File size: 127,498 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T02:10:04.437023Z"
    },
    "title": "Use of Claim Graphing and Argumentation Schemes in Biomedical Literature: A Manual Approach to Analysis",
    "authors": [
        {
            "first": "Eli",
            "middle": [],
            "last": "Moser",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "McMaster University Hamilton",
                "location": {
                    "region": "Ontario",
                    "country": "Canada"
                }
            },
            "email": "mosere@mcmaster.ca"
        },
        {
            "first": "Robert",
            "middle": [
                "E"
            ],
            "last": "Mercer",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "The University of Western Ontario",
                "location": {
                    "settlement": "London",
                    "region": "Ontario",
                    "country": "Canada"
                }
            },
            "email": "mercer@csd.uwo.ca"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Argumentation in an experimental life science paper consists of a main claim being supported with reasoned argumentative steps based on the data garnered from the experiments that were carried out. In this paper we report on an investigation of the large scale argumentation structure found when examining five biochemistry journal publications. One outcome of this investigation of biochemistry articles suggests that argumentation schemes originally designed for genetic research articles may transfer to experimental biomedical literature in general. Our use of these argumentation schemes shows that claims depend not only on experimental data but also on other claims. The tendency for claims to use other claims as their supporting evidence in addition to the experimental data led to two novel models that have provided a better understanding of the large scale argumentation structure of a complete biochemistry paper. First, the claim graph displays the claims within a paper, their interactions, and their evidence. Second, another aspect of this argumentation network is further illustrated by the Model of Informational Hierarchy (MIH) which visualizes at a meta-level the flow of reasoning provided by the authors of the paper and also connects the main claim to the paper's title. Together, these models, which have been produced by a manual examination of the biochemistry articles, would be likely candidates for a computational method that analyzes the large scale argumentation structure.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Argumentation in an experimental life science paper consists of a main claim being supported with reasoned argumentative steps based on the data garnered from the experiments that were carried out. In this paper we report on an investigation of the large scale argumentation structure found when examining five biochemistry journal publications. One outcome of this investigation of biochemistry articles suggests that argumentation schemes originally designed for genetic research articles may transfer to experimental biomedical literature in general. Our use of these argumentation schemes shows that claims depend not only on experimental data but also on other claims. The tendency for claims to use other claims as their supporting evidence in addition to the experimental data led to two novel models that have provided a better understanding of the large scale argumentation structure of a complete biochemistry paper. First, the claim graph displays the claims within a paper, their interactions, and their evidence. Second, another aspect of this argumentation network is further illustrated by the Model of Informational Hierarchy (MIH) which visualizes at a meta-level the flow of reasoning provided by the authors of the paper and also connects the main claim to the paper's title. Together, these models, which have been produced by a manual examination of the biochemistry articles, would be likely candidates for a computational method that analyzes the large scale argumentation structure.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "The large and ever-growing quantity of biomedical literature is well known (Hunter and Cohen, 2006) . Included in biomedicine are the foundational experimental life sciences, such as genetics and biochemistry. Despite the importance and abundance of this literature, few computational models have been proposed that address the argumentation that is used to support the claims made in the papers describing outcomes of experiments. Such models would allow the mechanization of argumentation analysis which could enable scientific claim validation, a task made difficult because of the huge number of claims being made. A claim is any statement made within a paper which presents a novel finding based on the conducted experiment (Leonelli, 2015) . A claim requires evidence to verify it. The structure of individual claims and their evidence is well illustrated by the Toulmin model (Toulmin, 2003) , and the logic underlying these relationships can be categorized with argumentation schemes and premise classes (Karbach, 1987; Green, 2014a; Al Qassas et al., 2015; Green, 2015; Mayer et al., 2018 ).",
                "cite_spans": [
                    {
                        "start": 75,
                        "end": 99,
                        "text": "(Hunter and Cohen, 2006)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 729,
                        "end": 745,
                        "text": "(Leonelli, 2015)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 883,
                        "end": 898,
                        "text": "(Toulmin, 2003)",
                        "ref_id": "BIBREF43"
                    },
                    {
                        "start": 1012,
                        "end": 1027,
                        "text": "(Karbach, 1987;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 1028,
                        "end": 1041,
                        "text": "Green, 2014a;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 1042,
                        "end": 1065,
                        "text": "Al Qassas et al., 2015;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 1066,
                        "end": 1078,
                        "text": "Green, 2015;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 1079,
                        "end": 1097,
                        "text": "Mayer et al., 2018",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The Toulmin model of argumentation is adept at illustrating the components of an individual argument. When composing argumentation text, every claim that is made must be supported by evidence and a warrant connecting the claim and evidence (Karbach, 1987) . In the experimental sciences, the warrant is very often implicit, given that the intended audience can easily fill that slot in the argument structure. These arguments with implicit premises (and sometimes conclusions) are called enthymemes. Although each individual argument can be modelled in this way, it fails to recognize the variations in how claims relate to their supporting evidence, and the means by which the warrant supports that relation. To account for this, the Toulmin model can be supplemented with argumentation schemes. Argumentation schemes vary by context, and none have been synthesized for biomedical literature specifically. In this research a set of 15 novel argumentation schemes developed for categorizing genetic research argumentation (Green, 2015) were used and were found to be fully transferable beyond genetics to biochemistry arguments. While categorizing all of the claims of a paper, it became evident that often the evidence for a claim was another claim, and that the majority of claims within the paper were interconnected in this way. As a result, it is possible to construct a visual representation of all of a paper's claims in a graph. This graph illustrates which claims are supported by what data and also which claims are the most representative of a paper's findings overall. The varying degrees of claim significance demonstrated by this graph can be organized into a hierarchical model, which accounts for all data within a paper while still allowing for nuance to be maintained. In addition, the analysis of individual claims is not lost, as each progression of information from one level of specificity to the next is facilitated by argumentation schemes and the Toulmin model structure.",
                "cite_spans": [
                    {
                        "start": 240,
                        "end": 255,
                        "text": "(Karbach, 1987)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 1022,
                        "end": 1035,
                        "text": "(Green, 2015)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The next step to understanding the argumentation set forth in a scientific paper is analyzing the complete argumentation structure of the full paper. We present here our preliminary work on the analysis of this larger scale argumentation structure of biochemistry papers. This study is done by examining the flow of the paper from its data used as premises to support certain claims, some of which are used as premises for other claims, ending finally with the main claim of the paper. This research follows a similar path to Lawrence and Reed (2017) , who manually constructed large scale graphs, and adds to the argumentation structure research by examining complete biochemistry articles and linking the argument schemes. Two models of analysis will demonstrate the interactions of claims. The first model is a highlevel argument diagram of the data and claims structure capturing the essence of Green (2014b) and in the spirit of other high-level diagramming models (Stab et al., 2014; Kirschner et al., 2015; and diagramming-assisting software (Janier et al., 2014) . The network of data and claims allows one to investigate its properties. In particular, the data is found in figures, tables, and other comments by the paper's authors. This data initiates the argumentation flow which ends in the main claim of the paper. This investigation leads to the second model, the Model of Informational Hierarchy (MIH). It makes more precise the units of the argument structure and their position in that structure. This hierarchical description of data and claims differs from other argumentation structures such as online debates (Lawrence and Reed, 2017) and student essays . In addition to the main focus, our research also demonstrates the applicability of Green's (2014a; argumentation schemes not only to genetics, but also to other biomedical research, biochemistry, in particular. Also, as an application of these models, the MIH can be viewed as a precursor to biomedical literature summarization.",
                "cite_spans": [
                    {
                        "start": 526,
                        "end": 550,
                        "text": "Lawrence and Reed (2017)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 899,
                        "end": 912,
                        "text": "Green (2014b)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 970,
                        "end": 989,
                        "text": "(Stab et al., 2014;",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 990,
                        "end": 1013,
                        "text": "Kirschner et al., 2015;",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 1049,
                        "end": 1070,
                        "text": "(Janier et al., 2014)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 1630,
                        "end": 1655,
                        "text": "(Lawrence and Reed, 2017)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 1760,
                        "end": 1775,
