File size: 120,780 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T02:10:01.118266Z"
    },
    "title": "Aspect-Based Argument Mining",
    "authors": [
        {
            "first": "Dietrich",
            "middle": [],
            "last": "Trautmann",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Ludwig Maximilian University of Munich",
                "location": {
                    "country": "Germany"
                }
            },
            "email": "dietrich@trautmann.me"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Computational Argumentation in general and Argument Mining in particular are important research fields. In previous works, many of the challenges to automatically extract and to some degree reason over natural language arguments were addressed. The tools to extract argument units are increasingly available and further open problems can be addressed. In this work, we are presenting the task of Aspect-Based Argument Mining (ABAM), with the essential subtasks of Aspect Term Extraction (ATE) and Nested Segmentation (NS). At the first instance, we create and release an annotated corpus with aspect information on the token-level. We consider aspects as the main point(s) argument units are addressing. This information is important for further downstream tasks such as argument ranking, argument summarization and generation, as well as the search for counter-arguments on the aspect-level. We present several experiments using stateof-the-art supervised architectures and demonstrate their performance for both of the subtasks.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Computational Argumentation in general and Argument Mining in particular are important research fields. In previous works, many of the challenges to automatically extract and to some degree reason over natural language arguments were addressed. The tools to extract argument units are increasingly available and further open problems can be addressed. In this work, we are presenting the task of Aspect-Based Argument Mining (ABAM), with the essential subtasks of Aspect Term Extraction (ATE) and Nested Segmentation (NS). At the first instance, we create and release an annotated corpus with aspect information on the token-level. We consider aspects as the main point(s) argument units are addressing. This information is important for further downstream tasks such as argument ranking, argument summarization and generation, as well as the search for counter-arguments on the aspect-level. We present several experiments using stateof-the-art supervised architectures and demonstrate their performance for both of the subtasks.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "The field of computational argumentation (Slonim et al., 2016) gained a lot of interest in the last couple of years. This is noticeable from both the number of the submitted publications related to this field and also from the high volume of emerging datasets (Aharoni et al., 2014; Levy et al., 2017; Habernal et al., 2018; Stab et al., 2018; Trautmann et al., 2020a) , specific task formulations (Wachsmuth et al., 2017; Al-Khatib et al., 2020) and models (Kuribayashi et al., 2019; Chakrabarty et al., 2019) .",
                "cite_spans": [
                    {
                        "start": 41,
                        "end": 62,
                        "text": "(Slonim et al., 2016)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 260,
                        "end": 282,
                        "text": "(Aharoni et al., 2014;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 283,
                        "end": 301,
                        "text": "Levy et al., 2017;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 302,
                        "end": 324,
                        "text": "Habernal et al., 2018;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 325,
                        "end": 343,
                        "text": "Stab et al., 2018;",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 344,
                        "end": 368,
                        "text": "Trautmann et al., 2020a)",
                        "ref_id": null
                    },
                    {
                        "start": 398,
                        "end": 422,
                        "text": "(Wachsmuth et al., 2017;",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 423,
                        "end": 446,
                        "text": "Al-Khatib et al., 2020)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 458,
                        "end": 484,
                        "text": "(Kuribayashi et al., 2019;",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 485,
                        "end": 510,
                        "text": "Chakrabarty et al., 2019)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Similar to aspect-based sentiment analysis (Pontiki et al., 2014) , we also see the possibility of breaking down arguments into smaller attributes or meaningful components in the argument mining domain. We consider these components as aspects of the arguments. Previous works already utilized aspectinformation for several subtasks within the argument mining domain (Fujii and Ishikawa, 2006; Misra et al., 2015; Gemechu and Reed, 2019) . However, these works vary significantly in the definition of aspects and do not focus on the aspect-based argument mining explicitly, e.g., employ aspects as a source of side or additional information.",
                "cite_spans": [
                    {
                        "start": 43,
                        "end": 65,
                        "text": "(Pontiki et al., 2014)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 366,
                        "end": 392,
                        "text": "(Fujii and Ishikawa, 2006;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 393,
                        "end": 412,
                        "text": "Misra et al., 2015;",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 413,
                        "end": 436,
                        "text": "Gemechu and Reed, 2019)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "For instance, Fujii and Ishikawa (2006) are mainly focusing on the summarization of opinions, visualizing pro and contra arguments for a given topic. Thereby, the authors are extracting aspects, calling them points at issue, and ranking the arguments according to them. However, their approach relies on rule-based extraction solely. In Misra et al. (2015) , the authors are proposing summarization methods to recognize specific arguments and counter-arguments in social media texts, to further group them across discussions into facets (i.e., aspects) on which that issue is argued. Still, this work is limited to a couple of topics and samples. Finally, Gemechu and Reed (2019) also mention aspects as part of four functional components, where the authors interchangeably label aspects and concepts for the specific words. However, to the best of our knowledge, the authors did not publish their labeled data, making a comparative evaluation of aspect extraction methods impossible. We, in contrast, specifically address the aspect term Supporters say it is an unnecessary regulation designed to force clinics to shut down, while opponents say the prohibition protects women's health.",
                "cite_spans": [
                    {
                        "start": 14,
                        "end": 39,
                        "text": "Fujii and Ishikawa (2006)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 337,
                        "end": 356,
                        "text": "Misra et al. (2015)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 656,
                        "end": 679,
                        "text": "Gemechu and Reed (2019)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Granted, the initial construction costs of a nuclear plant are huge, but the ongoing maintenance and fuel costs have proven to be far lower than that of other energy sources.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Topic: Abortion",
                "sec_num": null
            },
            {
                "text": "Figure 1: Example annotation of argumentative spans, the corresponding stances (green: supporting/pro; red: opposing/contra) and the aspects (underlined) for the topics abortion and nuclear energy.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Topic: Nuclear Energy",
                "sec_num": null
            },
            {
                "text": "extraction, concentrate on the proper definition of aspects and therefore directly emphasize and present the task of Aspect-Based Argument Mining (ABAM) in this work.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Topic: Nuclear Energy",
                "sec_num": null
            },
            {
                "text": "One of the potential applications for the ABAM is the ability to search for specific subtopics within a larger controversial area. For instance, for the topic abortion, one can particularly be interested in regulation or health-related aspects (first example in Figure 1 ). Whereas for the topic of nuclear energy, one can care for solely enviromental, costor safety-related aspects (second example in Figure 1 ). By searching or filtering for the particular aspects, one has the possibility to select for specific information and, therefore, to get more fine-grained results. Another benefit is the ability to compare opposing arguments on the aspect-level.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 262,
                        "end": 270,
                        "text": "Figure 1",
                        "ref_id": null
                    },
                    {
                        "start": 402,
                        "end": 410,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Topic: Nuclear Energy",
                "sec_num": null
            },
            {
                "text": "In this regard, necessary subtasks within the ABAM include the explicit Aspect Term Extraction (ATE) on token-level and the Nested Segmentation (NS) of argumentative parts along with their aspects within a given sentence. Our work is based on Trautmann et al. (2020a) , where the authors already addressed the task of argument unit segmentation. We extend their benchmark with aspect term extraction on these argument units. The ABAM task can be performed in two ways: first, as a two-step pipeline approach with argument unit recognition and classification (AURC) followed by aspect term extraction, or as an end-to-end approach in the form of the nested segmentation task. Since the argument units are already provided by Trautmann et al. (2020a) , we can use them directly for the second step in the pipeline, namely the ATE task. Whereas in the end-to-end scenario we adress both tasks (i.e., AURC and ATE) simultaneously for argumentative sentences.",
                "cite_spans": [
                    {
                        "start": 243,
                        "end": 267,
                        "text": "Trautmann et al. (2020a)",
                        "ref_id": null
                    },
                    {
