File size: 157,417 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 |
{
"paper_id": "2020",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T02:11:48.318296Z"
},
"title": "Towards a Comprehensive Taxonomy and Large-Scale Annotated Corpus for Online Slur Usage",
"authors": [
{
"first": "Jana",
"middle": [],
"last": "Kurrek",
"suffix": "",
"affiliation": {},
"email": "jana.kurrek@mail.mcgill.ca"
},
{
"first": "Haji",
"middle": [
"Mohammad"
],
"last": "Saleem",
"suffix": "",
"affiliation": {},
"email": "haji.saleem@mail.mcgill.ca"
},
{
"first": "Derek",
"middle": [],
"last": "Ruths",
"suffix": "",
"affiliation": {},
"email": "derek.ruths@mcgill.ca"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "Abusive language classifiers have been shown to exhibit bias against women and racial minorities. Since these models are trained on data that is collected using keywords, they tend to exhibit a high sensitivity towards pejoratives. As a result, comments written by victims of abuse are frequently labelled as hateful, even if they discuss or reclaim slurs. Any attempt to address bias in keyword-based corpora requires a better understanding of pejorative language, as well as an equitable representation of targeted users in data collection. We make two main contributions to this end. First, we provide an annotation guide that outlines 4 main categories of online slur usage, which we further divide into a total of 12 sub-categories. Second, we present a publicly available corpus based on our taxonomy, with 39.8k human annotated comments extracted from Reddit. This corpus was annotated by a diverse cohort of coders, with Shannon equitability indices of 0.90, 0.92, and 0.87 across sexuality, ethnicity, and gender. Taken together, our taxonomy and corpus allow researchers to evaluate classifiers on a wider range of speech containing slurs.",
"pdf_parse": {
"paper_id": "2020",
"_pdf_hash": "",
"abstract": [
{
"text": "Abusive language classifiers have been shown to exhibit bias against women and racial minorities. Since these models are trained on data that is collected using keywords, they tend to exhibit a high sensitivity towards pejoratives. As a result, comments written by victims of abuse are frequently labelled as hateful, even if they discuss or reclaim slurs. Any attempt to address bias in keyword-based corpora requires a better understanding of pejorative language, as well as an equitable representation of targeted users in data collection. We make two main contributions to this end. First, we provide an annotation guide that outlines 4 main categories of online slur usage, which we further divide into a total of 12 sub-categories. Second, we present a publicly available corpus based on our taxonomy, with 39.8k human annotated comments extracted from Reddit. This corpus was annotated by a diverse cohort of coders, with Shannon equitability indices of 0.90, 0.92, and 0.87 across sexuality, ethnicity, and gender. Taken together, our taxonomy and corpus allow researchers to evaluate classifiers on a wider range of speech containing slurs.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "Detecting abusive language is important for two substantive reasons. First is the mitigation of harm to individuals. Exposure to hate speech can result in a wide range of psychological effects, including degradation of mental health, depression, reduced self-esteem, and greater stress expression (Saha et al., 2019; Tynes et al., 2008; Boeckmann and Liew, 2002) . Second is the broader impact of unregulated speech on the participation gap in social media (Jenkins, 2009; Notley, 2009) . Overexposure to hateful language results in user desensitization (Soral et al., 2018) and radicalization (Norman and \u2020 These authors made equal contributions. Mikhael, 2017) , both of which have been shown to worsen racial relations (S\u00e8ne, 2019) . Moreover, hateful echo-chambers promote a \"spiral of silence\" that discourages counter-speech in conversations online (Duncan et al., 2020) .",
"cite_spans": [
{
"start": 297,
"end": 316,
"text": "(Saha et al., 2019;",
"ref_id": "BIBREF46"
},
{
"start": 317,
"end": 336,
"text": "Tynes et al., 2008;",
"ref_id": "BIBREF55"
},
{
"start": 337,
"end": 362,
"text": "Boeckmann and Liew, 2002)",
"ref_id": "BIBREF2"
},
{
"start": 457,
"end": 472,
"text": "(Jenkins, 2009;",
"ref_id": "BIBREF30"
},
{
"start": 473,
"end": 486,
"text": "Notley, 2009)",
"ref_id": "BIBREF42"
},
{
"start": 554,
"end": 574,
"text": "(Soral et al., 2018)",
"ref_id": "BIBREF52"
},
{
"start": 648,
"end": 662,
"text": "Mikhael, 2017)",
"ref_id": "BIBREF41"
},
{
"start": 722,
"end": 734,
"text": "(S\u00e8ne, 2019)",
"ref_id": "BIBREF50"
},
{
"start": 855,
"end": 876,
"text": "(Duncan et al., 2020)",
"ref_id": "BIBREF15"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Access to large-scale training data is the first step towards robust automated systems for abusive language detection. While industry researchers can access moderator logs and user reports, proprietary data is not the standard for academics. Instead, pejorative keywords are commonly used as filters in the data collection process. These include, but are not limited to, slurs and other curated lists of profane language (Waseem and Hovy, 2016; Waseem, 2016; Khodak et al., 2018; Rezvan et al., 2018) , terms borrowed from Hatebase, a multilingual repository for hate speech (Silva et al., 2016; Davidson et al., 2017; Founta et al., 2018; ElSherief et al., 2018) , offensive hashtags (Chatzakou et al., 2017; Golbeck et al., 2017) , and manually selected threads or subreddits (Gao and Huang, 2017; Hammer et al., 2019; Qian et al., 2019) . Although the drawbacks of keyword-based approaches are known to researchers, there are currently no clear alternatives to this technique (Waseem and Hovy, 2016; Davidson et al., 2017; ElSherief et al., 2018) .",
"cite_spans": [
{
"start": 421,
"end": 444,
"text": "(Waseem and Hovy, 2016;",
"ref_id": "BIBREF58"
},
{
"start": 445,
"end": 458,
"text": "Waseem, 2016;",
"ref_id": "BIBREF57"
},
{
"start": 459,
"end": 479,
"text": "Khodak et al., 2018;",
"ref_id": "BIBREF34"
},
{
"start": 480,
"end": 500,
"text": "Rezvan et al., 2018)",
"ref_id": "BIBREF45"
},
{
"start": 575,
"end": 595,
"text": "(Silva et al., 2016;",
"ref_id": "BIBREF51"
},
{
"start": 596,
"end": 618,
"text": "Davidson et al., 2017;",
"ref_id": "BIBREF14"
},
{
"start": 619,
"end": 639,
"text": "Founta et al., 2018;",
"ref_id": "BIBREF18"
},
{
"start": 640,
"end": 663,
"text": "ElSherief et al., 2018)",
"ref_id": "BIBREF16"
},
{
"start": 685,
"end": 709,
"text": "(Chatzakou et al., 2017;",
"ref_id": "BIBREF9"
},
{
"start": 710,
"end": 731,
"text": "Golbeck et al., 2017)",
"ref_id": "BIBREF22"
},
{
"start": 778,
"end": 799,
"text": "(Gao and Huang, 2017;",
"ref_id": "BIBREF19"
},
{
"start": 800,
"end": 820,
"text": "Hammer et al., 2019;",
"ref_id": "BIBREF26"
},
{
"start": 821,
"end": 839,
"text": "Qian et al., 2019)",
"ref_id": "BIBREF44"
},
{
"start": 979,
"end": 1002,
"text": "(Waseem and Hovy, 2016;",
"ref_id": "BIBREF58"
},
{
"start": 1003,
"end": 1025,
"text": "Davidson et al., 2017;",
"ref_id": "BIBREF14"
},
{
"start": 1026,
"end": 1049,
"text": "ElSherief et al., 2018)",
"ref_id": "BIBREF16"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "There has been a recent focus on how technical choices involving data curation can introduce systemic bias in the resultant corpus. For instance, Wiegand et al. (2019) discover that terms like football, announcer, and sport have the strongest correlation to abusive posts in Waseem and Hovy (2016) . Furthermore, Davidson et al. (2019) , Xia et al. (2020) and Sap et al. (2019) reveal how classifiers trained on data with systemic racial bias have a higher tendency to label text written in African-American English as abusive. Cited examples include: \"Wussup, nigga!\", and \"I saw his ass yesterday\". Left unaddressed, bias has a real impact on users. Automated recruiting tools used by Amazon.com were shown to discriminate against women (Cook, 2018) . Similarly, Microsoft released a public chatbot that learned to share racist content on Twitter (Vincent, 2016) . A common solution is to debias language representations (Bolukbasi et al., 2016) . However, these methods conceal but do not remove systemic bias in the overall data (Gonen and Goldberg, 2019) .",
"cite_spans": [
{
"start": 146,
"end": 167,
"text": "Wiegand et al. (2019)",
"ref_id": "BIBREF59"
},
{
"start": 275,
"end": 297,
"text": "Waseem and Hovy (2016)",
"ref_id": "BIBREF58"
},
{
"start": 313,
"end": 335,
"text": "Davidson et al. (2019)",
"ref_id": "BIBREF13"
},
{
"start": 338,
"end": 355,
"text": "Xia et al. (2020)",
"ref_id": "BIBREF62"
},
{
"start": 360,
"end": 377,
"text": "Sap et al. (2019)",
"ref_id": "BIBREF49"
},
{
"start": 739,
"end": 751,
"text": "(Cook, 2018)",
"ref_id": "BIBREF11"
},
{
"start": 849,
"end": 864,
"text": "(Vincent, 2016)",
"ref_id": "BIBREF56"
},
{
"start": 923,
"end": 947,
"text": "(Bolukbasi et al., 2016)",
"ref_id": "BIBREF4"
},
{
"start": 1033,
"end": 1059,
"text": "(Gonen and Goldberg, 2019)",
"ref_id": "BIBREF23"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "A way of beginning to address the issue of racial and gender bias is therefore to understand the implications of forced sampling. Our paper focuses specifically on data that is collected using derogatory keywords and we make two main contributions to this end. First, we provide an annotation guide that outlines 4 main categories of online slur usage, which we further divide into a total of 12 subcategories. Second, we present a publicly available corpus based on our taxonomy, with 39.8k human annotated comments extracted from Reddit. We also propose an approach to data collection and annotation that prioritizes inclusivity both by design and application:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Inclusivity by Design: Data selection and annotation achieves weighted group representation. We sample from a variety of subreddits in order to capture non-derogatory slur usage. We then hire a diverse set of coders under strict ethical standards as a means of engaging the perspectives of various target communities. We encourage opinion diversity by pairing annotators into teams based on maximum demographic differences.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Inclusivity by Application: Our coding guidelines are extensible to language that targets multiple protected groups. We collect data using the slurs: faggot, a pejorative term used primarily to refer to gay men, nigger, an ethnic slur typically directed at black people, especially African Americans, and tranny, a derogatory slur for a transgender person. This is only time we mention the actual slurs. From hereon, We refer to each term as the f-slur, n-slur, and t-slur, respectively. We specifically choose these slurs because they enable us to study discrimination across sexuality, ethnicity, and gender.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Our work does not directly eliminate bias in existing datasets. Rather, it aids in truly understanding the different ways in which slurs can be used online so that models can be trained and assessed more effectively.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "The earliest and most notable corpus for hate speech research is Waseem and Hovy (2016) . It contains 16k comments from Twitter, annotated according to the offense criteria of McIntosh (1988) . Waseem (2016) is an extension of this corpus by 6,909 comments and it considers amateur as well as expert annotations. The authors make use of offensive hashtags for data collection, but it was not until Nobata et al. (2016) that slurring language was formally introduced as a sub-problem of hate speech. This paper uses a variety of linguistic features, such as modal words, insulting and hate blacklist words, and politeness words, in order to separate the three notions of hate, derogation, and profanity based on their relative degrees of harm to the target. These guidelines inspired the Fox News user comments corpus of Gao and Huang (2017) . Both works emphasize the capacity for hateful language to exist in implicit and explicit forms and collect the explicit form using derogatory keywords. Silva et al. (2016) is a target-based analysis of the explicit form. They leverage the syntactic structure \"I <intensity><user intent><hate target>\", where each hate target is one of 1,078 terms selected from Hatebase, in order to identify ten top targets of hate within Twitter and Whisper content. Next, Davidson et al. (2017) investigate intentional group-based humiliation and derogation. They reinforce the role of slurs as archetypal representations of hate by acknowledging that \"tweets with the highest predicted probabilities of being hate speech tend to contain multiple racial or homophobic slurs.\" More recently, de Gibert Bonet et al. (2018) sample from a white supremacist sub-forum and, in doing so, encourage community-based filtering. The emerging theme from these research efforts is the consensus that we require an alternative to random sampling for reliably capturing hateful content. What that alternative is remains unclear but keywords are currently the dominant choice.",