                        "text": "Green's (2014a;",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The paper is organized as follows: Some related work to provide context for the current work is presented next. This is followed by a short description of the the five biochemistry papers that were used in the study. Then, the two main contributions, the claim graph and the Model of Informational Hierarchy, are explained. We conclude with a summary and some proposed future research directions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Our interest in investigating the larger scale argumentation structure has a similar motivation to the works of Wachsmuth et al. (2017) and Lawrence and Reed (2017) , who are interested in investigating various properties of large scale argument networks. This new dimension adds to the previous works they point to as examples that consider particular aspects of argument structure: distinguishing argumentative and non-argumentative sentences (Moens et al., 2007) , classifying text spans as premises or conclusions (Mochales Palau and Moens, 2009) , classifying relations between specific sets of premises and their conclusion (Feng and Hirst, 2011), or classifying the different types of premise that can support a given conclusion (Park and Cardie, 2014) . In addition to these examples, various manual and computational studies have been done to analyze different argumentation aspects, including: the structure of valid arguments in legal documents using feature-based machine learning (Mochales Palau and Moens, 2011), opinion and didatic texts using Rhetorical Structure Theory (Saint-Dizier, 2012), debates using textual entailment (Cabrio and Villata, 2012) , and deconstructing the argumentation into the premises (referred to as evidence in the evidence-based medical text genre) and conclusions (also referred to as claims) in scientific articles manually, with feature-based machine learning, or with neural end-to-end machine learning (Blake, 2010; Teufel, 2010; Green et al., 2011; Liakata et al., 2012; S\u00e1ndor and de Waard, 2012; Longo et al., 2012; Longo and Hederman, 2013; Graves et al., 2014; Green, 2014a; Green, 2015; Kirschner et al., 2015; Mayer et al., 2018; Mayer et al., 2020) . Lippi and Torroni (2015) provide an excellent survey of research done until 2015 which is further updated to 2018 by Stede and Schneider (2018) . Corpus creation and analysis has also been another aspect of argumentation mining studies . More recently, neural net machine learning has provided a new machine learning paradigm for doing cross-domain claim analysis . and Mayer et al. (2020) provide neural end-to-end models for computational argumentation mining. They label student essays and randomized control trials, respectively, with a BIO encoding to indicate argumentative and non-argumentative text spans, component type, and the stance between the components.",
                "cite_spans": [
                    {
                        "start": 112,
                        "end": 135,
                        "text": "Wachsmuth et al. (2017)",
                        "ref_id": "BIBREF44"
                    },
                    {
                        "start": 140,
                        "end": 164,
                        "text": "Lawrence and Reed (2017)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 445,
                        "end": 465,
                        "text": "(Moens et al., 2007)",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 538,
                        "end": 550,
                        "text": "Moens, 2009)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 736,
                        "end": 759,
                        "text": "(Park and Cardie, 2014)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 1142,
                        "end": 1168,
                        "text": "(Cabrio and Villata, 2012)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 1451,
                        "end": 1464,
                        "text": "(Blake, 2010;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 1465,
                        "end": 1478,
                        "text": "Teufel, 2010;",
                        "ref_id": "BIBREF41"
                    },
                    {
                        "start": 1479,
                        "end": 1498,
                        "text": "Green et al., 2011;",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 1499,
                        "end": 1520,
                        "text": "Liakata et al., 2012;",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 1521,
                        "end": 1547,
                        "text": "S\u00e1ndor and de Waard, 2012;",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 1548,
                        "end": 1567,
                        "text": "Longo et al., 2012;",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 1568,
                        "end": 1593,
                        "text": "Longo and Hederman, 2013;",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 1594,
                        "end": 1614,
                        "text": "Graves et al., 2014;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 1615,
                        "end": 1628,
                        "text": "Green, 2014a;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 1629,
                        "end": 1641,
                        "text": "Green, 2015;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 1642,
                        "end": 1665,
                        "text": "Kirschner et al., 2015;",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 1666,
                        "end": 1685,
                        "text": "Mayer et al., 2018;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 1686,
                        "end": 1705,
                        "text": "Mayer et al., 2020)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 1708,
                        "end": 1732,
                        "text": "Lippi and Torroni (2015)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 1825,
                        "end": 1851,
                        "text": "Stede and Schneider (2018)",
                        "ref_id": "BIBREF38"
                    },
                    {
                        "start": 2078,
                        "end": 2097,
                        "text": "Mayer et al. (2020)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "The rich history of work in argumentation mining has tended to focus on non-scientific text, however work in scientific text argumentation mining does have a following. The research done on various aspects of argumentation in scientific text begins with Argumentation Zoning (AZ) (Teufel et al., 1999; Teufel and Moens, 2002) , also being some of the earliest work in argumentation mining. AZ is based on rhetorical moves, an important precursor for mapping out certain aspects of argument structure. Rhetorical moves, captured as AZ or more generally, have been investigated in a few science genres: computational linguistics (Teufel et al., 1999; Teufel and Moens, 2002) , biochemistry (Kanoksilapatham, 2005) , molecular biology (Mizuta et al., 2006) , and chemistry (Teufel, 2010) . Argumentation schemes (Walton et al., 2008) have been an important aspect of argumentation and argumentation mining. Green (2014a; has provided an important addition to these argumentation schemes for experimental scientific writing, specifically for genetics articles. While Green's argumentation schemes deal with aspects of the experiment, its outcomes, and the analysis of those outcomes, other work (Teufel, 2014) focusses on a different aspect of argumentation (via rhetorical moves): placing a research paper in its scientific context. Al Qassas et al. 2015propose argumentation schemes for clinical discussions and use these schemes in an argument graph to analyze a discussion.",
                "cite_spans": [
                    {
                        "start": 280,
                        "end": 301,
                        "text": "(Teufel et al., 1999;",
                        "ref_id": "BIBREF40"
                    },
                    {
                        "start": 302,
                        "end": 325,
                        "text": "Teufel and Moens, 2002)",
                        "ref_id": "BIBREF39"
                    },
                    {
                        "start": 627,
                        "end": 648,
                        "text": "(Teufel et al., 1999;",
                        "ref_id": "BIBREF40"
                    },
                    {
                        "start": 649,
                        "end": 672,
                        "text": "Teufel and Moens, 2002)",
                        "ref_id": "BIBREF39"
                    },
                    {
                        "start": 688,
                        "end": 711,
                        "text": "(Kanoksilapatham, 2005)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 732,
                        "end": 753,
                        "text": "(Mizuta et al., 2006)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 770,
                        "end": 784,
                        "text": "(Teufel, 2010)",
                        "ref_id": "BIBREF41"
                    },
                    {
                        "start": 809,
                        "end": 830,
                        "text": "(Walton et al., 2008)",
                        "ref_id": "BIBREF45"
                    },
                    {
                        "start": 904,
                        "end": 917,
                        "text": "Green (2014a;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 1191,
                        "end": 1205,
                        "text": "(Teufel, 2014)",
                        "ref_id": "BIBREF42"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Argument diagramming is a technique that is commonly used to describe argumentation. While a manual operation, in the digital age, some computer-supported argument visualization tools have been developed. Araucaria (Reed and Rowe, 2004) and OVA+ (Janier et al., 2014) are two examples. The first provides support for mapping argumentation schemes. The second was developed for assisting with diagramming the larger scale argumentation structures. Lawrence and Reed (2017) provides an argument diagram for large scale online discussions. while mainly focussed on a neural endto-end model for computational argumentation mining also provides an almost tree-like argumentation structure of complete student essays.",
                "cite_spans": [
                    {
                        "start": 215,
                        "end": 236,
                        "text": "(Reed and Rowe, 2004)",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 246,
                        "end": 267,
                        "text": "(Janier et al., 2014)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 447,
                        "end": 471,
                        "text": "Lawrence and Reed (2017)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Although there has been significant research on the deconstruction of individual claims and the methods of identifying claims within texts of various sorts (Mochales Palau and Moens, 2009; Blake, 2010; Feng and Hirst, 2011; Teufel, 2010; Green et al., 2011; Liakata et al., 2012; S\u00e1ndor and de Waard, 2012; Longo et al., 2012; Longo and Hederman, 2013; Graves et al., 2014; Green, 2014a; Green, 2015; Kirschner et al., 2015; Mayer et al., 2018; Mayer et al., 2020) , we are interested here in working with a new subset of scientific texts, biochemistry texts in particular, and linking claims into a larger argumentation structure. The dataset that we have used consists of five papers. Although the number of papers in the dataset used in this research is small, what sets it apart is that the annotation of the claims has been done by our domain expert, Dr. Derek McLachlin, one of the co-authors of the five papers. Our findings and the techniques and models presented are all based on the analysis of papers by our domain expert. The five papers all concern the dimerization interactions of the b-subunit of Escherichia coli ATP synthase. Having a co-author of the paper source the claims directly increased their reliability as representative of the papers' findings. Dr. McLachlin additionally provided detailed lists of claim interactions, indicating the direct source of evidence behind each claim.",
                "cite_spans": [
                    {
                        "start": 176,
                        "end": 188,
                        "text": "Moens, 2009;",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 189,
                        "end": 201,
                        "text": "Blake, 2010;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 202,
                        "end": 223,
                        "text": "Feng and Hirst, 2011;",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 224,
                        "end": 237,
                        "text": "Teufel, 2010;",
                        "ref_id": "BIBREF41"
                    },
                    {
                        "start": 238,
                        "end": 257,
                        "text": "Green et al., 2011;",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 258,
                        "end": 279,
                        "text": "Liakata et al., 2012;",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 280,