                        "start": 724,
                        "end": 748,
                        "text": "Trautmann et al. (2020a)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Topic: Nuclear Energy",
                "sec_num": null
            },
            {
                "text": "One of the main challenges we faced during this work was the absence of publicly available benchmarks containing the aspect terms. Existing argument mining datasets do not contain the required information and therefore could not be directly applied for Aspect-Based Argument Mining. We address this challenge by extending an existing fine-grained argument corpus (Trautmann et al., 2020a) with crowdsourced token-level aspect information. This is our focused main contribution. While annotating the corpus, we were faced multiple difficulties, including the proper definition of aspects and the creation of rules required for the aspect extraction. It is important to note, that within this work, we refer to aspects as the main point(s) arguments are addressing.",
                "cite_spans": [
                    {
                        "start": 363,
                        "end": 388,
                        "text": "(Trautmann et al., 2020a)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Topic: Nuclear Energy",
                "sec_num": null
            },
            {
                "text": "Last but not least, since we are extending the existing corpus, we do not explicitly concentrate on the stance definition and its annotation. Furthermore, as stated in Trautmann et al. (2020a) , there are two main argument mining directions: closed domain discourse-level and the argument mining from the information seeking perspective. The authors of the underlying corpora follow the latter and provide the reasons for that in their work. We, therefore, adopt their vision on that point.",
                "cite_spans": [
                    {
                        "start": 168,
                        "end": 192,
                        "text": "Trautmann et al. (2020a)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Topic: Nuclear Energy",
                "sec_num": null
            },
            {
                "text": "Summarizing the abovementioned points, our contribution within this work is as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Topic: Nuclear Energy",
                "sec_num": null
            },
            {
                "text": "\u2022 We are emphasizing and presenting the task of Aspect-Based Argument Mining on its own.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Topic: Nuclear Energy",
                "sec_num": null
            },
            {
                "text": "\u2022 We are extending an existing corpus with token-level aspect terms, making a comparative evaluation of ABAM methods possible.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Topic: Nuclear Energy",
                "sec_num": null
            },
            {
                "text": "\u2022 We are presenting a number of strong baselines with a corresponding error analysis.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Topic: Nuclear Energy",
                "sec_num": null
            },
            {
                "text": "We define the ABAM task as following: Given a list of several topic related texts (documents or paragraphs), we segment the texts into N sentences",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Problem Statement",
                "sec_num": "2"
            },
            {
                "text": "sentence i = [t 1 , t 2 , t 3 , . . . , t n ]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Problem Statement",
                "sec_num": "2"
            },
            {
                "text": "(1)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Problem Statement",
                "sec_num": "2"
            },
            {
                "text": "The problem is to select, if available, one (or several) span(s)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Problem Statement",
                "sec_num": "2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "span j = [t k , . . . , t l ]",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Problem Statement",
                "sec_num": "2"
            },
            {
                "text": "inside each sentence i , with k >= 1, l <= n, l \u2212 k >= SEG min and l \u2212 k <= SEG max (with SEG min = 3 tokens and SEG max = n tokens in a segment), and a corresponding stance",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Problem Statement",
                "sec_num": "2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "stance j \u2208 [P RO, CON ]",
                        "eq_num": "(3)"
                    }
                ],
                "section": "Problem Statement",
                "sec_num": "2"
            },
            {
                "text": "Tokens outside of argumentative spans are assigned the N ON stance label. Furthermore, regularly there is at least one aspect in every selected span with",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Problem Statement",
                "sec_num": "2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "aspect j = [t p , . . . , t q ]",
                        "eq_num": "(4)"
                    }
                ],
                "section": "Problem Statement",
                "sec_num": "2"
            },
            {
                "text": "where p >= k, q <= l, q \u2212 p >= ASP min and q \u2212 p <= ASP max (with ASP min = 1 token and ASP max = 5 tokens per aspect).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Problem Statement",
                "sec_num": "2"
            },
            {
                "text": "Regarding the abovementioned problem definition ( \u00a72), we selected three research areas as thematically closed to our task.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "3"
            },
            {
                "text": "Sentiment Analysis: The SemEval workshop organized the task of aspect-based sentiment analysis (Pontiki et al., 2014; Pontiki et al., 2015; Pontiki et al., 2016) . Its subtasks also involved the aspect term extraction, which mainly inspired our approach and definition of the aspect term. Recent works applied adversarial training of pretrained language models (Karimi et al., 2020 ) and a combination of contextualized embeddings and hierarchical attention (Trusca et al., 2020) for new state-of-the-art results on this tasks.",
                "cite_spans": [
                    {
                        "start": 95,
                        "end": 117,
                        "text": "(Pontiki et al., 2014;",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 118,
                        "end": 139,
                        "text": "Pontiki et al., 2015;",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 140,
                        "end": 161,
                        "text": "Pontiki et al., 2016)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 361,
                        "end": 381,
                        "text": "(Karimi et al., 2020",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 458,
                        "end": 479,
                        "text": "(Trusca et al., 2020)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "3"
            },
            {
                "text": "Argument Mining: In our work we adopt the definition of argument facets from the previous work and adjust it for our task. For instance, Misra et al. (2015) used the information on argument facets for the summarization of arguments in social media. Furthermore, the authors used argument facets for the argument similarity task (Misra et al., 2016) . The abovementioned works were a first approach in the area of argument facet extraction and were limited to solely a couple of topics and samples. Recent work extended this approach to 28 topics and used the aspect information for the argument similarity task and argument clustering (Reimers et al., 2019) . However, the focus of Reimers et al. (2019) was on the pairwise classification of argumentative sentences and not on the aspect term extraction task itself. Lastly, the work by Bar-Haim et al. (2020) defined argument key-points to create concise summaries from a large set of arguments.",
                "cite_spans": [
                    {
                        "start": 137,
                        "end": 156,
                        "text": "Misra et al. (2015)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 328,
                        "end": 348,
                        "text": "(Misra et al., 2016)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 635,
                        "end": 657,
                        "text": "(Reimers et al., 2019)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 682,
                        "end": 703,
                        "text": "Reimers et al. (2019)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 837,
                        "end": 859,
                        "text": "Bar-Haim et al. (2020)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "3"
            },
            {
                "text": "Nested Named Entity Recognition: The task of nested-NER is similar to the nested segmentation task ( \u00a75.1.2) that we propose. Early work (Finkel and Manning, 2009) presented newspaper and biomedical corpora, and modeled the data by manual feature extraction. Recent works proposed recurrent neural networks (Katiyar and Cardie, 2018) and sequence-to-sequence (Strakov\u00e1 et al., 2019) approaches. The latter modeled nested labels as multilabels, a method that we also adopted for our task with overlapping stance and aspect labels. ",
                "cite_spans": [
                    {
                        "start": 137,
                        "end": 163,
                        "text": "(Finkel and Manning, 2009)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 307,
                        "end": 333,
                        "text": "(Katiyar and Cardie, 2018)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 359,
                        "end": 382,
                        "text": "(Strakov\u00e1 et al., 2019)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "3"
            },
            {
                "text": "The creation of the ABAM benchmark is based on the argument units from the AURC corpus (Trautmann et al., 2020a) and is divided into two main parts. The first part addresses two studies for the annotation task formulation, whereas the second part describes the final corpus creation. We outsourced the data annotation to independent (crowd-)annotators and based on their results we created the gold labels.",
                "cite_spans": [
                    {
                        "start": 87,
                        "end": 112,
                        "text": "(Trautmann et al., 2020a)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus Creation",
                "sec_num": "4"
            },
            {
                "text": "We conducted two expert studies on random samples of ten argument units per stance and topic, selected from the AURC corpus. The resulting sets contained 160 samples for each study.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Expert Study",
