ""
},
{
"first": "Dietrich",
"middle": [],
"last": "Trautmann",
"suffix": ""
},
{
"first": "Georg",
"middle": [],
"last": "Groh",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1808.03926"
]
},
"num": null,
"urls": [],
"raw_text": "Adnan Akhundov, Dietrich Trautmann, and Georg Groh. 2018. Sequence labeling: A practical approach. arXiv preprint arXiv:1808.03926.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "End-to-end argumentation knowledge graph construction",
"authors": [
{
"first": "Khalid",
"middle": [],
"last": "Al-Khatib",
"suffix": ""
},
{
"first": "Yufang",
"middle": [],
"last": "Hou",
"suffix": ""
},
{
"first": "Henning",
"middle": [],
"last": "Wachsmuth",
"suffix": ""
},
{
"first": "Charles",
"middle": [],
"last": "Jochim",
"suffix": ""
},
{
"first": "Francesca",
"middle": [],
"last": "Bonin",
"suffix": ""
},
{
"first": "Benno",
"middle": [],
"last": "Stein",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the AAAI Conference on Artificial Intelligence",
"volume": "34",
"issue": "",
"pages": "7367--7374",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Khalid Al-Khatib, Yufang Hou, Henning Wachsmuth, Charles Jochim, Francesca Bonin, and Benno Stein. 2020. End-to-end argumentation knowledge graph construction. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 7367-7374.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "From arguments to key points: Towards automatic argument summarization",
"authors": [
{
"first": "Roy",
"middle": [],
"last": "Bar-Haim",
"suffix": ""
},
{
"first": "Lilach",
"middle": [],
"last": "Eden",
"suffix": ""
},
{
"first": "Roni",
"middle": [],
"last": "Friedman",
"suffix": ""
},
{
"first": "Yoav",
"middle": [],
"last": "Kantor",
"suffix": ""
},
{
"first": "Dan",
"middle": [],
"last": "Lahav",
"suffix": ""
},
{
"first": "Noam",
"middle": [],
"last": "Slonim",
"suffix": ""
}
],
"year": 2020,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:2005.01619"
]
},
"num": null,
"urls": [],
"raw_text": "Roy Bar-Haim, Lilach Eden, Roni Friedman, Yoav Kantor, Dan Lahav, and Noam Slonim. 2020. From arguments to key points: Towards automatic argument summarization. arXiv preprint arXiv:2005.01619.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "AM-PERSAND: Argument mining for PERSuAsive oNline discussions",
"authors": [
{
"first": "Tuhin",
"middle": [],
"last": "Chakrabarty",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "Hidey",
"suffix": ""
},
{
"first": "Smaranda",
"middle": [],
"last": "Muresan",
"suffix": ""
},
{
"first": "Kathy",
"middle": [],
"last": "Mckeown",
"suffix": ""
},
{
"first": "Alyssa",
"middle": [],
"last": "Hwang",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
"volume": "",
"issue": "",
"pages": "2933--2943",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tuhin Chakrabarty, Christopher Hidey, Smaranda Muresan, Kathy McKeown, and Alyssa Hwang. 2019. AM- PERSAND: Argument mining for PERSuAsive oNline discussions. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2933-2943, Hong Kong, China, November. Association for Computational Linguistics.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "A coefficient of agreement for nominal scales",
"authors": [
{
"first": "Jacob",
"middle": [],
"last": "Cohen",
"suffix": ""
}
],
"year": 1960,
"venue": "Educational and psychological measurement",
"volume": "20",
"issue": "1",
"pages": "37--46",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jacob Cohen. 1960. A coefficient of agreement for nominal scales. Educational and psychological measurement, 20(1):37-46.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
"authors": [
{
"first": "Jacob",
"middle": [],
"last": "Devlin",
"suffix": ""
},
{
"first": "Ming-Wei",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Kristina",
"middle": [],
"last": "Toutanova",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "4171--4186",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirec- tional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota, June. Association for Computational Linguistics.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Nested named entity recognition",
"authors": [
{
"first": "Jenny",
"middle": [
"Rose"
],
"last": "Finkel",
"suffix": ""
},
{
"first": "Christopher",
"middle": [
"D"
],
"last": "Manning",
"suffix": ""
}
],
"year": 2009,