                        "end": 306,
                        "text": "S\u00e1ndor and de Waard, 2012;",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 307,
                        "end": 326,
                        "text": "Longo et al., 2012;",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 327,
                        "end": 352,
                        "text": "Longo and Hederman, 2013;",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 353,
                        "end": 373,
                        "text": "Graves et al., 2014;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 374,
                        "end": 387,
                        "text": "Green, 2014a;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 388,
                        "end": 400,
                        "text": "Green, 2015;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 401,
                        "end": 424,
                        "text": "Kirschner et al., 2015;",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 425,
                        "end": 444,
                        "text": "Mayer et al., 2018;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 445,
                        "end": 464,
                        "text": "Mayer et al., 2020)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset",
                "sec_num": "3"
            },
            {
                "text": "Although the source material for the findings reported here is limited to one author, the literature used follows a structure ubiquitous to biomedical research, specifically, the progression of abstract, introduction, procedure/methods and materials, results, and discussion (Nair and Nair, 2014) . This is standard for research of this nature and doesn't affect the applicability of the proposed models to other similar literature. Once a paper's claims and their sources have been determined it is possible to employ graphing techniques and information modeling.",
                "cite_spans": [
                    {
                        "start": 275,
                        "end": 296,
                        "text": "(Nair and Nair, 2014)",
                        "ref_id": "BIBREF31"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset",
                "sec_num": "3"
            },
            {
                "text": "As stated earlier, the focus of this paper is the investigation of large scale argumentation structure in the spirit of Lawrence and Reed (2017) and Wachsmuth et al. (2017) . The notion of large scale for our purposes is one complete biochemistry article. As discussed in Section 3, the claims and their spans have been provided by one of the co-authors of each paper. In addition, the interaction of the data and the claims has been provided by this co-author. Our research uses the Toulmin model (Toulmin, 2003) . We have chosen the argumentation schemes provided by Green (2015) because they have an experimental science basis (cf. the clinical discussion schemes proposed by Al Qassas et al. 2015and the randomized control trial evidence classes proposed by Mayer et al. (2018) ). We refer to the model and scheme as the Toulmin-Green model. Green (2014a) has noted that many of the arguments in scientific writing are enthymemes, arguments that are missing premises or conclusions, and in most cases it is the warrants that are missing. What is missing from the information provided by our domain expert are the warrants. These have been provided by the first author of the current paper. An example of an argument:",
                "cite_spans": [
                    {
                        "start": 120,
                        "end": 144,
                        "text": "Lawrence and Reed (2017)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 149,
                        "end": 172,
                        "text": "Wachsmuth et al. (2017)",
                        "ref_id": "BIBREF44"
                    },
                    {
                        "start": 498,
                        "end": 513,
                        "text": "(Toulmin, 2003)",
                        "ref_id": "BIBREF43"
                    },
                    {
                        "start": 569,
                        "end": 581,
                        "text": "Green (2015)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 762,
                        "end": 781,
                        "text": "Mayer et al. (2018)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 846,
                        "end": 859,
                        "text": "Green (2014a)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Argumentation Structure",
                "sec_num": "4"
            },
            {
                "text": "Premise (Claim 19) [grounds]: The highest level of disulfide formation was observed with the S60C + L65C and A61C + L65C combinations. Premise [missing warrant]: Proximity is necessary for disulfide binding between residues. Claim 21A (Green's Argumentation Scheme: Effect to Cause (5)): The result suggests that residue 65 of one subunit is close to residues 60 and 61 of the other Given these elements, we are now able to analyze the argument structure of a biochemistry paper. We provide a categorization of the claims, a graphing technique that demonstrates the large scale argumentation structure, and an organization of the data and claims that we call the Informational Hierarchy.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Argumentation Structure",
                "sec_num": "4"
            },
            {
                "text": "In developing a claim based graphing technique the most fundamental component are the claims themselves. We were fortunate to have a co-author of the five biochemistry papers that we analyzed provide the claims and the reasons for making the claims. Having these claims and their support, they were individually categorized into three distinct groupings:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Claim Categorization",
                "sec_num": "4.1"
            },
            {
                "text": "1. 3. Other (the majority of the claims in this category were experimental observations which could not fit into the displayed data)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Claim Categorization",
                "sec_num": "4.1"
            },
            {
                "text": "In the five papers analysed over half of the claims fell into the \"figure-claim\" category, with a small minority falling into the \"other\" category. The categorization step of claim analysis is important due to the informational distinction between claim-claims and figure-claims in the information hierarchy model, as well as their distinct visual treatment within the graph. Figure based claims are direct results of the data, while claim based claims encompass more findings and are generally more significant. See Figure 1 for an example of a claim graph for one of the analyzed papers. All claims used in the graph are represented by a number corresponding to the order in which they appear in the paper. with a blue coloured circle labeled with their claim number. Claim-claims are illustrated with a red coloured circle labeled with their claim number. The intensity of the colour of a claim is dependent on the number of figures/claims which support it. As a result, the more intense the colour of the claim is, the more significant it is to the paper. This colour coding is done to make more central claims evident.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 376,
                        "end": 388,
                        "text": "Figure based",
                        "ref_id": null
                    },
                    {
                        "start": 517,
                        "end": 525,
                        "text": "Figure 1",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Claim Categorization",
                "sec_num": "4.1"
            },
            {
                "text": "An example of a claim graph, created for the paper \"Dimerization Interactions of the b Subunit of the Escherichia coli F 1 F 0 -ATPase\" (McLachlin and Dunn, 1997) can be seen in Figure 1 . The graph is composed of nodes representing the figures and tables of the paper, the grey rectangles labelled with their names in the paper; figure-claim nodes, the blue-toned nodes, which represent claims attributed to figures; and red-toned claim-claim nodes which represent claims that are supported by other claims and occasionally (but very rarely) supported by both another claim as well as a figure/table. Finally, colour intensity was adjusted to account for claim support, the more supporting figures/tables/claims a claim had, the darker the respective value. Directional edges indicate the premise-claim associations. The edges point from the support for a claim to the supported claim illustrating the directional flow of information. The dotted edges are meant to represent stylistic rather than argumentative moves. In the example given in Figure 1 , nodes 1-5 are found in the abstract and are recapitulations of claims made in the discussion section of the paper (the nodes representing these discussion section claims are currently not shown in the graph). Nodes 6A and 6B assemble these claims (\"Taken together the results are consistent with a model . . . \"). The graph is presented with as few intersecting edges as is possible (none in the example given in Figure 1 ).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 178,
                        "end": 186,
                        "text": "Figure 1",
                        "ref_id": "FIGREF2"
                    },
                    {
                        "start": 1043,
                        "end": 1051,
                        "text": "Figure 1",
                        "ref_id": "FIGREF2"
                    },
                    {
                        "start": 1467,
                        "end": 1475,
                        "text": "Figure 1",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Claim Graphing",
                "sec_num": "4.2"
            },
            {
                "text": "Once a graph has been constructed it is possible to understand a paper's components, their interactions, and their varying significance. The graph visualises the interactions between figures, claims, and most importantly, which claims are the most illustrative of the paper's findings. Claim significance is allocated based on the amount of support an individual claim receives, and not the amount of support it provides. This is because one of the future applications using the graph is to aid in the condensing or summarizing of a paper. As such, the concept of significance is dependent on how much information a claim encompasses. Figures and claims which have a noticeably high number of outgoing arrows are noteworthy on the grounds that they are important evidence. Their centrality is accounted for because figures and claims which provide a large amount of support are included in claims which receive a large amount of support. Significant claims represent a synthesis of smaller findings and data and provide a cumulative statement of the paper's results overall.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion of the Graphing Technique",
                "sec_num": "4.3"
            },
            {
                "text": "The density of support which classifies a claim as significant is relative to the total number of claims a paper makes. In applying this graphing technique universally the number of graphed claims will vary, and so will the density of support for individual claims. In a paper with twenty claims overall, the most densely supported claim may have only three supports while in a paper with sixty claims overall the main claim may be supported by eight. In general, a significant (secondary or main) claim will always have more than three supports and (in the papers that we analyzed) should be supported by 15% of all of a paper's claims. There is some variation in accordance with how many claims are not supported by results shown in the paper (the \"other\" category) however, it is usually unambiguous when looking at the graph which claims are the most supported.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion of the Graphing Technique",
                "sec_num": "4.3"
            },
            {