                "sec_num": "4.1"
            },
            {
                "text": "The first expert study task was to select explicit aspect terms from a given argument unit on the tokenlevel. Two graduate domain experts performed the annotation. Experts were free to select every inputtoken which fits the following task description: \"The aspects are defined as the most important point(s) the argument unit is addressing\". After the annotation step, the Inter-Annotator Agreement (IAA) for the 160 samples was computed. We decided for Cohen's \u03ba (Cohen, 1960) as our agreement measure, that resulted in the initial score of 0.538. According to Viera et al. (2005) , this score is in the moderate agreement range. Furthermore, the primary analysis of the selected aspect terms from both annotators yielded a list of especially frequent part-of-speech (PoS) patterns for the selected tokens. To further improve the annotation process, the PoS information was employed in the second expert study.",
                "cite_spans": [
                    {
                        "start": 464,
                        "end": 477,
                        "text": "(Cohen, 1960)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 562,
                        "end": 581,
                        "text": "Viera et al. (2005)",
                        "ref_id": "BIBREF32"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Token-Level Annotation",
                "sec_num": "4.1.1"
            },
            {
                "text": "The aspect candidate selection step is crucial for the correct aspect term extraction task. To select the aspect candidates for the second study, we rely on the part-of-speech information. Specifically, the PoS patterns that occurred more than twice in the previous expert study (i.e., token-level annotation) where picked, and some additional PoS patterns were defined (e.g., the singular and plural form of nouns). The tag set is based on the Part-of-Speech tags used in the Penn Treebank Project 1 and the stanza NLP library 2 . The final PoS pattern list is comprehensive and representative (includes 44 patterns, see Table 1) , and ensures linguistically and grammatically correct candidates, without affecting the actual discourse. These PoS patterns were applied on a different set of 160 random samples to create a list of aspect term candidates for every argument unit. The total count of unique aspects for all topics is 4525, but the sum of all unique aspects per topic is 5485. This is due to some aspects appearing in several topics (c.f. Table 3 ).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 622,
                        "end": 630,
                        "text": "Table 1)",
                        "ref_id": "TABREF1"
                    },
                    {
                        "start": 1052,
                        "end": 1059,
                        "text": "Table 3",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Candidates Selection",
                "sec_num": "4.1.2"
            },
            {
                "text": "The annotators were asked to solve the same task as before, but now by selecting one or several options from the aspect term candidates list. If none of the aspect term candidates were appropriate, the option NONE was selected. This simplification of the task, compared to the first study, led to a raised Cohen's \u03ba of 0.790. This is considered as a substantial agreement (Viera et al., 2005) and we deem this as a viable approach for the aspect term extraction.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Candidates Selection",
                "sec_num": "4.1.2"
            },
            {
                "text": "Based on the insights from the first two studies, the annotation guidelines ( \u00a7A) were extended with clearer task formulations and examples. Additionally, the final set of PoS patterns (full list in Table 1 ) was applied on all argument units from the AURC corpus. The AURC corpus was slightly preprocessed to account for duplicates on the sentence-and segment-level, as well as on some minor errors on span boundaries.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 199,
                        "end": 206,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Corpus Annotation",
                "sec_num": "4.2"
            },
            {
                "text": "Two independent (crowd-)annotators with a linguistic background and a minimum professional working proficiency in English were recruited for the aspect term extraction task. The annotation procedure was the same as described in \u00a74.1.2. The inter-annotator agreement score for the two expert annotators resulted in a Cohen's \u03ba of 0.874 for all eight (8) topics. This is considered as an almost perfect agreement (Viera et al., 2005) .",
                "cite_spans": [
                    {
                        "start": 411,
                        "end": 431,
                        "text": "(Viera et al., 2005)",
                        "ref_id": "BIBREF32"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus Annotation",
                "sec_num": "4.2"
            },
            {
                "text": "Annotation Merge For the gold standard we selected the annotations where both of the annotators agreed on the token-level. This ensured that we always had a selection of aspects if neither of the annotators selected the NONE option. Additionally, shorter aspect terms are favoured by this annotation merge.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus Annotation",
                "sec_num": "4.2"
            },
            {
                "text": "The final descriptive statistics of the ABAM corpus are depicted in the Table 2 . There are 12040 aspects in total and 4525 unique (lemmatized) aspects. The topic with the most segments (T8 in Table 2 ), also yielded the most total aspects (2019). Furthermore, there are 58.10% of the aspects with only one token, 32.12% with 2 tokens, 7.94% with 3 tokens, 1.73% with 4 tokens and only 0.12% with 5 tokens.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 72,
                        "end": 79,
                        "text": "Table 2",
                        "ref_id": "TABREF3"
                    },
                    {
                        "start": 193,
                        "end": 200,
                        "text": "Table 2",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Gold Standard",
                "sec_num": null
            },
            {
                "text": "Common Aspects In further aspect analysis we aggregated the most common aspects for the eight topics. The top five aspects and the absolute occurence counts per topic, are shown in Table 3 . Furthermore, three aspects (life, problem, government) appeared in all eight topics and the aspects people, cost, society, risk, law appeared in seven topics.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 181,
                        "end": 188,
                        "text": "Table 3",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Gold Standard",
                "sec_num": null
            },
            {
                "text": "This section presents our experimental setup regarding the two tasks, the employed models and the data set splits. : The top 5 most common aspects per topic and for aspects that appear in several topics.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Setup",
                "sec_num": "5"
            },
            {
                "text": "In this work we apply the two different, but related, sub-tasks for ABAM in the sequence labeling formulation, following Akhundov et al. (2018) .",
                "cite_spans": [
                    {
                        "start": 121,
                        "end": 143,
                        "text": "Akhundov et al. (2018)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tasks",
                "sec_num": "5.1"
            },
            {
                "text": "In the first task (ATE), we employ only the aspect term information within the segments (argument untis). This sequence labeling task is a binary classification problem per token.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Aspect Term Extraction",
                "sec_num": "5.1.1"
            },
            {
                "text": "In the second task (NS), we utilize full argumentative sentences (like the examples in Figure 1 ) with the stance (PRO, CON, NON) and aspect (O, ASP) information for every token as our input. We extend the stance labels with the aspect information for a total set of five possible combinations ([NON,O] , [PRO,O] , [PRO,ASP] , [CON,O] , [CON,ASP] ). 3 This is a multiclass sequence labeling problem, which solves both the argument unit segmentation and the aspect term extraction tasks.",
                "cite_spans": [
                    {
                        "start": 294,
                        "end": 302,
                        "text": "([NON,O]",
                        "ref_id": null
                    },
                    {
                        "start": 305,
                        "end": 312,
                        "text": "[PRO,O]",
                        "ref_id": null
                    },
                    {
                        "start": 315,
                        "end": 324,
                        "text": "[PRO,ASP]",
                        "ref_id": null
                    },
                    {
                        "start": 327,
                        "end": 334,
                        "text": "[CON,O]",
                        "ref_id": null
                    },
                    {
                        "start": 337,
                        "end": 346,
                        "text": "[CON,ASP]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 87,
                        "end": 95,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Nested Segmentation",
                "sec_num": "5.1.2"
            },
            {
                "text": "BERT For the two subtasks, we decided for the BERT model (Devlin et al., 2019) as a recent state-ofthe-art system on a number of natural language processing tasks. We utilize the base and large versions of BERT, as well as both versions of the models with an additional CRF-Layer (Sutton et al., 2012) as the final classification layer in the architecture. Further information about hyperparameter search and computing infrastructure are in \u00a76.2, \u00a7B and \u00a7C.",
                "cite_spans": [
                    {
                        "start": 57,
                        "end": 78,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 280,
                        "end": 301,
                        "text": "(Sutton et al., 2012)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Models",
                "sec_num": "5.2"
            },
            {
