File size: 102,971 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T02:11:41.185873Z"
    },
    "title": "A Novel Methodology for Developing Automatic Harassment Classifiers for Twitter",
    "authors": [
        {
            "first": "Ishaan",
            "middle": [],
            "last": "Arora",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Columbia University",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Julia",
            "middle": [],
            "last": "Guo",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Columbia University",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Susan",
            "middle": [
                "E"
            ],
            "last": "Mcgregor",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Columbia University",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Sarah",
            "middle": [
                "Ita"
            ],
            "last": "Levitan",
            "suffix": "",
            "affiliation": {},
            "email": "sarah.levitan@hunter.cuny.edu"
        },
        {
            "first": "Julia",
            "middle": [],
            "last": "Hirschberg",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Columbia University",
                "location": {}
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Most efforts at identifying abusive speech online rely on public corpora that have been scraped from websites using keyword-based queries or released by site or platform owners for research purposes. These are typically labeled by crowd-sourced annotators-not the targets of the abuse themselves. While this method of data collection supports fast development of machine learning classifiers, the models built on them often fail in the context of real-world harassment and abuse, which contain nuances less easily identified by nontargets. Here, we present a mixed-methods approach to create classifiers for abuse and harassment which leverages direct engagement with the target group in order to achieve high quality and ecological validity of data sets and labels, and to generate deeper insights into the key tactics of bad actors. We use women journalists' experience on Twitter as an initial community of focus. We identify several structural mechanisms of abuse that we believe will generalize to other target communities.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Most efforts at identifying abusive speech online rely on public corpora that have been scraped from websites using keyword-based queries or released by site or platform owners for research purposes. These are typically labeled by crowd-sourced annotators-not the targets of the abuse themselves. While this method of data collection supports fast development of machine learning classifiers, the models built on them often fail in the context of real-world harassment and abuse, which contain nuances less easily identified by nontargets. Here, we present a mixed-methods approach to create classifiers for abuse and harassment which leverages direct engagement with the target group in order to achieve high quality and ecological validity of data sets and labels, and to generate deeper insights into the key tactics of bad actors. We use women journalists' experience on Twitter as an initial community of focus. We identify several structural mechanisms of abuse that we believe will generalize to other target communities.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Harassment is a significant problem in online spaces. In 2017, one in four Americans reported experiencing online harassment, with more than 60% describing it as a \"major problem\" (Duggan, 2017) .",
                "cite_spans": [
                    {
                        "start": 180,
                        "end": 194,
                        "text": "(Duggan, 2017)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "For journalists, a social media presence is essentially a professional requirement, as it is both a mechanism for locating sources and for promoting stories (Ferrier and Garud-Patkar, 2018) ; as of 2018, more Americans (roughly 20%) get their news from social media than from printed newspapers (Shearer, 2018) . At the same time, journalists receive an inordinate volume of hateful and harassing messages via social media. In a recent survey conducted by the Committee to Protect Journalists (CPJ), 90% of American journalists described online harassment as the biggest threat facing journalists today, with women and minority journalists being disproportionately targeted online (Westcott and Foley, 2019) .",
                "cite_spans": [
                    {
                        "start": 157,
                        "end": 189,
                        "text": "(Ferrier and Garud-Patkar, 2018)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 295,
                        "end": 310,
                        "text": "(Shearer, 2018)",
                        "ref_id": null
                    },
                    {
                        "start": 681,
                        "end": 707,
                        "text": "(Westcott and Foley, 2019)",
                        "ref_id": "BIBREF32"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "This harassment can have devastating effects. In 2016, 10% of women journalists said that they had considered leaving the profession out of fear (Nilsson and\u00d6rnebring, 2016) , while others avoided certain coverage areas in an effort to mitigate the risk of harassment. Still others may choose not to enter the field at all.",
                "cite_spans": [
                    {
                        "start": 145,
                        "end": 173,
                        "text": "(Nilsson and\u00d6rnebring, 2016)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "At a time when there is a major need to retain skilled journalists and diversify newsrooms (Scire, 2020), our goal is to develop a research methodology to address this critical threat facing journalists, and ultimately, our free press. Our contributions in this paper include: a) Identifying gaps in current anti-harassment tools provided by Twitter; b) Identifying key strategies used by harassers to circumvent these tools and reach their targets; and c) Development of a direct-engagement research process and data collection platform to curate datasets with high ecological validity, which will ultimately be used to train better machine learning classifiers for harassment detection.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Currently, there are limited options available for journalists to deal with harassing messages on Twitter. Twitter has three primary mechanisms through which a user can control their interactions on the platform: muting, blocking, and the recently introduced \"conversations\" controls, all of which have a slightly different impact on the content a user can access. For example, muting and blocking can both prevent content from certain users from appearing in some user A's timeline (Twitter, c) (Twitter, d).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Motivation and Approach",
                "sec_num": "2"
            },
            {
                "text": "However, muted users can still follow and interact with A, while blocked users are no longer able to see A's tweets, and if they visit A's profile, they will see they have been blocked (Twitter, b). The new \"conversations\" feature, meanwhile, allows user A to specify whether everyone, everyone they follow, or only specific users can reply to a specific tweet (Twitter, a). While these tools offer impressive granularity, many journalists have both large followings and a professional mandate to interact with their audiences on social media. This makes many of the available controls impractical or ineffective. Moreover, two of the three tools Twitter offers are only effective retrospectively, meaning the targeted user must still read blocked users' offensive tweets before they can choose to mute or block them. Not only does this require journalists to experience harm in order to achieve any potential remediation, if they are targeted by a large number of accounts, the manual effort becomes time-prohibitive.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Motivation and Approach",
                "sec_num": "2"
            },
            {
                "text": "Shared blocklists have been touted as a means for addressing some of these issues (Geiger, 2016) . However, for journalists this can result in blocking users who may be sharing legitimate critiques of their work (Jhaver et al., 2018) . As a whole, journalists as a community have expressed desire for more effective user engagement management tools (Saridou et al., 2019) .",
                "cite_spans": [
                    {
                        "start": 82,
                        "end": 96,
                        "text": "(Geiger, 2016)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 212,
                        "end": 233,
                        "text": "(Jhaver et al., 2018)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 349,
                        "end": 371,
                        "text": "(Saridou et al., 2019)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Motivation and Approach",
                "sec_num": "2"
            },
            {
                "text": "Furthermore, while many social media platforms do already have automated mechanisms for filtering harassment and hate speech, these are largely based on keyword matching, requiring manual creation with no guarantee of accuracy. Due to the large scale of problematic content on social media worldwide, manual efforts by moderators and filters have also been insufficient (Gerrard, 2018) .",
                "cite_spans": [
                    {
                        "start": 370,
                        "end": 385,
                        "text": "(Gerrard, 2018)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Motivation and Approach",
                "sec_num": "2"
            },
            {
