File size: 157,417 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T02:11:48.318296Z"
    },
    "title": "Towards a Comprehensive Taxonomy and Large-Scale Annotated Corpus for Online Slur Usage",
    "authors": [
        {
            "first": "Jana",
            "middle": [],
            "last": "Kurrek",
            "suffix": "",
            "affiliation": {},
            "email": "jana.kurrek@mail.mcgill.ca"
        },
        {
            "first": "Haji",
            "middle": [
                "Mohammad"
            ],
            "last": "Saleem",
            "suffix": "",
            "affiliation": {},
            "email": "haji.saleem@mail.mcgill.ca"
        },
        {
            "first": "Derek",
            "middle": [],
            "last": "Ruths",
            "suffix": "",
            "affiliation": {},
            "email": "derek.ruths@mcgill.ca"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Abusive language classifiers have been shown to exhibit bias against women and racial minorities. Since these models are trained on data that is collected using keywords, they tend to exhibit a high sensitivity towards pejoratives. As a result, comments written by victims of abuse are frequently labelled as hateful, even if they discuss or reclaim slurs. Any attempt to address bias in keyword-based corpora requires a better understanding of pejorative language, as well as an equitable representation of targeted users in data collection. We make two main contributions to this end. First, we provide an annotation guide that outlines 4 main categories of online slur usage, which we further divide into a total of 12 sub-categories. Second, we present a publicly available corpus based on our taxonomy, with 39.8k human annotated comments extracted from Reddit. This corpus was annotated by a diverse cohort of coders, with Shannon equitability indices of 0.90, 0.92, and 0.87 across sexuality, ethnicity, and gender. Taken together, our taxonomy and corpus allow researchers to evaluate classifiers on a wider range of speech containing slurs.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Abusive language classifiers have been shown to exhibit bias against women and racial minorities. Since these models are trained on data that is collected using keywords, they tend to exhibit a high sensitivity towards pejoratives. As a result, comments written by victims of abuse are frequently labelled as hateful, even if they discuss or reclaim slurs. Any attempt to address bias in keyword-based corpora requires a better understanding of pejorative language, as well as an equitable representation of targeted users in data collection. We make two main contributions to this end. First, we provide an annotation guide that outlines 4 main categories of online slur usage, which we further divide into a total of 12 sub-categories. Second, we present a publicly available corpus based on our taxonomy, with 39.8k human annotated comments extracted from Reddit. This corpus was annotated by a diverse cohort of coders, with Shannon equitability indices of 0.90, 0.92, and 0.87 across sexuality, ethnicity, and gender. Taken together, our taxonomy and corpus allow researchers to evaluate classifiers on a wider range of speech containing slurs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Detecting abusive language is important for two substantive reasons. First is the mitigation of harm to individuals. Exposure to hate speech can result in a wide range of psychological effects, including degradation of mental health, depression, reduced self-esteem, and greater stress expression (Saha et al., 2019; Tynes et al., 2008; Boeckmann and Liew, 2002) . Second is the broader impact of unregulated speech on the participation gap in social media (Jenkins, 2009; Notley, 2009) . Overexposure to hateful language results in user desensitization (Soral et al., 2018) and radicalization (Norman and \u2020 These authors made equal contributions. Mikhael, 2017) , both of which have been shown to worsen racial relations (S\u00e8ne, 2019) . Moreover, hateful echo-chambers promote a \"spiral of silence\" that discourages counter-speech in conversations online (Duncan et al., 2020) .",
                "cite_spans": [
                    {
                        "start": 297,
                        "end": 316,
                        "text": "(Saha et al., 2019;",
                        "ref_id": "BIBREF46"
                    },
                    {
                        "start": 317,
                        "end": 336,
                        "text": "Tynes et al., 2008;",
                        "ref_id": "BIBREF55"
                    },
                    {
                        "start": 337,
                        "end": 362,
                        "text": "Boeckmann and Liew, 2002)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 457,
                        "end": 472,
                        "text": "(Jenkins, 2009;",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 473,
                        "end": 486,
                        "text": "Notley, 2009)",
                        "ref_id": "BIBREF42"
                    },
                    {
                        "start": 554,
                        "end": 574,
                        "text": "(Soral et al., 2018)",
                        "ref_id": "BIBREF52"
                    },
                    {
                        "start": 648,
                        "end": 662,
                        "text": "Mikhael, 2017)",
                        "ref_id": "BIBREF41"
                    },
                    {
                        "start": 722,
                        "end": 734,
                        "text": "(S\u00e8ne, 2019)",
                        "ref_id": "BIBREF50"
                    },
                    {
                        "start": 855,
                        "end": 876,
                        "text": "(Duncan et al., 2020)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Access to large-scale training data is the first step towards robust automated systems for abusive language detection. While industry researchers can access moderator logs and user reports, proprietary data is not the standard for academics. Instead, pejorative keywords are commonly used as filters in the data collection process. These include, but are not limited to, slurs and other curated lists of profane language (Waseem and Hovy, 2016; Waseem, 2016; Khodak et al., 2018; Rezvan et al., 2018) , terms borrowed from Hatebase, a multilingual repository for hate speech (Silva et al., 2016; Davidson et al., 2017; Founta et al., 2018; ElSherief et al., 2018) , offensive hashtags (Chatzakou et al., 2017; Golbeck et al., 2017) , and manually selected threads or subreddits (Gao and Huang, 2017; Hammer et al., 2019; Qian et al., 2019) . Although the drawbacks of keyword-based approaches are known to researchers, there are currently no clear alternatives to this technique (Waseem and Hovy, 2016; Davidson et al., 2017; ElSherief et al., 2018) .",
                "cite_spans": [
                    {
                        "start": 421,
                        "end": 444,
                        "text": "(Waseem and Hovy, 2016;",
                        "ref_id": "BIBREF58"
                    },
                    {
                        "start": 445,
                        "end": 458,
                        "text": "Waseem, 2016;",
                        "ref_id": "BIBREF57"
                    },
                    {
                        "start": 459,
                        "end": 479,
                        "text": "Khodak et al., 2018;",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 480,
                        "end": 500,
                        "text": "Rezvan et al., 2018)",
                        "ref_id": "BIBREF45"
                    },
                    {
                        "start": 575,
                        "end": 595,
                        "text": "(Silva et al., 2016;",
                        "ref_id": "BIBREF51"
                    },
                    {
                        "start": 596,
                        "end": 618,
                        "text": "Davidson et al., 2017;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 619,
                        "end": 639,
                        "text": "Founta et al., 2018;",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 640,
                        "end": 663,
                        "text": "ElSherief et al., 2018)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 685,
                        "end": 709,
                        "text": "(Chatzakou et al., 2017;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 710,
                        "end": 731,
                        "text": "Golbeck et al., 2017)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 778,
                        "end": 799,
                        "text": "(Gao and Huang, 2017;",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 800,
                        "end": 820,
                        "text": "Hammer et al., 2019;",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 821,
                        "end": 839,
                        "text": "Qian et al., 2019)",
                        "ref_id": "BIBREF44"
                    },
                    {
                        "start": 979,
                        "end": 1002,
                        "text": "(Waseem and Hovy, 2016;",
                        "ref_id": "BIBREF58"
                    },
                    {
                        "start": 1003,
                        "end": 1025,
                        "text": "Davidson et al., 2017;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 1026,
                        "end": 1049,
                        "text": "ElSherief et al., 2018)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "There has been a recent focus on how technical choices involving data curation can introduce systemic bias in the resultant corpus. For instance, Wiegand et al. (2019) discover that terms like football, announcer, and sport have the strongest correlation to abusive posts in Waseem and Hovy (2016) . Furthermore, Davidson et al. (2019) , Xia et al. (2020) and Sap et al. (2019) reveal how classifiers trained on data with systemic racial bias have a higher tendency to label text written in African-American English as abusive. Cited examples include: \"Wussup, nigga!\", and \"I saw his ass yesterday\". Left unaddressed, bias has a real impact on users. Automated recruiting tools used by Amazon.com were shown to discriminate against women (Cook, 2018) . Similarly, Microsoft released a public chatbot that learned to share racist content on Twitter (Vincent, 2016) . A common solution is to debias language representations (Bolukbasi et al., 2016) . However, these methods conceal but do not remove systemic bias in the overall data (Gonen and Goldberg, 2019) .",
                "cite_spans": [
                    {
                        "start": 146,
                        "end": 167,
                        "text": "Wiegand et al. (2019)",
                        "ref_id": "BIBREF59"
                    },
                    {
                        "start": 275,
                        "end": 297,
                        "text": "Waseem and Hovy (2016)",
                        "ref_id": "BIBREF58"
                    },
                    {
                        "start": 313,
                        "end": 335,
                        "text": "Davidson et al. (2019)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 338,
                        "end": 355,
                        "text": "Xia et al. (2020)",
                        "ref_id": "BIBREF62"
                    },
                    {
                        "start": 360,
                        "end": 377,
                        "text": "Sap et al. (2019)",
                        "ref_id": "BIBREF49"
                    },
                    {
                        "start": 739,
                        "end": 751,
                        "text": "(Cook, 2018)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 849,
                        "end": 864,
                        "text": "(Vincent, 2016)",
                        "ref_id": "BIBREF56"
                    },
                    {
                        "start": 923,
                        "end": 947,
                        "text": "(Bolukbasi et al., 2016)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 1033,
                        "end": 1059,
                        "text": "(Gonen and Goldberg, 2019)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "A way of beginning to address the issue of racial and gender bias is therefore to understand the implications of forced sampling. Our paper focuses specifically on data that is collected using derogatory keywords and we make two main contributions to this end. First, we provide an annotation guide that outlines 4 main categories of online slur usage, which we further divide into a total of 12 subcategories. Second, we present a publicly available corpus based on our taxonomy, with 39.8k human annotated comments extracted from Reddit. We also propose an approach to data collection and annotation that prioritizes inclusivity both by design and application:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Inclusivity by Design: Data selection and annotation achieves weighted group representation. We sample from a variety of subreddits in order to capture non-derogatory slur usage. We then hire a diverse set of coders under strict ethical standards as a means of engaging the perspectives of various target communities. We encourage opinion diversity by pairing annotators into teams based on maximum demographic differences.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Inclusivity by Application: Our coding guidelines are extensible to language that targets multiple protected groups. We collect data using the slurs: faggot, a pejorative term used primarily to refer to gay men, nigger, an ethnic slur typically directed at black people, especially African Americans, and tranny, a derogatory slur for a transgender person. This is only time we mention the actual slurs. From hereon, We refer to each term as the f-slur, n-slur, and t-slur, respectively. We specifically choose these slurs because they enable us to study discrimination across sexuality, ethnicity, and gender.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Our work does not directly eliminate bias in existing datasets. Rather, it aids in truly understanding the different ways in which slurs can be used online so that models can be trained and assessed more effectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The earliest and most notable corpus for hate speech research is Waseem and Hovy (2016) . It contains 16k comments from Twitter, annotated according to the offense criteria of McIntosh (1988) . Waseem (2016) is an extension of this corpus by 6,909 comments and it considers amateur as well as expert annotations. The authors make use of offensive hashtags for data collection, but it was not until Nobata et al. (2016) that slurring language was formally introduced as a sub-problem of hate speech. This paper uses a variety of linguistic features, such as modal words, insulting and hate blacklist words, and politeness words, in order to separate the three notions of hate, derogation, and profanity based on their relative degrees of harm to the target. These guidelines inspired the Fox News user comments corpus of Gao and Huang (2017) . Both works emphasize the capacity for hateful language to exist in implicit and explicit forms and collect the explicit form using derogatory keywords. Silva et al. (2016) is a target-based analysis of the explicit form. They leverage the syntactic structure \"I <intensity><user intent><hate target>\", where each hate target is one of 1,078 terms selected from Hatebase, in order to identify ten top targets of hate within Twitter and Whisper content. Next, Davidson et al. (2017) investigate intentional group-based humiliation and derogation. They reinforce the role of slurs as archetypal representations of hate by acknowledging that \"tweets with the highest predicted probabilities of being hate speech tend to contain multiple racial or homophobic slurs.\" More recently, de Gibert Bonet et al. (2018) sample from a white supremacist sub-forum and, in doing so, encourage community-based filtering. The emerging theme from these research efforts is the consensus that we require an alternative to random sampling for reliably capturing hateful content. What that alternative is remains unclear but keywords are currently the dominant choice.",