                "text": "Graphed claims can be separated into three categories according to the amount of support they have received, and the origin of that support. At this point in our research, this categorization is being subjectively determined by our sense of the claim's importance with respect to its role in summarizing the purpose of the paper. For this reason figure-based claims are never classified as main claims. They, like claim-based claims, have variation in the amount of support they receive, however since they are only statements about figures and not further analysis of figure statements, they do not have comparable summative value to claims based on claims based on figures. Regardless of how many figures a figure-claim has as direct supports, it is never a main claim, but will be accounted for as support for a claim-claim.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion of the Graphing Technique",
                "sec_num": "4.3"
            },
            {
                "text": "Within claim-claims there are additional levels of distinction, based on the number of support claims receive and the relevance of the claim content (i.e., what the claim is actually stating) to the paper itself. Relevance is also determined by how logically the claim content relates to the title of the paper, and therefore the thesis, of the paper. There are three levels of claim-claim relevance:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion of the Graphing Technique",
                "sec_num": "4.3"
            },
            {
                "text": "1. Tertiary Claim-Claims (1-2 supporting claims) 2. Secondary Claim-Claims (3 or more supporting claims, no direct relevance to the title/main concept) 3. Main Claims (3 or more supporting claims, direct relevance to the paper title/main concept)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion of the Graphing Technique",
                "sec_num": "4.3"
            },
            {
                "text": "When analysing the graph of a paper and the flow of information within it, there emerges a very clear progression of supports and detail. The importance of a claim is correlated to the amount of support it has, as is its summative ability. This makes sense, as the more information represented within a claim the more summative a claim will be. Once a main claim has been identified, it is possible to utilise it (in conjunction with the title) to summarize the entirety of the paper into a one or two sentence statement. Although convenient to distil information to that level, it is crucial to maintain the levels of complexity which precede it so that nuance can be sought at the observer's discretion. Luckily, this is preserved in the graph, as it is possible to trace the origins of the main claims content through the support arrows it is connected to, and the supports of those supports in turn. This progression from figure/table to main claim illustrated by the graphing process can itself be used as a means of understanding the inductive flow of information in research from the specifics of the data to the overall main claim, accounting for every component of the paper. The following is an example of this progression:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion of the Graphing Technique",
                "sec_num": "4.3"
            },
            {
                "text": "Premise (Figures 2A and 2B observations): The figures show results of SDS-PAGE (protein gel electrophoresis) and Western blotting. Band intensities show molecular masses of proteins with A128C, R138C, S139C, and S146C mutations. A128C and S139C have higher masses. Premise [missing warrant]: band intensity indicates protein amount at a specific mass , and 6B (dashed edges) has not been included in this example.] Claim 3A (Green's Argumentation Scheme: Effect to Cause (5)): Cysteines at positions 124, 128, 132, and 139 showed strong tendencies to form disulfides with their mates in the dimer, suggesting a parallel \u03b1-helical interaction between the subunits in this region.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 8,
                        "end": 26,
                        "text": "(Figures 2A and 2B",
                        "ref_id": "FIGREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Discussion of the Graphing Technique",
                "sec_num": "4.3"
            },
            {
                "text": "The Model of Informational Hierarchy (MIH), shown in Figure 2 , represents the development of information in experimental science literature by tracing the path of information through the graphing technique described above. The MIH is pyramidal in shape, in order to illustrate the inductive nature of the progression between levels. As the pyramid is traversed from the base to the top the specificity of the information decreases, and the summative ability of the information increases. The top levels of the MIH are built on those at the base, and thus account for the information contained within them. Unlike the graph, this model is able to account for levels of information even more specific than the data presented in figures and tables. Allocating data as the base of claim graphing is understandable as it is the results, and not the way that they were acquired, that are the main focus of claims made in scientific literature. In analysing the entirety of information in any given paper however, the raw data itself cannot be the base of the model. How the data was gathered informs the data, and even how the data can be interpreted. It is important to understand each level of the MIH and how it interacts with the levels surrounding it. The layers will be discussed in ascending order, beginning with the foundation.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 53,
                        "end": 61,
                        "text": "Figure 2",
                        "ref_id": "FIGREF4"
                    }
                ],
                "eq_spans": [],
                "section": "The Model of Informational Hierarchy",
                "sec_num": "4.4"
            },
            {
                "text": "Methods and Experimental Procedure Underlying the data of any scientific claim is the means by which that data was procured. Without an understanding of the methods used and the experimental procedure the veracity of the data presented is unknowable. The procedure informs how the data relates to the figure-claims. To know what a figure is showing, how it is showing it, and how that relates to figure-claims is all based on an understanding of the experimental methods and materials used, making the procedure the foundational level of the MIH.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Model of Informational Hierarchy",
                "sec_num": "4.4"
            },
            {
                "text": "Data (Figures and Tables) Following from the methods and experimental procedures of a biomedical paper comes the presentation of the experimental findings. The presentation of the data found in an experiment is as crucial as the means by which it was discovered, as it is the findings which the paper is written to communicate. The data (displayed in figures or tables) directly support figure-claims. There is no argumentation scheme which relates the experimental procedures/methods to the data of a paper, as the relationship between the two is evidentiary rather than based on a logical progression. However, a Toulmin-Green argumentation scheme relationship does exist between the data presented and figureclaims made. In these schemes the premise is derived from interpretation of the data informed by the methods/experimental procedure, resulting in the conclusion that is the figure-claim.",
                "cite_spans": [
                    {
                        "start": 5,
                        "end": 25,
                        "text": "(Figures and Tables)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Model of Informational Hierarchy",
                "sec_num": "4.4"
            },
            {
                "text": "Figure-Claims and Experimental Observations The category of figure-claims represents claims based on experimental data presented directly by either a figure or a table. Claims which fall under the category of \"Experimental Observations\" are statements of outcomes noticed by the researchers that could not be easily included in the tables and figures used, but are still based directly on the findings.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Model of Informational Hierarchy",
                "sec_num": "4.4"
            },
            {
                "text": "Tertiary Claim-Claims Tertiary claim claims, as discussed in the discussion of the graphing technique, are claim-claims which are not deemed to be significant. They are based on figure-claims and experimental observations, but lack summative power (only 1-2 supports). They are an intermediate step between figure-claims and secondary claims.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Model of Informational Hierarchy",
                "sec_num": "4.4"
            },
            {
                "text": "Secondary Claim-Claims Secondary claims have enough support to be significant, however lack relevancy. They are not main claims due to their lack of direct relation to the paper's title (and thesis).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Model of Informational Hierarchy",
                "sec_num": "4.4"
            },
            {
                "text": "Main Claim The main claim is the most representative statement of the paper's findings, and the highest level of summarization. These claims are claim-claims with the greatest amount of support and will often be supported by other highly supported claims. In conjunction with the title, a main claim can be used to summarize the entirety of a paper's findings in a single sentence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Model of Informational Hierarchy",
                "sec_num": "4.4"
            },
            {
                "text": "The main claim is the most representative statement of the paper's findings, and the highest level of summarization. These claims are claim-claims with the greatest amount of support and will often be supported by other highly supported claims. In conjunction with the title, a main claim can be used to summarize the entirety of a paper's findings in a single sentence. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Model of Informational Hierarchy",
                "sec_num": "4.4"
            },
            {
                "text": "As seen in Figure 2 , there are argumentation schemes included between each level of the information hierarchy. These schemes are from the Toulmin-Green model of claim argumentation and are what underlies all informational progression within the paper. In the claim graph as well, each arrow represents a logical progression which can be categorized with the Toulmin-Green model. For figure-claims the evidence comes from the data itself, the warrant is assumed knowledge or taken from the procedure. For claim-claims (at all levels of significance) the evidence comes from a previously made claim, and the warrant is often assumed knowledge. Although Dr. Green's argumentation schemes do not affect the progression of the information hierarchy, they are the connections which hold the graph and the information model together. Without them there would be no accountability for how statement significance progresses, and no legitimacy to the logic of those progressions.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 11,
                        "end": 19,
                        "text": "Figure 2",
                        "ref_id": "FIGREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Use of Argumentation Schemes",
                "sec_num": "4.5"
            },
            {
                "text": "The purpose of analyzing the five papers with the Toulmin-Green model and subsequently generating the claim graph and the Model of Informational Hierarchy has been to illustrate a manual approach for generating a large scale argumentation structure for a complete biochemistry paper. The methods presented are novel for this science genre. One can compare this argumentation structure with those that have been established for debates (Lawrence and Reed, 2017) , persuasive essays , and student essays . As is shown with the graph, claims in biochemistry articles are intrinsically interlinked, with claims using both other claims and data for their evidence. The MIH model lists argumentation schemes as intermediary steps between levels of information to illustrate the importance of claims relating to each other in a way that is categorizable and logically sound.",
                "cite_spans": [
                    {
                        "start": 435,
                        "end": 460,
                        "text": "(Lawrence and Reed, 2017)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Future Work",
                "sec_num": "5"