                "text": "PoS Patterns Additionally, we applied the PoS-patterns from the aspect candidates creation step we used in \u00a74. For the ATE task we labeled all tokens that match the PoS-patterns and report the results as the lower boundary of our approaches.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Models",
                "sec_num": "5.2"
            },
            {
                "text": "As the evaluation metric, we report the macro-F1 scores 4 for both of our tasks. Further information about accuracy, precision and recall can be found in \u00a7D. Table 5 : Sample counts per set and domain for the nested segmentation task.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 158,
                        "end": 165,
                        "text": "Table 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "5.3"
            },
            {
                "text": "For a better understanding of the model performance, we followed the two different dataset splits (domains) as they were defined for the AURC corpus (Trautmann et al., 2020a) . In the inner-topic split we trained, evaluated and tested our models on the same set of topics (T1-T6, Table 2 ). In the cross-topic split we trained our model on T1-T5, selected the best hyperparameter from the evaluation on T6 and tested on T7 and T8. Detailed sample counts are shown in Table 4 and Table 5 for each task, domain and set.",
                "cite_spans": [
                    {
                        "start": 149,
                        "end": 174,
                        "text": "(Trautmann et al., 2020a)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 280,
                        "end": 287,
                        "text": "Table 2",
                        "ref_id": "TABREF3"
                    },
                    {
                        "start": 467,
                        "end": 474,
                        "text": "Table 4",
                        "ref_id": "TABREF7"
                    },
                    {
                        "start": 479,
                        "end": 486,
                        "text": "Table 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Inner-Topic & Cross-Topic",
                "sec_num": "5.4"
            },
            {
                "text": "This section presents the results for our tasks as described in \u00a75.1.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "6"
            },
            {
                "text": "The best performing options are the BERT LARGE models (Table 6 ). Both of them perform similar, but the one with the CRF-layer is slightly better on the development set for inner-topic and the test set for the cross-topic. The inner-topic scores are higher compared to the more challenging cross-topic set-up, were we evaluate the models on unseen topics. All the models performed much better than the lower boundary from the PoS-Patterns Matches. However, this scores are still bellow the human performance of 0.895. The human performance on this task is based on the results from the second expert study ( \u00a74.1.2)",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 54,
                        "end": 62,
                        "text": "(Table 6",
                        "ref_id": "TABREF9"
                    }
                ],
                "eq_spans": [],
                "section": "Aspect Term Extraction",
                "sec_num": "6.1.1"
            },
            {
                "text": "The results for NS (Table 7) , show that the BERT LARGE model outperforms the other listed approaches, except for the development set in the inner-topic set-up. Furthermore, the cross-topic set-up is also more challenging for this task, compared to the inner-topic setting. Table 7 : F1 results on the dev and test sets for the inner-topic (INNER) and cross-topic (CROSS) set-ups for the nested segmentation task.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 19,
                        "end": 28,
                        "text": "(Table 7)",
                        "ref_id": null
                    },
                    {
                        "start": 274,
                        "end": 281,
                        "text": "Table 7",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Nested Segmentation",
                "sec_num": "6.1.2"
            },
            {
                "text": "For our experimental setup with BERT, we fine-tuned the whole (standard) base and large models, as well as both models with an additional final CRF-Layer. We selected the hyperparameters on the development sets and in particular the learning rate (range: 0.00001 -0.00009 in 0.00001 steps) and the dropout rate (range: 0 -0.5 in 0.1 steps). We used grid search, to cover all possible combinations. The model parameters were optimized with AdamW (Loshchilov and Hutter, 2018) . The training batch size was 32.",
                "cite_spans": [
                    {
                        "start": 445,
                        "end": 474,
                        "text": "(Loshchilov and Hutter, 2018)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hyperparameters",
                "sec_num": "6.2"
            },
            {
                "text": "Our reported results are the averages from three runs and one epoch took about 1 minute for the base models and less than 2 minutes for the large models on average. We fine-tuned for 10 epochs in the ATE task and for 20 epochs in the NS task. Detailed numbers of the final hyperparameters for each model and task can be found in the tables in the appendix \u00a7B.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hyperparameters",
                "sec_num": "6.2"
            },
            {
                "text": "Recalling our definition of aspects: They are defined as the main point(s) argument units are addressing. Furthermore, considering our annotation guidelines in \u00a7A, the most important point is usually not equal to the given main topic. An overview of the main errors found during the evaluation of the development sets for the best performing models in the inner-and cross-topic set-ups, is given below.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Error Analysis",
                "sec_num": "7"
            },
            {
                "text": "Aspect Term Extraction During the evaluation of ATE results, we observed a number of errors, which we grouped into the following categories:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Error Analysis",
                "sec_num": "7"
            },
            {
                "text": "\u2022 The models tend to favour NOUNS in general.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Error Analysis",
                "sec_num": "7"
            },
            {
                "text": "\u2022 Topic words, such as abortion or marijuana legalization, are often selected as aspects, which is in conflict with our guidelines. \u2022 Phrase constructions like thread of ... are often selected as a whole aspect by the models. For the benchmark, we, in contrast, focus on the main representative word of such constructions (e.g., suicide vs. thread of suicide). \u2022 In the case of ADJECTIVE+NOUN, we suggest to avoid general adjectives (e.g. new in new treatments), whereas focused adjectives that are part of the concept should be selected (e.g. recreational in recreational marijuana). Our observation is, that models in general could not sufficiently differentiate between such adjectives. \u2022 Models lack the understanding of domain-specific phrasems like in vitro fertilisation or life without parole and tend to select only the nominalized part of them (e.g., fertilisation, parole). Overall the inner-topic set-up achieved much better performace compared to the cross-topic set-up and both models showed significantly better results over the PoS-Patterns Matches baseline. However, in the cross-topic set-up we faced more repeated errors, such as the tendency to select topic words as aspects and not sufficient understanding of domain-specific phrasems.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Error Analysis",
                "sec_num": "7"
            },
            {
                "text": "Nested Segmentation The typology of the main errors in the NS task is similar to the ATE task. Additionally, in the NS task, a number of errors occured due to the wrong assigment of the stance labels, especially in the cross-topic set-up. These results confirm the insight from Trautmann et al. (2020a) , where most of the errors arose due to the wrong stance classification. Apparently, the BERT-based models tend to attach to sentiment words for the stance predictions, which is not always correlated.",
                "cite_spans": [
                    {
                        "start": 278,
                        "end": 302,
                        "text": "Trautmann et al. (2020a)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Error Analysis",
                "sec_num": "7"
            },
            {
                "text": "ABAM is a challenging task that, to the best of our knowledge, was not directly addressed before. We made two important contributions: First, we created and released a publicly available benchmark for Aspect-Based Argument Mining. Second, we showcased several baselines for the two subtasks, namely the Aspect Term Extraction and the Nested Segmentation, and performed an elaborative error analysis. We believe that these findings as well as the benchmark are of high potential for further downstream tasks, such as argument ranking, argument summarization and the search for counter-arguments on the aspect-level.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "8"
            },
            {
                "text": "For the future work, we foresee the investigation of unsupervised approaches for the Aspect Term Extraction task, since they showed promising results within the Aspect-Based Sentiment Analysis domain.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "8"
            },
            {
                "text": "Furthermore, it would be of high interest to incorporate topic-specific knowledge (e.g., understanding of phrasems) into the models to address the discussed error types. In another line of work, one could also explore distant supervision (Rakhmetullina et al., 2018) or domain adaptation methods (M\u00e4rz et al., 2019) , as well as relational approaches (Trautmann et al., 2020b) Table 9 : Hyperparameters (learning rate) for the NS task.",
                "cite_spans": [
                    {
                        "start": 238,
                        "end": 266,
                        "text": "(Rakhmetullina et al., 2018)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 296,
                        "end": 315,
                        "text": "(M\u00e4rz et al., 2019)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 351,
                        "end": 376,
                        "text": "(Trautmann et al., 2020b)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 377,
                        "end": 384,
                        "text": "Table 9",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "8"
            },
            {