                "cite_spans": [
                    {
                        "start": 65,
                        "end": 87,
                        "text": "Waseem and Hovy (2016)",
                        "ref_id": "BIBREF58"
                    },
                    {
                        "start": 176,
                        "end": 191,
                        "text": "McIntosh (1988)",
                        "ref_id": "BIBREF36"
                    },
                    {
                        "start": 194,
                        "end": 207,
                        "text": "Waseem (2016)",
                        "ref_id": "BIBREF57"
                    },
                    {
                        "start": 398,
                        "end": 418,
                        "text": "Nobata et al. (2016)",
                        "ref_id": "BIBREF40"
                    },
                    {
                        "start": 820,
                        "end": 840,
                        "text": "Gao and Huang (2017)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 995,
                        "end": 1014,
                        "text": "Silva et al. (2016)",
                        "ref_id": "BIBREF51"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Existing Hate Speech Corpora",
                "sec_num": "2.1"
            },
            {
                "text": "Other researchers have expanded on this definition and shown that it is applicable to more nuanced categories of online misbehaviour, such as abuse, threats, personal attacks, and cyberbullying. For instance, Khodak et al. (2018) is a self-annotated corpus for sarcasm on Reddit. Sprugnoli et al. (2018) focuses on cyberbullying within WhatsApp conversations. Rezvan et al. 2018 We have collected a list of the major English-language corpora and summarized their sizes, platforms of focus, annotation schemes, and agreement scores in Table 1 . With that said, the study of online misbehavior has been extend beyond the traditional focus on English. It now includes resources in Italian, Indonesian, Hindi-English, Tunisian, etc. (Sanguinetti et al., 2018; Ibrohim and Budi, 2018; Kumar et al., 2018; Bohra et al., 2018; Chung et al., 2019) .",
                "cite_spans": [
                    {
                        "start": 209,
                        "end": 229,
                        "text": "Khodak et al. (2018)",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 280,
                        "end": 303,
                        "text": "Sprugnoli et al. (2018)",
                        "ref_id": "BIBREF53"
                    },
                    {
                        "start": 729,
                        "end": 755,
                        "text": "(Sanguinetti et al., 2018;",
                        "ref_id": "BIBREF48"
                    },
                    {
                        "start": 756,
                        "end": 779,
                        "text": "Ibrohim and Budi, 2018;",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 780,
                        "end": 799,
                        "text": "Kumar et al., 2018;",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 800,
                        "end": 819,
                        "text": "Bohra et al., 2018;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 820,
                        "end": 839,
                        "text": "Chung et al., 2019)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 534,
                        "end": 541,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Existing Hate Speech Corpora",
                "sec_num": "2.1"
            },
            {
                "text": "To model the contents of slur-based data, it is crucial that we first examine the properties of slurs themselves. Slurs are pejoratives that derogate based on in-group membership, that is, they categorize targets based on institutionally defined archetypes (Croom, 2015) . Studies on slurs are built on the recognition by Kaplan (1999) that meaning in natural language comes from convention and from context: a sentence is expressively correct if it is true by interpretation; a sentence is descriptively correct if it is literally true. Hom (2008) advocates in favor of the expressive view of slurs. He identifies nine adequacy conditions that characterize and explain racial epithets: A slur exhibits (1) derogatory force. The force of any slur is (2) variable across epithets and (3) fundamentally offensive, independently of the intents and beliefs of the speaker. While slurs are capable of being (7) reclaimed or (8) used towards a non-derogatory, non-appropriative end, they are generally (4) taboo unless (6) their force changes over time. This is because slurs are (5) meaningful insofar as they contribute to the truth-conditions of the sentence in which they arise. Hom's account of slurs is (9) generalizable across pejoratives.",
                "cite_spans": [
                    {
                        "start": 257,
                        "end": 270,
                        "text": "(Croom, 2015)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 322,
                        "end": 335,
                        "text": "Kaplan (1999)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 538,
                        "end": 548,
                        "text": "Hom (2008)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Slurs",
                "sec_num": "2.2"
            },
            {
                "text": "Hom implies that there are three main categories of slur usage, which are derogatory, non-derogatory non-appropriative, and appropriative. His adequacy conditions are central to our research. The three categories are the basis of our annotation scheme and they enable us to make assessments of abuse with ambiguous user intent.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Slurs",
                "sec_num": "2.2"
            },
            {
                "text": "Random sampling of slur-based data allows for proportional representation because the share of each usage in the corpus is reflective of its probability of occurrence online. However, this approach is not equitable. Less common usages, such as reclamation, discussion, and counter-speech, are not captured. Consequently, language models can overfit on pejoratives and further codify institutional biases (Caliskan et al., 2017; Garg et al., 2018) . A top-down approach to debiasing is simply insufficient. We advocate in favor of affirmative action during data collection and make an effort to represent a wider range of slur usages through community targeting. We also tailor our study to include individuals that belong to targeted communities, both as authors and annotators.",
                "cite_spans": [
                    {
                        "start": 404,
                        "end": 427,
                        "text": "(Caliskan et al., 2017;",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 428,
                        "end": 446,
                        "text": "Garg et al., 2018)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inclusive Design Process",
                "sec_num": "3"
            },
            {
                "text": "We use the Pushshift Reddit corpus (Baumgartner et al., 2020) and filter for the three slurs (f-slur, n-slur, t-slur) and their plurals. The data ranged from October 2007 to September 2019 at the time of filtering. We extracted a total of 2.6 million comments. We applied the following filtering process:",
                "cite_spans": [
                    {
                        "start": 35,
                        "end": 61,
                        "text": "(Baumgartner et al., 2020)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Collection",
                "sec_num": "3.1"
            },
            {
                "text": "Author Level: We remove comments written by users with no history in order to leave open the possibility of a future analysis with user meta-data. We remove comments written by users that were identified as bots. We limit the number of comments written by the same author.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Collection",
                "sec_num": "3.1"
            },
            {
                "text": "Comment Level: Reddit comments vary in length, with an upper limit of 40,000 characters. For ease of annotation, we remove comments from the top and bottom quartiles by length. We limit our corpus to English-language comments and use the Compact Language Detector v3 1 to detect them.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Collection",
                "sec_num": "3.1"
            },
            {
                "text": "Community Level: Communities that antagonise or support a group talk about similar topics but with opposing valence (Saleem et al., 2016) . To capture such polarity, we compile a list of subreddits based on their disdain for, neutrality towards, or support of the f-slur, n-slur, and t-slur (see Table 2 ). We do this by building on an existing list of toxic Reddit communities (Caffier, 2017) . We consider the name, rules, extent of moderation, description text, and polarity of comments containing slurs (overall score) of each subreddit in our assessment of whether or not to include them. We then extract the top comments in terms of polarity. Our post-filter corpus has 40,000 comments, sourced from 2704 individual subreddits and 37,133 unique authors. The median and maximum number of comments per author is 1 and 5.",
                "cite_spans": [
                    {
                        "start": 116,
                        "end": 137,
                        "text": "(Saleem et al., 2016)",
                        "ref_id": "BIBREF47"
                    },
                    {
                        "start": 378,
                        "end": 393,
                        "text": "(Caffier, 2017)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 296,
                        "end": 303,
                        "text": "Table 2",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Data Collection",
                "sec_num": "3.1"
            },
            {
                "text": "Our coding guide is based on the three major categories of slur usage identified in Hom (2008) . By open coding data collected using slurs, we identify a fourth major category as well as twelve subcategories. The complete taxonomy, along with examples for each subcategory, is provided in Table  3 . In general, comments containing more than one slur were labelled according to the most derogatory usage. The four main categories are explained below: 1 https://github.com/google/cld3 Derogatory Usage (DER): Any usage that is understood to convey contempt towards a targeted individual or group.",
                "cite_spans": [
                    {
                        "start": 84,
                        "end": 94,
                        "text": "Hom (2008)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 289,
                        "end": 297,
                        "text": "Table  3",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Taxonomy Design",
                "sec_num": "3.2"
            },
            {
                "text": "Appropriative Usage (APR): Meaningful usage by the targeted group for an alternate, nonderogatory purpose. Text belonging to this label loses its derogatory force.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Taxonomy Design",
                "sec_num": "3.2"
            },
            {
                "text": "Non-Derogatory, Non-Appropriative Usage (NDG): Meaningful usage by targeted or nontargeted groups for an alternate non-derogatory, non-appropriative purpose. Text belonging to this label retains its derogatory force.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Taxonomy Design",
                "sec_num": "3.2"
            },
            {
                "text": "A slur with one or more non-derogatory alternative meanings.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Homonyms (HOM):",
                "sec_num": null
            },
            {
                "text": "Following approval by the university Research Ethics Board (REB), we shared messages on social media and university mailing lists as well as physical posters across faculties in order to look for participants. The application consisted of eight short answer questions, in which candidates were asked to disclose their name, email, field and year of study, age, sexuality, ethnicity, and gender. We specifically collected the demographic information in free-form text. The free-form allows participants to choose best demographic identifiers for themselves. The demographic information is confidential and used solely for selecting annotators and creating their teams. All demographics were collapsed into categories (see Figure 1 ) primarily based on the classification structure approved as a departmental standard by Statistics Canada (2017). Of the four hundred and twelve applications received, 20 participants, ranging between 19 and 65 years of age (M = 26.7, SD = 10.8), were chosen using iterative proportional fitting. Overall, our annotator cohort has a Shannon equitability index of 0.90, 0.92, and 0.87 across sexuality, ethnicity, and gender. We did not have the REB clearance to perform any further analysis on the relationship between annotator demographics and annotations. We leave this as an area for future work.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 721,
                        "end": 729,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Annotator Selection",
                "sec_num": "3.3"
            },
            {
                "text": "A 4-session on-campus training program was developed for annotators to attend over 2 days. On Day 1, we presented the annotation scheme obtained through open coding. Annotators were then guided through two group annotation exercises of 20 and 40 comments respectively. On Day 2, annotators were randomly divided into 4 teams. Each team completed 2 rounds of 200 training annotations. After each round, they discussed their annotations and the reasons behind their labels. The discussion was aimed at fostering a common understanding of the annotation process.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training and Annotation",
                "sec_num": "3.4"
            },
            {
                "text": "The final annotations were divided into 4 tasks of 10,000 comments each. The 20 annotators were grouped into 10 teams of 2. The team creation process maximized the demographic distance between members across sexuality, ethnicity, and gender. It was treated as an assignment problem and solved using the Kuhn-Munkres algorithm. Each team annotated 1000 comments per task and annotators were grouped into new pairs for each subsequent task. Comments with no disagreement were added to the final corpus. Comments with disagreement were resolved by the authors. The final annotations were performed remotely on the open source text annotation tool Doccano (Nakayama et al., 2018) .",
                "cite_spans": [
                    {
                        "start": 652,
                        "end": 675,
                        "text": "(Nakayama et al., 2018)",
                        "ref_id": "BIBREF38"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training and Annotation",
                "sec_num": "3.4"
            },
            {
                "text": "40,000 Reddit comments were annotated, of which 189 were removed as noise. The remaining 39,811 were closely split across slurs: 13,290, 13,267 and 13,267 for f-slur, n-slur and t-slur respectively. In total, 20,531 comments were labelled derogatory, 16,729 non-derogatory, 1,998 homonym, and 553 appropriative. We anticipated a large portion of derogatory comments in our corpus because our data is slur-based. However, only 52% of comments were labelled as such. We attribute this to our community-targeted data collection process and efforts to sample from supportive subreddits.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Labeled Corpus",
                "sec_num": "4"
            },
            {
                "text": "In Figure 2 , we present the label distribution across slurs. We observe that roughly 59% of comments collected using the f-slur and t-slur were labelled as derogatory. In comparison, about 37.9% of comments containing the n-slur were similarly labelled. The majority of found homonyms include the t- slur, which accounts for 95.9% of the label. This is largely because the term is used in automotive communities to mean vehicle transmission (see Figure  3 ) and in skateboarding communities to describe skating transition. The remaining homonyms include the f-slur, with the meaning \"bundle\" or in reference to a form of British meatball. The n-slur has the smallest share of homonyms (0.02%) and appropriative (0.16%) comments.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 3,