                "text": "The goal of this work is, therefore, to contribute a robust, generalizable mixed-methods approach to constructing harassment training datasets with strong ecological validity, in order to support the development of truly effective classifiers for proactively identifying real-world abusive, harassing, and demeaning speech towards specific communities on Twitter.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Motivation and Approach",
                "sec_num": "2"
            },
            {
                "text": "Working with journalists, we are collecting a large-scale corpus of personally-harassing messages they have received on Twitter, and have developed an easily-employed annotation method to label messages by degree of observed harassment. Using this data, we then build machine learning classifiers to distinguish between hateful, abusive and neutral tweets. Ultimately, we plan to integrate our trained models into a tool to help journalists navigate and avoid having to see these unwanted, harassing messages.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Motivation and Approach",
                "sec_num": "2"
            },
            {
                "text": "Prior work on automatic detection of hateful and abusive speech toward journalists is limited. In (Charitidis et al., 2020) , researchers used a manually-validated seed set of journalism-related Twitter accounts to generate a list of target accounts across five languages. Using the Twitter API to conduct keyword-based searches, they then manually annotated hate vs. non-hate tweets. This yielded highly imbalanced corpora, with more \"hate\" than \"non-hate\" tweets for each language. Deep learning models trained on each language corpus achieved best macro-F1 scores over .80 for English, French and Greek but somewhat lower for Spanish and German.",
                "cite_spans": [
                    {
                        "start": 98,
                        "end": 123,
                        "text": "(Charitidis et al., 2020)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "3"
            },
            {
                "text": "Other work has addressed the more general problem of automatic identification of hate speech and abusive language online. In (Waseem, 2016) , researchers found that crowd-sourced annotations performed poorly. This indicates the importance of expert annotators, which (Blackwell et al., 2017) situates specifically in terms of classifying harassment.",
                "cite_spans": [
                    {
                        "start": 125,
                        "end": 139,
                        "text": "(Waseem, 2016)",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 267,
                        "end": 291,
                        "text": "(Blackwell et al., 2017)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "3"
            },
            {
                "text": "In (Warner and Hirschberg, 2012) , researchers using data from Yahoo and the American Jewish Congress found that anti-Semitic hate speech differed linguistically from speech that targeted other religious or ethnic groups, highlighting the need for a community-specific approach to studying hate speech. (Salem et al., 2016) used content from self-identified hate communities, instead of keywords from hand-coded speech or manually coded hate speech terms, as training data for their work on hate speech detection with some success. In (Nobata et al., 2016) , researchers studied abusive language in online user comments on news and finance forums using linguistic, syntactic, and distributed semantic features as well as lexicon-based features. Their dataset has been used to benchmark performance in hate speech detection, as has (Waseem and Hovy, 2016) . In (Kshirsagar et al., 2018) , researchers developed deep learning models for hate speech detection on Twitter, using transformed word embeddings to classify hate speech on three public datasets.",
                "cite_spans": [
                    {
                        "start": 3,
                        "end": 32,
                        "text": "(Warner and Hirschberg, 2012)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 535,
                        "end": 556,
                        "text": "(Nobata et al., 2016)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 831,
                        "end": 854,
                        "text": "(Waseem and Hovy, 2016)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 860,
                        "end": 885,
                        "text": "(Kshirsagar et al., 2018)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "3"
            },
            {
                "text": "Researchers in journalism have also used more qualitative methods to study abusive and hateful speech towards journalists. For example, UT Austin's School of Journalism published results from in-depth interviews with 75 female journalists describing how rampant online sexual harassment disrupts their ability to do their jobs (Chen et al., 2018) . The Committee to Protect Journalists reported similar findings in 2019 (Westcott and Foley, 2019) .",
                "cite_spans": [
                    {
                        "start": 327,
                        "end": 346,
                        "text": "(Chen et al., 2018)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 420,
                        "end": 446,
                        "text": "(Westcott and Foley, 2019)",
                        "ref_id": "BIBREF32"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "3"
            },
            {
                "text": "Finally, we note that developers have created tools (e.g. Twitter Block Chain (Wren, 2019) and the recently discontinued Block Together (Hoffman-Andrews, 2020) and the forthcoming Block Party app (Chou, 2020)) specifically designed to address the manual nature of Twitter's muting and blocking functions. While these efforts appear to address an important limitation of Twitter's current systems, they remain a reactive, rather than proactive, approach.",
                "cite_spans": [
                    {
                        "start": 78,
                        "end": 90,
                        "text": "(Wren, 2019)",
                        "ref_id": "BIBREF33"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "3"
            },
            {
                "text": "Our proposed methodology for training data collection and annotation incorporates and improves on these approaches as follows: 1We conduct background interviews with our target community of women journalists in order to identify common heuristics used to carry out harassment on Twitter, in order to develop a more nuanced and balanced dataset for annotation; (2) Annotations are performed by the targets of harassment, guaranteeing a unique level of ecological validity; (3) Our approach takes an empowering rather than exploitative approach to the detection process, promoting harm reduction by allowing harassment targets to participate constructively in the creation of classifiers that can better support their needs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "3"
            },
            {
                "text": "We employ a mixed-methods approach that integrates qualitative and quantitative data collection and analysis. We begin by directly engaging with our target group of women journalists who have experienced online harassment. We recruit participants by circulating calls to participation in key networks of women journalists, followed by semistructured pilot interviews with select participants, in which we question them about patterns of harassment that they have experienced or observed, and about potential tools or interventions that would improve their experience on social media. Despite our convenience sample, two key themes emerged across several pilot interviews, providing valuable insights about the mechanisms of harassment on Twitter, which we describe in Section 5.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "4"
            },
            {
                "text": "Results of these interviews are then integrated into our quantitative data collection pipeline. Using patterns of harassing language and behaviors on Twitter described by interview participants, we develop computational methods to automatically identify those patterns and then use these methods to sample potentially hateful messages from participants' Twitter archives for them to annotate. We describe this data selection process in Section 6.1. Through the process of direct engagement with our target community, we are able to curate a high quality dataset of labeled tweets to support the development of more robust harassment classifiers.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "4"
            },
            {
                "text": "To generate a well-balanced training set of tweets, we conducted pilot interviews with several women journalists who have faced significant harassment on Twitter. Through these interviews we learned about specific forms of the \"sub-tweeting\" and \"snitch-tweeting\" heuristics that are used to target these and other women journalists with abusive and harassing messages.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Pilot Interviews",
                "sec_num": "5"
            },
            {
                "text": "The primary form of \"sub-tweeting\" described to us consists of perpetrators capturing screenshots that contain the target's Twitter profile or username. They then tweet these out with implicit or explicit calls for their followers to tweet at the same target. This behavior constitutes \"sub-tweeting\" because the absence of the target's username in the text of the original tweet means that target will not be notified of the instigating tweet, and will therefore be caught off-guard by an influx of often abusive tweets, sometimes numbering in the thousands over a period of less than a day. (See (Tufekci, 2014) for more details and examples of \"sub-tweeting.\") We note that none of Twitter's currently available tools can mitigate this attack; even if the perpetrator has already been blocked by the target, they can simply log out of Twitter and view the target's profile in a web browser in order to obtain the required media.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Pilot Interviews",