"venue": "Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "141--150",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jenny Rose Finkel and Christopher D. Manning. 2009. Nested named entity recognition. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 141-150, Singapore, August. Association for Computational Linguistics.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "A system for summarizing and visualizing arguments in subjective documents: Toward supporting decision making",
"authors": [
{
"first": "Atsushi",
"middle": [],
"last": "Fujii",
"suffix": ""
},
{
"first": "Tetsuya",
"middle": [],
"last": "Ishikawa",
"suffix": ""
}
],
"year": 2006,
"venue": "Proceedings of the Workshop on Sentiment and Subjectivity in Text",
"volume": "",
"issue": "",
"pages": "15--22",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Atsushi Fujii and Tetsuya Ishikawa. 2006. A system for summarizing and visualizing arguments in subjective documents: Toward supporting decision making. In Proceedings of the Workshop on Sentiment and Subjectivity in Text, pages 15-22.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Decompositional argument mining: A general purpose approach for argument graph construction",
"authors": [
{
"first": "Debela",
"middle": [],
"last": "Gemechu",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Reed",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "516--526",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Debela Gemechu and Chris Reed. 2019. Decompositional argument mining: A general purpose approach for argument graph construction. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 516-526. Association for Computational Linguistics.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "SemEval-2018 task 12: The argument reasoning comprehension task",
"authors": [
{
"first": "Ivan",
"middle": [],
"last": "Habernal",
"suffix": ""
},
{
"first": "Henning",
"middle": [],
"last": "Wachsmuth",
"suffix": ""
},
{
"first": "Iryna",
"middle": [],
"last": "Gurevych",
"suffix": ""
},
{
"first": "Benno",
"middle": [],
"last": "Stein",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of The 12th International Workshop on Semantic Evaluation",
"volume": "",
"issue": "",
"pages": "763--772",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ivan Habernal, Henning Wachsmuth, Iryna Gurevych, and Benno Stein. 2018. SemEval-2018 task 12: The argument reasoning comprehension task. In Proceedings of The 12th International Workshop on Semantic Evaluation, pages 763-772, New Orleans, Louisiana, June. Association for Computational Linguistics.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Adversarial training for aspect-based sentiment analysis with bert",
"authors": [
{
"first": "Akbar",
"middle": [],
"last": "Karimi",
"suffix": ""
},
{
"first": "Leonardo",
"middle": [],
"last": "Rossi",
"suffix": ""
},
{
"first": "Andrea",
"middle": [],
"last": "Prati",
"suffix": ""
},
{
"first": "Katharina",
"middle": [],
"last": "Full",
"suffix": ""
}
],
"year": 2020,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:2001.11316"
]
},
"num": null,
"urls": [],
"raw_text": "Akbar Karimi, Leonardo Rossi, Andrea Prati, and Katharina Full. 2020. Adversarial training for aspect-based sentiment analysis with bert. arXiv preprint arXiv:2001.11316.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Nested named entity recognition revisited",
"authors": [
{
"first": "Arzoo",
"middle": [],
"last": "Katiyar",
"suffix": ""
},
{
"first": "Claire",
"middle": [],
"last": "Cardie",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "861--871",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Arzoo Katiyar and Claire Cardie. 2018. Nested named entity recognition revisited. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Lan- guage Technologies, Volume 1 (Long Papers), pages 861-871, New Orleans, Louisiana, June. Association for Computational Linguistics.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "An empirical study of span representations in argumentation structure parsing",
"authors": [
{
"first": "Tatsuki",
"middle": [],
"last": "Kuribayashi",
"suffix": ""
},
{
"first": "Hiroki",
"middle": [],
"last": "Ouchi",
"suffix": ""
},
{
"first": "Naoya",
"middle": [],
"last": "Inoue",
"suffix": ""
},
{
"first": "Paul",
"middle": [],
"last": "Reisert",
"suffix": ""
},
{
"first": "Toshinori",
"middle": [],