                        "end": 11,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 447,
                        "end": 456,
                        "text": "Figure  3",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Label Distribution Across Slurs",
                "sec_num": "4.1"
            },
            {
                "text": "In Figure 3 , we present the label distribution across the 50 most common subreddits in our corpus. The graph is sorted by the proportion of derogatory comments in each subreddit. Consequently, it can be seen as a scale of derogatory behavior. On the far right are communities that we had previously identified as antagonistic. Many of their comments were labelled as derogatory and examples include MGTOW, CoonTown, 4chan and, The Donald. In the middle we find general discussion subreddits such as videos, todayilearned, and politics. They generally have an even split of derogatory and non-derogatory labels. On the far left we observe mostly supportive subreddits, with small portions of derogatory comments. Automotive subreddits like cars have a large number of homonyms. Meanwhile, subreddits such as traaaaaaannnnnnnnnns, askgaybros, and rupaulsdragrace contain significant portion of appropriative speech. These findings align with our initial hypothesis about supportive, antagonistic, and general discussion communities. Table 4 : Raw and inter-rater agreement. We achieve moderate to substantial agreement with Cohen's \uf8ff.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 3,
                        "end": 11,
                        "text": "Figure 3",
                        "ref_id": "FIGREF2"
                    },
                    {
                        "start": 1032,
                        "end": 1039,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Label Distribution Across Subreddits",
                "sec_num": "4.2"
            },
            {
                "text": "Both annotators agreed on the same label for 31,034 of the comments in our corpus. The remaining 8,777 comments were resolved by the authors. Overall we achieve a raw agreement score of 78.6%, corresponding to a Cohen's \uf8ff of 0.60. Our scores indicate substantial agreement and are in line with what has been observed in the literature (see Table 1 ). We obtain similar agreement across the three slurs, which are presented in Table 4 . APR had the highest amount of disagreement, with 67.99% comments requiring resolution, followed by NDG (35.36%), and HOM (31.58%). DEG was the lowest at 9.034%. During the resolution process, we identified three probable causes for disagreement:",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 340,
                        "end": 347,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    },
                    {
                        "start": 426,
                        "end": 433,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Agreement Analysis",
                "sec_num": "4.3"
            },
            {
                "text": "Label Overlap Discussions of derogation or reclamation created ambiguity and were falsely labelled as DER or APR, rather than NDG. A similar issue arose in comments acknowledging slurs as homonyms. For instance: \"When i was telling my skate friends about me being trans i asked them if they knew why it was so ironic that i love skating [t-slur] so much.\". Satire Our annotators found many derogatory comments in transgendercirclejerk (see Figure 3 ), which is a subreddit that self-identifies as a \"parody for trans people, mocking all transgenderrelated topics\". However, the sarcastic or satirical nature of these comments was not always evident: \"We don't need gun control we need [T-SLUR] CON-TROL! [t-slurs] are not in the Constitution or Bible, like guns are! If we don't outlaw t-slurs, only [tslurs] will have outlaws!\". We leave this area for future work.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 440,
                        "end": 448,
                        "text": "Figure 3",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Agreement Analysis",
                "sec_num": "4.3"
            },
            {
                "text": "In an independent assessment of label reliability, we re-annotated 100 DEG comments from transgendercirclejerk with complete access to user and thread history. 44 of our labels did not match those submitted by annotators. For instance, the following comment came from a transgender poster: \"LA LA LA CAN'T ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lack of Context",
                "sec_num": null
            },
            {
                "text": "but was mislabelled. This testifies the difficulty of annotating appropriative language without context. Other instances that requires context are reference to lyrics and dialogues from pop culture.For example \"Dead [n-slur] Storage\" from the movie Pulp Fiction.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "HEAR YOU I'M STUCK IN [T-SLUR] REALITY\"",
                "sec_num": null
            },
            {
                "text": "We use a state-of-the-art model for derogatory content detection to assess whether current classifiers are subject to overfitting on pejoratives. We choose the Perspective API by Conversation AI, which \"identifies whether a comment could be perceived as toxic to a discussion\". We obtain the toxicity scores for 100 random comments for each of the DEG, NDG, HOM, and APR labels. The results are summarized in Figure 4 . As expected, the overall score distribution is high for DEG. However, it is equally high for NDG and APR comments. This perfectly illustrates the issue of potentially biased models failing to identify non-derogatory content.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 409,
                        "end": 417,
                        "text": "Figure 4",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Benchmarking the Perspective API",
                "sec_num": "4.4"
            },
            {
                "text": "Further analysis of toxicity scores across comments underlines the challenges faced by existing models. First, instances of slur reclamation re- ceived high toxicity scores. For example: \"Psh my [t-slur] agony sits atop that steed with militant fervour. The world shall hear me roar, I AM A [T-SLUR] FREAK!!!! /uj Not even kidding, I'm 100% out as a [t-slur] freak. World can suck my shenis\" and \"When I've got a guy I'm crushing on I will sometimes say 'He makes me feel like a silly [f-slur] all over again'\" have toxicity scores above 0.93. Reclamation is an attempt at empowerment and community cohesion. The mislabelling of such examples further censors communities already targeted by hate. Second, recollections of past harassment received high toxicity scores. For example: \"A homeless dude called me a spic [fslur] once while I was with my ex\" is rated as high as 0.889. This belittles victims' experiences with abuse, rather than protecting them from it. Finally, counter speech received high toxicity scores. For example: \"Ummmm, yeah no, [t-slur] is a slur and youre ignorant as hell\" is rated 0.953. This undermines community-level efforts at removing derogatory language. Overall, these three outcomes are counterproductive to the detection process since empowering and vulnerable conversations of targeted communities may be flagged down.",
                "cite_spans": [
                    {
                        "start": 195,
                        "end": 203,
                        "text": "[t-slur]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Benchmarking the Perspective API",
                "sec_num": "4.4"
            },
            {
                "text": "We present a comprehensive taxonomy and largescale annotated corpus for online slur usage. Our findings are an attempt at integrating a qualitative understanding of slurs into their usage in natural language. We believe that they provide a significant contribution to the hate speech research community, not only as resources for training machine and deep learning models, but also as a means of achieving a nuanced understanding of the phenomenon of slurs. We encourage researchers to replicate and expand our efforts by studying language that targets other marginalized communities. With that said, our corpus is a challenging benchmark that will help expose over-fitting on pejoratives and our taxonomy introduces a systematic approach for dealing with derogatory keywords and epithets. Our corpus can be accessed by emailing the authors.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "SemEval-2019 task 5: Multilingual detection of hate speech against immigrants and women in Twitter",
                "authors": [
                    {
                        "first": "Valerio",
                        "middle": [],
                        "last": "Basile",
                        "suffix": ""
                    },
                    {
                        "first": "Cristina",
                        "middle": [],
                        "last": "Bosco",
                        "suffix": ""
                    },
                    {
                        "first": "Elisabetta",
                        "middle": [],
                        "last": "Fersini",
                        "suffix": ""
                    },
                    {
                        "first": "Debora",
                        "middle": [],
                        "last": "Nozza",
                        "suffix": ""
                    },
                    {
                        "first": "Viviana",
                        "middle": [],
                        "last": "Patti",
                        "suffix": ""
                    },
                    {
                        "first": "Francisco Manuel Rangel",
                        "middle": [],
                        "last": "Pardo",
                        "suffix": ""
                    },
                    {
                        "first": "Paolo",
                        "middle": [],
                        "last": "Rosso",
                        "suffix": ""
                    },
                    {
                        "first": "Manuela",
                        "middle": [],
                        "last": "Sanguinetti",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 13th International Workshop on Semantic Evaluation",
                "volume": "",
                "issue": "",
                "pages": "54--63",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/S19-2007"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Valerio Basile, Cristina Bosco, Elisabetta Fersini, Debora Nozza, Viviana Patti, Francisco Manuel Rangel Pardo, Paolo Rosso, and Manuela San- guinetti. 2019. SemEval-2019 task 5: Multilin- gual detection of hate speech against immigrants and women in Twitter. In Proceedings of the 13th Inter- national Workshop on Semantic Evaluation, pages 54-63, Minneapolis, Minnesota, USA. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "The pushshift reddit dataset",
                "authors": [
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Baumgartner",
                        "suffix": ""
                    },
                    {
                        "first": "Savvas",
                        "middle": [],
                        "last": "Zannettou",
                        "suffix": ""
                    },
                    {
                        "first": "Brian",
                        "middle": [],
                        "last": "Keegan",
                        "suffix": ""
                    },
                    {
                        "first": "Megan",
                        "middle": [],
                        "last": "Squire",
                        "suffix": ""
                    },
                    {
                        "first": "Jeremy",
                        "middle": [],
                        "last": "Blackburn",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the International AAAI Conference on Web and Social Media",
                "volume": "14",
                "issue": "",
                "pages": "830--839",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jason Baumgartner, Savvas Zannettou, Brian Keegan, Megan Squire, and Jeremy Blackburn. 2020. The pushshift reddit dataset. Proceedings of the Interna- tional AAAI Conference on Web and Social Media, 14(1):830-839.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Hate speech: Asian american students' justice judgments and psychological responses",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Robert",
                        "suffix": ""
                    },
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Boeckmann",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Liew",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Journal of Social Issues",
                "volume": "58",
                "issue": "2",
                "pages": "363--381",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Robert J Boeckmann and Jeffrey Liew. 2002. Hate speech: Asian american students' justice judgments and psychological responses. Journal of Social Is- sues, 58(2):363-381.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "A dataset of hindi-english code-mixed social media text for hate speech detection",
                "authors": [
                    {
                        "first": "Aditya",
                        "middle": [],
                        "last": "Bohra",
                        "suffix": ""
                    },
                    {
                        "first": "Deepanshu",
                        "middle": [],
                        "last": "Vijay",
                        "suffix": ""
                    },
                    {
                        "first": "Vinay",
                        "middle": [],
                        "last": "Singh",
                        "suffix": ""
                    },
                    {
                        "first": "Manish",
                        "middle": [],
                        "last": "Syed Sarfaraz Akhtar",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Shrivastava",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the second workshop on computational modeling of people's opinions, personality, and emotions in social media",
                "volume": "",
                "issue": "",
                "pages": "36--41",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Aditya Bohra, Deepanshu Vijay, Vinay Singh, Syed Sarfaraz Akhtar, and Manish Shrivastava. 2018. A dataset of hindi-english code-mixed social media text for hate speech detection. In Proceedings of the second workshop on computational modeling of people's opinions, personality, and emotions in social media, pages 36-41.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Man is to computer programmer as woman is to homemaker? debiasing word embeddings",
                "authors": [
                    {
                        "first": "Tolga",
                        "middle": [],
                        "last": "Bolukbasi",
                        "suffix": ""
                    },
                    {
                        "first": "Kai-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "James",
                        "suffix": ""
                    },
                    {
                        "first": "Venkatesh",
                        "middle": [],
                        "last": "Zou",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [
                            "T"
                        ],
                        "last": "Saligrama",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Kalai",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Advances in neural information processing systems",
                "volume": "",
                "issue": "",
                "pages": "4349--4357",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai. 2016. Man is to computer programmer as woman is to homemaker? debiasing word embeddings. In Ad- vances in neural information processing systems, pages 4349-4357.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Expressively vulgar: The socio-dynamics of vulgarity and its effects on sentiment analysis in social media",
                "authors": [
                    {
                        "first": "Isabel",