                "sec_num": "5"
            },
            {
                "text": "While the effect of sub-tweeting is to mask the identity of the perpetrator, \"snitch-tweeting\" is a means of drawing the target into a sub-tweeted thread about themselves to expose them to abuse. Because sub-tweeting intentionally circumvents Twitter's notification systems, targets of abuse will typically be unaware of such sub-tweeting, unless, as described above, it is used to direct traffic to their account. \"Snitch-tweeting\" consists of adding a target's handle to a thread about them, thus triggering a notification. The goal is for the target then to review the notification and thus to view the abusive thread that precedes the snitch-tweet. Taken together, these results helped us inform our design for the tweet selection portion of our data pre-processing, as described below.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Pilot Interviews",
                "sec_num": "5"
            },
            {
                "text": "In order to curate a high-quality training dataset from participating journalists' tweets, we designed and implemented a two-part, web-based platform to facilitate the data collection and annotation processes. This web platform was designed to balance the proportion of abusive vs. non-abusive tweets that are presented for annotation, without relying on keywords, which are often too coarsegrained to serve as a reliable indicator of abusive content. Instead, we develop heuristics using insights from our pilot interviews as well as private data from the participant's account to include a more nuanced and representative range of potentially abusive tweets for annotation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Platform Design",
                "sec_num": "6"
            },
            {
                "text": "The platform is also designed to maximize the efficiency and accuracy of the annotation process, in order to generate a large volume of high-quality training data for deep learning models. We achieve this via batched contextual annotation: participants annotate tweets within the context of the original conversation or tweet thread, rather than annotating them in isolation, simulating how they would have viewed the conversation initially on Twitter. In addition to the annotation tool described above, we have also built a tool for secure data upload, as described below.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Platform Design",
                "sec_num": "6"
            },
            {
                "text": "The process of using our web annotation tool is split into 2 stages, each of which can be accessed via secure, password-protected URLs. First, the study participant securely logs in to the upload platform using a uniquely generated username and password. We ask participants to upload three distinct files, which can be extracted from their Twitter data archive: (1) tweet.js, which contains all of their tweets; (2) muted.js, which contains the list of accounts they have muted, and (3) blocked.js, which contains the list of accounts they have blocked. Because participants' Twitter archives may contain anywhere from hundreds to tens of thousands of tweets, asking them to label all tweet threads is impractical. Moreover, our goal is to build a training corpus that is approximately equally split between hateful/abusive examples and neutral examples -a very different distribution than we expect to see across the entire corpus, making random sampling inefficient for these purposes.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Platform Structure",
                "sec_num": "6.1"
            },
            {
                "text": "In order to capture more varied and nuanced examples of problematic data than are likely to be generated by common techniques like keyword filtering, we use multiple heuristics inspired by the participant's muted and blocked lists and the insights gained from our pilot studies to curate a manageable sample of tweets for annotation. Applying these heuristics involves a combination of manual and scripted processing, resulting a gap of several hours to one day between data upload and the availability of data for annotation by each participant. A list of balanced tweet threads fetched from both of these heuristics described below is used to populate the annotation interface.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Platform Structure",
                "sec_num": "6.1"
            },
            {
                "text": "Our first heuristic using muted and blocked lists uses a Python script to identify all tweets in the tweet.js file that contain any username present in either the muted.js or blocked.js files. Because the presence of a username in these lists reflects an intentional choice on the part of the participant to have these accounts' tweets hidden or blocked from their timeline, we believe the proportion of harmful tweets involving these usernames is likely to be higher than what is present in the corpus as a whole. We then use the thread-retrieval algorithm described in Section 6.1.1 to construct the thread for each relevant tweet.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Platform Structure",
                "sec_num": "6.1"
            },
            {
                "text": "Our second heuristic searches sub-tweets (described in 5) targeting the study participant, using the query \"[real name] -from:[username] -@[username]\" where \"username\" is the participant's Twitter handle, and \"real name\" is the participant's real name. This method allows us to find and capture Tweets in which the study participant was \"sub-tweeted\" over the most recent 30 days (using Twitter's non-premium Search API). Each of these tweets is then passed through the procedure in Algorithm 1 to once again obtain the corresponding tweet threads.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Platform Structure",
                "sec_num": "6.1"
            },
            {
                "text": "We find that this methodology retrieves a few interesting threads, but has several shortcomings. First, many of these tweets are positive, and praise the journalist for their work, which makes sense as their name is directly mentioned. Second, and relatedly, we are unable to find sub-tweets where the journalist's name is not mentioned, i.e. the post merely consists of a screenshot of their tweet. These tweets are presumably more negative, as they avoid easy attention from the target. In order to find these sub-tweets, we would have to implement computer vision methods to search for their name in images across Twitter, though it could be difficult to know where to look for these screenshots in the first place. We will investigate this further in future work.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Platform Structure",
                "sec_num": "6.1"
            },
            {
                "text": "We have also attempted to build a third heuristic using the study participant's Twitter archive to capture scenarios where they had been \"snitch-Tweeted\" into one of these sub-tweet threads, i.e. find a thread of the structure [image, ..., mention of their username, their response], but we did not find any such threads. We plan to revisit this with future annotators.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Platform Structure",
                "sec_num": "6.1"
            },
            {
                "text": "To balance the potentially negative threads identified through these heuristics, we also select a random sample of tweets made to non-blocked, non-muted users, and retrieve their corresponding threads. We also exclude from this non-negative sample tweet threads constructed by the participant through self-replies.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Platform Structure",
                "sec_num": "6.1"
            },
            {
                "text": "After data upload and preprocessing, the annotation platform is deployed and sent to the study participant. Participants annotate each tweet sent to them within a retrieved tweet thread. This provides better context to the participant while annotating, addressing a key limitation of many existing datasets, where tweets are presented without context.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotation Platform",
                "sec_num": "6.1.1"
            },
            {
                "text": "Algorithm 1 presents pseudocode for computing a tweet thread from a given tweet. To see the full codebase which joins this algorithm with the aforementioned heuristics into a complete data processing pipeline, please refer to the GitHub repository linked below. \u2022 Hateful speech is defined as language used to express hatred towards a targeted individual or group, or which is intended to be derogatory, to humiliate, or to insult members of the group, on the basis of attributes such as race, religion, ethnic origin, sexual orientation, disability, or gender.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotation Platform",
                "sec_num": "6.1.1"
            },
            {
                "text": "\u2022 Abusive language is defined as any strongly impolite, rude or hurtful language using profanity, that debases someone or something, or shows intense negative emotion.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotation Platform",
                "sec_num": "6.1.1"
            },
            {
                "text": "\u2022 Spam includes posts consisting of related or unrelated advertising / marketing, selling products of adult nature, linking to malicious websites, phishing attempts and other kinds of unwanted information, usually executed repeatedly.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotation Platform",
                "sec_num": "6.1.1"
            },
            {
                "text": "\u2022 Neutral is all tweets that do not fall into any of the prior categories.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotation Platform",