                "text": "We used Kaggle's Kernels 5 for the processing of the data and Google's Colab 6 for the training (finetuning) of our models. The former service offers a single 12GB NVIDIA Tesla K80 GPU, while the latter a single 16GB NVIDIA Tesla P100 GPU.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "C Compute Resources",
                "sec_num": null
            },
            {
                "text": "The additionally reported numbers for accuracy, precision and recall can be found in the Table 10 for the ATE task, in the Table 11 for the NS task. The numbers are the average from three runs. Table 10 : Accuracy (acc.), precision (pre.) and recall (rec.) results on the dev and test sets for the inner-topic (INNER) and cross-topic (CROSS) set-ups for the aspect term extraction task. These are the average scores from three runs. Table 11 : Accuracy (acc.), precision (pre.) and recall (rec.) results on the dev and test sets for the innertopic (INNER) and cross-topic (CROSS) set-ups for the nested segmentation task (args). These are the average scores from three runs.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 89,
                        "end": 97,
                        "text": "Table 10",
                        "ref_id": "TABREF1"
                    },
                    {
                        "start": 123,
                        "end": 131,
                        "text": "Table 11",
                        "ref_id": "TABREF1"
                    },
                    {
                        "start": 194,
                        "end": 202,
                        "text": "Table 10",
                        "ref_id": "TABREF1"
                    },
                    {
                        "start": 433,
                        "end": 441,
                        "text": "Table 11",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "D Additional Results",
                "sec_num": null
            },
            {
                "text": "https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html 2 https://stanfordnlp.github.io/stanza/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Tokens that are not part of argument units (spans) get the stance-label NON in this sequence labeling task and aspects are always within argumentative spans.4 https://github.com/chakki-works/seqeval",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://www.kaggle.com/kernels 6 https://colab.research.google.com/signup",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "Annotation guidelines defined for the Aspect Term Extraction task in Aspect-Based Argument Mining.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A Annotation Guidelines",
                "sec_num": null
            },
            {
                "text": "\u2022 Given a main topic and an argumentative segment (unit), please select one or several options from the aspect candidates list.\u2022 If no aspect candidate could be selected from the list, pick the option None.While selecting the aspects, please consider the following rules:\u2022 An aspect is defined as the most important/relevant point for the argument made.\u2022 The most important point is usually not equal to the given main topic.\u2022 In case of doubt, shorter aspects candidates (generic terms; e.g. \"life span\") are prefered over longer candidates (e.g. \"prolonged life span\").",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task Description",
                "sec_num": null
            },
            {
                "text": "\u2022 The selected aspect(s) should be related to the topic in general.\u2022 The presence of AND/OR (usually) denote multiple aspects:-If a sentence contains multiple phrases (e.g., \"abortion causes breast cancer AND it kills unborn children.\"); -If there is an enumeration and objects connected by AND/OR (e.g. \"abortion causes breast cancer, infertility and pain.\");\u2022 In the case of ADJECTIVE+NOUN, general adjectives should be avoided (e.g. \"new\" in \"new treatments\"), whereas focused adjectives that are part of the concept should be selected (e.g. \"recreational\" in \"recreational marijuana\").\u2022 Please, use these test-questions for yourself while annotating:-Do you want this argument to be shown to someone, if they select this aspect(s) of the topic, or are other aspect terms in this argument more relevant for the point made? -Which words make you understand the argument most? -Which words are the most relevant and mainly form the meaning of the argument made? -If you would compress the argument into a few most relevant words, which words would that be?",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "General Hints",
                "sec_num": null
            },
            {
                "text": "The dropout rate of 0.1 was always the best option. The learning rates for the different models are displayed in Table 8 for the ATE task and in Table 9 for the NS task.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 113,
                        "end": 120,
                        "text": "Table 8",
                        "ref_id": null
                    },
                    {
                        "start": 145,
                        "end": 152,
                        "text": "Table 9",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "B Hyperparameters",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "A benchmark dataset for automatic detection of claims and evidence in the context of controversial topics",
                "authors": [
                    {
                        "first": "Ehud",
                        "middle": [],
                        "last": "Aharoni",
                        "suffix": ""
                    },
                    {
                        "first": "Anatoly",
                        "middle": [],
                        "last": "Polnarov",
                        "suffix": ""
                    },
                    {
                        "first": "Tamar",
                        "middle": [],
                        "last": "Lavee",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Hershcovich",
                        "suffix": ""
                    },
                    {
                        "first": "Ran",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "Ruty",
                        "middle": [],
                        "last": "Rinott",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Gutfreund",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Slonim",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the First Workshop on Argumentation Mining",
                "volume": "",
                "issue": "",
                "pages": "64--68",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ehud Aharoni, Anatoly Polnarov, Tamar Lavee, Daniel Hershcovich, Ran Levy, Ruty Rinott, Dan Gutfreund, and Noam Slonim. 2014. A benchmark dataset for automatic detection of claims and evidence in the context of controversial topics. In Proceedings of the First Workshop on Argumentation Mining, pages 64-68, Baltimore, Maryland, June. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Sequence labeling: A practical approach",
                "authors": [
                    {
                        "first": "Adnan",
                        "middle": [],
                        "last": "Akhundov",
                        "suffix": ""
                    },
                    {
                        "first": "Dietrich",
                        "middle": [],
                        "last": "Trautmann",
                        "suffix": ""
                    },
                    {
                        "first": "Georg",
                        "middle": [],
                        "last": "Groh",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1808.03926"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Adnan Akhundov, Dietrich Trautmann, and Georg Groh. 2018. Sequence labeling: A practical approach. arXiv preprint arXiv:1808.03926.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "End-to-end argumentation knowledge graph construction",
                "authors": [
                    {
                        "first": "Khalid",
                        "middle": [],
                        "last": "Al-Khatib",
                        "suffix": ""
                    },
                    {
                        "first": "Yufang",
                        "middle": [],
                        "last": "Hou",
                        "suffix": ""
                    },
                    {
                        "first": "Henning",
                        "middle": [],
                        "last": "Wachsmuth",
                        "suffix": ""
                    },
                    {
                        "first": "Charles",
                        "middle": [],
                        "last": "Jochim",
                        "suffix": ""
                    },
                    {
                        "first": "Francesca",
                        "middle": [],
                        "last": "Bonin",
                        "suffix": ""
                    },
                    {
                        "first": "Benno",
                        "middle": [],
                        "last": "Stein",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the AAAI Conference on Artificial Intelligence",
                "volume": "34",
                "issue": "",
                "pages": "7367--7374",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Khalid Al-Khatib, Yufang Hou, Henning Wachsmuth, Charles Jochim, Francesca Bonin, and Benno Stein. 2020. End-to-end argumentation knowledge graph construction. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 7367-7374.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "From arguments to key points: Towards automatic argument summarization",
                "authors": [
                    {
                        "first": "Roy",
                        "middle": [],
                        "last": "Bar-Haim",
                        "suffix": ""
                    },
                    {
                        "first": "Lilach",
                        "middle": [],
                        "last": "Eden",
                        "suffix": ""
                    },
                    {
                        "first": "Roni",
                        "middle": [],
                        "last": "Friedman",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Kantor",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Lahav",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Slonim",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2005.01619"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Roy Bar-Haim, Lilach Eden, Roni Friedman, Yoav Kantor, Dan Lahav, and Noam Slonim. 2020. From arguments to key points: Towards automatic argument summarization. arXiv preprint arXiv:2005.01619.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "AM-PERSAND: Argument mining for PERSuAsive oNline discussions",
                "authors": [
                    {
                        "first": "Tuhin",
                        "middle": [],
                        "last": "Chakrabarty",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Hidey",