                        "middle": [],
                        "last": "Cachola",
                        "suffix": ""
                    },
                    {
                        "first": "Eric",
                        "middle": [],
                        "last": "Holgate",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Preo\u0163iuc-Pietro",
                        "suffix": ""
                    },
                    {
                        "first": "Junyi Jessy",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 27th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "2927--2938",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Isabel Cachola, Eric Holgate, Daniel Preo\u0163iuc-Pietro, and Junyi Jessy Li. 2018. Expressively vulgar: The socio-dynamics of vulgarity and its effects on sen- timent analysis in social media. In Proceedings of the 27th International Conference on Computational Linguistics, pages 2927-2938, Santa Fe, New Mex- ico, USA. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Here are reddit's whiniest, most low-key toxic subreddits",
                "authors": [
                    {
                        "first": "Justin",
                        "middle": [],
                        "last": "Caffier",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Justin Caffier. 2017. Here are reddit's whiniest, most low-key toxic subreddits. Vice.com.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Semantics derived automatically from language corpora contain human-like biases",
                "authors": [
                    {
                        "first": "Aylin",
                        "middle": [],
                        "last": "Caliskan",
                        "suffix": ""
                    },
                    {
                        "first": "Joanna",
                        "middle": [
                            "J"
                        ],
                        "last": "Bryson",
                        "suffix": ""
                    },
                    {
                        "first": "Arvind",
                        "middle": [],
                        "last": "Narayanan",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Science",
                "volume": "356",
                "issue": "6334",
                "pages": "183--186",
                "other_ids": {
                    "DOI": [
                        "10.1126/science.aal4230"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Aylin Caliskan, Joanna J. Bryson, and Arvind Narayanan. 2017. Semantics derived automatically from language corpora contain human-like biases. Science, 356(6334):183-186.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Sarcasm, pretense, and the semantics/pragmatics distinction",
                "authors": [
                    {
                        "first": "Elisabeth",
                        "middle": [],
                        "last": "Camp",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "No\u00fbs",
                "volume": "46",
                "issue": "4",
                "pages": "587--634",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Elisabeth Camp. 2012. Sarcasm, pretense, and the semantics/pragmatics distinction. No\u00fbs, 46(4):587- 634.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Mean birds: Detecting aggression and bullying on twitter",
                "authors": [
                    {
                        "first": "Despoina",
                        "middle": [],
                        "last": "Chatzakou",
                        "suffix": ""
                    },
                    {
                        "first": "Nicolas",
                        "middle": [],
                        "last": "Kourtellis",
                        "suffix": ""
                    },
                    {
                        "first": "Jeremy",
                        "middle": [],
                        "last": "Blackburn",
                        "suffix": ""
                    },
                    {
                        "first": "Emiliano",
                        "middle": [],
                        "last": "De Cristofaro",
                        "suffix": ""
                    },
                    {
                        "first": "Gianluca",
                        "middle": [],
                        "last": "Stringhini",
                        "suffix": ""
                    },
                    {
                        "first": "Athena",
                        "middle": [],
                        "last": "Vakali",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 2017 ACM on web science conference",
                "volume": "",
                "issue": "",
                "pages": "13--22",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Despoina Chatzakou, Nicolas Kourtellis, Jeremy Blackburn, Emiliano De Cristofaro, Gianluca Stringhini, and Athena Vakali. 2017. Mean birds: Detecting aggression and bullying on twitter. In Pro- ceedings of the 2017 ACM on web science confer- ence, pages 13-22.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Conan -counter narratives through nichesourcing: a multilingual dataset of responses to fight online hate speech",
                "authors": [
                    {
                        "first": "Yi-Ling",
                        "middle": [],
                        "last": "Chung",
                        "suffix": ""
                    },
                    {
                        "first": "Elizaveta",
                        "middle": [],
                        "last": "Kuzmenko",
                        "suffix": ""
                    },
                    {
                        "first": "Serra",
                        "middle": [],
                        "last": "Tekiroglu",
                        "suffix": ""
                    },
                    {
                        "first": "Marco",
                        "middle": [],
                        "last": "Guerini",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "2819--2829",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1271"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yi-Ling Chung, Elizaveta Kuzmenko, Serra Tekiroglu, and Marco Guerini. 2019. Conan -counter narra- tives through nichesourcing: a multilingual dataset of responses to fight online hate speech. In Proceed- ings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2819-2829.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Amazon scraps 'sexist ai' recruiting tool that showed bias against women. The Telegraph",
                "authors": [
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Cook",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "James Cook. 2018. Amazon scraps 'sexist ai' recruit- ing tool that showed bias against women. The Tele- graph.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "The semantics of slurs: A refutation of coreferentialism. Ampersand",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Adam",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Croom",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "2",
                "issue": "",
                "pages": "30--38",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Adam M Croom. 2015. The semantics of slurs: A refu- tation of coreferentialism. Ampersand, 2:30-38.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Racial bias in hate speech and abusive language detection datasets",
                "authors": [
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Davidson",
                        "suffix": ""
                    },
                    {
                        "first": "Debasmita",
                        "middle": [],
                        "last": "Bhattacharya",
                        "suffix": ""
                    },
                    {
                        "first": "Ingmar",
                        "middle": [],
                        "last": "Weber",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the Third Workshop on Abusive Language Online",
                "volume": "",
                "issue": "",
                "pages": "25--35",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W19-3504"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Thomas Davidson, Debasmita Bhattacharya, and Ing- mar Weber. 2019. Racial bias in hate speech and abusive language detection datasets. In Proceed- ings of the Third Workshop on Abusive Language Online, pages 25-35. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Automated hate speech detection and the problem of offensive language",
                "authors": [
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Davidson",
                        "suffix": ""
                    },
                    {
                        "first": "Dana",
                        "middle": [],
                        "last": "Warmsley",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Macy",
                        "suffix": ""
                    },
                    {
                        "first": "Ingmar",
                        "middle": [],
                        "last": "Weber",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Eleventh international aaai conference on web and social media",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thomas Davidson, Dana Warmsley, Michael Macy, and Ingmar Weber. 2017. Automated hate speech detection and the problem of offensive language. In Eleventh international aaai conference on web and social media.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Staying silent and speaking out in online comment sections: The influence of spiral of silence and corrective action in reaction to news",
                "authors": [
                    {
                        "first": "Megan",
                        "middle": [],
                        "last": "Duncan",
                        "suffix": ""
                    },
                    {
                        "first": "Ayellet",
                        "middle": [],
                        "last": "Pelled",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Wise",
                        "suffix": ""
                    },
                    {
                        "first": "Shreenita",
                        "middle": [],
                        "last": "Ghosh",
                        "suffix": ""
                    },
                    {
                        "first": "Yuanliang",
                        "middle": [],
                        "last": "Shan",
                        "suffix": ""
                    },
                    {
                        "first": "Mengdian",
                        "middle": [],
                        "last": "Zheng",
                        "suffix": ""
                    },
                    {
                        "first": "Doug",
                        "middle": [],
                        "last": "Mcleod",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Computers in Human Behavior",
                "volume": "102",
                "issue": "",
                "pages": "192--205",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Megan Duncan, Ayellet Pelled, David Wise, Shree- nita Ghosh, Yuanliang Shan, Mengdian Zheng, and Doug McLeod. 2020. Staying silent and speaking out in online comment sections: The influence of spiral of silence and corrective action in reaction to news. Computers in Human Behavior, 102:192- 205.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Hate lingo: A target-based linguistic analysis of hate speech in social media",
                "authors": [
                    {
                        "first": "Mai",
                        "middle": [],
                        "last": "Elsherief",
                        "suffix": ""
                    },
                    {
                        "first": "Vivek",
                        "middle": [],
                        "last": "Kulkarni",
                        "suffix": ""
                    },
                    {
                        "first": "Dana",
                        "middle": [],
                        "last": "Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "William",
                        "middle": [
                            "Yang"
                        ],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Elizabeth",
                        "middle": [],
                        "last": "Belding",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Twelfth International AAAI Conference on Web and Social Media",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mai ElSherief, Vivek Kulkarni, Dana Nguyen, William Yang Wang, and Elizabeth Belding. 2018. Hate lingo: A target-based linguistic analysis of hate speech in social media. In Twelfth International AAAI Conference on Web and Social Media.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Overview of the task on automatic misogyny identification at ibereval 2018",
                "authors": [
                    {
                        "first": "Elisabetta",
                        "middle": [],
                        "last": "Fersini",
                        "suffix": ""
                    },
                    {
                        "first": "Paolo",
                        "middle": [],
                        "last": "Rosso",
                        "suffix": ""
                    },
                    {
                        "first": "Maria",
                        "middle": [],
                        "last": "Anzovino",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "IberEval@ SEPLN",
                "volume": "",
                "issue": "",
                "pages": "214--228",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Elisabetta Fersini, Paolo Rosso, and Maria Anzovino. 2018. Overview of the task on automatic misog- yny identification at ibereval 2018. In IberEval@ SEPLN, pages 214-228.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Large scale crowdsourcing and characterization of twitter abusive behavior",
                "authors": [
                    {
                        "first": "Constantinos",
                        "middle": [],
                        "last": "Antigoni Maria Founta",
                        "suffix": ""
                    },
                    {
                        "first": "Despoina",
                        "middle": [],
                        "last": "Djouvas",
                        "suffix": ""
                    },
                    {
                        "first": "Ilias",
                        "middle": [],
                        "last": "Chatzakou",
                        "suffix": ""
                    },
                    {
                        "first": "Jeremy",
                        "middle": [],
                        "last": "Leontiadis",
                        "suffix": ""
                    },
                    {
                        "first": "Gianluca",
                        "middle": [],
                        "last": "Blackburn",
                        "suffix": ""
                    },
                    {
                        "first": "Athena",
                        "middle": [],
                        "last": "Stringhini",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Vakali",
                        "suffix": ""
                    },
                    {
                        "first": "Nicolas",
                        "middle": [],
                        "last": "Sirivianos",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Kourtellis",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Twelfth International AAAI Conference on Web and Social Media",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Antigoni Maria Founta, Constantinos Djouvas, De- spoina Chatzakou, Ilias Leontiadis, Jeremy Black- burn, Gianluca Stringhini, Athena Vakali, Michael Sirivianos, and Nicolas Kourtellis. 2018. Large scale crowdsourcing and characterization of twitter abusive behavior. In Twelfth International AAAI Conference on Web and Social Media.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Detecting online hate speech using context aware models",
                "authors": [
                    {
                        "first": "Lei",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Ruihong",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the International Conference Recent Advances in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "260--266",
                "other_ids": {
                    "DOI": [