"cite_spans": [
{
"start": 65,
"end": 87,
"text": "Waseem and Hovy (2016)",
"ref_id": "BIBREF58"
},
{
"start": 176,
"end": 191,
"text": "McIntosh (1988)",
"ref_id": "BIBREF36"
},
{
"start": 194,
"end": 207,
"text": "Waseem (2016)",
"ref_id": "BIBREF57"
},
{
"start": 398,
"end": 418,
"text": "Nobata et al. (2016)",
"ref_id": "BIBREF40"
},
{
"start": 820,
"end": 840,
"text": "Gao and Huang (2017)",
"ref_id": "BIBREF19"
},
{
"start": 995,
"end": 1014,
"text": "Silva et al. (2016)",
"ref_id": "BIBREF51"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Existing Hate Speech Corpora",
"sec_num": "2.1"
},
{
"text": "Other researchers have expanded on this definition and shown that it is applicable to more nuanced categories of online misbehaviour, such as abuse, threats, personal attacks, and cyberbullying. For instance, Khodak et al. (2018) is a self-annotated corpus for sarcasm on Reddit. Sprugnoli et al. (2018) focuses on cyberbullying within WhatsApp conversations. Rezvan et al. 2018 We have collected a list of the major English-language corpora and summarized their sizes, platforms of focus, annotation schemes, and agreement scores in Table 1 . With that said, the study of online misbehavior has been extend beyond the traditional focus on English. It now includes resources in Italian, Indonesian, Hindi-English, Tunisian, etc. (Sanguinetti et al., 2018; Ibrohim and Budi, 2018; Kumar et al., 2018; Bohra et al., 2018; Chung et al., 2019) .",
"cite_spans": [
{
"start": 209,
"end": 229,
"text": "Khodak et al. (2018)",
"ref_id": "BIBREF34"
},
{
"start": 280,
"end": 303,
"text": "Sprugnoli et al. (2018)",
"ref_id": "BIBREF53"
},
{
"start": 729,
"end": 755,
"text": "(Sanguinetti et al., 2018;",
"ref_id": "BIBREF48"
},
{
"start": 756,
"end": 779,
"text": "Ibrohim and Budi, 2018;",
"ref_id": "BIBREF29"
},
{
"start": 780,
"end": 799,
"text": "Kumar et al., 2018;",
"ref_id": "BIBREF35"
},
{
"start": 800,
"end": 819,
"text": "Bohra et al., 2018;",
"ref_id": "BIBREF3"
},
{
"start": 820,
"end": 839,
"text": "Chung et al., 2019)",
"ref_id": "BIBREF10"
}
],
"ref_spans": [
{
"start": 534,
"end": 541,
"text": "Table 1",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "Existing Hate Speech Corpora",
"sec_num": "2.1"
},
{
"text": "To model the contents of slur-based data, it is crucial that we first examine the properties of slurs themselves. Slurs are pejoratives that derogate based on in-group membership, that is, they categorize targets based on institutionally defined archetypes (Croom, 2015) . Studies on slurs are built on the recognition by Kaplan (1999) that meaning in natural language comes from convention and from context: a sentence is expressively correct if it is true by interpretation; a sentence is descriptively correct if it is literally true. Hom (2008) advocates in favor of the expressive view of slurs. He identifies nine adequacy conditions that characterize and explain racial epithets: A slur exhibits (1) derogatory force. The force of any slur is (2) variable across epithets and (3) fundamentally offensive, independently of the intents and beliefs of the speaker. While slurs are capable of being (7) reclaimed or (8) used towards a non-derogatory, non-appropriative end, they are generally (4) taboo unless (6) their force changes over time. This is because slurs are (5) meaningful insofar as they contribute to the truth-conditions of the sentence in which they arise. Hom's account of slurs is (9) generalizable across pejoratives.",
"cite_spans": [
{
"start": 257,
"end": 270,
"text": "(Croom, 2015)",
"ref_id": "BIBREF12"
},
{
"start": 322,
"end": 335,
"text": "Kaplan (1999)",
"ref_id": "BIBREF32"
},
{
"start": 538,
"end": 548,
"text": "Hom (2008)",
"ref_id": "BIBREF28"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Slurs",
"sec_num": "2.2"
},
{
"text": "Hom implies that there are three main categories of slur usage, which are derogatory, non-derogatory non-appropriative, and appropriative. His adequacy conditions are central to our research. The three categories are the basis of our annotation scheme and they enable us to make assessments of abuse with ambiguous user intent.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Slurs",
"sec_num": "2.2"
},
{
"text": "Random sampling of slur-based data allows for proportional representation because the share of each usage in the corpus is reflective of its probability of occurrence online. However, this approach is not equitable. Less common usages, such as reclamation, discussion, and counter-speech, are not captured. Consequently, language models can overfit on pejoratives and further codify institutional biases (Caliskan et al., 2017; Garg et al., 2018) . A top-down approach to debiasing is simply insufficient. We advocate in favor of affirmative action during data collection and make an effort to represent a wider range of slur usages through community targeting. We also tailor our study to include individuals that belong to targeted communities, both as authors and annotators.",
"cite_spans": [
{
"start": 404,
"end": 427,
"text": "(Caliskan et al., 2017;",
"ref_id": "BIBREF7"
},
{
"start": 428,
"end": 446,
"text": "Garg et al., 2018)",
"ref_id": "BIBREF20"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Inclusive Design Process",
"sec_num": "3"
},
{
"text": "We use the Pushshift Reddit corpus (Baumgartner et al., 2020) and filter for the three slurs (f-slur, n-slur, t-slur) and their plurals. The data ranged from October 2007 to September 2019 at the time of filtering. We extracted a total of 2.6 million comments. We applied the following filtering process:",
"cite_spans": [
{
"start": 35,
"end": 61,
"text": "(Baumgartner et al., 2020)",
"ref_id": "BIBREF1"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Data Collection",
"sec_num": "3.1"
},
{
"text": "Author Level: We remove comments written by users with no history in order to leave open the possibility of a future analysis with user meta-data. We remove comments written by users that were identified as bots. We limit the number of comments written by the same author.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Data Collection",
"sec_num": "3.1"
},
{
"text": "Comment Level: Reddit comments vary in length, with an upper limit of 40,000 characters. For ease of annotation, we remove comments from the top and bottom quartiles by length. We limit our corpus to English-language comments and use the Compact Language Detector v3 1 to detect them.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Data Collection",
"sec_num": "3.1"
},
{
"text": "Community Level: Communities that antagonise or support a group talk about similar topics but with opposing valence (Saleem et al., 2016) . To capture such polarity, we compile a list of subreddits based on their disdain for, neutrality towards, or support of the f-slur, n-slur, and t-slur (see Table 2 ). We do this by building on an existing list of toxic Reddit communities (Caffier, 2017) . We consider the name, rules, extent of moderation, description text, and polarity of comments containing slurs (overall score) of each subreddit in our assessment of whether or not to include them. We then extract the top comments in terms of polarity. Our post-filter corpus has 40,000 comments, sourced from 2704 individual subreddits and 37,133 unique authors. The median and maximum number of comments per author is 1 and 5.",
"cite_spans": [
{
"start": 116,
"end": 137,
"text": "(Saleem et al., 2016)",
"ref_id": "BIBREF47"
},
{
"start": 378,
"end": 393,
"text": "(Caffier, 2017)",
"ref_id": "BIBREF6"
}
],
"ref_spans": [
{
"start": 296,
"end": 303,
"text": "Table 2",
"ref_id": "TABREF3"
}
],
"eq_spans": [],
"section": "Data Collection",
"sec_num": "3.1"
},
{
"text": "Our coding guide is based on the three major categories of slur usage identified in Hom (2008) . By open coding data collected using slurs, we identify a fourth major category as well as twelve subcategories. The complete taxonomy, along with examples for each subcategory, is provided in Table 3 . In general, comments containing more than one slur were labelled according to the most derogatory usage. The four main categories are explained below: 1 https://github.com/google/cld3 Derogatory Usage (DER): Any usage that is understood to convey contempt towards a targeted individual or group.",
"cite_spans": [
{
"start": 84,
"end": 94,
"text": "Hom (2008)",
"ref_id": "BIBREF28"
}
],
"ref_spans": [
{
"start": 289,
"end": 297,
"text": "Table 3",
"ref_id": "TABREF5"
}
],
"eq_spans": [],
"section": "Taxonomy Design",
"sec_num": "3.2"
},
{
"text": "Appropriative Usage (APR): Meaningful usage by the targeted group for an alternate, nonderogatory purpose. Text belonging to this label loses its derogatory force.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Taxonomy Design",
"sec_num": "3.2"
},
{
"text": "Non-Derogatory, Non-Appropriative Usage (NDG): Meaningful usage by targeted or nontargeted groups for an alternate non-derogatory, non-appropriative purpose. Text belonging to this label retains its derogatory force.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Taxonomy Design",
"sec_num": "3.2"
},
{
"text": "A slur with one or more non-derogatory alternative meanings.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Homonyms (HOM):",
"sec_num": null
},
{
"text": "Following approval by the university Research Ethics Board (REB), we shared messages on social media and university mailing lists as well as physical posters across faculties in order to look for participants. The application consisted of eight short answer questions, in which candidates were asked to disclose their name, email, field and year of study, age, sexuality, ethnicity, and gender. We specifically collected the demographic information in free-form text. The free-form allows participants to choose best demographic identifiers for themselves. The demographic information is confidential and used solely for selecting annotators and creating their teams. All demographics were collapsed into categories (see Figure 1 ) primarily based on the classification structure approved as a departmental standard by Statistics Canada (2017). Of the four hundred and twelve applications received, 20 participants, ranging between 19 and 65 years of age (M = 26.7, SD = 10.8), were chosen using iterative proportional fitting. Overall, our annotator cohort has a Shannon equitability index of 0.90, 0.92, and 0.87 across sexuality, ethnicity, and gender. We did not have the REB clearance to perform any further analysis on the relationship between annotator demographics and annotations. We leave this as an area for future work.",