                        "suffix": ""
                    },
                    {
                        "first": "Smaranda",
                        "middle": [],
                        "last": "Muresan",
                        "suffix": ""
                    },
                    {
                        "first": "Kathy",
                        "middle": [],
                        "last": "Mckeown",
                        "suffix": ""
                    },
                    {
                        "first": "Alyssa",
                        "middle": [],
                        "last": "Hwang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "2933--2943",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tuhin Chakrabarty, Christopher Hidey, Smaranda Muresan, Kathy McKeown, and Alyssa Hwang. 2019. AM- PERSAND: Argument mining for PERSuAsive oNline discussions. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2933-2943, Hong Kong, China, November. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "A coefficient of agreement for nominal scales",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Cohen",
                        "suffix": ""
                    }
                ],
                "year": 1960,
                "venue": "Educational and psychological measurement",
                "volume": "20",
                "issue": "1",
                "pages": "37--46",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jacob Cohen. 1960. A coefficient of agreement for nominal scales. Educational and psychological measurement, 20(1):37-46.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "4171--4186",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirec- tional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota, June. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Nested named entity recognition",
                "authors": [
                    {
                        "first": "Jenny",
                        "middle": [
                            "Rose"
                        ],
                        "last": "Finkel",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "141--150",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jenny Rose Finkel and Christopher D. Manning. 2009. Nested named entity recognition. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 141-150, Singapore, August. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "A system for summarizing and visualizing arguments in subjective documents: Toward supporting decision making",
                "authors": [
                    {
                        "first": "Atsushi",
                        "middle": [],
                        "last": "Fujii",
                        "suffix": ""
                    },
                    {
                        "first": "Tetsuya",
                        "middle": [],
                        "last": "Ishikawa",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of the Workshop on Sentiment and Subjectivity in Text",
                "volume": "",
                "issue": "",
                "pages": "15--22",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Atsushi Fujii and Tetsuya Ishikawa. 2006. A system for summarizing and visualizing arguments in subjective documents: Toward supporting decision making. In Proceedings of the Workshop on Sentiment and Subjectivity in Text, pages 15-22.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Decompositional argument mining: A general purpose approach for argument graph construction",
                "authors": [
                    {
                        "first": "Debela",
                        "middle": [],
                        "last": "Gemechu",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Reed",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "516--526",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Debela Gemechu and Chris Reed. 2019. Decompositional argument mining: A general purpose approach for argument graph construction. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 516-526. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "SemEval-2018 task 12: The argument reasoning comprehension task",
                "authors": [
                    {
                        "first": "Ivan",
                        "middle": [],
                        "last": "Habernal",
                        "suffix": ""
                    },
                    {
                        "first": "Henning",
                        "middle": [],
                        "last": "Wachsmuth",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    },
                    {
                        "first": "Benno",
                        "middle": [],
                        "last": "Stein",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of The 12th International Workshop on Semantic Evaluation",
                "volume": "",
                "issue": "",
                "pages": "763--772",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ivan Habernal, Henning Wachsmuth, Iryna Gurevych, and Benno Stein. 2018. SemEval-2018 task 12: The argument reasoning comprehension task. In Proceedings of The 12th International Workshop on Semantic Evaluation, pages 763-772, New Orleans, Louisiana, June. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Adversarial training for aspect-based sentiment analysis with bert",
                "authors": [
                    {
                        "first": "Akbar",
                        "middle": [],
                        "last": "Karimi",
                        "suffix": ""
                    },
                    {
                        "first": "Leonardo",
                        "middle": [],
                        "last": "Rossi",
                        "suffix": ""
                    },
                    {
                        "first": "Andrea",
                        "middle": [],
                        "last": "Prati",
                        "suffix": ""
                    },
                    {
                        "first": "Katharina",
                        "middle": [],
                        "last": "Full",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2001.11316"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Akbar Karimi, Leonardo Rossi, Andrea Prati, and Katharina Full. 2020. Adversarial training for aspect-based sentiment analysis with bert. arXiv preprint arXiv:2001.11316.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Nested named entity recognition revisited",
                "authors": [
                    {
                        "first": "Arzoo",
                        "middle": [],
                        "last": "Katiyar",
                        "suffix": ""
                    },
                    {
                        "first": "Claire",
                        "middle": [],
                        "last": "Cardie",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "861--871",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Arzoo Katiyar and Claire Cardie. 2018. Nested named entity recognition revisited. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Lan- guage Technologies, Volume 1 (Long Papers), pages 861-871, New Orleans, Louisiana, June. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "An empirical study of span representations in argumentation structure parsing",
                "authors": [
                    {
                        "first": "Tatsuki",
                        "middle": [],
                        "last": "Kuribayashi",
                        "suffix": ""
                    },
                    {
                        "first": "Hiroki",
                        "middle": [],
                        "last": "Ouchi",
                        "suffix": ""
                    },
                    {
                        "first": "Naoya",
                        "middle": [],
                        "last": "Inoue",
                        "suffix": ""
                    },
                    {
                        "first": "Paul",
                        "middle": [],
                        "last": "Reisert",
                        "suffix": ""
                    },
                    {
                        "first": "Toshinori",
                        "middle": [],
                        "last": "Miyoshi",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "4691--4698",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tatsuki Kuribayashi, Hiroki Ouchi, Naoya Inoue, Paul Reisert, Toshinori Miyoshi, Jun Suzuki, and Kentaro Inui. 2019. An empirical study of span representations in argumentation structure parsing. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4691-4698, Florence, Italy, July. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Unsupervised corpus-wide claim detection",
                "authors": [
                    {
                        "first": "Ran",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "Shai",
                        "middle": [],
                        "last": "Gretz",
                        "suffix": ""
                    },
                    {
                        "first": "Benjamin",
                        "middle": [],
                        "last": "Sznajder",
                        "suffix": ""
                    },
                    {
                        "first": "Shay",
                        "middle": [],
                        "last": "Hummel",
                        "suffix": ""
                    },
                    {
                        "first": "Ranit",
                        "middle": [],
                        "last": "Aharonov",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Slonim",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 4th Workshop on Argument Mining",
                "volume": "",
                "issue": "",
                "pages": "79--84",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ran Levy, Shai Gretz, Benjamin Sznajder, Shay Hummel, Ranit Aharonov, and Noam Slonim. 2017. Unsuper- vised corpus-wide claim detection. In Proceedings of the 4th Workshop on Argument Mining, pages 79-84, Copenhagen, Denmark, September. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Decoupled weight decay regularization",
                "authors": [
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Loshchilov",
                        "suffix": ""
                    },
                    {
                        "first": "Frank",
                        "middle": [],
                        "last": "Hutter",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ilya Loshchilov and Frank Hutter. 2018. Decoupled weight decay regularization. In International Conference on Learning Representations.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Domain adaptation for part-of-speech tagging of noisy user-generated text",
                "authors": [
                    {
                        "first": "Luisa",
                        "middle": [],
                        "last": "M\u00e4rz",
                        "suffix": ""
                    },