            },
            {
                "text": "Beyond these results, there is potential for further research. The Toulmin-Green model, the claim graphing technique, and the MIH all have aspects which can be further developed.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Future Work",
                "sec_num": "5"
            },
            {
                "text": "Green's (Green, 2016; Green, 2018) innovative idea to use Prolog rules to generate argument schemes can be improved. As proposed, the body of each rule matches with the Prolog knowledge base extracted from the text. The body of each rule needs some discourse information to constrain what elements from these Prolog facts are allowed to be combined. We can use the information derived from the claim graph to add to these rule bodies, i.e., only those facts that are extracted from elements that are connected by an edge would be allowed to imply the argument scheme (the head of the rule). However, it still remains to be seen how to do this in an automatic way since the graphs have been constructed manually. Using discourse and rhetorical moves may be some directions to investigate. In addition to this, a method to produce implicit argument components for enthymemes is needed.",
                "cite_spans": [
                    {
                        "start": 8,
                        "end": 21,
                        "text": "(Green, 2016;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 22,
                        "end": 34,
                        "text": "Green, 2018)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Future Work",
                "sec_num": "5"
            },
            {
                "text": "Biochemistry (and other experimental life sciences) papers are written following the IMRaD (Introduction, Methods, Results, and Discussion) structure. As indicated by dashed edges in the claim graph in Figure 1 and mentioned in the example in Section 4.3, the placement of a claim in this structure may have stylistic significance. This aspect of the writing style was not part of this initial study and needs to be further investigated and incorporated in the claim graph. Indeed, that a claim is restated and where this restatement is placed may provide further justification for the split into the three claim categories proposed in the MIH. As well, a characteristic of writing in the biochemistry genre is to explain the reasons for choosing the experiments discussed in the paper. This aspect is important to a full understanding of the argumentation structure. How to incorporate it in the claim graph needs to be investigated. Discussion of claims in the paper highlighted above commented on claims in previously published papers. This important inter-paper argumentation structure will be investigated.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 202,
                        "end": 210,
                        "text": "Figure 1",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Conclusions and Future Work",
                "sec_num": "5"
            },
            {
                "text": "An important next step is to produce the claim graph automatically. Methods to identify claims in biomedical text (albeit not always directly applicable to this type of experimental biochemistry article) ranging from rule-based (Blake, 2010) to neural end-to-end (Mayer et al., 2020) have been previously investigated and would comprise a first step toward this goal.",
                "cite_spans": [
                    {
                        "start": 228,
                        "end": 241,
                        "text": "(Blake, 2010)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 263,
                        "end": 283,
                        "text": "(Mayer et al., 2020)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Future Work",
                "sec_num": "5"
            },
            {
                "text": "A future application of the Model of Informational Hierarchy could be summarization of the paper, a noted motivation for some of the earliest argumentation research (Teufel and Moens, 2002) . Moving from the top of the hierarchy (the paper's title and main claim) downward would provide more and more detail which is not contained in an abstract. Real-time summarization at a user-specified level of detail seems possible. And a summarization focussed on a particular aspect of a paper's research claims combining the MIH and the claim graph could also be a possibility.",
                "cite_spans": [
                    {
                        "start": 165,
                        "end": 189,
                        "text": "(Teufel and Moens, 2002)",
                        "ref_id": "BIBREF39"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Future Work",
                "sec_num": "5"
            }
        ],
        "back_matter": [
            {
                "text": "This research was funded by The Natural Sciences and Engineering Research Council of Canada (NSERC) through an Undergraduate Summer Research Award to Eli Moser and a Discovery Grant to Robert E. Mercer. We thank Dr. Derek McLachlin of the Department of Biochemistry, The University of Western Ontario for providing his analysis of the five papers used in this study. We also acknowledge the helpful comments provided by the reviewers.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Analysis of clinical discussions based on argumentation schemes",
                "authors": [
                    {
                        "first": "Daniela",
                        "middle": [],
                        "last": "Malik Al Qassas",
                        "suffix": ""
                    },
                    {
                        "first": "Massimiliano",
                        "middle": [],
                        "last": "Fogli",
                        "suffix": ""
                    },
                    {
                        "first": "Giovanni",
                        "middle": [],
                        "last": "Giacomin",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Guida",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedia Computer Science",
                "volume": "64",
                "issue": "",
                "pages": "282--289",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Malik Al Qassas, Daniela Fogli, Massimiliano Giacomin, and Giovanni Guida. 2015. Analysis of clinical discus- sions based on argumentation schemes. Proceedia Computer Science, 64:282-289.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Beyond genes, proteins, and abstracts: Identifying scientific claims from full-text biomedical articles",
                "authors": [
                    {
                        "first": "Catherine",
                        "middle": [],
                        "last": "Blake",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Journal of Biomedical Informatics",
                "volume": "43",
                "issue": "",
                "pages": "173--189",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Catherine Blake. 2010. Beyond genes, proteins, and abstracts: Identifying scientific claims from full-text biomed- ical articles. Journal of Biomedical Informatics, 43:173-189.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Natural language arguments: A combined approach",
                "authors": [
                    {
                        "first": "Elena",
                        "middle": [],
                        "last": "Cabrio",
                        "suffix": ""
                    },
                    {
                        "first": "Serena",
                        "middle": [],
                        "last": "Villata",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the 20th European Conference on Artificial Intelligence (ECAI 2012)",
                "volume": "",
                "issue": "",
                "pages": "205--210",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Elena Cabrio and Serena Villata. 2012. Natural language arguments: A combined approach. In Proceedings of the 20th European Conference on Artificial Intelligence (ECAI 2012), pages 205-210.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "What is the essence of a claim? Cross-domain claim identification",
                "authors": [
                    {
                        "first": "Johannes",
                        "middle": [],
                        "last": "Daxenberger",
                        "suffix": ""
                    },
                    {
                        "first": "Steffen",
                        "middle": [],
                        "last": "Eger",
                        "suffix": ""
                    },
                    {
                        "first": "Ivan",
                        "middle": [],
                        "last": "Habernal",
                        "suffix": ""
                    },
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Stab",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "2055--2066",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Johannes Daxenberger, Steffen Eger, Ivan Habernal, Christian Stab, and Iryna Gurevych. 2017. What is the essence of a claim? Cross-domain claim identification. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2055-2066.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Neural end-to-end learning for computational argumentation mining",
                "authors": [
                    {
                        "first": "Steffen",
                        "middle": [],
                        "last": "Eger",
                        "suffix": ""
                    },
                    {
                        "first": "Johannes",
                        "middle": [],
                        "last": "Daxenberger",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "11--22",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Steffen Eger, Johannes Daxenberger, and Iryna Gurevych. 2017. Neural end-to-end learning for computational argumentation mining. In Proceedings of the 55th Annual Meeting of the Association for Computational Lin- guistics (Volume 1: Long Papers), pages 11-22.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Classifying arguments by scheme",
                "authors": [
                    {
                        "first": "Vanessa",
                        "middle": [],
                        "last": "Wei Feng",
                        "suffix": ""
                    },
                    {
                        "first": "Graeme",
                        "middle": [],
                        "last": "Hirst",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "987--996",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Vanessa Wei Feng and Graeme Hirst. 2011. Classifying arguments by scheme. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pages 987-996.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Titles that announce argumentative claims in biomedical research articles",
                "authors": [
                    {
                        "first": "Heather",
                        "middle": [],
                        "last": "Graves",
                        "suffix": ""
                    },
                    {
                        "first": "Roger",
                        "middle": [],
                        "last": "Graves",
                        "suffix": ""
                    },
                    {
                        "first": "Robert",
                        "middle": [
                            "E"
                        ],
                        "last": "Mercer",
                        "suffix": ""
                    },
                    {
                        "first": "Mahzereen",
                        "middle": [],
                        "last": "Akter",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the First Workshop on Argumentation Mining",
                "volume": "",
                "issue": "",
                "pages": "98--99",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Heather Graves, Roger Graves, Robert E. Mercer, and Mahzereen Akter. 2014. Titles that announce argumentative claims in biomedical research articles. In Proceedings of the First Workshop on Argumentation Mining, pages 98-99.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Natural language generation of biomedical argumentation for lay audiences",
                "authors": [
                    {
                        "first": "Nancy",
                        "middle": [],
                        "last": "Green",
                        "suffix": ""
                    },
                    {