"cite_spans": [],
"ref_spans": [
{
"start": 721,
"end": 729,
"text": "Figure 1",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Annotator Selection",
"sec_num": "3.3"
},
{
"text": "A 4-session on-campus training program was developed for annotators to attend over 2 days. On Day 1, we presented the annotation scheme obtained through open coding. Annotators were then guided through two group annotation exercises of 20 and 40 comments respectively. On Day 2, annotators were randomly divided into 4 teams. Each team completed 2 rounds of 200 training annotations. After each round, they discussed their annotations and the reasons behind their labels. The discussion was aimed at fostering a common understanding of the annotation process.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Training and Annotation",
"sec_num": "3.4"
},
{
"text": "The final annotations were divided into 4 tasks of 10,000 comments each. The 20 annotators were grouped into 10 teams of 2. The team creation process maximized the demographic distance between members across sexuality, ethnicity, and gender. It was treated as an assignment problem and solved using the Kuhn-Munkres algorithm. Each team annotated 1000 comments per task and annotators were grouped into new pairs for each subsequent task. Comments with no disagreement were added to the final corpus. Comments with disagreement were resolved by the authors. The final annotations were performed remotely on the open source text annotation tool Doccano (Nakayama et al., 2018) .",
"cite_spans": [
{
"start": 652,
"end": 675,
"text": "(Nakayama et al., 2018)",
"ref_id": "BIBREF38"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Training and Annotation",
"sec_num": "3.4"
},
{
"text": "40,000 Reddit comments were annotated, of which 189 were removed as noise. The remaining 39,811 were closely split across slurs: 13,290, 13,267 and 13,267 for f-slur, n-slur and t-slur respectively. In total, 20,531 comments were labelled derogatory, 16,729 non-derogatory, 1,998 homonym, and 553 appropriative. We anticipated a large portion of derogatory comments in our corpus because our data is slur-based. However, only 52% of comments were labelled as such. We attribute this to our community-targeted data collection process and efforts to sample from supportive subreddits.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Labeled Corpus",
"sec_num": "4"
},
{
"text": "In Figure 2 , we present the label distribution across slurs. We observe that roughly 59% of comments collected using the f-slur and t-slur were labelled as derogatory. In comparison, about 37.9% of comments containing the n-slur were similarly labelled. The majority of found homonyms include the t- slur, which accounts for 95.9% of the label. This is largely because the term is used in automotive communities to mean vehicle transmission (see Figure 3 ) and in skateboarding communities to describe skating transition. The remaining homonyms include the f-slur, with the meaning \"bundle\" or in reference to a form of British meatball. The n-slur has the smallest share of homonyms (0.02%) and appropriative (0.16%) comments.",
"cite_spans": [],
"ref_spans": [
{
"start": 3,
"end": 11,
"text": "Figure 2",
"ref_id": "FIGREF1"
},
{
"start": 447,
"end": 456,
"text": "Figure 3",
"ref_id": "FIGREF2"
}
],
"eq_spans": [],
"section": "Label Distribution Across Slurs",
"sec_num": "4.1"
},
{
"text": "In Figure 3 , we present the label distribution across the 50 most common subreddits in our corpus. The graph is sorted by the proportion of derogatory comments in each subreddit. Consequently, it can be seen as a scale of derogatory behavior. On the far right are communities that we had previously identified as antagonistic. Many of their comments were labelled as derogatory and examples include MGTOW, CoonTown, 4chan and, The Donald. In the middle we find general discussion subreddits such as videos, todayilearned, and politics. They generally have an even split of derogatory and non-derogatory labels. On the far left we observe mostly supportive subreddits, with small portions of derogatory comments. Automotive subreddits like cars have a large number of homonyms. Meanwhile, subreddits such as traaaaaaannnnnnnnnns, askgaybros, and rupaulsdragrace contain significant portion of appropriative speech. These findings align with our initial hypothesis about supportive, antagonistic, and general discussion communities. Table 4 : Raw and inter-rater agreement. We achieve moderate to substantial agreement with Cohen's \uf8ff.",
"cite_spans": [],
"ref_spans": [
{
"start": 3,
"end": 11,
"text": "Figure 3",
"ref_id": "FIGREF2"
},
{
"start": 1032,
"end": 1039,
"text": "Table 4",
"ref_id": null
}
],
"eq_spans": [],
"section": "Label Distribution Across Subreddits",
"sec_num": "4.2"
},
{
"text": "Both annotators agreed on the same label for 31,034 of the comments in our corpus. The remaining 8,777 comments were resolved by the authors. Overall we achieve a raw agreement score of 78.6%, corresponding to a Cohen's \uf8ff of 0.60. Our scores indicate substantial agreement and are in line with what has been observed in the literature (see Table 1 ). We obtain similar agreement across the three slurs, which are presented in Table 4 . APR had the highest amount of disagreement, with 67.99% comments requiring resolution, followed by NDG (35.36%), and HOM (31.58%). DEG was the lowest at 9.034%. During the resolution process, we identified three probable causes for disagreement:",
"cite_spans": [],
"ref_spans": [
{
"start": 340,
"end": 347,
"text": "Table 1",
"ref_id": "TABREF1"
},
{
"start": 426,
"end": 433,
"text": "Table 4",
"ref_id": null
}
],
"eq_spans": [],
"section": "Agreement Analysis",
"sec_num": "4.3"
},
{
"text": "Label Overlap Discussions of derogation or reclamation created ambiguity and were falsely labelled as DER or APR, rather than NDG. A similar issue arose in comments acknowledging slurs as homonyms. For instance: \"When i was telling my skate friends about me being trans i asked them if they knew why it was so ironic that i love skating [t-slur] so much.\". Satire Our annotators found many derogatory comments in transgendercirclejerk (see Figure 3 ), which is a subreddit that self-identifies as a \"parody for trans people, mocking all transgenderrelated topics\". However, the sarcastic or satirical nature of these comments was not always evident: \"We don't need gun control we need [T-SLUR] CON-TROL! [t-slurs] are not in the Constitution or Bible, like guns are! If we don't outlaw t-slurs, only [tslurs] will have outlaws!\". We leave this area for future work.",
"cite_spans": [],
"ref_spans": [
{
"start": 440,
"end": 448,
"text": "Figure 3",
"ref_id": "FIGREF2"
}
],
"eq_spans": [],
"section": "Agreement Analysis",
"sec_num": "4.3"
},
{
"text": "In an independent assessment of label reliability, we re-annotated 100 DEG comments from transgendercirclejerk with complete access to user and thread history. 44 of our labels did not match those submitted by annotators. For instance, the following comment came from a transgender poster: \"LA LA LA CAN'T ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Lack of Context",
"sec_num": null
},
{
"text": "but was mislabelled. This testifies the difficulty of annotating appropriative language without context. Other instances that requires context are reference to lyrics and dialogues from pop culture.For example \"Dead [n-slur] Storage\" from the movie Pulp Fiction.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "HEAR YOU I'M STUCK IN [T-SLUR] REALITY\"",
"sec_num": null
},
{
"text": "We use a state-of-the-art model for derogatory content detection to assess whether current classifiers are subject to overfitting on pejoratives. We choose the Perspective API by Conversation AI, which \"identifies whether a comment could be perceived as toxic to a discussion\". We obtain the toxicity scores for 100 random comments for each of the DEG, NDG, HOM, and APR labels. The results are summarized in Figure 4 . As expected, the overall score distribution is high for DEG. However, it is equally high for NDG and APR comments. This perfectly illustrates the issue of potentially biased models failing to identify non-derogatory content.",
"cite_spans": [],
"ref_spans": [
{
"start": 409,
"end": 417,
"text": "Figure 4",
"ref_id": "FIGREF3"
}
],
"eq_spans": [],
"section": "Benchmarking the Perspective API",
"sec_num": "4.4"
},
{
"text": "Further analysis of toxicity scores across comments underlines the challenges faced by existing models. First, instances of slur reclamation re- ceived high toxicity scores. For example: \"Psh my [t-slur] agony sits atop that steed with militant fervour. The world shall hear me roar, I AM A [T-SLUR] FREAK!!!! /uj Not even kidding, I'm 100% out as a [t-slur] freak. World can suck my shenis\" and \"When I've got a guy I'm crushing on I will sometimes say 'He makes me feel like a silly [f-slur] all over again'\" have toxicity scores above 0.93. Reclamation is an attempt at empowerment and community cohesion. The mislabelling of such examples further censors communities already targeted by hate. Second, recollections of past harassment received high toxicity scores. For example: \"A homeless dude called me a spic [fslur] once while I was with my ex\" is rated as high as 0.889. This belittles victims' experiences with abuse, rather than protecting them from it. Finally, counter speech received high toxicity scores. For example: \"Ummmm, yeah no, [t-slur] is a slur and youre ignorant as hell\" is rated 0.953. This undermines community-level efforts at removing derogatory language. Overall, these three outcomes are counterproductive to the detection process since empowering and vulnerable conversations of targeted communities may be flagged down.",
"cite_spans": [
{
"start": 195,
"end": 203,
"text": "[t-slur]",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Benchmarking the Perspective API",
"sec_num": "4.4"
},
{
"text": "We present a comprehensive taxonomy and largescale annotated corpus for online slur usage. Our findings are an attempt at integrating a qualitative understanding of slurs into their usage in natural language. We believe that they provide a significant contribution to the hate speech research community, not only as resources for training machine and deep learning models, but also as a means of achieving a nuanced understanding of the phenomenon of slurs. We encourage researchers to replicate and expand our efforts by studying language that targets other marginalized communities. With that said, our corpus is a challenging benchmark that will help expose over-fitting on pejoratives and our taxonomy introduces a systematic approach for dealing with derogatory keywords and epithets. Our corpus can be accessed by emailing the authors.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "5"
}
],
"back_matter": [],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "SemEval-2019 task 5: Multilingual detection of hate speech against immigrants and women in Twitter",
"authors": [
{
"first": "Valerio",
"middle": [],
"last": "Basile",
"suffix": ""
},
{
"first": "Cristina",
"middle": [],
"last": "Bosco",
"suffix": ""
},
{
"first": "Elisabetta",
"middle": [],
"last": "Fersini",
"suffix": ""
},
{
"first": "Debora",
"middle": [],
"last": "Nozza",
"suffix": ""
},
{
"first": "Viviana",
"middle": [],
"last": "Patti",
"suffix": ""
},
{
"first": "Francisco Manuel Rangel",
"middle": [],
"last": "Pardo",
"suffix": ""
},
{
"first": "Paolo",
"middle": [],
"last": "Rosso",
"suffix": ""
},
{
"first": "Manuela",
"middle": [],
"last": "Sanguinetti",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 13th International Workshop on Semantic Evaluation",
"volume": "",
"issue": "",
"pages": "54--63",
"other_ids": {