                "sec_num": "6.1.1"
            },
            {
                "text": "We drew these labels from (Founta et al., 2018) 's work, which created a hate speech dataset of 80,000 tweets labeled by crowdsourced annotators, using several iterations of labels (including \"offensive\", \"aggressive\", etc.), narrowing them down to these terms. We plan to further iteratively add and remove labels based on insights from interviews and annotation sessions (see 8).",
                "cite_spans": [
                    {
                        "start": 26,
                        "end": 47,
                        "text": "(Founta et al., 2018)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotation Platform",
                "sec_num": "6.1.1"
            },
            {
                "text": "While we are recruiting more journalists as study participants into our data collection pipeline, we have in parallel been building models of both feature engineering and neural network-based approaches, and testing them on historical hate speech datasets. We plan to take the insights we acquire from these experiments and apply them to classifiers built on our own data once we have accumulated a sufficient amount. We also plan to check the cross-performance between models trained on our own and historical corpora as quality assurance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Modeling",
                "sec_num": "7"
            },
            {
                "text": "The data which we have accumulated so far gives us a good idea of which historical corpora are most similar to our own. We explored several corpora, including (Waseem and Hovy, 2016) and (Founta et al., 2018) , but focused on Task 5 of SemEval 2019, \"Multilingual detection of hate speech against immigrants and women in Twitter (HatEval)\" in English (Basile et al., 2019) , as it is most recent and they are all of similar genre.",
                "cite_spans": [
                    {
                        "start": 159,
                        "end": 182,
                        "text": "(Waseem and Hovy, 2016)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 187,
                        "end": 208,
                        "text": "(Founta et al., 2018)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 351,
                        "end": 372,
                        "text": "(Basile et al., 2019)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Modeling",
                "sec_num": "7"
            },
            {
                "text": "Both Task 5 subtasks used the same dataset (cicl2018/HateEvalTeam, 2019) but with different labels. Subtask A was a binary classification task to assign a label of \"hate\" or \"non-hate\" to each tweet. Subtask B was a multi-class classification task to assign two additional label pairs to each tweet in addition to \"hate\" or \"non-hate\": \"individual\" or \"group\" and \"aggressive\" or \"non-aggressive\". The split across train and development datasets was 9000 to 1000 tweets; these have been open-sourced by the organizing team. The true labels for the test set have not, however, so we evaluate only on the development set.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Modeling",
                "sec_num": "7"
            },
            {
                "text": "We replicated the winning approach (Indurthi et al., 2019) for sub-task A in English, which used SMOTE to over-sample the \"hate\" class as a preprocessing step, followed by the use of Universal Sentence Encoder (Cer et al., 2018) to generate a vector representation of the tweet, and SVM (RBF kernel) to classify the tweet. We also implemented a transformer-based approach for this subtask, based on (MacAvaney et al., 2019) , which uses pre-trained BERT for sequence classification, fine-tuned for 10 epochs. This approach in fact outperforms the aforementioned winning approach.",
                "cite_spans": [
                    {
                        "start": 35,
                        "end": 58,
                        "text": "(Indurthi et al., 2019)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 210,
                        "end": 228,
                        "text": "(Cer et al., 2018)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 399,
                        "end": 423,
                        "text": "(MacAvaney et al., 2019)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Modeling",
                "sec_num": "7"
            },
            {
                "text": "For sub-task B, the multi-classification task, we replicated the winning approach (Bauwelinck et al., 2019) by training three separate classifiers to classify three label pairs individually; these classifiers used a linear SVM on handcrafted syntactic, lexical and bag-of-words features. The optimal hyperparameters were found using grid search. Our experiments with these corpora have given us insights about best practices for training effective models of hate speech, which we plan to apply to our new corpus as we collect more data from participating women journalists. We have additionally been exploring experiments on our collected data with various novel model architectures as opposed to data corpora, which are elaborated upon in 10.",
                "cite_spans": [
                    {
                        "start": 82,
                        "end": 107,
                        "text": "(Bauwelinck et al., 2019)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Modeling",
                "sec_num": "7"
            },
            {
                "text": "Although testing of our platform is still in the pilot phase, early users have shared positive feedback regarding its usability, and have also been able to perform the annotation task with good efficiency, on the order of \u223c300 tweets per hour. Given the size of previously-collected datasets in this space, our methodology is efficient enough to generate sufficient training data in less than 40 hours, making it both a cost-effective and robust approach. Given the high fidelity of our labels and the nearperfect ecological validity of the training data, we believe that classifiers trained on data collected using our methods will significantly outperform existing classifiers on hateful and abusive speech in the wild.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Discussion",
                "sec_num": "8"
            },
            {
                "text": "From early feedback, we have also identified additional labels that participants found relevant, such as \"campaign\" or \"brigade\", used to indicate a lexically generic Tweet that is still part of a harassment campaign, as in 2019's \"Learn to code\" campaign (Molloy, 2019) . In addition, our pilot interviews suggest that including a fill-in \"other\" label may be useful for generating more nuanced classifiers, especially as there has historically been a lack of annotator agreement on what constitutes hateful speech, which tends to vary in severity and lexical nature depending on the situation (Waseem et al., 2017) .",
                "cite_spans": [
                    {
                        "start": 256,
                        "end": 270,
                        "text": "(Molloy, 2019)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 595,
                        "end": 616,
                        "text": "(Waseem et al., 2017)",
                        "ref_id": "BIBREF30"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Discussion",
                "sec_num": "8"
            },
            {
                "text": "Currently, our approach is limited by its dependence on a feature allowing Twitter users to download an archive of their data; this feature was suspended for roughly two months of the research period in response to the social-engineered hacking of more than 100 accounts (Conger and Popper, 2020) . Moreover, some blocked or muted users identified in pre-processing may have been suspended by Twitter, making it impossible to include their potentially harassing messages in our corpus. Finally, while our platform yielded a useful annotation rate, we note that there are inherent limitations to developing classifiers using strictly hand-labeled data.",
                "cite_spans": [
                    {
                        "start": 271,
                        "end": 296,
                        "text": "(Conger and Popper, 2020)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Limitations",
                "sec_num": "9"
            },
            {
                "text": "Given the interruption in data collection, we propose to augment our data-access pipeline by building a sufficiently-permissioned Twitter app to download the required data directly from participants' accounts. This would not only provide similarly high-quality data with less burden on participants, it would also provide an ongoing source of test data with which we could refine and improve our classifiers in much closer to real-time.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Directions for Future Work",
                "sec_num": "10"
            },
            {
                "text": "By leveraging the methods presented in (Wulczyn et al., 2017) , moreover, we also believe we could augment and improve the classifiers built from our hand-labeled data using a combination of machine learning and crowdsourcing. We are in general investigating ways to overcome the inherent shortcomings of manual expert annotation, while retaining its significant benefits; for example, augmenting our data annotation tool with active learning annotation (Vlachos, 2006) , so that participants only need to annotate the most unclear instances of hateful/harassing/neutral speech.",
                "cite_spans": [
                    {
                        "start": 39,
                        "end": 61,
                        "text": "(Wulczyn et al., 2017)",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 454,
                        "end": 469,