                        "first": "Rachael",
                        "middle": [],
                        "last": "Dwight",
                        "suffix": ""
                    },
                    {
                        "first": "Kanyamas",
                        "middle": [],
                        "last": "Navoraphan",
                        "suffix": ""
                    },
                    {
                        "first": "Brian",
                        "middle": [],
                        "last": "Stadler",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Argument and Computation",
                "volume": "2",
                "issue": "1",
                "pages": "23--50",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nancy Green, Rachael Dwight, Kanyamas Navoraphan, and Brian Stadler. 2011. Natural language generation of biomedical argumentation for lay audiences. Argument and Computation, 2(1):23-50.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Towards creation of a corpus for argumentation mining the biomedical genetics research literature",
                "authors": [
                    {
                        "first": "Nancy",
                        "middle": [],
                        "last": "Green",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the First Workshop on Argumentation Mining",
                "volume": "",
                "issue": "",
                "pages": "11--18",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nancy Green. 2014a. Towards creation of a corpus for argumentation mining the biomedical genetics research literature. In Proceedings of the First Workshop on Argumentation Mining, pages 11-18.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Argumentation for scientific claims in a biomedical research article",
                "authors": [
                    {
                        "first": "Nancy",
                        "middle": [
                            "L"
                        ],
                        "last": "Green",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the Workshop on Frontiers and Connections between Argumentation Theory and Natural Language Processing",
                "volume": "1341",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nancy L. Green. 2014b. Argumentation for scientific claims in a biomedical research article. In Proceedings of the Workshop on Frontiers and Connections between Argumentation Theory and Natural Language Processing (ArgNLP2014), volume 1341 of CEUR Workshop Proceedings.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Identifying argumentation schemes in genetics research articles",
                "authors": [
                    {
                        "first": "Nancy",
                        "middle": [],
                        "last": "Green",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 2nd Workshop on Argumentation Mining",
                "volume": "",
                "issue": "",
                "pages": "12--21",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nancy Green. 2015. Identifying argumentation schemes in genetics research articles. In Proceedings of the 2nd Workshop on Argumentation Mining, pages 12-21.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Implementing argumentation schemes as logic programs",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Nancy",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Green",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 16th Workshop on Computational Models of Natural Argument",
                "volume": "1876",
                "issue": "",
                "pages": "1--7",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nancy L. Green. 2016. Implementing argumentation schemes as logic programs. In Proceedings of the 16th Workshop on Computational Models of Natural Argument, volume 1876 of CEUR Workshop Proceedings, pages 1-7.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Towards mining scientific discourse using argumentation schemes",
                "authors": [
                    {
                        "first": "Nancy",
                        "middle": [
                            "L"
                        ],
                        "last": "Green",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Argument & Computation",
                "volume": "9",
                "issue": "",
                "pages": "121--135",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nancy L. Green. 2018. Towards mining scientific discourse using argumentation schemes. Argument & Compu- tation, 9:121-135.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Biomedical language processing: What's beyond PubMed?",
                "authors": [
                    {
                        "first": "Lawrence",
                        "middle": [],
                        "last": "Hunter",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Cohen",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Molecular Cell",
                "volume": "21",
                "issue": "5",
                "pages": "589--594",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lawrence Hunter and K. Bretonnel Cohen. 2006. Biomedical language processing: What's beyond PubMed? Molecular Cell, 21(5):589-594.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Ova+: an argument analysis interface",
                "authors": [
                    {
                        "first": "Mathilde",
                        "middle": [],
                        "last": "Janier",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Lawrence",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Reed",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of COMMA 2014",
                "volume": "",
                "issue": "",
                "pages": "463--464",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mathilde Janier, John Lawrence, and Chris Reed. 2014. Ova+: an argument analysis interface. In Proceedings of COMMA 2014, pages 463-464.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Rhetorical structure of biochemistry research articles. English for Specific Purposes",
                "authors": [
                    {
                        "first": "Budsaba",
                        "middle": [],
                        "last": "Kanoksilapatham",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "",
                "volume": "24",
                "issue": "",
                "pages": "269--292",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Budsaba Kanoksilapatham. 2005. Rhetorical structure of biochemistry research articles. English for Specific Purposes, 24(3):269-292.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Using Toulmin's model of argumentation",
                "authors": [
                    {
                        "first": "Joan",
                        "middle": [],
                        "last": "Karbach",
                        "suffix": ""
                    }
                ],
                "year": 1987,
                "venue": "Journal of Teaching Writing",
                "volume": "6",
                "issue": "1",
                "pages": "81--92",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joan Karbach. 1987. Using Toulmin's model of argumentation. Journal of Teaching Writing, 6(1):81-92.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Linking the thoughts: Analysis of argumentation structures in scientific publications",
                "authors": [
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Kirschner",
                        "suffix": ""
                    },
                    {
                        "first": "Judith",
                        "middle": [],
                        "last": "Eckle-Kohler",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 2nd Workshop on Argumentation Mining",
                "volume": "",
                "issue": "",
                "pages": "1--11",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christian Kirschner, Judith Eckle-Kohler, and Iryna Gurevych. 2015. Linking the thoughts: Analysis of argu- mentation structures in scientific publications. In Proceedings of the 2nd Workshop on Argumentation Mining, pages 1-11.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Using complex argumentative interactions to reconstruct the argumentative structure of large-scale debates",
                "authors": [
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Lawrence",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Reed",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 4th Workshop on Argument Mining",
                "volume": "",
                "issue": "",
                "pages": "108--117",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "John Lawrence and Chris Reed. 2017. Using complex argumentative interactions to reconstruct the argumentative structure of large-scale debates. In Proceedings of the 4th Workshop on Argument Mining, pages 108-117.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "What counts as scientific data? A relational framework",
                "authors": [
                    {
                        "first": "Sabina",
                        "middle": [],
                        "last": "Leonelli",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Philosophy of Science",
                "volume": "82",
                "issue": "5",
                "pages": "810--821",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sabina Leonelli. 2015. What counts as scientific data? A relational framework. Philosophy of Science, 82(5):810- 821.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Automatic recognition of conceptualization zones in scientific articles and two life science applications",
                "authors": [
                    {
                        "first": "Maria",
                        "middle": [],
                        "last": "Liakata",
                        "suffix": ""
                    },
                    {
                        "first": "Shyamasree",
                        "middle": [],
                        "last": "Saha",
                        "suffix": ""
                    },
                    {
                        "first": "Simon",
                        "middle": [],
                        "last": "Dobnik",
                        "suffix": ""
                    },
                    {
                        "first": "Colin",
                        "middle": [],
                        "last": "Batchelor",
                        "suffix": ""
                    },
                    {
                        "first": "Dietrich",
                        "middle": [],
                        "last": "Rebholz-Schuhmann",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Bioinformatics",
                "volume": "28",
                "issue": "7",
                "pages": "991--1000",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Maria Liakata, Shyamasree Saha, Simon Dobnik, Colin Batchelor, and Dietrich Rebholz-Schuhmann. 2012. Au- tomatic recognition of conceptualization zones in scientific articles and two life science applications. Bioinfor- matics, 28(7):991-1000.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Context-independent claim detection for argument mining",
                "authors": [
                    {
                        "first": "Marco",
                        "middle": [],
                        "last": "Lippi",
                        "suffix": ""
                    },
                    {
                        "first": "Paolo",
                        "middle": [],
                        "last": "Torroni",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)",
                "volume": "",
                "issue": "",
                "pages": "185--191",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Marco Lippi and Paolo Torroni. 2015. Context-independent claim detection for argument mining. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015), pages 185-191.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Argumentation theory for decision support in health-care: A comparison with machine learning",
                "authors": [
                    {
                        "first": "Luca",
                        "middle": [],
                        "last": "Longo",
                        "suffix": ""
                    },
                    {
                        "first": "Lucy",
                        "middle": [],
                        "last": "Hederman",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the International Conference on Brain and Health Informatics",
                "volume": "",