                        "10.26615/978-954-452-049-6_036"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Lei Gao and Ruihong Huang. 2017. Detecting on- line hate speech using context aware models. In Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017, pages 260-266, Varna, Bulgaria. INCOMA Ltd.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Word embeddings quantify 100 years of gender and ethnic stereotypes. Proceedings of the National Academy of",
                "authors": [
                    {
                        "first": "Nikhil",
                        "middle": [],
                        "last": "Garg",
                        "suffix": ""
                    },
                    {
                        "first": "Londa",
                        "middle": [],
                        "last": "Schiebinger",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Jurafsky",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Zou",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Sciences",
                "volume": "115",
                "issue": "16",
                "pages": "3635--3644",
                "other_ids": {
                    "DOI": [
                        "10.1073/pnas.1720347115"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and James Zou. 2018. Word embeddings quantify 100 years of gender and ethnic stereotypes. Pro- ceedings of the National Academy of Sciences, 115(16):E3635-E3644.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Hate speech dataset from a white supremacy forum",
                "authors": [
                    {
                        "first": "Ona",
                        "middle": [],
                        "last": "De",
                        "suffix": ""
                    },
                    {
                        "first": "Gibert",
                        "middle": [],
                        "last": "Bonet",
                        "suffix": ""
                    },
                    {
                        "first": "Naiara",
                        "middle": [],
                        "last": "Perez Miguel",
                        "suffix": ""
                    },
                    {
                        "first": "Aitor",
                        "middle": [],
                        "last": "Garc\u00eda-Pablos",
                        "suffix": ""
                    },
                    {
                        "first": "Montse",
                        "middle": [],
                        "last": "Cuadros",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2nd Workshop on Abusive Language Online (ALW2)",
                "volume": "",
                "issue": "",
                "pages": "11--20",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W18-5102"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ona de Gibert Bonet, Naiara Perez Miguel, Aitor Garc\u00eda-Pablos, and Montse Cuadros. 2018. Hate speech dataset from a white supremacy forum. In Proceedings of the 2nd Workshop on Abusive Lan- guage Online (ALW2), pages 11-20. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "A large labeled corpus for online harassment research",
                "authors": [
                    {
                        "first": "Jennifer",
                        "middle": [],
                        "last": "Golbeck",
                        "suffix": ""
                    },
                    {
                        "first": "Zahra",
                        "middle": [],
                        "last": "Ashktorab",
                        "suffix": ""
                    },
                    {
                        "first": "Rashad",
                        "middle": [
                            "O"
                        ],
                        "last": "Banjo",
                        "suffix": ""
                    },
                    {
                        "first": "Alexandra",
                        "middle": [],
                        "last": "Berlinger",
                        "suffix": ""
                    },
                    {
                        "first": "Siddharth",
                        "middle": [],
                        "last": "Bhagwan",
                        "suffix": ""
                    },
                    {
                        "first": "Cody",
                        "middle": [],
                        "last": "Buntain",
                        "suffix": ""
                    },
                    {
                        "first": "Paul",
                        "middle": [],
                        "last": "Cheakalos",
                        "suffix": ""
                    },
                    {
                        "first": "Alicia",
                        "middle": [
                            "A"
                        ],
                        "last": "Geller",
                        "suffix": ""
                    },
                    {
                        "first": "Rajesh",
                        "middle": [],
                        "last": "Kumar Gnanasekaran",
                        "suffix": ""
                    },
                    {
                        "first": "Raja",
                        "middle": [],
                        "last": "Rajan Gunasekaran",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 2017 ACM on web science conference",
                "volume": "",
                "issue": "",
                "pages": "229--233",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jennifer Golbeck, Zahra Ashktorab, Rashad O Banjo, Alexandra Berlinger, Siddharth Bhagwan, Cody Buntain, Paul Cheakalos, Alicia A Geller, Ra- jesh Kumar Gnanasekaran, Raja Rajan Gunasekaran, et al. 2017. A large labeled corpus for online harass- ment research. In Proceedings of the 2017 ACM on web science conference, pages 229-233.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Lipstick on a pig: Debiasing methods cover up systematic gender biases in word embeddings but do not remove them",
                "authors": [
                    {
                        "first": "Hila",
                        "middle": [],
                        "last": "Gonen",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "609--614",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hila Gonen and Yoav Goldberg. 2019. Lipstick on a pig: Debiasing methods cover up systematic gender biases in word embeddings but do not remove them. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computa- tional Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 609-614.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Noun often attributive\" and\" adjective",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Philip B Gove",
                        "suffix": ""
                    }
                ],
                "year": 1964,
                "venue": "American Speech",
                "volume": "39",
                "issue": "3",
                "pages": "163--175",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Philip B Gove. 1964. Noun often attributive\" and\" ad- jective. American Speech, 39(3):163-175.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "T-hsab: A tunisian hate speech and abusive dataset",
                "authors": [
                    {
                        "first": "Hatem",
                        "middle": [],
                        "last": "Haddad",
                        "suffix": ""
                    },
                    {
                        "first": "Hala",
                        "middle": [],
                        "last": "Mulki",
                        "suffix": ""
                    },
                    {
                        "first": "Asma",
                        "middle": [],
                        "last": "Oueslati",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "International Conference on Arabic Language Processing",
                "volume": "",
                "issue": "",
                "pages": "251--263",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hatem Haddad, Hala Mulki, and Asma Oueslati. 2019. T-hsab: A tunisian hate speech and abusive dataset. In International Conference on Arabic Language Processing, pages 251-263. Springer.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Threat: A large annotated corpus for detection of violent threats",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Hugo",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Hammer",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Michael",
                        "suffix": ""
                    },
                    {
                        "first": "Lilja",
                        "middle": [],
                        "last": "Riegler",
                        "suffix": ""
                    },
                    {
                        "first": "Erik",
                        "middle": [],
                        "last": "\u00d8vrelid",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Velldal",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "2019 International Conference on Content-Based Multimedia Indexing (CBMI)",
                "volume": "",
                "issue": "",
                "pages": "1--5",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hugo L Hammer, Michael A Riegler, Lilja \u00d8vrelid, and Erik Velldal. 2019. Threat: A large annotated cor- pus for detection of violent threats. In 2019 Inter- national Conference on Content-Based Multimedia Indexing (CBMI), pages 1-5. IEEE.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Why swear? analyzing and inferring the intentions of vulgar expressions",
                "authors": [
                    {
                        "first": "Eric",
                        "middle": [],
                        "last": "Holgate",
                        "suffix": ""
                    },
                    {
                        "first": "Isabel",
                        "middle": [],
                        "last": "Cachola",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Preo\u0163iuc-Pietro",
                        "suffix": ""
                    },
                    {
                        "first": "Junyi Jessy",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "4405--4414",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D18-1471"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Eric Holgate, Isabel Cachola, Daniel Preo\u0163iuc-Pietro, and Junyi Jessy Li. 2018. Why swear? analyz- ing and inferring the intentions of vulgar expres- sions. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4405-4414, Brussels, Belgium. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "The semantics of racial epithets",
                "authors": [
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Hom",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "The Journal of Philosophy",
                "volume": "105",
                "issue": "8",
                "pages": "416--440",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christopher Hom. 2008. The semantics of racial epi- thets. The Journal of Philosophy, 105(8):416-440.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "A dataset and preliminaries study for abusive language detection in indonesian social media",
                "authors": [
                    {
                        "first": "Muhammad",
                        "middle": [],
                        "last": "Okky Ibrohim",
                        "suffix": ""
                    },
                    {
                        "first": "Indra",
                        "middle": [],
                        "last": "Budi",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Procedia Computer Science",
                "volume": "135",
                "issue": "",
                "pages": "222--229",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Muhammad Okky Ibrohim and Indra Budi. 2018. A dataset and preliminaries study for abusive language detection in indonesian social media. Procedia Com- puter Science, 135:222-229.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Confronting the challenges of participatory culture: Media education for the 21st century",
                "authors": [
                    {
                        "first": "Henry",
                        "middle": [],
                        "last": "Jenkins",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Henry Jenkins. 2009. Confronting the challenges of participatory culture: Media education for the 21st century. Mit Press.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "When does a compliment become sexist? analysis and classification of ambivalent sexism using twitter data",
                "authors": [
                    {
                        "first": "Akshita",
                        "middle": [],
                        "last": "Jha",
                        "suffix": ""
                    },
                    {
                        "first": "Radhika",
                        "middle": [],
                        "last": "Mamidi",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the second workshop on NLP and computational social science",
                "volume": "",
                "issue": "",
                "pages": "7--16",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Akshita Jha and Radhika Mamidi. 2017. When does a compliment become sexist? analysis and classifica- tion of ambivalent sexism using twitter data. In Pro- ceedings of the second workshop on NLP and com- putational social science, pages 7-16.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "The meaning of ouch and oops. explorations in the theory of meaning as use. University of California",
                "authors": [
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Kaplan",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "David Kaplan. 1999. The meaning of ouch and oops. explorations in the theory of meaning as use. Uni- versity of California.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Technology solutions to combat online harassment",
                "authors": [
                    {
                        "first": "George",
                        "middle": [],
                        "last": "Kennedy",
                        "suffix": ""
                    },
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Mccollough",
                        "suffix": ""
                    },
                    {
                        "first": "Edward",
                        "middle": [],
                        "last": "Dixon",
                        "suffix": ""
                    },
                    {
                        "first": "Alexei",
                        "middle": [],
                        "last": "Bastidas",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Ryan",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Loo",
                        "suffix": ""
                    },
                    {
                        "first": "Saurav",
                        "middle": [],
                        "last": "Sahay",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the first workshop on abusive language online",
                "volume": "",
                "issue": "",
                "pages": "73--77",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "George Kennedy, Andrew McCollough, Edward Dixon, Alexei Bastidas, John Ryan, Chris Loo, and Saurav Sahay. 2017. Technology solutions to combat online harassment. In Proceedings of the first workshop on abusive language online, pages 73-77.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "A large self-annotated corpus for sarcasm",
                "authors": [
                    {
                        "first": "Mikhail",
                        "middle": [],
                        "last": "Khodak",
                        "suffix": ""
                    },
                    {
                        "first": "Nikunj",
                        "middle": [],
                        "last": "Saunshi",
                        "suffix": ""
                    },
                    {
                        "first": "Kiran",
                        "middle": [],
                        "last": "Vodrahalli",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the Linguistic Resource and Evaluation Conference (LREC)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mikhail Khodak, Nikunj Saunshi, and Kiran Vodrahalli. 2018. A large self-annotated corpus for sarcasm. In Proceedings of the Linguistic Resource and Evalua- tion Conference (LREC).",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "Aggression-annotated corpus of hindi-english code-mixed data",
                "authors": [
                    {