                        "text": "(Vlachos, 2006)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Directions for Future Work",
                "sec_num": "10"
            },
            {
                "text": "In regards to model-building, we are exploring ways we can take advantage of the contextual thread annotation scheme present in our annotation platform. Specifically, we have investigated methods using LSTMs (Huang et al., 2016) , and are presently investigating graph attention networks (Veli\u010dkovi\u0107 et al., 2017) ; these architectures and others like them could allow us to take advantage of the rich metadata and parent tweet text embeddings present in tweet threads, and have the potential to achieve significantly boosted classification performance compared to that of models built on text embeddings of the potentially harassing tweet alone (Mishra et al., 2019) .",
                "cite_spans": [
                    {
                        "start": 208,
                        "end": 228,
                        "text": "(Huang et al., 2016)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 288,
                        "end": 313,
                        "text": "(Veli\u010dkovi\u0107 et al., 2017)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 646,
                        "end": 667,
                        "text": "(Mishra et al., 2019)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Directions for Future Work",
                "sec_num": "10"
            },
            {
                "text": "For the purpose of building the eventual tool to aid journalists in the field, we could alternatively address the relatively small size of our manuallylabelled datasets for training deep learning classifiers, by augmenting them against the large, popular corpora already in existence. We could investigate whether this addition would boost performance compared to classifiers trained only on those large, crowd-sourced corpora, as a measure of effectiveness of our methodology.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Directions for Future Work",
                "sec_num": "10"
            },
            {
                "text": "Finally, we note that while certain semantic features of the classifiers developed using our methodology will differ depending on the community of focus, we hypothesize that by studying several communities with this level of detail and quality, we will eventually be able to identify generalizable features of harassment activities.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Directions for Future Work",
                "sec_num": "10"
            },
            {
                "text": "This work has focused on outlining a novel and generalizable methodology for generating better training datasets for the detection of abusive and harassing speech on Twitter, using women journalists as a test community. By directly engaging the targets of harassment in our research, we have not only created an efficient annotation platform using insights about the structural mechanisms of harassment, but we have offered these victims a constructive way to engage with what are otherwise totally negative experiences. We look forward to continuing to work with women journalists to build data-driven tools against abuse and harassment that allow them to maintain their personal needs while working to uphold our free press.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "11"
            },
            {
                "text": "The code for all of our tweet filtering heuristics and thread retrieval methods can be accessed at the following GitHub repository: https://github.com/ ishaan007/woah_emnlp_2020",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "Theodora Saridou, Kosmas Panagiotidis, and Andreas Veglis. 2019. Towards a semantic-oriented model of participatory journalism management: Perceptions of user-generated content. Redefining Communication: Social Media and the Age of Innovation, page 27.Sarah Scire. 2020. A window into one newsroom's diversity opens, but an industrywide door shuts (for now).NiemanLab.https://www.niemanlab.org/2020/05/awindow-into-one-newsrooms-diversityopens-but-an-industry-wide-door-shutsfor-now.Elisa Shearer. 2018. Social media outpaces print newspapers in the u.s. as a news source.https://www.pewresearch.org/facttank/2018/12/10/social-media-outpacesprint-newspapers-in-the-u-s-as-anews-source/.Zeynep Tufekci. 2014. Big questions for social media big data: Representativeness, validity and other methodological pitfalls. arXiv preprint arXiv:1403.7400.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "annex",
                "sec_num": null
            },
            {
                "text": "About conversations on twitter.https://help.twitter.com/en/usingtwitter/twitter-conversations.Twitter. b. How to block accounts on twitter.https://help.twitter.com/en/usingtwitter/blocking-and-unblockingaccounts.Twitter. c. How to mute accounts on twitter. https://help.twitter.com/en/usingtwitter/twitter-mute.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Twitter. a.",
                "sec_num": null
            },
            {
                "text": "How to use advanced muting options. https://help.twitter.com/en/using-",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Twitter. d.",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "SemEval-2019 task 5: Multilingual detection of hate speech against immigrants and women in twitter",
                "authors": [
                    {
                        "first": "Valerio",
                        "middle": [],
                        "last": "Basile",
                        "suffix": ""
                    },
                    {
                        "first": "Cristina",
                        "middle": [],
                        "last": "Bosco",
                        "suffix": ""
                    },
                    {
                        "first": "Elisabetta",
                        "middle": [],
                        "last": "Fersini",
                        "suffix": ""
                    },
                    {
                        "first": "Debora",
                        "middle": [],
                        "last": "Nozza",
                        "suffix": ""
                    },
                    {
                        "first": "Viviana",
                        "middle": [],
                        "last": "Patti",
                        "suffix": ""
                    },
                    {
                        "first": "Francisco Manuel Rangel",
                        "middle": [],
                        "last": "Pardo",
                        "suffix": ""
                    },
                    {
                        "first": "Paolo",
                        "middle": [],
                        "last": "Rosso",
                        "suffix": ""
                    },
                    {
                        "first": "Manuela",
                        "middle": [],
                        "last": "Sanguinetti",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 13th International Workshop on Semantic Evaluation",
                "volume": "",
                "issue": "",
                "pages": "54--63",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Valerio Basile, Cristina Bosco, Elisabetta Fersini, Debora Nozza, Viviana Patti, Francisco Manuel Rangel Pardo, Paolo Rosso, and Manuela San- guinetti. 2019. SemEval-2019 task 5: Multilingual detection of hate speech against immigrants and women in twitter. In Proceedings of the 13th Inter- national Workshop on Semantic Evaluation, pages 54-63, Minneapolis, Minnesota, USA.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "LT3 at SemEval-2019 task 5: Multilingual detection of hate speech against immigrants and women in twitter (hatEval)",
                "authors": [
                    {
                        "first": "Nina",
                        "middle": [],
                        "last": "Bauwelinck",
                        "suffix": ""
                    },
                    {
                        "first": "Gilles",
                        "middle": [],
                        "last": "Jacobs",
                        "suffix": ""
                    },
                    {
                        "first": "V\u00e9ronique",
                        "middle": [],
                        "last": "Hoste",
                        "suffix": ""
                    },
                    {
                        "first": "Els",
                        "middle": [],
                        "last": "Lefever",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 13th International Workshop on Semantic Evaluation",
                "volume": "",
                "issue": "",
                "pages": "436--440",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nina Bauwelinck, Gilles Jacobs, V\u00e9ronique Hoste, and Els Lefever. 2019. LT3 at SemEval-2019 task 5: Multilingual detection of hate speech against immi- grants and women in twitter (hatEval). In Proceed- ings of the 13th International Workshop on Seman- tic Evaluation, pages 436-440, Minneapolis, Min- nesota, USA. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Classification and its consequences for online harassment: Design insights from heartmob",
                "authors": [
                    {
                        "first": "Lindsay",
                        "middle": [],
                        "last": "Blackwell",
                        "suffix": ""
                    },
                    {
                        "first": "Jill",
                        "middle": [],
                        "last": "Dimond",
                        "suffix": ""
                    },
                    {
                        "first": "Sarita",
                        "middle": [],
                        "last": "Schoenebeck",
                        "suffix": ""
                    },
                    {
                        "first": "Cliff",
                        "middle": [],
                        "last": "Lampe",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proc. ACM Hum.-Comput. Interact",