                    {
                        "first": "Dietrich",
                        "middle": [],
                        "last": "Trautmann",
                        "suffix": ""
                    },
                    {
                        "first": "Benjamin",
                        "middle": [],
                        "last": "Roth",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "3415--3420",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Luisa M\u00e4rz, Dietrich Trautmann, and Benjamin Roth. 2019. Domain adaptation for part-of-speech tagging of noisy user-generated text. In Proceedings of the 2019 Conference of the North American Chapter of the Associ- ation for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 3415-3420.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Using summarization to discover argument facets in online idealogical dialog",
                "authors": [
                    {
                        "first": "Amita",
                        "middle": [],
                        "last": "Misra",
                        "suffix": ""
                    },
                    {
                        "first": "Pranav",
                        "middle": [],
                        "last": "Anand",
                        "suffix": ""
                    },
                    {
                        "first": "Jean",
                        "middle": [
                            "E"
                        ],
                        "last": "Fox Tree",
                        "suffix": ""
                    },
                    {
                        "first": "Marilyn",
                        "middle": [],
                        "last": "Walker",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "430--440",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Amita Misra, Pranav Anand, Jean E. Fox Tree, and Marilyn Walker. 2015. Using summarization to discover argument facets in online idealogical dialog. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 430-440, Denver, Colorado, May-June. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Measuring the similarity of sentential arguments in dialogue",
                "authors": [
                    {
                        "first": "Amita",
                        "middle": [],
                        "last": "Misra",
                        "suffix": ""
                    },
                    {
                        "first": "Brian",
                        "middle": [],
                        "last": "Ecker",
                        "suffix": ""
                    },
                    {
                        "first": "Marilyn",
                        "middle": [],
                        "last": "Walker",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue",
                "volume": "",
                "issue": "",
                "pages": "276--287",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Amita Misra, Brian Ecker, and Marilyn Walker. 2016. Measuring the similarity of sentential arguments in dia- logue. In Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 276-287, Los Angeles, September. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "SemEval-2014 task 4: Aspect based sentiment analysis",
                "authors": [
                    {
                        "first": "Maria",
                        "middle": [],
                        "last": "Pontiki",
                        "suffix": ""
                    },
                    {
                        "first": "Dimitris",
                        "middle": [],
                        "last": "Galanis",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Pavlopoulos",
                        "suffix": ""
                    },
                    {
                        "first": "Harris",
                        "middle": [],
                        "last": "Papageorgiou",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 8th International Workshop on Semantic Evaluation",
                "volume": "",
                "issue": "",
                "pages": "27--35",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Maria Pontiki, Dimitris Galanis, John Pavlopoulos, Harris Papageorgiou, Ion Androutsopoulos, and Suresh Man- andhar. 2014. SemEval-2014 task 4: Aspect based sentiment analysis. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 27-35, Dublin, Ireland, August. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Semeval-2015 task 12: Aspect based sentiment analysis",
                "authors": [
                    {
                        "first": "Maria",
                        "middle": [],
                        "last": "Pontiki",
                        "suffix": ""
                    },
                    {
                        "first": "Dimitrios",
                        "middle": [],
                        "last": "Galanis",
                        "suffix": ""
                    },
                    {
                        "first": "Harris",
                        "middle": [],
                        "last": "Papageorgiou",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 9th international workshop on semantic evaluation",
                "volume": "",
                "issue": "",
                "pages": "486--495",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Maria Pontiki, Dimitrios Galanis, Harris Papageorgiou, Suresh Manandhar, and Ion Androutsopoulos. 2015. Semeval-2015 task 12: Aspect based sentiment analysis. In Proceedings of the 9th international workshop on semantic evaluation (SemEval 2015), pages 486-495.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Semeval-2016 task 5: Aspect based sentiment analysis",
                "authors": [
                    {
                        "first": "Maria",
                        "middle": [],
                        "last": "Pontiki",
                        "suffix": ""
                    },
                    {
                        "first": "Dimitrios",
                        "middle": [],
                        "last": "Galanis",
                        "suffix": ""
                    },
                    {
                        "first": "Haris",
                        "middle": [],
                        "last": "Papageorgiou",
                        "suffix": ""
                    },
                    {
                        "first": "Ion",
                        "middle": [],
                        "last": "Androutsopoulos",
                        "suffix": ""
                    },
                    {
                        "first": "Suresh",
                        "middle": [],
                        "last": "Manandhar",
                        "suffix": ""
                    },
                    {
                        "first": "Mohammad",
                        "middle": [],
                        "last": "Al-Smadi",
                        "suffix": ""
                    },
                    {
                        "first": "Mahmoud",
                        "middle": [],
                        "last": "Al-Ayyoub",
                        "suffix": ""
                    },
                    {
                        "first": "Yanyan",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Bing",
                        "middle": [],
                        "last": "Qin",
                        "suffix": ""
                    },
                    {
                        "first": "Orph\u00e9e",
                        "middle": [],
                        "last": "De Clercq",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "10th International Workshop on Semantic Evaluation",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Maria Pontiki, Dimitrios Galanis, Haris Papageorgiou, Ion Androutsopoulos, Suresh Manandhar, Mohammad Al- Smadi, Mahmoud Al-Ayyoub, Yanyan Zhao, Bing Qin, Orph\u00e9e De Clercq, et al. 2016. Semeval-2016 task 5: Aspect based sentiment analysis. In 10th International Workshop on Semantic Evaluation (SemEval 2016).",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Distant supervision for emotion classification task using emoji2emotion",
                "authors": [
                    {
                        "first": "Aisulu",
                        "middle": [],
                        "last": "Rakhmetullina",
                        "suffix": ""
                    },
                    {
                        "first": "Dietrich",
                        "middle": [],
                        "last": "Trautmann",
                        "suffix": ""
                    },
                    {
                        "first": "Georg",
                        "middle": [],
                        "last": "Groh",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 1st International Workshop on Emoji Understanding and Applications in Social Media",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Aisulu Rakhmetullina, Dietrich Trautmann, and Georg Groh. 2018. Distant supervision for emotion classification task using emoji2emotion. In Proceedings of the 1st International Workshop on Emoji Understanding and Applications in Social Media (Emoji2018). Stanford, CA, USA. http://ceurws. org, volume 2130.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Classification and clustering of arguments with contextualized word embeddings",
                "authors": [
                    {
                        "first": "Nils",
                        "middle": [],
                        "last": "Reimers",
                        "suffix": ""
                    },
                    {
                        "first": "Benjamin",
                        "middle": [],
                        "last": "Schiller",
                        "suffix": ""
                    },
                    {
                        "first": "Tilman",
                        "middle": [],
                        "last": "Beck",
                        "suffix": ""
                    },
                    {
                        "first": "Johannes",
                        "middle": [],
                        "last": "Daxenberger",
                        "suffix": ""
                    },
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Stab",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nils Reimers, Benjamin Schiller, Tilman Beck, Johannes Daxenberger, Christian Stab, and Iryna Gurevych. 2019. Classification and clustering of arguments with contextualized word embeddings. In Proceedings of the 57th",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Annual Meeting of the Association for Computational Linguistics",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "567--578",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Annual Meeting of the Association for Computational Linguistics, pages 567-578, Florence, Italy, July. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Nlp approaches to computational argumentation",
                "authors": [
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Slonim",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Reed",