"last": "Miyoshi",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "4691--4698",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tatsuki Kuribayashi, Hiroki Ouchi, Naoya Inoue, Paul Reisert, Toshinori Miyoshi, Jun Suzuki, and Kentaro Inui. 2019. An empirical study of span representations in argumentation structure parsing. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4691-4698, Florence, Italy, July. Association for Computational Linguistics.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Unsupervised corpus-wide claim detection",
"authors": [
{
"first": "Ran",
"middle": [],
"last": "Levy",
"suffix": ""
},
{
"first": "Shai",
"middle": [],
"last": "Gretz",
"suffix": ""
},
{
"first": "Benjamin",
"middle": [],
"last": "Sznajder",
"suffix": ""
},
{
"first": "Shay",
"middle": [],
"last": "Hummel",
"suffix": ""
},
{
"first": "Ranit",
"middle": [],
"last": "Aharonov",
"suffix": ""
},
{
"first": "Noam",
"middle": [],
"last": "Slonim",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 4th Workshop on Argument Mining",
"volume": "",
"issue": "",
"pages": "79--84",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ran Levy, Shai Gretz, Benjamin Sznajder, Shay Hummel, Ranit Aharonov, and Noam Slonim. 2017. Unsuper- vised corpus-wide claim detection. In Proceedings of the 4th Workshop on Argument Mining, pages 79-84, Copenhagen, Denmark, September. Association for Computational Linguistics.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Decoupled weight decay regularization",
"authors": [
{
"first": "Ilya",
"middle": [],
"last": "Loshchilov",
"suffix": ""
},
{
"first": "Frank",
"middle": [],
"last": "Hutter",
"suffix": ""
}
],
"year": 2018,
"venue": "International Conference on Learning Representations",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ilya Loshchilov and Frank Hutter. 2018. Decoupled weight decay regularization. In International Conference on Learning Representations.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Domain adaptation for part-of-speech tagging of noisy user-generated text",
"authors": [
{
"first": "Luisa",
"middle": [],
"last": "M\u00e4rz",
"suffix": ""
},
{
"first": "Dietrich",
"middle": [],
"last": "Trautmann",
"suffix": ""
},
{
"first": "Benjamin",
"middle": [],
"last": "Roth",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "3415--3420",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Luisa M\u00e4rz, Dietrich Trautmann, and Benjamin Roth. 2019. Domain adaptation for part-of-speech tagging of noisy user-generated text. In Proceedings of the 2019 Conference of the North American Chapter of the Associ- ation for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 3415-3420.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Using summarization to discover argument facets in online idealogical dialog",
"authors": [
{
"first": "Amita",
"middle": [],
"last": "Misra",
"suffix": ""
},
{
"first": "Pranav",
"middle": [],
"last": "Anand",
"suffix": ""
},
{
"first": "Jean",
"middle": [
"E"
],
"last": "Fox Tree",
"suffix": ""
},
{
"first": "Marilyn",
"middle": [],
"last": "Walker",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "",
"issue": "",
"pages": "430--440",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Amita Misra, Pranav Anand, Jean E. Fox Tree, and Marilyn Walker. 2015. Using summarization to discover argument facets in online idealogical dialog. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 430-440, Denver, Colorado, May-June. Association for Computational Linguistics.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Measuring the similarity of sentential arguments in dialogue",
"authors": [
{
"first": "Amita",
"middle": [],
"last": "Misra",
"suffix": ""
},
{
"first": "Brian",
"middle": [],
"last": "Ecker",
"suffix": ""
},
{
"first": "Marilyn",
"middle": [],
"last": "Walker",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue",
"volume": "",
"issue": "",
"pages": "276--287",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Amita Misra, Brian Ecker, and Marilyn Walker. 2016. Measuring the similarity of sentential arguments in dia- logue. In Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 276-287, Los Angeles, September. Association for Computational Linguistics.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "SemEval-2014 task 4: Aspect based sentiment analysis",
"authors": [
{
"first": "Maria",
"middle": [],
"last": "Pontiki",
"suffix": ""
},
{
"first": "Dimitris",
"middle": [],
"last": "Galanis",
"suffix": ""
},
{
"first": "John",
"middle": [],
"last": "Pavlopoulos",
"suffix": ""
},
{