"DOI": [
"10.18653/v1/S19-2007"
]
},
"num": null,
"urls": [],
"raw_text": "Valerio Basile, Cristina Bosco, Elisabetta Fersini, Debora Nozza, Viviana Patti, Francisco Manuel Rangel Pardo, Paolo Rosso, and Manuela San- guinetti. 2019. SemEval-2019 task 5: Multilin- gual detection of hate speech against immigrants and women in Twitter. In Proceedings of the 13th Inter- national Workshop on Semantic Evaluation, pages 54-63, Minneapolis, Minnesota, USA. Association for Computational Linguistics.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "The pushshift reddit dataset",
"authors": [
{
"first": "Jason",
"middle": [],
"last": "Baumgartner",
"suffix": ""
},
{
"first": "Savvas",
"middle": [],
"last": "Zannettou",
"suffix": ""
},
{
"first": "Brian",
"middle": [],
"last": "Keegan",
"suffix": ""
},
{
"first": "Megan",
"middle": [],
"last": "Squire",
"suffix": ""
},
{
"first": "Jeremy",
"middle": [],
"last": "Blackburn",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the International AAAI Conference on Web and Social Media",
"volume": "14",
"issue": "",
"pages": "830--839",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jason Baumgartner, Savvas Zannettou, Brian Keegan, Megan Squire, and Jeremy Blackburn. 2020. The pushshift reddit dataset. Proceedings of the Interna- tional AAAI Conference on Web and Social Media, 14(1):830-839.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Hate speech: Asian american students' justice judgments and psychological responses",
"authors": [
{
"first": "J",
"middle": [],
"last": "Robert",
"suffix": ""
},
{
"first": "Jeffrey",
"middle": [],
"last": "Boeckmann",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Liew",
"suffix": ""
}
],
"year": 2002,
"venue": "Journal of Social Issues",
"volume": "58",
"issue": "2",
"pages": "363--381",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Robert J Boeckmann and Jeffrey Liew. 2002. Hate speech: Asian american students' justice judgments and psychological responses. Journal of Social Is- sues, 58(2):363-381.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "A dataset of hindi-english code-mixed social media text for hate speech detection",
"authors": [
{
"first": "Aditya",
"middle": [],
"last": "Bohra",
"suffix": ""
},
{
"first": "Deepanshu",
"middle": [],
"last": "Vijay",
"suffix": ""
},
{
"first": "Vinay",
"middle": [],
"last": "Singh",
"suffix": ""
},
{
"first": "Manish",
"middle": [],
"last": "Syed Sarfaraz Akhtar",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Shrivastava",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the second workshop on computational modeling of people's opinions, personality, and emotions in social media",
"volume": "",
"issue": "",
"pages": "36--41",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Aditya Bohra, Deepanshu Vijay, Vinay Singh, Syed Sarfaraz Akhtar, and Manish Shrivastava. 2018. A dataset of hindi-english code-mixed social media text for hate speech detection. In Proceedings of the second workshop on computational modeling of people's opinions, personality, and emotions in social media, pages 36-41.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Man is to computer programmer as woman is to homemaker? debiasing word embeddings",
"authors": [
{
"first": "Tolga",
"middle": [],
"last": "Bolukbasi",
"suffix": ""
},
{
"first": "Kai-Wei",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "James",
"suffix": ""
},
{
"first": "Venkatesh",
"middle": [],
"last": "Zou",
"suffix": ""
},
{
"first": "Adam",
"middle": [
"T"
],
"last": "Saligrama",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Kalai",
"suffix": ""
}
],
"year": 2016,
"venue": "Advances in neural information processing systems",
"volume": "",
"issue": "",
"pages": "4349--4357",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai. 2016. Man is to computer programmer as woman is to homemaker? debiasing word embeddings. In Ad- vances in neural information processing systems, pages 4349-4357.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Expressively vulgar: The socio-dynamics of vulgarity and its effects on sentiment analysis in social media",
"authors": [
{
"first": "Isabel",
"middle": [],
"last": "Cachola",
"suffix": ""
},
{
"first": "Eric",
"middle": [],
"last": "Holgate",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "Preo\u0163iuc-Pietro",
"suffix": ""
},
{
"first": "Junyi Jessy",
"middle": [],
"last": "Li",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 27th International Conference on Computational Linguistics",
"volume": "",
"issue": "",
"pages": "2927--2938",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Isabel Cachola, Eric Holgate, Daniel Preo\u0163iuc-Pietro, and Junyi Jessy Li. 2018. Expressively vulgar: The socio-dynamics of vulgarity and its effects on sen- timent analysis in social media. In Proceedings of the 27th International Conference on Computational Linguistics, pages 2927-2938, Santa Fe, New Mex- ico, USA. Association for Computational Linguis- tics.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Here are reddit's whiniest, most low-key toxic subreddits",
"authors": [
{
"first": "Justin",
"middle": [],
"last": "Caffier",
"suffix": ""
}
],
"year": 2017,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Justin Caffier. 2017. Here are reddit's whiniest, most low-key toxic subreddits. Vice.com.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Semantics derived automatically from language corpora contain human-like biases",
"authors": [
{
"first": "Aylin",
"middle": [],
"last": "Caliskan",
"suffix": ""
},
{
"first": "Joanna",
"middle": [
"J"
],
"last": "Bryson",
"suffix": ""
},
{
"first": "Arvind",
"middle": [],
"last": "Narayanan",
"suffix": ""
}
],
"year": 2017,
"venue": "Science",
"volume": "356",
"issue": "6334",
"pages": "183--186",
"other_ids": {
"DOI": [
"10.1126/science.aal4230"
]
},
"num": null,
"urls": [],
"raw_text": "Aylin Caliskan, Joanna J. Bryson, and Arvind Narayanan. 2017. Semantics derived automatically from language corpora contain human-like biases. Science, 356(6334):183-186.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Sarcasm, pretense, and the semantics/pragmatics distinction",
"authors": [
{
"first": "Elisabeth",
"middle": [],
"last": "Camp",
"suffix": ""
}
],
"year": 2012,
"venue": "No\u00fbs",
"volume": "46",
"issue": "4",
"pages": "587--634",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Elisabeth Camp. 2012. Sarcasm, pretense, and the semantics/pragmatics distinction. No\u00fbs, 46(4):587- 634.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Mean birds: Detecting aggression and bullying on twitter",
"authors": [
{
"first": "Despoina",
"middle": [],
"last": "Chatzakou",
"suffix": ""
},
{
"first": "Nicolas",
"middle": [],
"last": "Kourtellis",
"suffix": ""
},
{
"first": "Jeremy",
"middle": [],
"last": "Blackburn",
"suffix": ""
},
{
"first": "Emiliano",
"middle": [],
"last": "De Cristofaro",
"suffix": ""
},
{
"first": "Gianluca",
"middle": [],
"last": "Stringhini",
"suffix": ""
},
{
"first": "Athena",
"middle": [],
"last": "Vakali",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 2017 ACM on web science conference",
"volume": "",
"issue": "",
"pages": "13--22",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Despoina Chatzakou, Nicolas Kourtellis, Jeremy Blackburn, Emiliano De Cristofaro, Gianluca Stringhini, and Athena Vakali. 2017. Mean birds: Detecting aggression and bullying on twitter. In Pro- ceedings of the 2017 ACM on web science confer- ence, pages 13-22.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Conan -counter narratives through nichesourcing: a multilingual dataset of responses to fight online hate speech",
"authors": [
{
"first": "Yi-Ling",
"middle": [],
"last": "Chung",
"suffix": ""
},
{
"first": "Elizaveta",
"middle": [],
"last": "Kuzmenko",
"suffix": ""
},
{
"first": "Serra",
"middle": [],
"last": "Tekiroglu",
"suffix": ""
},
{
"first": "Marco",
"middle": [],
"last": "Guerini",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "2819--2829",
"other_ids": {
"DOI": [
"10.18653/v1/P19-1271"
]
},
"num": null,
"urls": [],
"raw_text": "Yi-Ling Chung, Elizaveta Kuzmenko, Serra Tekiroglu, and Marco Guerini. 2019. Conan -counter narra- tives through nichesourcing: a multilingual dataset of responses to fight online hate speech. In Proceed- ings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2819-2829.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Amazon scraps 'sexist ai' recruiting tool that showed bias against women. The Telegraph",
"authors": [
{
"first": "James",
"middle": [],
"last": "Cook",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "James Cook. 2018. Amazon scraps 'sexist ai' recruit- ing tool that showed bias against women. The Tele- graph.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "The semantics of slurs: A refutation of coreferentialism. Ampersand",
"authors": [
{
"first": "M",
"middle": [],
"last": "Adam",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Croom",
"suffix": ""
}
],
"year": 2015,
"venue": "",
"volume": "2",
"issue": "",
"pages": "30--38",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Adam M Croom. 2015. The semantics of slurs: A refu- tation of coreferentialism. Ampersand, 2:30-38.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Racial bias in hate speech and abusive language detection datasets",
"authors": [
{
"first": "Thomas",
"middle": [],
"last": "Davidson",
"suffix": ""
},
{
"first": "Debasmita",
"middle": [],
"last": "Bhattacharya",
"suffix": ""
},
{
"first": "Ingmar",
"middle": [],
"last": "Weber",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the Third Workshop on Abusive Language Online",
"volume": "",
"issue": "",
"pages": "25--35",
"other_ids": {
"DOI": [
"10.18653/v1/W19-3504"
]
},
"num": null,
"urls": [],
"raw_text": "Thomas Davidson, Debasmita Bhattacharya, and Ing- mar Weber. 2019. Racial bias in hate speech and abusive language detection datasets. In Proceed- ings of the Third Workshop on Abusive Language Online, pages 25-35. Association for Computational Linguistics.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Automated hate speech detection and the problem of offensive language",
"authors": [
{
"first": "Thomas",
"middle": [],
"last": "Davidson",
"suffix": ""
},
{
"first": "Dana",
"middle": [],
"last": "Warmsley",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Macy",
"suffix": ""
},
{
"first": "Ingmar",
"middle": [],
"last": "Weber",
"suffix": ""
}
],
"year": 2017,
"venue": "Eleventh international aaai conference on web and social media",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Thomas Davidson, Dana Warmsley, Michael Macy, and Ingmar Weber. 2017. Automated hate speech detection and the problem of offensive language. In Eleventh international aaai conference on web and social media.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Staying silent and speaking out in online comment sections: The influence of spiral of silence and corrective action in reaction to news",
"authors": [
{
"first": "Megan",
"middle": [],
"last": "Duncan",
"suffix": ""
},
{
"first": "Ayellet",
"middle": [],
"last": "Pelled",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Wise",
"suffix": ""
},
{
"first": "Shreenita",
"middle": [],
"last": "Ghosh",
"suffix": ""
},
{
"first": "Yuanliang",
"middle": [],
"last": "Shan",
"suffix": ""
},
{
"first": "Mengdian",
"middle": [],
"last": "Zheng",
"suffix": ""
},
{
"first": "Doug",
"middle": [],
"last": "Mcleod",
"suffix": ""
}
],
"year": 2020,
"venue": "Computers in Human Behavior",
"volume": "102",
"issue": "",
"pages": "192--205",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Megan Duncan, Ayellet Pelled, David Wise, Shree- nita Ghosh, Yuanliang Shan, Mengdian Zheng, and Doug McLeod. 2020. Staying silent and speaking out in online comment sections: The influence of spiral of silence and corrective action in reaction to news. Computers in Human Behavior, 102:192- 205.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Hate lingo: A target-based linguistic analysis of hate speech in social media",