                "issue": "",
                "pages": "168--180",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Luca Longo and Lucy Hederman. 2013. Argumentation theory for decision support in health-care: A comparison with machine learning. In Proceedings of the International Conference on Brain and Health Informatics, pages 168-180.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Argumentation theory in health-care",
                "authors": [
                    {
                        "first": "Luca",
                        "middle": [],
                        "last": "Longo",
                        "suffix": ""
                    },
                    {
                        "first": "Bridget",
                        "middle": [],
                        "last": "Kane",
                        "suffix": ""
                    },
                    {
                        "first": "Lucy",
                        "middle": [],
                        "last": "Hederman",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the 25th IEEE Symposium on Computer-Based Medical Systems",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Luca Longo, Bridget Kane, and Lucy Hederman. 2012. Argumentation theory in health-care. In Proceedings of the 25th IEEE Symposium on Computer-Based Medical Systems.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Evidence type classification in randomized controlled trials",
                "authors": [
                    {
                        "first": "Tobias",
                        "middle": [],
                        "last": "Mayer",
                        "suffix": ""
                    },
                    {
                        "first": "Elena",
                        "middle": [],
                        "last": "Cabrio",
                        "suffix": ""
                    },
                    {
                        "first": "Serena",
                        "middle": [],
                        "last": "Villata",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 5th Workshop on Argument Mining",
                "volume": "",
                "issue": "",
                "pages": "29--34",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tobias Mayer, Elena Cabrio, and Serena Villata. 2018. Evidence type classification in randomized controlled trials. In Proceedings of the 5th Workshop on Argument Mining, pages 29-34.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Transformer-based argument mining for healthcare applications",
                "authors": [
                    {
                        "first": "Tobias",
                        "middle": [],
                        "last": "Mayer",
                        "suffix": ""
                    },
                    {
                        "first": "Elena",
                        "middle": [],
                        "last": "Cabrio",
                        "suffix": ""
                    },
                    {
                        "first": "Serena",
                        "middle": [],
                        "last": "Villata",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 24th European Conference on Artificial Intelligence (ECAI 2020)",
                "volume": "",
                "issue": "",
                "pages": "2108--2115",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tobias Mayer, Elena Cabrio, and Serena Villata. 2020. Transformer-based argument mining for healthcare ap- plications. In Proceedings of the 24th European Conference on Artificial Intelligence (ECAI 2020), pages 2108-2115.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Dimerization interactions of the b subunit of the Escherichia coli F 1 F 0 -ATPase",
                "authors": [
                    {
                        "first": "Derek",
                        "middle": [
                            "T"
                        ],
                        "last": "Mclachlin",
                        "suffix": ""
                    },
                    {
                        "first": "Stanley",
                        "middle": [
                            "D"
                        ],
                        "last": "Dunn",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Journal of Biological Chemistry",
                "volume": "272",
                "issue": "34",
                "pages": "21233--21239",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Derek T. McLachlin and Stanley D. Dunn. 1997. Dimerization interactions of the b subunit of the Escherichia coli F 1 F 0 -ATPase. Journal of Biological Chemistry, 272(34):21233-21239.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Zone analysis in biology articles as a basis for information extraction",
                "authors": [
                    {
                        "first": "Yoko",
                        "middle": [],
                        "last": "Mizuta",
                        "suffix": ""
                    },
                    {
                        "first": "Anna",
                        "middle": [],
                        "last": "Korhonen",
                        "suffix": ""
                    },
                    {
                        "first": "Tony",
                        "middle": [],
                        "last": "Mullen",
                        "suffix": ""
                    },
                    {
                        "first": "Nigel",
                        "middle": [],
                        "last": "Collier",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "International Journal of Medical Informatics",
                "volume": "75",
                "issue": "6",
                "pages": "468--487",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yoko Mizuta, Anna Korhonen, Tony Mullen, and Nigel Collier. 2006. Zone analysis in biology articles as a basis for information extraction. International Journal of Medical Informatics, 75(6):468-487.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Argumentation mining: The detection, classification and structure of arguments in text",
                "authors": [
                    {
                        "first": "Raquel",
                        "middle": [],
                        "last": "Mochales Palau",
                        "suffix": ""
                    },
                    {
                        "first": "Marie-Francine",
                        "middle": [],
                        "last": "Moens",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of the 12th International Conference on Artificial Intelligence and Law",
                "volume": "",
                "issue": "",
                "pages": "98--107",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Raquel Mochales Palau and Marie-Francine Moens. 2009. Argumentation mining: The detection, classification and structure of arguments in text. In Proceedings of the 12th International Conference on Artificial Intelligence and Law, page 98-107.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Argumentation mining",
                "authors": [
                    {
                        "first": "Raquel",
                        "middle": [],
                        "last": "Mochales Palau",
                        "suffix": ""
                    },
                    {
                        "first": "Marie-Francine",
                        "middle": [],
                        "last": "Moens",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Artificial Intelligence and Law",
                "volume": "19",
                "issue": "1",
                "pages": "1--22",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Raquel Mochales Palau and Marie-Francine Moens. 2011. Argumentation mining. Artificial Intelligence and Law, 19(1):1-22.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Automatic detection of arguments in legal texts",
                "authors": [
                    {
                        "first": "Marie-Francine",
                        "middle": [],
                        "last": "Moens",
                        "suffix": ""
                    },
                    {
                        "first": "Erik",
                        "middle": [],
                        "last": "Boiy",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the 11th International Conference on Artificial Intelligence and Law",
                "volume": "",
                "issue": "",
                "pages": "225--230",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Marie-Francine Moens, Erik Boiy, Raquel Mochales Palau, and Chris Reed. 2007. Automatic detection of argu- ments in legal texts. In Proceedings of the 11th International Conference on Artificial Intelligence and Law, page 225-230.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Organization of a Research Paper: The IMRAD Format",
                "authors": [
                    {
                        "first": "P",
                        "middle": [
                            "K"
                        ],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Ramachandran",
                        "middle": [],
                        "last": "Nair",
                        "suffix": ""
                    },
                    {
                        "first": "Vimala",
                        "middle": [
                            "D"
                        ],
                        "last": "Nair",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "13--25",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "P. K. Ramachandran Nair and Vimala D. Nair, 2014. Organization of a Research Paper: The IMRAD Format, chapter 2, pages 13-25. Springer.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Identifying appropriate support for propositions in online user comments",
                "authors": [
                    {
                        "first": "Joonsuk",
                        "middle": [],
                        "last": "Park",
                        "suffix": ""
                    },
                    {
                        "first": "Claire",
                        "middle": [],
                        "last": "Cardie",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the First Workshop on Argumentation Mining",
                "volume": "",
                "issue": "",
                "pages": "29--38",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joonsuk Park and Claire Cardie. 2014. Identifying appropriate support for propositions in online user comments. In Proceedings of the First Workshop on Argumentation Mining, pages 29-38.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Araucaria: Software for argument analysis, diagramming and representation",
                "authors": [
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Reed",
                        "suffix": ""
                    },
                    {
                        "first": "Glenn",
                        "middle": [],
                        "last": "Rowe",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "International Journal on Artificial Intelligence Tools",
                "volume": "13",
                "issue": "4",
                "pages": "961--979",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chris Reed and Glenn Rowe. 2004. Araucaria: Software for argument analysis, diagramming and representation. International Journal on Artificial Intelligence Tools, 13(4):961-979.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "Processing natural language arguments with the <textcoop> platform",
                "authors": [
                    {
                        "first": "Patrick",
                        "middle": [],
                        "last": "Saint-Dizier",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Argument and Computation",
                "volume": "3",
                "issue": "1",
                "pages": "49--82",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Patrick Saint-Dizier. 2012. Processing natural language arguments with the <textcoop> platform. Argument and Computation, 3(1):49-82.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "Identifying claimed knowledge updates in biomedical research articles",
                "authors": [
                    {
                        "first": "Agnes",
                        "middle": [],
                        "last": "S\u00e1ndor",
                        "suffix": ""
                    },
                    {
                        "first": "Anita",
                        "middle": [],
                        "last": "De Waard",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the Workshop on Detecting Structure in Scholarly Discourse",