"first": "Harris",
"middle": [],
"last": "Papageorgiou",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the 8th International Workshop on Semantic Evaluation",
"volume": "",
"issue": "",
"pages": "27--35",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Maria Pontiki, Dimitris Galanis, John Pavlopoulos, Harris Papageorgiou, Ion Androutsopoulos, and Suresh Man- andhar. 2014. SemEval-2014 task 4: Aspect based sentiment analysis. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 27-35, Dublin, Ireland, August. Association for Computational Linguistics.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Semeval-2015 task 12: Aspect based sentiment analysis",
"authors": [
{
"first": "Maria",
"middle": [],
"last": "Pontiki",
"suffix": ""
},
{
"first": "Dimitrios",
"middle": [],
"last": "Galanis",
"suffix": ""
},
{
"first": "Harris",
"middle": [],
"last": "Papageorgiou",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 9th international workshop on semantic evaluation",
"volume": "",
"issue": "",
"pages": "486--495",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Maria Pontiki, Dimitrios Galanis, Harris Papageorgiou, Suresh Manandhar, and Ion Androutsopoulos. 2015. Semeval-2015 task 12: Aspect based sentiment analysis. In Proceedings of the 9th international workshop on semantic evaluation (SemEval 2015), pages 486-495.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Semeval-2016 task 5: Aspect based sentiment analysis",
"authors": [
{
"first": "Maria",
"middle": [],
"last": "Pontiki",
"suffix": ""
},
{
"first": "Dimitrios",
"middle": [],
"last": "Galanis",
"suffix": ""
},
{
"first": "Haris",
"middle": [],
"last": "Papageorgiou",
"suffix": ""
},
{
"first": "Ion",
"middle": [],
"last": "Androutsopoulos",
"suffix": ""
},
{
"first": "Suresh",
"middle": [],
"last": "Manandhar",
"suffix": ""
},
{
"first": "Mohammad",
"middle": [],
"last": "Al-Smadi",
"suffix": ""
},
{
"first": "Mahmoud",
"middle": [],
"last": "Al-Ayyoub",
"suffix": ""
},
{
"first": "Yanyan",
"middle": [],
"last": "Zhao",
"suffix": ""
},
{
"first": "Bing",
"middle": [],
"last": "Qin",
"suffix": ""
},
{
"first": "Orph\u00e9e",
"middle": [],
"last": "De Clercq",
"suffix": ""
}
],
"year": 2016,
"venue": "10th International Workshop on Semantic Evaluation",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Maria Pontiki, Dimitrios Galanis, Haris Papageorgiou, Ion Androutsopoulos, Suresh Manandhar, Mohammad Al- Smadi, Mahmoud Al-Ayyoub, Yanyan Zhao, Bing Qin, Orph\u00e9e De Clercq, et al. 2016. Semeval-2016 task 5: Aspect based sentiment analysis. In 10th International Workshop on Semantic Evaluation (SemEval 2016).",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Distant supervision for emotion classification task using emoji2emotion",
"authors": [
{
"first": "Aisulu",
"middle": [],
"last": "Rakhmetullina",
"suffix": ""
},
{
"first": "Dietrich",
"middle": [],
"last": "Trautmann",
"suffix": ""
},
{
"first": "Georg",
"middle": [],
"last": "Groh",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 1st International Workshop on Emoji Understanding and Applications in Social Media",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Aisulu Rakhmetullina, Dietrich Trautmann, and Georg Groh. 2018. Distant supervision for emotion classification task using emoji2emotion. In Proceedings of the 1st International Workshop on Emoji Understanding and Applications in Social Media (Emoji2018). Stanford, CA, USA. http://ceurws. org, volume 2130.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Classification and clustering of arguments with contextualized word embeddings",
"authors": [
{
"first": "Nils",
"middle": [],
"last": "Reimers",
"suffix": ""
},
{
"first": "Benjamin",
"middle": [],
"last": "Schiller",
"suffix": ""
},
{
"first": "Tilman",
"middle": [],
"last": "Beck",
"suffix": ""
},
{
"first": "Johannes",
"middle": [],
"last": "Daxenberger",
"suffix": ""
},
{
"first": "Christian",
"middle": [],
"last": "Stab",
"suffix": ""
},
{
"first": "Iryna",
"middle": [],
"last": "Gurevych",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 57th",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nils Reimers, Benjamin Schiller, Tilman Beck, Johannes Daxenberger, Christian Stab, and Iryna Gurevych. 2019. Classification and clustering of arguments with contextualized word embeddings. In Proceedings of the 57th",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Annual Meeting of the Association for Computational Linguistics",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "567--578",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Annual Meeting of the Association for Computational Linguistics, pages 567-578, Florence, Italy, July. Associ- ation for Computational Linguistics.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Nlp approaches to computational argumentation",