"authors": [
{
"first": "Mai",
"middle": [],
"last": "Elsherief",
"suffix": ""
},
{
"first": "Vivek",
"middle": [],
"last": "Kulkarni",
"suffix": ""
},
{
"first": "Dana",
"middle": [],
"last": "Nguyen",
"suffix": ""
},
{
"first": "William",
"middle": [
"Yang"
],
"last": "Wang",
"suffix": ""
},
{
"first": "Elizabeth",
"middle": [],
"last": "Belding",
"suffix": ""
}
],
"year": 2018,
"venue": "Twelfth International AAAI Conference on Web and Social Media",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mai ElSherief, Vivek Kulkarni, Dana Nguyen, William Yang Wang, and Elizabeth Belding. 2018. Hate lingo: A target-based linguistic analysis of hate speech in social media. In Twelfth International AAAI Conference on Web and Social Media.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Overview of the task on automatic misogyny identification at ibereval 2018",
"authors": [
{
"first": "Elisabetta",
"middle": [],
"last": "Fersini",
"suffix": ""
},
{
"first": "Paolo",
"middle": [],
"last": "Rosso",
"suffix": ""
},
{
"first": "Maria",
"middle": [],
"last": "Anzovino",
"suffix": ""
}
],
"year": 2018,
"venue": "IberEval@ SEPLN",
"volume": "",
"issue": "",
"pages": "214--228",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Elisabetta Fersini, Paolo Rosso, and Maria Anzovino. 2018. Overview of the task on automatic misog- yny identification at ibereval 2018. In IberEval@ SEPLN, pages 214-228.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Large scale crowdsourcing and characterization of twitter abusive behavior",
"authors": [
{
"first": "Constantinos",
"middle": [],
"last": "Antigoni Maria Founta",
"suffix": ""
},
{
"first": "Despoina",
"middle": [],
"last": "Djouvas",
"suffix": ""
},
{
"first": "Ilias",
"middle": [],
"last": "Chatzakou",
"suffix": ""
},
{
"first": "Jeremy",
"middle": [],
"last": "Leontiadis",
"suffix": ""
},
{
"first": "Gianluca",
"middle": [],
"last": "Blackburn",
"suffix": ""
},
{
"first": "Athena",
"middle": [],
"last": "Stringhini",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Vakali",
"suffix": ""
},
{
"first": "Nicolas",
"middle": [],
"last": "Sirivianos",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Kourtellis",
"suffix": ""
}
],
"year": 2018,
"venue": "Twelfth International AAAI Conference on Web and Social Media",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Antigoni Maria Founta, Constantinos Djouvas, De- spoina Chatzakou, Ilias Leontiadis, Jeremy Black- burn, Gianluca Stringhini, Athena Vakali, Michael Sirivianos, and Nicolas Kourtellis. 2018. Large scale crowdsourcing and characterization of twitter abusive behavior. In Twelfth International AAAI Conference on Web and Social Media.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Detecting online hate speech using context aware models",
"authors": [
{
"first": "Lei",
"middle": [],
"last": "Gao",
"suffix": ""
},
{
"first": "Ruihong",
"middle": [],
"last": "Huang",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the International Conference Recent Advances in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "260--266",
"other_ids": {
"DOI": [
"10.26615/978-954-452-049-6_036"
]
},
"num": null,
"urls": [],
"raw_text": "Lei Gao and Ruihong Huang. 2017. Detecting on- line hate speech using context aware models. In Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017, pages 260-266, Varna, Bulgaria. INCOMA Ltd.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Word embeddings quantify 100 years of gender and ethnic stereotypes. Proceedings of the National Academy of",
"authors": [
{
"first": "Nikhil",
"middle": [],
"last": "Garg",
"suffix": ""
},
{
"first": "Londa",
"middle": [],
"last": "Schiebinger",
"suffix": ""
},
{
"first": "Dan",
"middle": [],
"last": "Jurafsky",
"suffix": ""
},
{
"first": "James",
"middle": [],
"last": "Zou",
"suffix": ""
}
],
"year": 2018,
"venue": "Sciences",
"volume": "115",
"issue": "16",
"pages": "3635--3644",
"other_ids": {
"DOI": [
"10.1073/pnas.1720347115"
]
},
"num": null,
"urls": [],
"raw_text": "Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and James Zou. 2018. Word embeddings quantify 100 years of gender and ethnic stereotypes. Pro- ceedings of the National Academy of Sciences, 115(16):E3635-E3644.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Hate speech dataset from a white supremacy forum",
"authors": [
{
"first": "Ona",
"middle": [],
"last": "De",
"suffix": ""
},
{
"first": "Gibert",
"middle": [],
"last": "Bonet",
"suffix": ""
},
{
"first": "Naiara",
"middle": [],
"last": "Perez Miguel",
"suffix": ""
},
{
"first": "Aitor",
"middle": [],
"last": "Garc\u00eda-Pablos",
"suffix": ""
},
{
"first": "Montse",
"middle": [],
"last": "Cuadros",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2nd Workshop on Abusive Language Online (ALW2)",
"volume": "",
"issue": "",
"pages": "11--20",
"other_ids": {
"DOI": [
"10.18653/v1/W18-5102"
]
},
"num": null,
"urls": [],
"raw_text": "Ona de Gibert Bonet, Naiara Perez Miguel, Aitor Garc\u00eda-Pablos, and Montse Cuadros. 2018. Hate speech dataset from a white supremacy forum. In Proceedings of the 2nd Workshop on Abusive Lan- guage Online (ALW2), pages 11-20. Association for Computational Linguistics.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "A large labeled corpus for online harassment research",
"authors": [
{
"first": "Jennifer",
"middle": [],
"last": "Golbeck",
"suffix": ""
},
{
"first": "Zahra",
"middle": [],
"last": "Ashktorab",
"suffix": ""
},
{
"first": "Rashad",
"middle": [
"O"
],
"last": "Banjo",
"suffix": ""
},
{
"first": "Alexandra",
"middle": [],
"last": "Berlinger",
"suffix": ""
},
{
"first": "Siddharth",
"middle": [],
"last": "Bhagwan",
"suffix": ""
},
{
"first": "Cody",
"middle": [],
"last": "Buntain",
"suffix": ""
},
{
"first": "Paul",
"middle": [],
"last": "Cheakalos",
"suffix": ""
},
{
"first": "Alicia",
"middle": [
"A"
],
"last": "Geller",
"suffix": ""
},
{
"first": "Rajesh",
"middle": [],
"last": "Kumar Gnanasekaran",
"suffix": ""
},
{
"first": "Raja",
"middle": [],
"last": "Rajan Gunasekaran",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 2017 ACM on web science conference",
"volume": "",
"issue": "",
"pages": "229--233",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jennifer Golbeck, Zahra Ashktorab, Rashad O Banjo, Alexandra Berlinger, Siddharth Bhagwan, Cody Buntain, Paul Cheakalos, Alicia A Geller, Ra- jesh Kumar Gnanasekaran, Raja Rajan Gunasekaran, et al. 2017. A large labeled corpus for online harass- ment research. In Proceedings of the 2017 ACM on web science conference, pages 229-233.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Lipstick on a pig: Debiasing methods cover up systematic gender biases in word embeddings but do not remove them",
"authors": [
{
"first": "Hila",
"middle": [],
"last": "Gonen",
"suffix": ""
},
{
"first": "Yoav",
"middle": [],
"last": "Goldberg",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "609--614",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hila Gonen and Yoav Goldberg. 2019. Lipstick on a pig: Debiasing methods cover up systematic gender biases in word embeddings but do not remove them. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computa- tional Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 609-614.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Noun often attributive\" and\" adjective",
"authors": [
{
"first": "",
"middle": [],
"last": "Philip B Gove",
"suffix": ""
}
],
"year": 1964,
"venue": "American Speech",
"volume": "39",
"issue": "3",
"pages": "163--175",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Philip B Gove. 1964. Noun often attributive\" and\" ad- jective. American Speech, 39(3):163-175.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "T-hsab: A tunisian hate speech and abusive dataset",
"authors": [
{
"first": "Hatem",
"middle": [],
"last": "Haddad",
"suffix": ""
},
{
"first": "Hala",
"middle": [],
"last": "Mulki",
"suffix": ""
},
{
"first": "Asma",
"middle": [],
"last": "Oueslati",
"suffix": ""
}
],
"year": 2019,
"venue": "International Conference on Arabic Language Processing",
"volume": "",
"issue": "",
"pages": "251--263",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hatem Haddad, Hala Mulki, and Asma Oueslati. 2019. T-hsab: A tunisian hate speech and abusive dataset. In International Conference on Arabic Language Processing, pages 251-263. Springer.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Threat: A large annotated corpus for detection of violent threats",
"authors": [
{
"first": "L",
"middle": [],
"last": "Hugo",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Hammer",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Michael",
"suffix": ""
},
{
"first": "Lilja",
"middle": [],
"last": "Riegler",
"suffix": ""
},
{
"first": "Erik",
"middle": [],
"last": "\u00d8vrelid",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Velldal",
"suffix": ""
}
],
"year": 2019,
"venue": "2019 International Conference on Content-Based Multimedia Indexing (CBMI)",
"volume": "",
"issue": "",
"pages": "1--5",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hugo L Hammer, Michael A Riegler, Lilja \u00d8vrelid, and Erik Velldal. 2019. Threat: A large annotated cor- pus for detection of violent threats. In 2019 Inter- national Conference on Content-Based Multimedia Indexing (CBMI), pages 1-5. IEEE.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Why swear? analyzing and inferring the intentions of vulgar expressions",
"authors": [
{
"first": "Eric",
"middle": [],
"last": "Holgate",
"suffix": ""
},
{
"first": "Isabel",
"middle": [],
"last": "Cachola",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "Preo\u0163iuc-Pietro",
"suffix": ""
},
{
"first": "Junyi Jessy",
"middle": [],
"last": "Li",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "4405--4414",
"other_ids": {
"DOI": [
"10.18653/v1/D18-1471"
]
},
"num": null,
"urls": [],
"raw_text": "Eric Holgate, Isabel Cachola, Daniel Preo\u0163iuc-Pietro, and Junyi Jessy Li. 2018. Why swear? analyz- ing and inferring the intentions of vulgar expres- sions. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4405-4414, Brussels, Belgium. Association for Computational Linguistics.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "The semantics of racial epithets",
"authors": [
{
"first": "Christopher",
"middle": [],
"last": "Hom",
"suffix": ""
}
],
"year": 2008,
"venue": "The Journal of Philosophy",
"volume": "105",
"issue": "8",
"pages": "416--440",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Christopher Hom. 2008. The semantics of racial epi- thets. The Journal of Philosophy, 105(8):416-440.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "A dataset and preliminaries study for abusive language detection in indonesian social media",
"authors": [
{
"first": "Muhammad",
"middle": [],
"last": "Okky Ibrohim",
"suffix": ""
},
{
"first": "Indra",
"middle": [],
"last": "Budi",
"suffix": ""
}
],
"year": 2018,
"venue": "Procedia Computer Science",
"volume": "135",
"issue": "",
"pages": "222--229",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Muhammad Okky Ibrohim and Indra Budi. 2018. A dataset and preliminaries study for abusive language detection in indonesian social media. Procedia Com- puter Science, 135:222-229.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Confronting the challenges of participatory culture: Media education for the 21st century",
"authors": [
{
"first": "Henry",
"middle": [],
"last": "Jenkins",
"suffix": ""
}
],
"year": 2009,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Henry Jenkins. 2009. Confronting the challenges of participatory culture: Media education for the 21st century. Mit Press.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "When does a compliment become sexist? analysis and classification of ambivalent sexism using twitter data",