                "volume": "1",
                "issue": "24",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lindsay Blackwell, Jill Dimond, Sarita Schoenebeck, and Cliff Lampe. 2017. Classification and its con- sequences for online harassment: Design insights from heartmob. Proc. ACM Hum.-Comput. Inter- act., 1(24):19pp.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Universal sentence encoder",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Cer",
                        "suffix": ""
                    },
                    {
                        "first": "Yinfei",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Sheng-Yi",
                        "middle": [],
                        "last": "Kong",
                        "suffix": ""
                    },
                    {
                        "first": "Nan",
                        "middle": [],
                        "last": "Hua",
                        "suffix": ""
                    },
                    {
                        "first": "Nicole",
                        "middle": [],
                        "last": "Limtiaco",
                        "suffix": ""
                    },
                    {
                        "first": "Rhomni",
                        "middle": [],
                        "last": "St John",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [],
                        "last": "Constant",
                        "suffix": ""
                    },
                    {
                        "first": "Mario",
                        "middle": [],
                        "last": "Guajardo-Cespedes",
                        "suffix": ""
                    },
                    {
                        "first": "Steve",
                        "middle": [],
                        "last": "Yuan",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Tar",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1803.11175"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, et al. 2018. Universal sentence encoder. arXiv preprint arXiv:1803.11175.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Stavros Vologiannidis, Ioannis Papastergiou, and Sophia Karakeva. 2020. Towards countering hate speech against journalists on social media",
                "authors": [
                    {
                        "first": "Polychronis",
                        "middle": [],
                        "last": "Charitidis",
                        "suffix": ""
                    },
                    {
                        "first": "Stavros",
                        "middle": [],
                        "last": "Doropoulos",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "Online Social Networks and Media",
                "volume": "17",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Polychronis Charitidis, Stavros Doropoulos, Stavros Vologiannidis, Ioannis Papastergiou, and Sophia Karakeva. 2020. Towards countering hate speech against journalists on social media. Online Social Networks and Media, 17:100071.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "you really have to have a thick skin': A cross-cultural perspective on how online harassment influences female journalists",
                "authors": [
                    {
                        "first": "Gina",
                        "middle": [],
                        "last": "Masullo Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Paromita",
                        "middle": [],
                        "last": "Pain",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Victoria",
                        "suffix": ""
                    },
                    {
                        "first": "Madlin",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Nina",
                        "middle": [],
                        "last": "Mekelburg",
                        "suffix": ""
                    },
                    {
                        "first": "Franziska",
                        "middle": [],
                        "last": "Springer",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Troger",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Journalism",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gina Masullo Chen, Paromita Pain, Victoria Y Chen, Madlin Mekelburg, Nina Springer, and Franziska Troger. 2018. 'you really have to have a thick skin': A cross-cultural perspective on how online harassment influences female journalists. Journal- ism, page 1464884918768500.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "HateEval 2019 Task 5 Data Files",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "cicl2018/HateEvalTeam. 2019. HateEval 2019 Task 5 Data Files. https://github.com/cicl2018/ HateEvalTeam/tree/master/Data%20Files/ Data%20Files.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Florida teenager is charged as 'mastermind' of twitter hack. The New York Times",
                "authors": [
                    {
                        "first": "Kate",
                        "middle": [],
                        "last": "Conger",
                        "suffix": ""
                    },
                    {
                        "first": "Nathanial",
                        "middle": [],
                        "last": "Popper",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kate Conger and Nathanial Popper. 2020. Florida teenager is charged as 'mastermind' of twitter hack. The New York Times.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Trollbusters: Fighting online harassment of women journalists",
                "authors": [
                    {
                        "first": "Michelle",
                        "middle": [],
                        "last": "Ferrier",
                        "suffix": ""
                    },
                    {
                        "first": "Nisha",
                        "middle": [],
                        "last": "Garud-Patkar",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Mediating Misogyny: Gender, Technology, and Harassment",
                "volume": "",
                "issue": "",
                "pages": "311--332",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Michelle Ferrier and Nisha Garud-Patkar. 2018. Troll- busters: Fighting online harassment of women jour- nalists. In Jacqueline Ryan Vickery and Tracy Ever- bach, editors, Mediating Misogyny: Gender, Tech- nology, and Harassment, pages 311-332. Springer International Publishing.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Large scale crowdsourcing and characterization of twitter abusive behavior",
                "authors": [
                    {
                        "first": "Antigoni-Maria",
                        "middle": [],
                        "last": "Founta",
                        "suffix": ""
                    },
                    {
                        "first": "Constantinos",
                        "middle": [],
                        "last": "Djouvas",
                        "suffix": ""
                    },
                    {
                        "first": "Despoina",
                        "middle": [],
                        "last": "Chatzakou",
                        "suffix": ""
                    },
                    {
                        "first": "Ilias",
                        "middle": [],
                        "last": "Leontiadis",
                        "suffix": ""
                    },
                    {
                        "first": "Jeremy",
                        "middle": [],
                        "last": "Blackburn",
                        "suffix": ""
                    },
                    {
                        "first": "Gianluca",
                        "middle": [],
                        "last": "Stringhini",
                        "suffix": ""
                    },
                    {
                        "first": "Athena",
                        "middle": [],
                        "last": "Vakali",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Sirivianos",
                        "suffix": ""
                    },
                    {
                        "first": "Nicolas",
                        "middle": [],
                        "last": "Kourtellis",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1802.00393"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Antigoni-Maria Founta, Constantinos Djouvas, De- spoina Chatzakou, Ilias Leontiadis, Jeremy Black- burn, Gianluca Stringhini, Athena Vakali, Michael Sirivianos, and Nicolas Kourtellis. 2018. Large scale crowdsourcing and characterization of twitter abusive behavior. arXiv preprint arXiv:1802.00393.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Bot-based collective blocklists in twitter: the counterpublic moderation of harassment in a networked public space",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Stuart",
                        "middle": [],
                        "last": "Geiger",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "19",
                "issue": "",
                "pages": "787--803",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Stuart Geiger. 2016. Bot-based collective block- lists in twitter: the counterpublic moderation of ha- rassment in a networked public space. Information, Communication & Society, 19(6):787-803.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Beyond the hashtag: Circumventing content moderation on social media",
                "authors": [
                    {
                        "first": "Ysabel",
                        "middle": [],
                        "last": "Gerrard",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "New Media & Society",
                "volume": "20",
                "issue": "12",