                        "first": "Ritesh",
                        "middle": [],
                        "last": "Kumar",
                        "suffix": ""
                    },
                    {
                        "first": "Aishwarya",
                        "middle": [],
                        "last": "Reganti",
                        "suffix": ""
                    },
                    {
                        "first": "Akshit",
                        "middle": [],
                        "last": "Bhatia",
                        "suffix": ""
                    },
                    {
                        "first": "Tushar",
                        "middle": [],
                        "last": "Maheshwari",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). European Language Resources Association (ELRA)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ritesh Kumar, Aishwarya Reganti, Akshit Bhatia, and Tushar Maheshwari. 2018. Aggression-annotated corpus of hindi-english code-mixed data. In Pro- ceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). European Language Resources Association (ELRA).",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "White privilege: Unpacking the invisible knapsack",
                "authors": [
                    {
                        "first": "Peggy",
                        "middle": [],
                        "last": "Mcintosh",
                        "suffix": ""
                    }
                ],
                "year": 1988,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Peggy McIntosh. 1988. White privilege: Unpacking the invisible knapsack.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "L-hsab: A levantine twitter dataset for hate speech and abusive language",
                "authors": [
                    {
                        "first": "Hala",
                        "middle": [],
                        "last": "Mulki",
                        "suffix": ""
                    },
                    {
                        "first": "Hatem",
                        "middle": [],
                        "last": "Haddad",
                        "suffix": ""
                    },
                    {
                        "first": "Chedi",
                        "middle": [],
                        "last": "Bechikh Ali",
                        "suffix": ""
                    },
                    {
                        "first": "Halima",
                        "middle": [],
                        "last": "Alshabani",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the Third Workshop on Abusive Language Online",
                "volume": "",
                "issue": "",
                "pages": "111--118",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hala Mulki, Hatem Haddad, Chedi Bechikh Ali, and Halima Alshabani. 2019. L-hsab: A levantine twit- ter dataset for hate speech and abusive language. In Proceedings of the Third Workshop on Abusive Lan- guage Online, pages 111-118.",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "doccano: Text annotation tool for human",
                "authors": [
                    {
                        "first": "Hiroki",
                        "middle": [],
                        "last": "Nakayama",
                        "suffix": ""
                    },
                    {
                        "first": "Takahiro",
                        "middle": [],
                        "last": "Kubo",
                        "suffix": ""
                    },
                    {
                        "first": "Junya",
                        "middle": [],
                        "last": "Kamura",
                        "suffix": ""
                    },
                    {
                        "first": "Yasufumi",
                        "middle": [],
                        "last": "Taniguchi",
                        "suffix": ""
                    },
                    {
                        "first": "Xu",
                        "middle": [],
                        "last": "Liang",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hiroki Nakayama, Takahiro Kubo, Junya Kamura, Ya- sufumi Taniguchi, and Xu Liang. 2018. doccano: Text annotation tool for human. Software available from https://github.com/doccano/doccano.",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "Automatically identifying good conversations online (yes, they do exist!)",
                "authors": [
                    {
                        "first": "Courtney",
                        "middle": [],
                        "last": "Napoles",
                        "suffix": ""
                    },
                    {
                        "first": "Aasish",
                        "middle": [],
                        "last": "Pappu",
                        "suffix": ""
                    },
                    {
                        "first": "Joel",
                        "middle": [],
                        "last": "Tetreault",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Eleventh International AAAI Conference on Web and Social Media",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Courtney Napoles, Aasish Pappu, and Joel Tetreault. 2017. Automatically identifying good conversations online (yes, they do exist!). In Eleventh Interna- tional AAAI Conference on Web and Social Media.",
                "links": null
            },
            "BIBREF40": {
                "ref_id": "b40",
                "title": "Abusive language detection in online user content",
                "authors": [
                    {
                        "first": "Chikashi",
                        "middle": [],
                        "last": "Nobata",
                        "suffix": ""
                    },
                    {
                        "first": "Joel",
                        "middle": [],
                        "last": "Tetreault",
                        "suffix": ""
                    },
                    {
                        "first": "Achint",
                        "middle": [],
                        "last": "Thomas",
                        "suffix": ""
                    },
                    {
                        "first": "Yashar",
                        "middle": [],
                        "last": "Mehdad",
                        "suffix": ""
                    },
                    {
                        "first": "Yi",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 25th international conference on world wide web",
                "volume": "",
                "issue": "",
                "pages": "145--153",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chikashi Nobata, Joel Tetreault, Achint Thomas, Yashar Mehdad, and Yi Chang. 2016. Abusive lan- guage detection in online user content. In Proceed- ings of the 25th international conference on world wide web, pages 145-153.",
                "links": null
            },
            "BIBREF41": {
                "ref_id": "b41",
                "title": "Youth radicalization is on the rise. here's what we know about why",
                "authors": [
                    {
                        "first": "Julie",
                        "middle": [],
                        "last": "Norman",
                        "suffix": ""
                    },
                    {
                        "first": "Drew",
                        "middle": [],
                        "last": "Mikhael",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "The Washington Post",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Julie Norman and Drew Mikhael. 2017. Youth radi- calization is on the rise. here's what we know about why. The Washington Post.",
                "links": null
            },
            "BIBREF42": {
                "ref_id": "b42",
                "title": "Young people, online networks, and social inclusion",
                "authors": [
                    {
                        "first": "Tanya",
                        "middle": [],
                        "last": "Notley",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Journal of Computer-Mediated Communication",
                "volume": "14",
                "issue": "4",
                "pages": "1208--1227",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tanya Notley. 2009. Young people, online networks, and social inclusion. Journal of Computer-Mediated Communication, 14(4):1208-1227.",
                "links": null
            },
            "BIBREF43": {
                "ref_id": "b43",
                "title": "Do you really want to hurt me? predicting abusive swearing in social media",
                "authors": [
                    {
                        "first": "Valerio",
                        "middle": [],
                        "last": "Endang Wahyu Pamungkas",
                        "suffix": ""
                    },
                    {
                        "first": "Viviana",
                        "middle": [],
                        "last": "Basile",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Patti",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 12th Language Resources and Evaluation Conference",
                "volume": "",
                "issue": "",
                "pages": "6237--6246",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Endang Wahyu Pamungkas, Valerio Basile, and Vi- viana Patti. 2020. Do you really want to hurt me? predicting abusive swearing in social media. In Proceedings of the 12th Language Resources and Evaluation Conference, pages 6237-6246, Mar- seille, France. European Language Resources Asso- ciation.",
                "links": null
            },
            "BIBREF44": {
                "ref_id": "b44",
                "title": "A benchmark dataset for learning to intervene in online hate speech",
                "authors": [
                    {
                        "first": "Jing",
                        "middle": [],
                        "last": "Qian",
                        "suffix": ""
                    },
                    {
                        "first": "Anna",
                        "middle": [],
                        "last": "Bethke",
                        "suffix": ""
                    },
                    {
                        "first": "Yinyin",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Elizabeth",
                        "middle": [],
                        "last": "Belding",
                        "suffix": ""
                    },
                    {
                        "first": "William",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "4757--4766",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1482"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jing Qian, Anna Bethke, Yinyin Liu, Elizabeth Beld- ing, and William Wang. 2019. A benchmark dataset for learning to intervene in online hate speech. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Lan- guage Processing (EMNLP-IJCNLP), pages 4757- 4766. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF45": {
                "ref_id": "b45",
                "title": "A quality typeaware annotated corpus and lexicon for harassment research",
                "authors": [
                    {
                        "first": "Saeedeh",
                        "middle": [],
                        "last": "Mohammadreza Rezvan",
                        "suffix": ""
                    },
                    {
                        "first": "Lakshika",
                        "middle": [],
                        "last": "Shekarpour",
                        "suffix": ""
                    },
                    {
                        "first": "Krishnaprasad",
                        "middle": [],
                        "last": "Balasuriya",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Thirunarayan",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Valerie",
                        "suffix": ""
                    },
                    {
                        "first": "Amit",
                        "middle": [],
                        "last": "Shalin",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Sheth",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 10th ACM Conference on Web Science",
                "volume": "",
                "issue": "",
                "pages": "33--36",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mohammadreza Rezvan, Saeedeh Shekarpour, Lak- shika Balasuriya, Krishnaprasad Thirunarayan, Va- lerie L Shalin, and Amit Sheth. 2018. A quality type- aware annotated corpus and lexicon for harassment research. In Proceedings of the 10th ACM Confer- ence on Web Science, pages 33-36.",
                "links": null
            },
            "BIBREF46": {
                "ref_id": "b46",
                "title": "Prevalence and psychological effects of hateful speech in online college communities",
                "authors": [
                    {
                        "first": "Koustuv",
                        "middle": [],
                        "last": "Saha",
                        "suffix": ""
                    },
                    {
                        "first": "Eshwar",
                        "middle": [],
                        "last": "Chandrasekharan",
                        "suffix": ""
                    },
                    {
                        "first": "Munmun De",
                        "middle": [],
                        "last": "Choudhury",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 10th ACM Conference on Web Science",
                "volume": "",
                "issue": "",
                "pages": "255--264",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Koustuv Saha, Eshwar Chandrasekharan, and Munmun De Choudhury. 2019. Prevalence and psychological effects of hateful speech in online college communi- ties. In Proceedings of the 10th ACM Conference on Web Science, pages 255-264.",
                "links": null
            },
            "BIBREF47": {
                "ref_id": "b47",
                "title": "A web of hate: Tackling hateful speech in online social spaces",
                "authors": [
                    {
                        "first": "Mohammad",
                        "middle": [],
                        "last": "Haji",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Saleem",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Kelly",
                        "suffix": ""
                    },
                    {
                        "first": "Susan",
                        "middle": [],
                        "last": "Dillon",
                        "suffix": ""
                    },
                    {
                        "first": "Derek",
                        "middle": [],
                        "last": "Benesch",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ruths",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Haji Mohammad Saleem, Kelly P Dillon, Susan Be- nesch, and Derek Ruths. 2016. A web of hate: Tack- ling hateful speech in online social spaces.",
                "links": null
            },
            "BIBREF48": {
                "ref_id": "b48",
                "title": "An italian twitter corpus of hate speech against immigrants",
                "authors": [
                    {
                        "first": "Manuela",
                        "middle": [],
                        "last": "Sanguinetti",
                        "suffix": ""
                    },
                    {
                        "first": "Fabio",
                        "middle": [],
                        "last": "Poletto",
                        "suffix": ""
                    },
                    {
                        "first": "Cristina",
                        "middle": [],
                        "last": "Bosco",
                        "suffix": ""
                    },
                    {
                        "first": "Viviana",
                        "middle": [],
                        "last": "Patti",
                        "suffix": ""
                    },
                    {
                        "first": "Marco",
                        "middle": [],
                        "last": "Stranisci",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the Eleventh International Conference on Language Resources and Evaluation",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Manuela Sanguinetti, Fabio Poletto, Cristina Bosco, Vi- viana Patti, and Marco Stranisci. 2018. An italian twitter corpus of hate speech against immigrants. In Proceedings of the Eleventh International Confer- ence on Language Resources and Evaluation (LREC 2018).",