"authors": [
{
"first": "Akshita",
"middle": [],
"last": "Jha",
"suffix": ""
},
{
"first": "Radhika",
"middle": [],
"last": "Mamidi",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the second workshop on NLP and computational social science",
"volume": "",
"issue": "",
"pages": "7--16",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Akshita Jha and Radhika Mamidi. 2017. When does a compliment become sexist? analysis and classifica- tion of ambivalent sexism using twitter data. In Pro- ceedings of the second workshop on NLP and com- putational social science, pages 7-16.",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "The meaning of ouch and oops. explorations in the theory of meaning as use. University of California",
"authors": [
{
"first": "David",
"middle": [],
"last": "Kaplan",
"suffix": ""
}
],
"year": 1999,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "David Kaplan. 1999. The meaning of ouch and oops. explorations in the theory of meaning as use. Uni- versity of California.",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "Technology solutions to combat online harassment",
"authors": [
{
"first": "George",
"middle": [],
"last": "Kennedy",
"suffix": ""
},
{
"first": "Andrew",
"middle": [],
"last": "Mccollough",
"suffix": ""
},
{
"first": "Edward",
"middle": [],
"last": "Dixon",
"suffix": ""
},
{
"first": "Alexei",
"middle": [],
"last": "Bastidas",
"suffix": ""
},
{
"first": "John",
"middle": [],
"last": "Ryan",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Loo",
"suffix": ""
},
{
"first": "Saurav",
"middle": [],
"last": "Sahay",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the first workshop on abusive language online",
"volume": "",
"issue": "",
"pages": "73--77",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "George Kennedy, Andrew McCollough, Edward Dixon, Alexei Bastidas, John Ryan, Chris Loo, and Saurav Sahay. 2017. Technology solutions to combat online harassment. In Proceedings of the first workshop on abusive language online, pages 73-77.",
"links": null
},
"BIBREF34": {
"ref_id": "b34",
"title": "A large self-annotated corpus for sarcasm",
"authors": [
{
"first": "Mikhail",
"middle": [],
"last": "Khodak",
"suffix": ""
},
{
"first": "Nikunj",
"middle": [],
"last": "Saunshi",
"suffix": ""
},
{
"first": "Kiran",
"middle": [],
"last": "Vodrahalli",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the Linguistic Resource and Evaluation Conference (LREC)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mikhail Khodak, Nikunj Saunshi, and Kiran Vodrahalli. 2018. A large self-annotated corpus for sarcasm. In Proceedings of the Linguistic Resource and Evalua- tion Conference (LREC).",
"links": null
},
"BIBREF35": {
"ref_id": "b35",
"title": "Aggression-annotated corpus of hindi-english code-mixed data",
"authors": [
{
"first": "Ritesh",
"middle": [],
"last": "Kumar",
"suffix": ""
},
{
"first": "Aishwarya",
"middle": [],
"last": "Reganti",
"suffix": ""
},
{
"first": "Akshit",
"middle": [],
"last": "Bhatia",
"suffix": ""
},
{
"first": "Tushar",
"middle": [],
"last": "Maheshwari",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). European Language Resources Association (ELRA)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ritesh Kumar, Aishwarya Reganti, Akshit Bhatia, and Tushar Maheshwari. 2018. Aggression-annotated corpus of hindi-english code-mixed data. In Pro- ceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). European Language Resources Association (ELRA).",
"links": null
},
"BIBREF36": {
"ref_id": "b36",
"title": "White privilege: Unpacking the invisible knapsack",
"authors": [
{
"first": "Peggy",
"middle": [],
"last": "Mcintosh",
"suffix": ""
}
],
"year": 1988,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Peggy McIntosh. 1988. White privilege: Unpacking the invisible knapsack.",
"links": null
},
"BIBREF37": {
"ref_id": "b37",
"title": "L-hsab: A levantine twitter dataset for hate speech and abusive language",
"authors": [
{
"first": "Hala",
"middle": [],
"last": "Mulki",
"suffix": ""
},
{
"first": "Hatem",
"middle": [],
"last": "Haddad",
"suffix": ""
},
{
"first": "Chedi",
"middle": [],
"last": "Bechikh Ali",
"suffix": ""
},
{
"first": "Halima",
"middle": [],
"last": "Alshabani",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the Third Workshop on Abusive Language Online",
"volume": "",
"issue": "",
"pages": "111--118",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hala Mulki, Hatem Haddad, Chedi Bechikh Ali, and Halima Alshabani. 2019. L-hsab: A levantine twit- ter dataset for hate speech and abusive language. In Proceedings of the Third Workshop on Abusive Lan- guage Online, pages 111-118.",
"links": null
},
"BIBREF38": {
"ref_id": "b38",
"title": "doccano: Text annotation tool for human",
"authors": [
{
"first": "Hiroki",
"middle": [],
"last": "Nakayama",
"suffix": ""
},
{
"first": "Takahiro",
"middle": [],
"last": "Kubo",
"suffix": ""
},
{
"first": "Junya",
"middle": [],
"last": "Kamura",
"suffix": ""
},
{
"first": "Yasufumi",
"middle": [],
"last": "Taniguchi",
"suffix": ""
},
{
"first": "Xu",
"middle": [],
"last": "Liang",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hiroki Nakayama, Takahiro Kubo, Junya Kamura, Ya- sufumi Taniguchi, and Xu Liang. 2018. doccano: Text annotation tool for human. Software available from https://github.com/doccano/doccano.",
"links": null
},
"BIBREF39": {
"ref_id": "b39",
"title": "Automatically identifying good conversations online (yes, they do exist!)",
"authors": [
{
"first": "Courtney",
"middle": [],
"last": "Napoles",
"suffix": ""
},
{
"first": "Aasish",
"middle": [],
"last": "Pappu",
"suffix": ""
},
{
"first": "Joel",
"middle": [],
"last": "Tetreault",
"suffix": ""
}
],
"year": 2017,
"venue": "Eleventh International AAAI Conference on Web and Social Media",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Courtney Napoles, Aasish Pappu, and Joel Tetreault. 2017. Automatically identifying good conversations online (yes, they do exist!). In Eleventh Interna- tional AAAI Conference on Web and Social Media.",
"links": null
},
"BIBREF40": {
"ref_id": "b40",
"title": "Abusive language detection in online user content",
"authors": [
{
"first": "Chikashi",
"middle": [],
"last": "Nobata",
"suffix": ""
},
{
"first": "Joel",
"middle": [],
"last": "Tetreault",
"suffix": ""
},
{
"first": "Achint",
"middle": [],
"last": "Thomas",
"suffix": ""
},
{
"first": "Yashar",
"middle": [],
"last": "Mehdad",
"suffix": ""
},
{
"first": "Yi",
"middle": [],
"last": "Chang",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 25th international conference on world wide web",
"volume": "",
"issue": "",
"pages": "145--153",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Chikashi Nobata, Joel Tetreault, Achint Thomas, Yashar Mehdad, and Yi Chang. 2016. Abusive lan- guage detection in online user content. In Proceed- ings of the 25th international conference on world wide web, pages 145-153.",
"links": null
},
"BIBREF41": {
"ref_id": "b41",
"title": "Youth radicalization is on the rise. here's what we know about why",
"authors": [
{
"first": "Julie",
"middle": [],
"last": "Norman",
"suffix": ""
},
{
"first": "Drew",
"middle": [],
"last": "Mikhael",
"suffix": ""
}
],
"year": 2017,
"venue": "The Washington Post",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Julie Norman and Drew Mikhael. 2017. Youth radi- calization is on the rise. here's what we know about why. The Washington Post.",
"links": null
},
"BIBREF42": {
"ref_id": "b42",
"title": "Young people, online networks, and social inclusion",
"authors": [
{
"first": "Tanya",
"middle": [],
"last": "Notley",
"suffix": ""
}
],
"year": 2009,
"venue": "Journal of Computer-Mediated Communication",
"volume": "14",
"issue": "4",
"pages": "1208--1227",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tanya Notley. 2009. Young people, online networks, and social inclusion. Journal of Computer-Mediated Communication, 14(4):1208-1227.",
"links": null
},
"BIBREF43": {
"ref_id": "b43",
"title": "Do you really want to hurt me? predicting abusive swearing in social media",
"authors": [
{
"first": "Valerio",
"middle": [],
"last": "Endang Wahyu Pamungkas",
"suffix": ""
},
{
"first": "Viviana",
"middle": [],
"last": "Basile",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Patti",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 12th Language Resources and Evaluation Conference",
"volume": "",
"issue": "",
"pages": "6237--6246",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Endang Wahyu Pamungkas, Valerio Basile, and Vi- viana Patti. 2020. Do you really want to hurt me? predicting abusive swearing in social media. In Proceedings of the 12th Language Resources and Evaluation Conference, pages 6237-6246, Mar- seille, France. European Language Resources Asso- ciation.",
"links": null
},
"BIBREF44": {
"ref_id": "b44",
"title": "A benchmark dataset for learning to intervene in online hate speech",
"authors": [
{
"first": "Jing",
"middle": [],
"last": "Qian",
"suffix": ""
},
{
"first": "Anna",
"middle": [],
"last": "Bethke",
"suffix": ""
},
{
"first": "Yinyin",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Elizabeth",
"middle": [],
"last": "Belding",
"suffix": ""
},
{
"first": "William",
"middle": [],
"last": "Wang",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
"volume": "",
"issue": "",
"pages": "4757--4766",
"other_ids": {
"DOI": [
"10.18653/v1/D19-1482"
]
},
"num": null,
"urls": [],
"raw_text": "Jing Qian, Anna Bethke, Yinyin Liu, Elizabeth Beld- ing, and William Wang. 2019. A benchmark dataset for learning to intervene in online hate speech. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Lan- guage Processing (EMNLP-IJCNLP), pages 4757- 4766. Association for Computational Linguistics.",
"links": null
},
"BIBREF45": {
"ref_id": "b45",
"title": "A quality typeaware annotated corpus and lexicon for harassment research",
"authors": [
{
"first": "Saeedeh",
"middle": [],
"last": "Mohammadreza Rezvan",
"suffix": ""
},
{
"first": "Lakshika",
"middle": [],
"last": "Shekarpour",
"suffix": ""
},
{
"first": "Krishnaprasad",
"middle": [],
"last": "Balasuriya",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Thirunarayan",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Valerie",
"suffix": ""
},
{
"first": "Amit",
"middle": [],
"last": "Shalin",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Sheth",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 10th ACM Conference on Web Science",
"volume": "",
"issue": "",
"pages": "33--36",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mohammadreza Rezvan, Saeedeh Shekarpour, Lak- shika Balasuriya, Krishnaprasad Thirunarayan, Va- lerie L Shalin, and Amit Sheth. 2018. A quality type- aware annotated corpus and lexicon for harassment research. In Proceedings of the 10th ACM Confer- ence on Web Science, pages 33-36.",
"links": null
},
"BIBREF46": {
"ref_id": "b46",
"title": "Prevalence and psychological effects of hateful speech in online college communities",
"authors": [
{
"first": "Koustuv",
"middle": [],
"last": "Saha",
"suffix": ""
},
{
"first": "Eshwar",
"middle": [],
"last": "Chandrasekharan",
"suffix": ""
},
{
"first": "Munmun De",
"middle": [],
"last": "Choudhury",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 10th ACM Conference on Web Science",
"volume": "",
"issue": "",
"pages": "255--264",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Koustuv Saha, Eshwar Chandrasekharan, and Munmun De Choudhury. 2019. Prevalence and psychological effects of hateful speech in online college communi- ties. In Proceedings of the 10th ACM Conference on Web Science, pages 255-264.",
"links": null
},
"BIBREF47": {
"ref_id": "b47",
"title": "A web of hate: Tackling hateful speech in online social spaces",
"authors": [
{
"first": "Mohammad",
"middle": [],
"last": "Haji",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Saleem",
"suffix": ""
},
{