"authors": [
{
"first": "Noam",
"middle": [],
"last": "Slonim",
"suffix": ""
},
{
"first": "Iryna",
"middle": [],
"last": "Gurevych",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Reed",
"suffix": ""
},
{
"first": "Benno",
"middle": [],
"last": "Stein",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Noam Slonim, Iryna Gurevych, Chris Reed, and Benno Stein. 2016. Nlp approaches to computational argumen- tation. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Cross-topic argument mining from heterogeneous sources",
"authors": [
{
"first": "Christian",
"middle": [],
"last": "Stab",
"suffix": ""
},
{
"first": "Tristan",
"middle": [],
"last": "Miller",
"suffix": ""
},
{
"first": "Benjamin",
"middle": [],
"last": "Schiller",
"suffix": ""
},
{
"first": "Pranav",
"middle": [],
"last": "Rai",
"suffix": ""
},
{
"first": "Iryna",
"middle": [],
"last": "Gurevych",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "3664--3674",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Christian Stab, Tristan Miller, Benjamin Schiller, Pranav Rai, and Iryna Gurevych. 2018. Cross-topic argument mining from heterogeneous sources. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3664-3674. Association for Computational Linguistics.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Neural architectures for nested NER through linearization",
"authors": [
{
"first": "Jana",
"middle": [],
"last": "Strakov\u00e1",
"suffix": ""
},
{
"first": "Milan",
"middle": [],
"last": "Straka",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "5326--5331",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jana Strakov\u00e1, Milan Straka, and Jan Hajic. 2019. Neural architectures for nested NER through linearization. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5326-5331, Florence, Italy, July. Association for Computational Linguistics.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "An introduction to conditional random fields. Foundations and Trends R in Machine Learning",
"authors": [
{
"first": "Charles",
"middle": [],
"last": "Sutton",
"suffix": ""
},
{
"first": "Andrew",
"middle": [],
"last": "Mccallum",
"suffix": ""
}
],
"year": 2012,
"venue": "",
"volume": "4",
"issue": "",
"pages": "267--373",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Charles Sutton, Andrew McCallum, et al. 2012. An introduction to conditional random fields. Foundations and Trends R in Machine Learning, 4(4):267-373.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Hinrich Sch\u00fctze, and Iryna Gurevych. 2020a. Finegrained argument unit recognition and classification",
"authors": [
{
"first": "Dietrich",
"middle": [],
"last": "Trautmann",
"suffix": ""
},
{
"first": "Johannes",
"middle": [],
"last": "Daxenberger",
"suffix": ""
},
{
"first": "Christian",
"middle": [],
"last": "Stab",
"suffix": ""
}
],
"year": null,
"venue": "The Thirty-Fourth AAAI Conf. on Artificial Intelligence",
"volume": "2020",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Dietrich Trautmann, Johannes Daxenberger, Christian Stab, Hinrich Sch\u00fctze, and Iryna Gurevych. 2020a. Fine- grained argument unit recognition and classification. In The Thirty-Fourth AAAI Conf. on Artificial Intelligence, New York City, NY, USA, AAAI 2020. AAAI Press, 2.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Thomas Seidl, and Hinrich Sch\u00fctze. 2020b. Relational and fine-grained argument mining",
"authors": [
{
"first": "Dietrich",
"middle": [],
"last": "Trautmann",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Fromm",
"suffix": ""
},
{
"first": "Volker",
"middle": [],
"last": "Tresp",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Dietrich Trautmann, Michael Fromm, Volker Tresp, Thomas Seidl, and Hinrich Sch\u00fctze. 2020b. Relational and fine-grained argument mining. Datenbank-Spektrum.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "Flavius Frasincar, and Rommert Dekker. 2020. A hybrid approach for aspect-based sentiment analysis using deep contextual word embeddings and hierarchical attention",