                "pages": "4492--4511",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ysabel Gerrard. 2018. Beyond the hashtag: Circum- venting content moderation on social media. New Media & Society, 20(12):4492-4511.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Block together",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Hoffman-Andrews",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jacob Hoffman-Andrews. 2020. Block together.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Modeling rich contexts for sentiment classification with lstm",
                "authors": [
                    {
                        "first": "Minlie",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Yujie",
                        "middle": [],
                        "last": "Cao",
                        "suffix": ""
                    },
                    {
                        "first": "Chao",
                        "middle": [],
                        "last": "Dong",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1605.01478"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Minlie Huang, Yujie Cao, and Chao Dong. 2016. Mod- eling rich contexts for sentiment classification with lstm. arXiv preprint arXiv:1605.01478.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "FERMI at SemEval-2019 task 5: Using sentence embeddings to identify hate speech against immigrants and women in twitter",
                "authors": [
                    {
                        "first": "Vijayasaradhi",
                        "middle": [],
                        "last": "Indurthi",
                        "suffix": ""
                    },
                    {
                        "first": "Bakhtiyar",
                        "middle": [],
                        "last": "Syed",
                        "suffix": ""
                    },
                    {
                        "first": "Manish",
                        "middle": [],
                        "last": "Shrivastava",
                        "suffix": ""
                    },
                    {
                        "first": "Nikhil",
                        "middle": [],
                        "last": "Chakravartula",
                        "suffix": ""
                    },
                    {
                        "first": "Manish",
                        "middle": [],
                        "last": "Gupta",
                        "suffix": ""
                    },
                    {
                        "first": "Vasudeva",
                        "middle": [],
                        "last": "Varma",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 13th International Workshop on Semantic Evaluation",
                "volume": "",
                "issue": "",
                "pages": "70--74",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Vijayasaradhi Indurthi, Bakhtiyar Syed, Manish Shri- vastava, Nikhil Chakravartula, Manish Gupta, and Vasudeva Varma. 2019. FERMI at SemEval-2019 task 5: Using sentence embeddings to identify hate speech against immigrants and women in twitter. In Proceedings of the 13th International Workshop on Semantic Evaluation, pages 70-74, Minneapolis, Minnesota, USA. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Online harassment and content moderation: The case of blocklists",
                "authors": [
                    {
                        "first": "Shagun",
                        "middle": [],
                        "last": "Jhaver",
                        "suffix": ""
                    },
                    {
                        "first": "Sucheta",
                        "middle": [],
                        "last": "Ghoshal",
                        "suffix": ""
                    },
                    {
                        "first": "Amy",
                        "middle": [],
                        "last": "Bruckman",
                        "suffix": ""
                    },
                    {
                        "first": "Eric",
                        "middle": [],
                        "last": "Gilbert",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "ACM Trans. Comput.-Hum. Interact",
                "volume": "25",
                "issue": "2",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shagun Jhaver, Sucheta Ghoshal, Amy Bruckman, and Eric Gilbert. 2018. Online harassment and con- tent moderation: The case of blocklists. ACM Trans. Comput.-Hum. Interact., 25(2):33pp.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Predictive embeddings for hate speech detection on twitter",
                "authors": [
                    {
                        "first": "Rohan",
                        "middle": [],
                        "last": "Kshirsagar",
                        "suffix": ""
                    },
                    {
                        "first": "Tyrus",
                        "middle": [],
                        "last": "Cukuvac",
                        "suffix": ""
                    },
                    {
                        "first": "Kathleen",
                        "middle": [],
                        "last": "Mckeown",
                        "suffix": ""
                    },
                    {
                        "first": "Susan",
                        "middle": [],
                        "last": "Mcgregor",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2nd Workshop on Abusive Language Online (ALW2)",
                "volume": "",
                "issue": "",
                "pages": "26--32",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rohan Kshirsagar, Tyrus Cukuvac, Kathleen McKe- own, and Susan McGregor. 2018. Predictive embed- dings for hate speech detection on twitter. In Pro- ceedings of the 2nd Workshop on Abusive Language Online (ALW2), pages 26-32.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Hate speech detection: Challenges and solutions",
                "authors": [
                    {
                        "first": "Sean",
                        "middle": [],
                        "last": "Macavaney",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Hao-Ren",
                        "suffix": ""
                    },
                    {
                        "first": "Eugene",
                        "middle": [],
                        "last": "Yao",
                        "suffix": ""
                    },
                    {
                        "first": "Katina",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Nazli",
                        "middle": [],
                        "last": "Russell",
                        "suffix": ""
                    },
                    {
                        "first": "Ophir",
                        "middle": [],
                        "last": "Goharian",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Frieder",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "PLOS ONE",
                "volume": "14",
                "issue": "",
                "pages": "1--16",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sean MacAvaney, Hao-Ren Yao, Eugene Yang, Katina Russell, Nazli Goharian, and Ophir Frieder. 2019. Hate speech detection: Challenges and solutions. PLOS ONE, 14:1-16.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Abusive language detection with graph convolutional networks",
                "authors": [
                    {
                        "first": "Pushkar",
                        "middle": [],
                        "last": "Mishra",
                        "suffix": ""
                    },
                    {
                        "first": "Marco",
                        "middle": [
                            "Del"
                        ],
                        "last": "Tredici",
                        "suffix": ""
                    },
                    {
                        "first": "Helen",
                        "middle": [],
                        "last": "Yannakoudakis",
                        "suffix": ""
                    },
                    {
                        "first": "Ekaterina",
                        "middle": [],
                        "last": "Shutova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1904.04073"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Pushkar Mishra, Marco Del Tredici, Helen Yan- nakoudakis, and Ekaterina Shutova. 2019. Abu- sive language detection with graph convolutional networks. arXiv preprint arXiv:1904.04073.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "How a myth about journalists telling miners to \"learn to code\" helped people justify harassment",
                "authors": [
                    {
                        "first": "Parker",
                        "middle": [],
                        "last": "Molloy",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Parker Molloy. 2019. How a myth about jour- nalists telling miners to \"learn to code\" helped people justify harassment. Media Matters.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Abusive language detection in online user content",
                "authors": [
                    {
                        "first": "Chikashi",
                        "middle": [],
                        "last": "Nobata",
                        "suffix": ""
                    },
                    {
                        "first": "Joel",
                        "middle": [],
                        "last": "Tetreault",
                        "suffix": ""
                    },
                    {
                        "first": "Achint",
                        "middle": [],
                        "last": "Thomas",
                        "suffix": ""
                    },
                    {
                        "first": "Yashar",
                        "middle": [],
                        "last": "Mehdad",
                        "suffix": ""
                    },
                    {
                        "first": "Yi",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 25th international conference on world wide web",
                "volume": "",
                "issue": "",