"first": "P",
"middle": [],
"last": "Kelly",
"suffix": ""
},
{
"first": "Susan",
"middle": [],
"last": "Dillon",
"suffix": ""
},
{
"first": "Derek",
"middle": [],
"last": "Benesch",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Ruths",
"suffix": ""
}
],
"year": 2016,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Haji Mohammad Saleem, Kelly P Dillon, Susan Be- nesch, and Derek Ruths. 2016. A web of hate: Tack- ling hateful speech in online social spaces.",
"links": null
},
"BIBREF48": {
"ref_id": "b48",
"title": "An italian twitter corpus of hate speech against immigrants",
"authors": [
{
"first": "Manuela",
"middle": [],
"last": "Sanguinetti",
"suffix": ""
},
{
"first": "Fabio",
"middle": [],
"last": "Poletto",
"suffix": ""
},
{
"first": "Cristina",
"middle": [],
"last": "Bosco",
"suffix": ""
},
{
"first": "Viviana",
"middle": [],
"last": "Patti",
"suffix": ""
},
{
"first": "Marco",
"middle": [],
"last": "Stranisci",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the Eleventh International Conference on Language Resources and Evaluation",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Manuela Sanguinetti, Fabio Poletto, Cristina Bosco, Vi- viana Patti, and Marco Stranisci. 2018. An italian twitter corpus of hate speech against immigrants. In Proceedings of the Eleventh International Confer- ence on Language Resources and Evaluation (LREC 2018).",
"links": null
},
"BIBREF49": {
"ref_id": "b49",
"title": "The risk of racial bias in hate speech detection",
"authors": [
{
"first": "Maarten",
"middle": [],
"last": "Sap",
"suffix": ""
},
{
"first": "Dallas",
"middle": [],
"last": "Card",
"suffix": ""
},
{
"first": "Saadia",
"middle": [],
"last": "Gabriel",
"suffix": ""
},
{
"first": "Yejin",
"middle": [],
"last": "Choi",
"suffix": ""
},
{
"first": "Noah A",
"middle": [],
"last": "Smith",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "1668--1678",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Maarten Sap, Dallas Card, Saadia Gabriel, Yejin Choi, and Noah A Smith. 2019. The risk of racial bias in hate speech detection. In Proceedings of the 57th Annual Meeting of the Association for Compu- tational Linguistics, pages 1668-1678.",
"links": null
},
"BIBREF50": {
"ref_id": "b50",
"title": "Hate speech exacerbating societal, racial tensions with 'deadly consequences around the world', say un experts",
"authors": [
{
"first": "Yaye",
"middle": [],
"last": "Nabo S\u00e8ne",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yaye Nabo S\u00e8ne. 2019. Hate speech exacerbating societal, racial tensions with 'deadly consequences around the world', say un experts. UN News.",
"links": null
},
"BIBREF51": {
"ref_id": "b51",
"title": "Analyzing the targets of hate in online social media",
"authors": [
{
"first": "Leandro",
"middle": [],
"last": "Silva",
"suffix": ""
},
{
"first": "Mainack",
"middle": [],
"last": "Mondal",
"suffix": ""
},
{
"first": "Denzil",
"middle": [],
"last": "Correa",
"suffix": ""
},
{
"first": "Fabr\u00edcio",
"middle": [],
"last": "Benevenuto",
"suffix": ""
},
{
"first": "Ingmar",
"middle": [],
"last": "Weber",
"suffix": ""
}
],
"year": 2016,
"venue": "Tenth International AAAI Conference on Web and Social Media",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Leandro Silva, Mainack Mondal, Denzil Correa, Fabr\u00edcio Benevenuto, and Ingmar Weber. 2016. An- alyzing the targets of hate in online social media. In Tenth International AAAI Conference on Web and Social Media.",
"links": null
},
"BIBREF52": {
"ref_id": "b52",
"title": "Exposure to hate speech increases prejudice through desensitization",
"authors": [
{
"first": "Wiktor",
"middle": [],
"last": "Soral",
"suffix": ""
},
{
"first": "Micha\u0142",
"middle": [],
"last": "Bilewicz",
"suffix": ""
},
{
"first": "Miko\u0142aj",
"middle": [],
"last": "Winiewski",
"suffix": ""
}
],
"year": 2018,
"venue": "Aggressive behavior",
"volume": "44",
"issue": "2",
"pages": "136--146",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Wiktor Soral, Micha\u0142 Bilewicz, and Miko\u0142aj Winiewski. 2018. Exposure to hate speech increases preju- dice through desensitization. Aggressive behavior, 44(2):136-146.",
"links": null
},
"BIBREF53": {
"ref_id": "b53",
"title": "Creating a whatsapp dataset to study pre-teen cyberbullying",
"authors": [
{
"first": "Rachele",
"middle": [],
"last": "Sprugnoli",
"suffix": ""
},
{
"first": "Stefano",
"middle": [],
"last": "Menini",
"suffix": ""
},
{
"first": "Sara",
"middle": [],
"last": "Tonelli",
"suffix": ""
},
{
"first": "Filippo",
"middle": [],
"last": "Oncini",
"suffix": ""
},
{
"first": "Enrico",
"middle": [],
"last": "Piras",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2nd Workshop on Abusive Language Online (ALW2)",
"volume": "",
"issue": "",
"pages": "51--59",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Rachele Sprugnoli, Stefano Menini, Sara Tonelli, Fil- ippo Oncini, and Enrico Piras. 2018. Creating a whatsapp dataset to study pre-teen cyberbullying. In Proceedings of the 2nd Workshop on Abusive Lan- guage Online (ALW2), pages 51-59.",
"links": null
},
"BIBREF54": {
"ref_id": "b54",
"title": "Attributive adjectives and the nominals they modify",
"authors": [
{
"first": "Robert",
"middle": [],
"last": "Truswell",
"suffix": ""
}
],
"year": 2004,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Robert Truswell. 2004. Attributive adjectives and the nominals they modify. Ph.D. thesis, Citeseer.",
"links": null
},
"BIBREF55": {
"ref_id": "b55",
"title": "Online racial discrimination and psychological adjustment among adolescents",
"authors": [
{
"first": "M",
"middle": [],
"last": "Brendesha",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Tynes",
"suffix": ""
},
{
"first": "T",
"middle": [],
"last": "Michael",
"suffix": ""
},
{
"first": "David",
"middle": [
"R"
],
"last": "Giang",
"suffix": ""
},
{
"first": "Geneene N",
"middle": [],
"last": "Williams",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Thompson",
"suffix": ""
}
],
"year": 2008,
"venue": "Journal of adolescent health",
"volume": "43",
"issue": "6",
"pages": "565--569",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Brendesha M Tynes, Michael T Giang, David R Williams, and Geneene N Thompson. 2008. Online racial discrimination and psychological adjustment among adolescents. Journal of adolescent health, 43(6):565-569.",
"links": null
},
"BIBREF56": {
"ref_id": "b56",
"title": "Twitter taught microsoft's ai chatbot to be a racist asshole in less than a day. The Verge",
"authors": [
{
"first": "James",
"middle": [],
"last": "Vincent",
"suffix": ""
}
],
"year": 2016,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "James Vincent. 2016. Twitter taught microsoft's ai chatbot to be a racist asshole in less than a day. The Verge, 24.",
"links": null
},
"BIBREF57": {
"ref_id": "b57",
"title": "Are you a racist or am i seeing things? annotator influence on hate speech detection on twitter",
"authors": [
{
"first": "Zeerak",
"middle": [],
"last": "Waseem",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the first workshop on NLP and computational social science",
"volume": "",
"issue": "",
"pages": "138--142",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zeerak Waseem. 2016. Are you a racist or am i seeing things? annotator influence on hate speech detection on twitter. In Proceedings of the first workshop on NLP and computational social science, pages 138- 142.",
"links": null
},
"BIBREF58": {
"ref_id": "b58",
"title": "Hateful symbols or hateful people? predictive features for hate speech detection on twitter",
"authors": [
{
"first": "Zeerak",
"middle": [],
"last": "Waseem",
"suffix": ""
},
{
"first": "Dirk",
"middle": [],
"last": "Hovy",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the NAACL student research workshop",
"volume": "",
"issue": "",
"pages": "88--93",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zeerak Waseem and Dirk Hovy. 2016. Hateful sym- bols or hateful people? predictive features for hate speech detection on twitter. In Proceedings of the NAACL student research workshop, pages 88-93.",
"links": null
},
"BIBREF59": {
"ref_id": "b59",
"title": "Detection of abusive language: the problem of biased datasets",
"authors": [
{
"first": "Michael",
"middle": [],
"last": "Wiegand",
"suffix": ""
},
{
"first": "Josef",
"middle": [],
"last": "Ruppenhofer",
"suffix": ""
},
{
"first": "Thomas",
"middle": [],
"last": "Kleinbauer",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "602--608",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Michael Wiegand, Josef Ruppenhofer, and Thomas Kleinbauer. 2019. Detection of abusive language: the problem of biased datasets. In Proceedings of the 2019 Conference of the North American Chap- ter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 602-608.",
"links": null
},
"BIBREF60": {
"ref_id": "b60",
"title": "The pragmatics of verbal irony: Echo or pretence?",
"authors": [
{
"first": "Deirdre",
"middle": [],
"last": "Wilson",
"suffix": ""
}
],
"year": 2006,
"venue": "Lingua",
"volume": "116",
"issue": "10",
"pages": "1722--1743",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Deirdre Wilson. 2006. The pragmatics of verbal irony: Echo or pretence? Lingua, 116(10):1722-1743.",
"links": null
},
"BIBREF61": {
"ref_id": "b61",
"title": "Ex machina: Personal attacks seen at scale",
"authors": [
{
"first": "Ellery",
"middle": [],
"last": "Wulczyn",
"suffix": ""
},
{
"first": "Nithum",
"middle": [],
"last": "Thain",
"suffix": ""
},
{
"first": "Lucas",
"middle": [],
"last": "Dixon",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 26th International Conference on World Wide Web",
"volume": "",
"issue": "",
"pages": "1391--1399",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ellery Wulczyn, Nithum Thain, and Lucas Dixon. 2017. Ex machina: Personal attacks seen at scale. In Pro- ceedings of the 26th International Conference on World Wide Web, pages 1391-1399.",
"links": null
},
"BIBREF62": {
"ref_id": "b62",
"title": "Demoting racial bias in hate speech detection",
"authors": [
{
"first": "Mengzhou",
"middle": [],
"last": "Xia",
"suffix": ""
},
{
"first": "Anjalie",
"middle": [],
"last": "Field",
"suffix": ""
},
{
"first": "Yulia",
"middle": [],
"last": "Tsvetkov",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the Eighth International Workshop on Natural Language Processing for Social Media",
"volume": "",
"issue": "",
"pages": "7--14",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mengzhou Xia, Anjalie Field, and Yulia Tsvetkov. 2020. Demoting racial bias in hate speech detection. In Proceedings of the Eighth International Work- shop on Natural Language Processing for Social Me- dia, pages 7-14, Online. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF63": {
"ref_id": "b63",
"title": "Predicting the type and target of offensive posts in social media",
"authors": [
{
"first": "Marcos",
"middle": [],
"last": "Zampieri",
"suffix": ""
},
{
"first": "Shervin",
"middle": [],
"last": "Malmasi",
"suffix": ""
},
{
"first": "Preslav",
"middle": [],
"last": "Nakov",
"suffix": ""
},
{
"first": "Sara",
"middle": [],
"last": "Rosenthal",
"suffix": ""
},
{
"first": "Noura",
"middle": [],
"last": "Farra",
"suffix": ""
},
{
"first": "Ritesh",
"middle": [],
"last": "Kumar",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "1415--1420",
"other_ids": {
"DOI": [
"10.18653/v1/N19-1144"
]
},
"num": null,
"urls": [],
"raw_text": "Marcos Zampieri, Shervin Malmasi, Preslav Nakov, Sara Rosenthal, Noura Farra, and Ritesh Kumar. 2019. Predicting the type and target of offensive posts in social media. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 1415-1420, Minneapolis, Minnesota. Association for Computational Linguistics.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"num": null,
"type_str": "figure",
"uris": null,
"text": "The diverse demographic details of our annotator cohort, aggregated on ethnicity, gender and sexuality."