                "links": null
            },
            "BIBREF49": {
                "ref_id": "b49",
                "title": "The risk of racial bias in hate speech detection",
                "authors": [
                    {
                        "first": "Maarten",
                        "middle": [],
                        "last": "Sap",
                        "suffix": ""
                    },
                    {
                        "first": "Dallas",
                        "middle": [],
                        "last": "Card",
                        "suffix": ""
                    },
                    {
                        "first": "Saadia",
                        "middle": [],
                        "last": "Gabriel",
                        "suffix": ""
                    },
                    {
                        "first": "Yejin",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    },
                    {
                        "first": "Noah A",
                        "middle": [],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "1668--1678",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Maarten Sap, Dallas Card, Saadia Gabriel, Yejin Choi, and Noah A Smith. 2019. The risk of racial bias in hate speech detection. In Proceedings of the 57th Annual Meeting of the Association for Compu- tational Linguistics, pages 1668-1678.",
                "links": null
            },
            "BIBREF50": {
                "ref_id": "b50",
                "title": "Hate speech exacerbating societal, racial tensions with 'deadly consequences around the world', say un experts",
                "authors": [
                    {
                        "first": "Yaye",
                        "middle": [],
                        "last": "Nabo S\u00e8ne",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yaye Nabo S\u00e8ne. 2019. Hate speech exacerbating societal, racial tensions with 'deadly consequences around the world', say un experts. UN News.",
                "links": null
            },
            "BIBREF51": {
                "ref_id": "b51",
                "title": "Analyzing the targets of hate in online social media",
                "authors": [
                    {
                        "first": "Leandro",
                        "middle": [],
                        "last": "Silva",
                        "suffix": ""
                    },
                    {
                        "first": "Mainack",
                        "middle": [],
                        "last": "Mondal",
                        "suffix": ""
                    },
                    {
                        "first": "Denzil",
                        "middle": [],
                        "last": "Correa",
                        "suffix": ""
                    },
                    {
                        "first": "Fabr\u00edcio",
                        "middle": [],
                        "last": "Benevenuto",
                        "suffix": ""
                    },
                    {
                        "first": "Ingmar",
                        "middle": [],
                        "last": "Weber",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Tenth International AAAI Conference on Web and Social Media",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Leandro Silva, Mainack Mondal, Denzil Correa, Fabr\u00edcio Benevenuto, and Ingmar Weber. 2016. An- alyzing the targets of hate in online social media. In Tenth International AAAI Conference on Web and Social Media.",
                "links": null
            },
            "BIBREF52": {
                "ref_id": "b52",
                "title": "Exposure to hate speech increases prejudice through desensitization",
                "authors": [
                    {
                        "first": "Wiktor",
                        "middle": [],
                        "last": "Soral",
                        "suffix": ""
                    },
                    {
                        "first": "Micha\u0142",
                        "middle": [],
                        "last": "Bilewicz",
                        "suffix": ""
                    },
                    {
                        "first": "Miko\u0142aj",
                        "middle": [],
                        "last": "Winiewski",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Aggressive behavior",
                "volume": "44",
                "issue": "2",
                "pages": "136--146",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wiktor Soral, Micha\u0142 Bilewicz, and Miko\u0142aj Winiewski. 2018. Exposure to hate speech increases preju- dice through desensitization. Aggressive behavior, 44(2):136-146.",
                "links": null
            },
            "BIBREF53": {
                "ref_id": "b53",
                "title": "Creating a whatsapp dataset to study pre-teen cyberbullying",
                "authors": [
                    {
                        "first": "Rachele",
                        "middle": [],
                        "last": "Sprugnoli",
                        "suffix": ""
                    },
                    {
                        "first": "Stefano",
                        "middle": [],
                        "last": "Menini",
                        "suffix": ""
                    },
                    {
                        "first": "Sara",
                        "middle": [],
                        "last": "Tonelli",
                        "suffix": ""
                    },
                    {
                        "first": "Filippo",
                        "middle": [],
                        "last": "Oncini",
                        "suffix": ""
                    },
                    {
                        "first": "Enrico",
                        "middle": [],
                        "last": "Piras",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2nd Workshop on Abusive Language Online (ALW2)",
                "volume": "",
                "issue": "",
                "pages": "51--59",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rachele Sprugnoli, Stefano Menini, Sara Tonelli, Fil- ippo Oncini, and Enrico Piras. 2018. Creating a whatsapp dataset to study pre-teen cyberbullying. In Proceedings of the 2nd Workshop on Abusive Lan- guage Online (ALW2), pages 51-59.",
                "links": null
            },
            "BIBREF54": {
                "ref_id": "b54",
                "title": "Attributive adjectives and the nominals they modify",
                "authors": [
                    {
                        "first": "Robert",
                        "middle": [],
                        "last": "Truswell",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Robert Truswell. 2004. Attributive adjectives and the nominals they modify. Ph.D. thesis, Citeseer.",
                "links": null
            },
            "BIBREF55": {
                "ref_id": "b55",
                "title": "Online racial discrimination and psychological adjustment among adolescents",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Brendesha",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Tynes",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Michael",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [
                            "R"
                        ],
                        "last": "Giang",
                        "suffix": ""
                    },
                    {
                        "first": "Geneene N",
                        "middle": [],
                        "last": "Williams",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Thompson",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Journal of adolescent health",
                "volume": "43",
                "issue": "6",
                "pages": "565--569",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Brendesha M Tynes, Michael T Giang, David R Williams, and Geneene N Thompson. 2008. Online racial discrimination and psychological adjustment among adolescents. Journal of adolescent health, 43(6):565-569.",
                "links": null
            },
            "BIBREF56": {
                "ref_id": "b56",
                "title": "Twitter taught microsoft's ai chatbot to be a racist asshole in less than a day. The Verge",
                "authors": [
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Vincent",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "James Vincent. 2016. Twitter taught microsoft's ai chatbot to be a racist asshole in less than a day. The Verge, 24.",
                "links": null
            },
            "BIBREF57": {
                "ref_id": "b57",
                "title": "Are you a racist or am i seeing things? annotator influence on hate speech detection on twitter",
                "authors": [
                    {
                        "first": "Zeerak",
                        "middle": [],
                        "last": "Waseem",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the first workshop on NLP and computational social science",
                "volume": "",
                "issue": "",
                "pages": "138--142",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zeerak Waseem. 2016. Are you a racist or am i seeing things? annotator influence on hate speech detection on twitter. In Proceedings of the first workshop on NLP and computational social science, pages 138- 142.",
                "links": null
            },
            "BIBREF58": {
                "ref_id": "b58",
                "title": "Hateful symbols or hateful people? predictive features for hate speech detection on twitter",
                "authors": [
                    {
                        "first": "Zeerak",
                        "middle": [],
                        "last": "Waseem",
                        "suffix": ""
                    },
                    {
                        "first": "Dirk",
                        "middle": [],
                        "last": "Hovy",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the NAACL student research workshop",
                "volume": "",
                "issue": "",
                "pages": "88--93",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zeerak Waseem and Dirk Hovy. 2016. Hateful sym- bols or hateful people? predictive features for hate speech detection on twitter. In Proceedings of the NAACL student research workshop, pages 88-93.",
                "links": null
            },
            "BIBREF59": {
                "ref_id": "b59",
                "title": "Detection of abusive language: the problem of biased datasets",
                "authors": [
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Wiegand",
                        "suffix": ""
                    },
                    {
                        "first": "Josef",
                        "middle": [],
                        "last": "Ruppenhofer",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Kleinbauer",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "602--608",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Michael Wiegand, Josef Ruppenhofer, and Thomas Kleinbauer. 2019. Detection of abusive language: the problem of biased datasets. In Proceedings of the 2019 Conference of the North American Chap- ter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 602-608.",
                "links": null
            },
            "BIBREF60": {
                "ref_id": "b60",
                "title": "The pragmatics of verbal irony: Echo or pretence?",
                "authors": [
                    {
                        "first": "Deirdre",
                        "middle": [],
                        "last": "Wilson",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Lingua",
                "volume": "116",
                "issue": "10",
                "pages": "1722--1743",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Deirdre Wilson. 2006. The pragmatics of verbal irony: Echo or pretence? Lingua, 116(10):1722-1743.",
                "links": null
            },
            "BIBREF61": {
                "ref_id": "b61",
                "title": "Ex machina: Personal attacks seen at scale",
                "authors": [
                    {
                        "first": "Ellery",
                        "middle": [],
                        "last": "Wulczyn",
                        "suffix": ""
                    },
                    {
                        "first": "Nithum",
                        "middle": [],
                        "last": "Thain",
                        "suffix": ""
                    },
                    {
                        "first": "Lucas",
                        "middle": [],
                        "last": "Dixon",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 26th International Conference on World Wide Web",
                "volume": "",
                "issue": "",
                "pages": "1391--1399",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ellery Wulczyn, Nithum Thain, and Lucas Dixon. 2017. Ex machina: Personal attacks seen at scale. In Pro- ceedings of the 26th International Conference on World Wide Web, pages 1391-1399.",
                "links": null
            },
            "BIBREF62": {
                "ref_id": "b62",
                "title": "Demoting racial bias in hate speech detection",
                "authors": [
                    {
                        "first": "Mengzhou",
                        "middle": [],
                        "last": "Xia",
                        "suffix": ""
                    },
                    {
                        "first": "Anjalie",
                        "middle": [],
                        "last": "Field",
                        "suffix": ""
                    },
                    {
                        "first": "Yulia",
                        "middle": [],
                        "last": "Tsvetkov",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the Eighth International Workshop on Natural Language Processing for Social Media",
                "volume": "",
                "issue": "",
                "pages": "7--14",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mengzhou Xia, Anjalie Field, and Yulia Tsvetkov. 2020. Demoting racial bias in hate speech detection. In Proceedings of the Eighth International Work- shop on Natural Language Processing for Social Me- dia, pages 7-14, Online. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF63": {
                "ref_id": "b63",
                "title": "Predicting the type and target of offensive posts in social media",
                "authors": [
                    {
                        "first": "Marcos",
                        "middle": [],
                        "last": "Zampieri",
                        "suffix": ""
                    },
                    {
                        "first": "Shervin",
                        "middle": [],
                        "last": "Malmasi",
                        "suffix": ""
                    },
                    {
                        "first": "Preslav",
                        "middle": [],
                        "last": "Nakov",
                        "suffix": ""
                    },
                    {
                        "first": "Sara",
                        "middle": [],
                        "last": "Rosenthal",
                        "suffix": ""
                    },
                    {
                        "first": "Noura",
                        "middle": [],
                        "last": "Farra",
                        "suffix": ""
                    },
                    {
                        "first": "Ritesh",
                        "middle": [],
                        "last": "Kumar",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "1415--1420",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1144"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Marcos Zampieri, Shervin Malmasi, Preslav Nakov, Sara Rosenthal, Noura Farra, and Ritesh Kumar. 2019. Predicting the type and target of offensive posts in social media. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 1415-1420, Minneapolis, Minnesota. Association for Computational Linguistics.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "num": null,
                "type_str": "figure",
                "uris": null,
                "text": "The diverse demographic details of our annotator cohort, aggregated on ethnicity, gender and sexuality."