"authors": [
{
"first": "Maria",
"middle": [],
"last": "Mihaela Trusca",
"suffix": ""
},
{
"first": "Daan",
"middle": [],
"last": "Wassenberg",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:2004.08673"
]
},
"num": null,
"urls": [],
"raw_text": "Maria Mihaela Trusca, Daan Wassenberg, Flavius Frasincar, and Rommert Dekker. 2020. A hybrid approach for aspect-based sentiment analysis using deep contextual word embeddings and hierarchical attention. arXiv preprint arXiv:2004.08673.",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "Understanding interobserver agreement: the kappa statistic",
"authors": [
{
"first": "J",
"middle": [],
"last": "Anthony",
"suffix": ""
},
{
"first": "Joanne",
"middle": [
"M"
],
"last": "Viera",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Garrett",
"suffix": ""
}
],
"year": 2005,
"venue": "Fam med",
"volume": "37",
"issue": "5",
"pages": "360--363",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Anthony J Viera, Joanne M Garrett, et al. 2005. Understanding interobserver agreement: the kappa statistic. Fam med, 37(5):360-363.",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "PageRank\" for argument relevance",
"authors": [
{
"first": "Henning",
"middle": [],
"last": "Wachsmuth",
"suffix": ""
},
{
"first": "Benno",
"middle": [],
"last": "Stein",
"suffix": ""
},
{
"first": "Yamen",
"middle": [],
"last": "Ajjour",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics",
"volume": "1",
"issue": "",
"pages": "1117--1127",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Henning Wachsmuth, Benno Stein, and Yamen Ajjour. 2017. \"PageRank\" for argument relevance. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 1117-1127, Valencia, Spain, April. Association for Computational Linguistics.",
"links": null
}
},
"ref_entries": {
"TABREF1": {
"text": "The final set of the 44 Part-of-Speech patterns.",
"type_str": "table",
"num": null,
"html": null,
"content": "<table/>"
},
"TABREF3": {
"text": "Count of sentences, segments and (total & unique) aspects in the ABAM corpus.",
"type_str": "table",
"num": null,
"html": null,
"content": "<table/>"
},
"TABREF5": {
"text": "",
"type_str": "table",
"num": null,
"html": null,
"content": "<table/>"
},
"TABREF7": {
"text": "Sample counts per set and domain for the aspect term extraction task.",
"type_str": "table",
"num": null,
"html": null,
"content": "<table><tr><td>set \\domain</td><td>INNER</td><td>CROSS</td></tr><tr><td>train</td><td>2268</td><td>2097</td></tr><tr><td>dev</td><td>307</td><td>478</td></tr><tr><td>test</td><td>636</td><td>1185</td></tr></table>"
},
"TABREF9": {
"text": "",
"type_str": "table",
"num": null,
"html": null,
"content": "<table><tr><td>domain</td><td colspan=\"2\">INNER</td><td colspan=\"2\">CROSS</td></tr><tr><td>model \\set</td><td>dev</td><td>test</td><td>dev</td><td>test</td></tr><tr><td>BERT BASE</td><td>.507</td><td>.465</td><td>.278</td><td>.338</td></tr><tr><td>BERT BASE +CRF</td><td>.521</td><td>.480</td><td>.270</td><td>.332</td></tr><tr><td>BERT LARGE</td><td>.557</td><td>.520</td><td>.315</td><td>.369</td></tr><tr><td>BERT LARGE +CRF</td><td>.563</td><td>.517</td><td>.293</td><td>.358</td></tr><tr><td>: F1 results on the dev and test sets</td><td/><td/><td/><td/></tr><tr><td>for the inner-topic (INNER) and cross-topic</td><td/><td/><td/><td/></tr><tr><td>(CROSS) set-ups for the aspect term extraction</td><td/><td/><td/><td/></tr><tr><td>task.</td><td/><td/><td/><td/></tr></table>"
},
"TABREF10": {
"text": "for this task.",
"type_str": "table",
"num": null,
"html": null,
"content": "<table><tr><td>domain</td><td>INNER</td><td>CROSS</td></tr><tr><td>BERT BASE</td><td>6e \u2212 5</td><td>8e \u2212 5</td></tr><tr><td>BERT BASE +CRF</td><td>9e \u2212 5</td><td>9e \u2212 5</td></tr><tr><td>BERT LARGE</td><td>9e \u2212 5</td><td>9e \u2212 5</td></tr><tr><td>BERT LARGE +CRF</td><td>9e \u2212 5</td><td>8e \u2212 5</td></tr></table>"
},
"TABREF11": {
"text": "Hyperparameters (learning rate) for the ATE task.",
"type_str": "table",
"num": null,
"html": null,
"content": "<table><tr><td>domain</td><td>INNER</td><td>CROSS</td></tr><tr><td>BERT BASE</td><td>7e \u2212 5</td><td>5e \u2212 5</td></tr><tr><td>BERT BASE +CRF</td><td>8e \u2212 5</td><td>6e \u2212 5</td></tr><tr><td>BERT LARGE</td><td>5e \u2212 5</td><td>7e \u2212 5</td></tr><tr><td>BERT LARGE +CRF</td><td>7e \u2212 5</td><td>8e \u2212 5</td></tr></table>"
}
}
}
} |