},
"FIGREF1": {
"num": null,
"type_str": "figure",
"uris": null,
"text": "The label distribution across slurs."
},
"FIGREF2": {
"num": null,
"type_str": "figure",
"uris": null,
"text": "The normalized label distribution across the 50 most common subreddits in our corpus, sorted by their portion of derogatory comments."
},
"FIGREF3": {
"num": null,
"type_str": "figure",
"uris": null,
"text": "Benchmarking the Perspective API. Scores indicate a comment's degree of toxicity."
},
"TABREF0": {
"num": null,
"type_str": "table",
"content": "<table><tr><td>Authors</td><td>Size</td><td>Platform</td><td>Annotation</td><td/><td>Agreement</td></tr><tr><td colspan=\"2\">KEYWORD BASED DATA COLLECTION</td><td/><td/><td/><td/></tr><tr><td>Qian et al. (2019)</td><td>34k</td><td>Gab</td><td colspan=\"2\">Hate Speech (Binary)</td><td>Unknown</td></tr><tr><td>Qian et al. (2019)</td><td>22k</td><td>Reddit</td><td colspan=\"2\">Hate Speech (Binary)</td><td>Unknown</td></tr><tr><td>Waseem and Hovy (2016)</td><td>16k</td><td>Twitter</td><td>Racism, Sexism</td><td/><td>\uf8ff = 0.84</td></tr><tr><td>Waseem (2016)</td><td>7k</td><td>Twitter</td><td>Racism, Sexism</td><td/><td>\uf8ff = 0.34 (Majority Vote)</td></tr><tr><td/><td/><td/><td/><td/><td>\uf8ff = 0.70 (Full Agreement)</td></tr><tr><td>Golbeck et al. (2017)</td><td>35k</td><td>Twitter</td><td colspan=\"2\">Hate Speech, Threats,</td><td>\uf8ff = 0.84</td></tr><tr><td/><td/><td/><td colspan=\"2\">Harassment, Offense</td><td/></tr><tr><td>Chatzakou et al. (2017)</td><td>9k</td><td>Twitter</td><td>Aggressors,</td><td>Bullies,</td><td>Inter-rater agreement = 0.54</td></tr><tr><td/><td/><td/><td>Spammers</td><td/><td/></tr><tr><td>Davidson et al. (2019)</td><td>25k</td><td>Twitter</td><td colspan=\"2\">Hate Speech, Offense</td><td>Inter-rater agreement = 0.92</td></tr><tr><td>Rezvan et al. (2018)</td><td>25k</td><td>Twitter</td><td>Harassment</td><td/><td>\uf8ff = 0.70; 0.84; 1.0; 0.80; 0.69</td></tr><tr><td/><td/><td/><td/><td/><td>for respective categories</td></tr><tr><td>Founta et al. (2018)</td><td>80k</td><td>Twitter</td><td colspan=\"2\">Hate Speech, Spam,</td><td>Unknown</td></tr><tr><td/><td/><td/><td>Abuse</td><td/><td/></tr><tr><td>ElSherief et al. (2018)</td><td>2k</td><td>Twitter</td><td>Hate Speech</td><td/><td>\u21b5 = 0.622</td></tr><tr><td>Jha and Mamidi (2017)</td><td>1k</td><td>Twitter</td><td>Sexism</td><td/><td>F \uf8ff = 0.74</td></tr><tr><td>Silva et al. (2016)</td><td colspan=\"2\">539.5m Twitter</td><td>Hate Speech</td><td/><td>Not applicable</td></tr><tr><td/><td/><td>Whisper</td><td/><td/><td/></tr><tr><td>Fersini et al. (2018)</td><td>3k</td><td>Twitter</td><td>Sexism</td><td/><td>Unknown</td></tr><tr><td>Basile et al. (2019)</td><td>19.6k</td><td>Twitter</td><td colspan=\"2\">Hate Speech, Target,</td><td>F8 confidence = 0.83</td></tr><tr><td/><td/><td/><td>Aggressiveness</td><td/><td>0.70, 0.73</td></tr><tr><td>Zampieri et al. (2019)</td><td>14.1k</td><td>Twitter</td><td>Offense, Target</td><td/><td>F \uf8ff = 0.83*</td></tr><tr><td/><td/><td/><td/><td/><td>*on 21 tweets</td></tr><tr><td>MANUAL SELECTION</td><td/><td/><td/><td/><td/></tr><tr><td>Gao and Huang (2017)</td><td>1.5k</td><td>Fox News</td><td>Hate Speech</td><td/><td>\uf8ff = 0.98</td></tr><tr><td>Hammer et al. (2019)</td><td>30k</td><td>Youtube</td><td>Threats</td><td/><td>Unknown</td></tr><tr><td>PROPRIETARY DATA</td><td/><td/><td/><td/><td/></tr><tr><td>Sprugnoli et al. (2018)</td><td>15k</td><td>WhatsApp</td><td>Cyberbullying</td><td/><td>SDC = 0.80 -0.88</td></tr><tr><td>Nobata et al. (2016)</td><td>1.2m</td><td>Yahoo</td><td>Hate Speech</td><td/><td>F \uf8ff = 0.40; 0.21 for AMT</td></tr><tr><td/><td/><td/><td/><td/><td>F \uf8ff = 0.84; 0.46 for Trained</td></tr><tr><td/><td/><td/><td/><td/><td>(Binary; Fine-grained)</td></tr><tr><td>RANDOM DATA SELECTION</td><td/><td/><td/><td/><td/></tr><tr><td colspan=\"2\">de Gibert Bonet et al. (2018) 10k</td><td>Stormfront</td><td colspan=\"2\">Hate Speech (Binary)</td><td>\uf8ff = 0.61; F \uf8ff = 0.61 (Batch1)</td></tr><tr><td/><td/><td/><td/><td/><td>\uf8ff = 0.63; F \uf8ff = 0.63 (Batch2)</td></tr><tr><td>Napoles et al. (2017)</td><td>10k</td><td>Yahoo</td><td colspan=\"2\">Positive Conversations</td><td>\u21b5 = 0.79 (Group)</td></tr><tr><td/><td/><td/><td/><td/><td>\u21b5 = 0.71 (Trained)</td></tr><tr><td>OTHER METHODS</td><td/><td/><td/><td/><td/></tr><tr><td>Wulczyn et al. (2017)</td><td>100k</td><td>Wikipedia</td><td colspan=\"2\">Harassment, Attacks</td><td>\u21b5 = 0.45</td></tr><tr><td>Kennedy et al. (2017)</td><td>20k</td><td>Twitter, Reddit,</td><td colspan=\"2\">Harassment (Binary)</td><td>Inter-rater agreement = 0.88</td></tr><tr><td/><td/><td>The Guardian,</td><td/><td/><td/></tr></table>",
"html": null,
"text": "points out sexual,"
},
"TABREF1": {
"num": null,
"type_str": "table",
"content": "<table/>",
"html": null,
"text": "Hammer et al. (2019) is a corpus for detection of violent threats on YouTube. Holgate et al. (2018), Cachola et al. (2018), and Pamungkas et al. (2020) examine vulgarity and swearing. A number of corpora on mixed behaviours have also been produced. Golbeck et al. (2017) is a study on harassment and offense on Twitter. Chatzakou et al. (2017) labels Twitter users, not comments, as aggressors, bullies, or spammers. Founta et al. (2018) considers spam in conjunction with abuse, bullying, and aggression on Twitter."
},
"TABREF3": {
"num": null,
"type_str": "table",
"content": "<table/>",
"html": null,
"text": "This table presents the major supportive, antagonistic, and general discussion subreddits that were used in data collection. Their range of views towards the targets of each slur facilitates equitable representation."
},
"TABREF5": {
"num": null,
"type_str": "table",
"content": "<table/>",
"html": null,
"text": ""
}
}
}
} |