            },
            "FIGREF1": {
                "num": null,
                "type_str": "figure",
                "uris": null,
                "text": "The label distribution across slurs."
            },
            "FIGREF2": {
                "num": null,
                "type_str": "figure",
                "uris": null,
                "text": "The normalized label distribution across the 50 most common subreddits in our corpus, sorted by their portion of derogatory comments."
            },
            "FIGREF3": {
                "num": null,
                "type_str": "figure",
                "uris": null,
                "text": "Benchmarking the Perspective API. Scores indicate a comment's degree of toxicity."
            },
            "TABREF0": {
                "num": null,
                "type_str": "table",
                "content": "<table><tr><td>Authors</td><td>Size</td><td>Platform</td><td>Annotation</td><td/><td>Agreement</td></tr><tr><td colspan=\"2\">KEYWORD BASED DATA COLLECTION</td><td/><td/><td/><td/></tr><tr><td>Qian et al. (2019)</td><td>34k</td><td>Gab</td><td colspan=\"2\">Hate Speech (Binary)</td><td>Unknown</td></tr><tr><td>Qian et al. (2019)</td><td>22k</td><td>Reddit</td><td colspan=\"2\">Hate Speech (Binary)</td><td>Unknown</td></tr><tr><td>Waseem and Hovy (2016)</td><td>16k</td><td>Twitter</td><td>Racism, Sexism</td><td/><td>\uf8ff = 0.84</td></tr><tr><td>Waseem (2016)</td><td>7k</td><td>Twitter</td><td>Racism, Sexism</td><td/><td>\uf8ff = 0.34 (Majority Vote)</td></tr><tr><td/><td/><td/><td/><td/><td>\uf8ff = 0.70 (Full Agreement)</td></tr><tr><td>Golbeck et al. (2017)</td><td>35k</td><td>Twitter</td><td colspan=\"2\">Hate Speech, Threats,</td><td>\uf8ff = 0.84</td></tr><tr><td/><td/><td/><td colspan=\"2\">Harassment, Offense</td><td/></tr><tr><td>Chatzakou et al. (2017)</td><td>9k</td><td>Twitter</td><td>Aggressors,</td><td>Bullies,</td><td>Inter-rater agreement = 0.54</td></tr><tr><td/><td/><td/><td>Spammers</td><td/><td/></tr><tr><td>Davidson et al. (2019)</td><td>25k</td><td>Twitter</td><td colspan=\"2\">Hate Speech, Offense</td><td>Inter-rater agreement = 0.92</td></tr><tr><td>Rezvan et al. (2018)</td><td>25k</td><td>Twitter</td><td>Harassment</td><td/><td>\uf8ff = 0.70; 0.84; 1.0; 0.80; 0.69</td></tr><tr><td/><td/><td/><td/><td/><td>for respective categories</td></tr><tr><td>Founta et al. (2018)</td><td>80k</td><td>Twitter</td><td colspan=\"2\">Hate Speech, Spam,</td><td>Unknown</td></tr><tr><td/><td/><td/><td>Abuse</td><td/><td/></tr><tr><td>ElSherief et al. (2018)</td><td>2k</td><td>Twitter</td><td>Hate Speech</td><td/><td>\u21b5 = 0.622</td></tr><tr><td>Jha and Mamidi (2017)</td><td>1k</td><td>Twitter</td><td>Sexism</td><td/><td>F \uf8ff = 0.74</td></tr><tr><td>Silva et al. (2016)</td><td colspan=\"2\">539.5m Twitter</td><td>Hate Speech</td><td/><td>Not applicable</td></tr><tr><td/><td/><td>Whisper</td><td/><td/><td/></tr><tr><td>Fersini et al. (2018)</td><td>3k</td><td>Twitter</td><td>Sexism</td><td/><td>Unknown</td></tr><tr><td>Basile et al. (2019)</td><td>19.6k</td><td>Twitter</td><td colspan=\"2\">Hate Speech, Target,</td><td>F8 confidence = 0.83</td></tr><tr><td/><td/><td/><td>Aggressiveness</td><td/><td>0.70, 0.73</td></tr><tr><td>Zampieri et al. (2019)</td><td>14.1k</td><td>Twitter</td><td>Offense, Target</td><td/><td>F \uf8ff = 0.83*</td></tr><tr><td/><td/><td/><td/><td/><td>*on 21 tweets</td></tr><tr><td>MANUAL SELECTION</td><td/><td/><td/><td/><td/></tr><tr><td>Gao and Huang (2017)</td><td>1.5k</td><td>Fox News</td><td>Hate Speech</td><td/><td>\uf8ff = 0.98</td></tr><tr><td>Hammer et al. (2019)</td><td>30k</td><td>Youtube</td><td>Threats</td><td/><td>Unknown</td></tr><tr><td>PROPRIETARY DATA</td><td/><td/><td/><td/><td/></tr><tr><td>Sprugnoli et al. (2018)</td><td>15k</td><td>WhatsApp</td><td>Cyberbullying</td><td/><td>SDC = 0.80 -0.88</td></tr><tr><td>Nobata et al. (2016)</td><td>1.2m</td><td>Yahoo</td><td>Hate Speech</td><td/><td>F \uf8ff = 0.40; 0.21 for AMT</td></tr><tr><td/><td/><td/><td/><td/><td>F \uf8ff = 0.84; 0.46 for Trained</td></tr><tr><td/><td/><td/><td/><td/><td>(Binary; Fine-grained)</td></tr><tr><td>RANDOM DATA SELECTION</td><td/><td/><td/><td/><td/></tr><tr><td colspan=\"2\">de Gibert Bonet et al. (2018) 10k</td><td>Stormfront</td><td colspan=\"2\">Hate Speech (Binary)</td><td>\uf8ff = 0.61; F \uf8ff = 0.61 (Batch1)</td></tr><tr><td/><td/><td/><td/><td/><td>\uf8ff = 0.63; F \uf8ff = 0.63 (Batch2)</td></tr><tr><td>Napoles et al. (2017)</td><td>10k</td><td>Yahoo</td><td colspan=\"2\">Positive Conversations</td><td>\u21b5 = 0.79 (Group)</td></tr><tr><td/><td/><td/><td/><td/><td>\u21b5 = 0.71 (Trained)</td></tr><tr><td>OTHER METHODS</td><td/><td/><td/><td/><td/></tr><tr><td>Wulczyn et al. (2017)</td><td>100k</td><td>Wikipedia</td><td colspan=\"2\">Harassment, Attacks</td><td>\u21b5 = 0.45</td></tr><tr><td>Kennedy et al. (2017)</td><td>20k</td><td>Twitter, Reddit,</td><td colspan=\"2\">Harassment (Binary)</td><td>Inter-rater agreement = 0.88</td></tr><tr><td/><td/><td>The Guardian,</td><td/><td/><td/></tr></table>",
                "html": null,
                "text": "points out sexual,"
            },
            "TABREF1": {
                "num": null,
                "type_str": "table",
                "content": "<table/>",
                "html": null,
                "text": "Hammer et al. (2019) is a corpus for detection of violent threats on YouTube. Holgate et al. (2018), Cachola et al. (2018), and Pamungkas et al. (2020) examine vulgarity and swearing. A number of corpora on mixed behaviours have also been produced. Golbeck et al. (2017) is a study on harassment and offense on Twitter. Chatzakou et al. (2017) labels Twitter users, not comments, as aggressors, bullies, or spammers. Founta et al. (2018) considers spam in conjunction with abuse, bullying, and aggression on Twitter."
            },
            "TABREF3": {
                "num": null,
                "type_str": "table",
                "content": "<table/>",
                "html": null,
                "text": "This table presents the major supportive, antagonistic, and general discussion subreddits that were used in data collection. Their range of views towards the targets of each slur facilitates equitable representation."
            },
            "TABREF5": {
                "num": null,
                "type_str": "table",
                "content": "<table/>",
                "html": null,
                "text": ""
            }
        }
    }
}