                        "suffix": ""
                    },
                    {
                        "first": "Benno",
                        "middle": [],
                        "last": "Stein",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Noam Slonim, Iryna Gurevych, Chris Reed, and Benno Stein. 2016. Nlp approaches to computational argumen- tation. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Cross-topic argument mining from heterogeneous sources",
                "authors": [
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Stab",
                        "suffix": ""
                    },
                    {
                        "first": "Tristan",
                        "middle": [],
                        "last": "Miller",
                        "suffix": ""
                    },
                    {
                        "first": "Benjamin",
                        "middle": [],
                        "last": "Schiller",
                        "suffix": ""
                    },
                    {
                        "first": "Pranav",
                        "middle": [],
                        "last": "Rai",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "3664--3674",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christian Stab, Tristan Miller, Benjamin Schiller, Pranav Rai, and Iryna Gurevych. 2018. Cross-topic argument mining from heterogeneous sources. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3664-3674. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Neural architectures for nested NER through linearization",
                "authors": [
                    {
                        "first": "Jana",
                        "middle": [],
                        "last": "Strakov\u00e1",
                        "suffix": ""
                    },
                    {
                        "first": "Milan",
                        "middle": [],
                        "last": "Straka",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "5326--5331",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jana Strakov\u00e1, Milan Straka, and Jan Hajic. 2019. Neural architectures for nested NER through linearization. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5326-5331, Florence, Italy, July. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "An introduction to conditional random fields. Foundations and Trends R in Machine Learning",
                "authors": [
                    {
                        "first": "Charles",
                        "middle": [],
                        "last": "Sutton",
                        "suffix": ""
                    },
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Mccallum",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "",
                "volume": "4",
                "issue": "",
                "pages": "267--373",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Charles Sutton, Andrew McCallum, et al. 2012. An introduction to conditional random fields. Foundations and Trends R in Machine Learning, 4(4):267-373.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Hinrich Sch\u00fctze, and Iryna Gurevych. 2020a. Finegrained argument unit recognition and classification",
                "authors": [
                    {
                        "first": "Dietrich",
                        "middle": [],
                        "last": "Trautmann",
                        "suffix": ""
                    },
                    {
                        "first": "Johannes",
                        "middle": [],
                        "last": "Daxenberger",
                        "suffix": ""
                    },
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Stab",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "The Thirty-Fourth AAAI Conf. on Artificial Intelligence",
                "volume": "2020",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dietrich Trautmann, Johannes Daxenberger, Christian Stab, Hinrich Sch\u00fctze, and Iryna Gurevych. 2020a. Fine- grained argument unit recognition and classification. In The Thirty-Fourth AAAI Conf. on Artificial Intelligence, New York City, NY, USA, AAAI 2020. AAAI Press, 2.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Thomas Seidl, and Hinrich Sch\u00fctze. 2020b. Relational and fine-grained argument mining",
                "authors": [
                    {
                        "first": "Dietrich",
                        "middle": [],
                        "last": "Trautmann",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Fromm",
                        "suffix": ""
                    },
                    {
                        "first": "Volker",
                        "middle": [],
                        "last": "Tresp",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dietrich Trautmann, Michael Fromm, Volker Tresp, Thomas Seidl, and Hinrich Sch\u00fctze. 2020b. Relational and fine-grained argument mining. Datenbank-Spektrum.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Flavius Frasincar, and Rommert Dekker. 2020. A hybrid approach for aspect-based sentiment analysis using deep contextual word embeddings and hierarchical attention",
                "authors": [
                    {
                        "first": "Maria",
                        "middle": [],
                        "last": "Mihaela Trusca",
                        "suffix": ""
                    },
                    {
                        "first": "Daan",
                        "middle": [],
                        "last": "Wassenberg",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2004.08673"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Maria Mihaela Trusca, Daan Wassenberg, Flavius Frasincar, and Rommert Dekker. 2020. A hybrid approach for aspect-based sentiment analysis using deep contextual word embeddings and hierarchical attention. arXiv preprint arXiv:2004.08673.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Understanding interobserver agreement: the kappa statistic",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Anthony",
                        "suffix": ""
                    },
                    {
                        "first": "Joanne",
                        "middle": [
                            "M"
                        ],
                        "last": "Viera",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Garrett",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Fam med",
                "volume": "37",
                "issue": "5",
                "pages": "360--363",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Anthony J Viera, Joanne M Garrett, et al. 2005. Understanding interobserver agreement: the kappa statistic. Fam med, 37(5):360-363.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "PageRank\" for argument relevance",
                "authors": [
                    {
                        "first": "Henning",
                        "middle": [],
                        "last": "Wachsmuth",
                        "suffix": ""
                    },
                    {
                        "first": "Benno",
                        "middle": [],
                        "last": "Stein",
                        "suffix": ""
                    },
                    {
                        "first": "Yamen",
                        "middle": [],
                        "last": "Ajjour",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "1117--1127",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Henning Wachsmuth, Benno Stein, and Yamen Ajjour. 2017. \"PageRank\" for argument relevance. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 1117-1127, Valencia, Spain, April. Association for Computational Linguistics.",
                "links": null
            }
        },
        "ref_entries": {
            "TABREF1": {
                "text": "The final set of the 44 Part-of-Speech patterns.",
                "type_str": "table",
                "num": null,
                "html": null,
                "content": "<table/>"
            },
            "TABREF3": {
                "text": "Count of sentences, segments and (total & unique) aspects in the ABAM corpus.",
                "type_str": "table",
                "num": null,
                "html": null,
                "content": "<table/>"
            },
            "TABREF5": {
                "text": "",
                "type_str": "table",
                "num": null,
                "html": null,
                "content": "<table/>"
            },
            "TABREF7": {
                "text": "Sample counts per set and domain for the aspect term extraction task.",
                "type_str": "table",
                "num": null,
                "html": null,
                "content": "<table><tr><td>set \\domain</td><td>INNER</td><td>CROSS</td></tr><tr><td>train</td><td>2268</td><td>2097</td></tr><tr><td>dev</td><td>307</td><td>478</td></tr><tr><td>test</td><td>636</td><td>1185</td></tr></table>"
            },
            "TABREF9": {
                "text": "",
                "type_str": "table",
                "num": null,
                "html": null,
                "content": "<table><tr><td>domain</td><td colspan=\"2\">INNER</td><td colspan=\"2\">CROSS</td></tr><tr><td>model \\set</td><td>dev</td><td>test</td><td>dev</td><td>test</td></tr><tr><td>BERT BASE</td><td>.507</td><td>.465</td><td>.278</td><td>.338</td></tr><tr><td>BERT BASE +CRF</td><td>.521</td><td>.480</td><td>.270</td><td>.332</td></tr><tr><td>BERT LARGE</td><td>.557</td><td>.520</td><td>.315</td><td>.369</td></tr><tr><td>BERT LARGE +CRF</td><td>.563</td><td>.517</td><td>.293</td><td>.358</td></tr><tr><td>: F1 results on the dev and test sets</td><td/><td/><td/><td/></tr><tr><td>for the inner-topic (INNER) and cross-topic</td><td/><td/><td/><td/></tr><tr><td>(CROSS) set-ups for the aspect term extraction</td><td/><td/><td/><td/></tr><tr><td>task.</td><td/><td/><td/><td/></tr></table>"
            },
            "TABREF10": {
                "text": "for this task.",
                "type_str": "table",
                "num": null,
                "html": null,
                "content": "<table><tr><td>domain</td><td>INNER</td><td>CROSS</td></tr><tr><td>BERT BASE</td><td>6e \u2212 5</td><td>8e \u2212 5</td></tr><tr><td>BERT BASE +CRF</td><td>9e \u2212 5</td><td>9e \u2212 5</td></tr><tr><td>BERT LARGE</td><td>9e \u2212 5</td><td>9e \u2212 5</td></tr><tr><td>BERT LARGE +CRF</td><td>9e \u2212 5</td><td>8e \u2212 5</td></tr></table>"
            },
            "TABREF11": {
                "text": "Hyperparameters (learning rate) for the ATE task.",
                "type_str": "table",
                "num": null,
                "html": null,
                "content": "<table><tr><td>domain</td><td>INNER</td><td>CROSS</td></tr><tr><td>BERT BASE</td><td>7e \u2212 5</td><td>5e \u2212 5</td></tr><tr><td>BERT BASE +CRF</td><td>8e \u2212 5</td><td>6e \u2212 5</td></tr><tr><td>BERT LARGE</td><td>5e \u2212 5</td><td>7e \u2212 5</td></tr><tr><td>BERT LARGE +CRF</td><td>7e \u2212 5</td><td>8e \u2212 5</td></tr></table>"
            }
        }
    }
}