                "volume": "",
                "issue": "",
                "pages": "10--17",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Agnes S\u00e1ndor and Anita de Waard. 2012. Identifying claimed knowledge updates in biomedical research articles. In Proceedings of the Workshop on Detecting Structure in Scholarly Discourse, pages 10-17.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "Parsing argumentation structures in persuasive essays",
                "authors": [
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Stab",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Computational Linguistics",
                "volume": "43",
                "issue": "3",
                "pages": "619--659",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christian Stab and Iryna Gurevych. 2017. Parsing argumentation structures in persuasive essays. Computational Linguistics, 43(3):619-659.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "Argumentation mining in persuasive essays and scientific articles from the discourse structure perspective",
                "authors": [
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Stab",
                        "suffix": ""
                    },
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Kirschner",
                        "suffix": ""
                    },
                    {
                        "first": "Judith",
                        "middle": [],
                        "last": "Eckle-Kohler",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the Workshop on Frontiers and Connections between Argumentation Theory and Natural Language Processing",
                "volume": "1341",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christian Stab, Christian Kirschner, Judith Eckle-Kohler, and Iryna Gurevych. 2014. Argumentation mining in persuasive essays and scientific articles from the discourse structure perspective. In Proceedings of the Workshop on Frontiers and Connections between Argumentation Theory and Natural Language Processing (ArgNLP2014), volume 1341 of CEUR Workshop Proceedings.",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "Argumentation Mining. Synthesis Lectures on Human Language Technologies",
                "authors": [
                    {
                        "first": "Manfred",
                        "middle": [],
                        "last": "Stede",
                        "suffix": ""
                    },
                    {
                        "first": "Jodi",
                        "middle": [],
                        "last": "Schneider",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Manfred Stede and Jodi Schneider. 2018. Argumentation Mining. Synthesis Lectures on Human Language Tech- nologies. Morgan & Claypool Publishers.",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "Summarizing scientific articles: Experiments with relevance and rhetorical status",
                "authors": [
                    {
                        "first": "Simone",
                        "middle": [],
                        "last": "Teufel",
                        "suffix": ""
                    },
                    {
                        "first": "Marc",
                        "middle": [],
                        "last": "Moens",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Computational Linguistics",
                "volume": "28",
                "issue": "4",
                "pages": "409--445",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Simone Teufel and Marc Moens. 2002. Summarizing scientific articles: Experiments with relevance and rhetorical status. Computational Linguistics, 28(4):409-445.",
                "links": null
            },
            "BIBREF40": {
                "ref_id": "b40",
                "title": "An annotation scheme for discourse-level argumentation in research articles",
                "authors": [
                    {
                        "first": "Simone",
                        "middle": [],
                        "last": "Teufel",
                        "suffix": ""
                    },
                    {
                        "first": "Jean",
                        "middle": [],
                        "last": "Carletta",
                        "suffix": ""
                    },
                    {
                        "first": "Marc",
                        "middle": [],
                        "last": "Moens",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Proceedings of the Ninth Conference of the European Chapter of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "110--117",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Simone Teufel, Jean Carletta, and Marc Moens. 1999. An annotation scheme for discourse-level argumentation in research articles. In Proceedings of the Ninth Conference of the European Chapter of the Association for Computational Linguistics, pages 110-117.",
                "links": null
            },
            "BIBREF41": {
                "ref_id": "b41",
                "title": "The Structure of Scientific Articles: Applications to Citation Indexing and Summarization. CSLI Studies in Computational Linguistics. Center for the Study of Language and Information",
                "authors": [
                    {
                        "first": "Simone",
                        "middle": [],
                        "last": "Teufel",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Simone Teufel. 2010. The Structure of Scientific Articles: Applications to Citation Indexing and Summarization. CSLI Studies in Computational Linguistics. Center for the Study of Language and Information.",
                "links": null
            },
            "BIBREF42": {
                "ref_id": "b42",
                "title": "Scientific argumentation detection as limited-domain intention recognition",
                "authors": [
                    {
                        "first": "Simone",
                        "middle": [],
                        "last": "Teufel",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the Workshop on Frontiers and Connections between Argumentation Theory and Natural Language Processing (ArgNLP2014), volume 1341 of CEUR Workshop Proceedings",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Simone Teufel. 2014. Scientific argumentation detection as limited-domain intention recognition. In Proceedings of the Workshop on Frontiers and Connections between Argumentation Theory and Natural Language Process- ing (ArgNLP2014), volume 1341 of CEUR Workshop Proceedings.",
                "links": null
            },
            "BIBREF43": {
                "ref_id": "b43",
                "title": "The Uses of Argument",
                "authors": [
                    {
                        "first": "Stephen",
                        "middle": [
                            "E"
                        ],
                        "last": "Toulmin",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Stephen E. Toulmin. 2003. The Uses of Argument. Cambridge University Press.",
                "links": null
            },
            "BIBREF44": {
                "ref_id": "b44",
                "title": "PageRank\" for argument relevance",
                "authors": [
                    {
                        "first": "Henning",
                        "middle": [],
                        "last": "Wachsmuth",
                        "suffix": ""
                    },
                    {
                        "first": "Benno",
                        "middle": [],
                        "last": "Stein",
                        "suffix": ""
                    },
                    {
                        "first": "Yamen",
                        "middle": [],
                        "last": "Ajjour",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 15th Conference of the European Chapter",
                "volume": "1",
                "issue": "",
                "pages": "1117--1127",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Henning Wachsmuth, Benno Stein, and Yamen Ajjour. 2017. \"PageRank\" for argument relevance. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 1117-1127.",
                "links": null
            },
            "BIBREF45": {
                "ref_id": "b45",
                "title": "Argumentation Schemes",
                "authors": [
                    {
                        "first": "Douglas",
                        "middle": [],
                        "last": "Walton",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Reed",
                        "suffix": ""
                    },
                    {
                        "first": "Fabrizio",
                        "middle": [],
                        "last": "Macagno",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Douglas Walton, Chris Reed, and Fabrizio Macagno. 2008. Argumentation Schemes. Cambridge University Press.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "num": null,
                "type_str": "figure",
                "text": "Figure-Claims (claims which were supported directly by experimental data) 2. Claim-Claims (claims supported by other claims, either claims based on figures or claims based on other claims)"
            },
            "FIGREF1": {
                "uris": null,
                "num": null,
                "type_str": "figure",
                "text": "Figure-claims and \"other\" claims are illustrated"
            },
            "FIGREF2": {
                "uris": null,
                "num": null,
                "type_str": "figure",
                "text": "Claim graph for the paper \"Dimerization Interactions of the b Subunit of the Escherichia coli F 1 F 0 -ATPase\"."
            },
            "FIGREF3": {
                "uris": null,
                "num": null,
                "type_str": "figure",
                "text": "Claims 10A and 10B (Green's Argumentation Scheme: Consistent with Predicted Effects (7)): The proteins containing the A128C and S139C mutations showed a strong tendency to dimerize, (Claim 10A) while cysteines at positions 138 and 146 did not tend to form disulphides under these conditions. (Claim 10B) [Claim 10A's slightly reworded restatement in the Discussion section is indicated by the dashed edge in the claim graph] Premise (Figure 5Bobservation): The figures show results of SDS-PAGE (protein gel electrophoresis) and Western blotting. The band intensities indicate the molecular masses of the proteins containing the mutations at locations 124-132 and 138. The proteins with mutations at locations 124, 128, and 132 do not show dark bands at lower molecular masses. Premise [missing warrant]: band intensity indicates protein amount at a specific mass Figure-Claim 24B (Green's Argumentation Scheme: Effect to Cause (5)): . . . , the most complete disulfide bond formation was observed at positions 124, 128, and 132 Premise: Claim 24B Premise [missing warrant]: Disulfide binding follows 4-residue periodicity in an \u03b1-helical protein structure. Claim 25 (Green's Argumentation Scheme: Effect to Cause (5)): The 4-residue periodicity of cross-linking . . . suggests a parallel \u03b1-helical arrangement in this region. [Claim 25's reworded restatement in the Discussion section is indicated by the dashed edge in the claim graph] Premise: the restated Claim 10A (indicated by the dashed edge) Premise: the restated Claim 25 (indicated by the dashed edge) Premise [missing warrant]: Proximity is necessary for disulfide binding Premise [missing warrant]: Residues 128 and 128' and 139 and 139' are close together within the quaternary structure [Information from Figs. 5A, 6A"
            },
            "FIGREF4": {
                "uris": null,
                "num": null,
                "type_str": "figure",
                "text": "Model of Informational HierarchyUse of Argumentation SchemesAs seen in figure 2, there are argumentation schemes included between each level of informational hierarchy. These schemes are from the Toulmin-Green model of claim argumentation and are what underlies all informational progression within the paper. In the claim graph as well, each arrow represents a logical progression which can be categorized with the Toulmin-Green model. For figure-claims the evidence comes from the data itself, the warrant is assumed knowledge or taken from the procedure. For claim-claims (at all levels of"
            },
            "FIGREF5": {
                "uris": null,
                "num": null,
                "type_str": "figure",
                "text": "Model of Informational Hierarchy"
            }
        }
    }
}