                "pages": "145--153",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chikashi Nobata, Joel Tetreault, Achint Thomas, Yashar Mehdad, and Yi Chang. 2016. Abusive lan- guage detection in online user content. In Proceed- ings of the 25th international conference on world wide web, pages 145-153.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "A web of hate: Tackling hateful speech in online social spaces",
                "authors": [
                    {
                        "first": "Mohammad",
                        "middle": [],
                        "last": "Haji",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Salem",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Kelly",
                        "suffix": ""
                    },
                    {
                        "first": "Susan",
                        "middle": [],
                        "last": "Dillon",
                        "suffix": ""
                    },
                    {
                        "first": "Derek",
                        "middle": [],
                        "last": "Benesch",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ruths",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "the International Conference on Language Resources and Evaluation (LREC2016)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Haji Mohammad Salem, Kelly P Dillon, Susan Be- nesch, and Derek Ruths. 2016. A web of hate: Tack- ling hateful speech in online social spaces. In First Workshop on Text Analytics for Cybersecurity and Online Safety (TA-COS 2016) at the International Conference on Language Resources and Evaluation (LREC2016).",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "twitter/advanced-twitter-mute-options",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "twitter/advanced-twitter-mute-options.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Graph attention networks",
                "authors": [
                    {
                        "first": "Petar",
                        "middle": [],
                        "last": "Veli\u010dkovi\u0107",
                        "suffix": ""
                    },
                    {
                        "first": "Guillem",
                        "middle": [],
                        "last": "Cucurull",
                        "suffix": ""
                    },
                    {
                        "first": "Arantxa",
                        "middle": [],
                        "last": "Casanova",
                        "suffix": ""
                    },
                    {
                        "first": "Adriana",
                        "middle": [],
                        "last": "Romero",
                        "suffix": ""
                    },
                    {
                        "first": "Pietro",
                        "middle": [],
                        "last": "Lio",
                        "suffix": ""
                    },
                    {
                        "first": "Yoshua",
                        "middle": [],
                        "last": "Bengio",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1710.10903"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Petar Veli\u010dkovi\u0107, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint arXiv:1710.10903.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Active annotation",
                "authors": [
                    {
                        "first": "Andreas",
                        "middle": [],
                        "last": "Vlachos",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of the Workshop on Adaptive Text Extraction and Mining",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Andreas Vlachos. 2006. Active annotation. In Pro- ceedings of the Workshop on Adaptive Text Extrac- tion and Mining (ATEM 2006).",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Detecting hate speech on the world wide web",
                "authors": [
                    {
                        "first": "William",
                        "middle": [],
                        "last": "Warner",
                        "suffix": ""
                    },
                    {
                        "first": "Julia",
                        "middle": [],
                        "last": "Hirschberg",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the Second Workshop on Language in Social Media",
                "volume": "",
                "issue": "",
                "pages": "19--26",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "William Warner and Julia Hirschberg. 2012. Detecting hate speech on the world wide web. In Proceedings of the Second Workshop on Language in Social Me- dia, pages 19-26, Montr\u00e9al, Canada.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Are you a racist or am i seeing things? annotator influence on hate speech detection on twitter",
                "authors": [
                    {
                        "first": "Zeerak",
                        "middle": [],
                        "last": "Waseem",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the first workshop on NLP and computational social science",
                "volume": "",
                "issue": "",
                "pages": "138--142",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zeerak Waseem. 2016. Are you a racist or am i seeing things? annotator influence on hate speech detection on twitter. In Proceedings of the first workshop on NLP and computational social science, pages 138- 142.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Understanding abuse: A typology of abusive language detection subtasks",
                "authors": [
                    {
                        "first": "Zeerak",
                        "middle": [],
                        "last": "Waseem",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Davidson",
                        "suffix": ""
                    },
                    {
                        "first": "Dana",
                        "middle": [],
                        "last": "Warmsley",
                        "suffix": ""
                    },
                    {
                        "first": "Ingmar",
                        "middle": [],
                        "last": "Weber",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zeerak Waseem, Thomas Davidson, Dana Warmsley, and Ingmar Weber. 2017. Understanding abuse: A typology of abusive language detection subtasks. CoRR, abs/1705.09899.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Hateful symbols or hateful people? predictive features for hate speech detection on twitter",
                "authors": [
                    {
                        "first": "Zeerak",
                        "middle": [],
                        "last": "Waseem",
                        "suffix": ""
                    },
                    {
                        "first": "Dirk",
                        "middle": [],
                        "last": "Hovy",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the NAACL student research workshop",
                "volume": "",
                "issue": "",
                "pages": "88--93",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zeerak Waseem and Dirk Hovy. 2016. Hateful sym- bols or hateful people? predictive features for hate speech detection on twitter. In Proceedings of the NAACL student research workshop, pages 88-93.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Why newsrooms need a solution to end online harassment of reporters",
                "authors": [
                    {
                        "first": "Lucy",
                        "middle": [],
                        "last": "Westcott",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [
                            "W"
                        ],
                        "last": "Foley",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lucy Westcott and James W Foley. 2019. Why newsrooms need a solution to end online harassment of reporters. https: //cpj.org/2019/09/newsrooms-solution- online-harassment-canada-usa/.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Twitter block chain",
                "authors": [
                    {
                        "first": "Cecilia",
                        "middle": [],
                        "last": "Wren",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Cecilia Wren. 2019. Twitter block chain. https://chrome.google.com/ webstore/detail/twitter-block-chain/ dkkfampndkdnjffkleokegfnibnnjfah?hl= en/.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "Ex machina: Personal attacks seen at scale",
                "authors": [
                    {
                        "first": "Ellery",
                        "middle": [],
                        "last": "Wulczyn",
                        "suffix": ""
                    },
                    {
                        "first": "Nithum",
                        "middle": [],
                        "last": "Thain",
                        "suffix": ""
                    },
                    {
                        "first": "Lucas",
                        "middle": [],
                        "last": "Dixon",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 26th International Conference on World Wide Web",
                "volume": "",
                "issue": "",
                "pages": "1391--1399",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ellery Wulczyn, Nithum Thain, and Lucas Dixon. 2017. Ex machina: Personal attacks seen at scale. In Proceedings of the 26th International Conference on World Wide Web, pages 1391-1399.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "Annotation platform user interface.",
                "num": null,
                "uris": null,
                "type_str": "figure"
            },
            "FIGREF1": {
                "text": "Fetch thread from tweet 1: procedure FETCH THREAD(id, api) participants are currently presented with the following labels: hateful, abusive, neutral, or spam.",
                "num": null,
                "uris": null,
                "type_str": "figure"
            }
        }
    }
}