File size: 141,854 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T02:11:11.353722Z"
    },
    "title": "Addressing Zero-Resource Domains Using Document-Level Context in Neural Machine Translation",
    "authors": [
        {
            "first": "Dario",
            "middle": [],
            "last": "Stojanovski",
            "suffix": "",
            "affiliation": {},
            "email": "stojanovski@cis.lmu.de"
        },
        {
            "first": "Alexander",
            "middle": [],
            "last": "Fraser",
            "suffix": "",
            "affiliation": {},
            "email": "fraser@cis.lmu.de"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Achieving satisfying performance in machine translation on domains for which there is no training data is challenging. Traditional supervised domain adaptation is not suitable for addressing such zero-resource domains because it relies on in-domain parallel data. We show that when in-domain parallel data is not available, access to document-level context enables better capturing of domain generalities compared to only having access to a single sentence. Having access to more information provides a more reliable domain estimation. We present two document-level Transformer models which are capable of using large context sizes and we compare these models against strong Transformer baselines. We obtain improvements for the two zero-resource domains we study. We additionally provide an analysis where we vary the amount of context and look at the case where in-domain data is available.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Achieving satisfying performance in machine translation on domains for which there is no training data is challenging. Traditional supervised domain adaptation is not suitable for addressing such zero-resource domains because it relies on in-domain parallel data. We show that when in-domain parallel data is not available, access to document-level context enables better capturing of domain generalities compared to only having access to a single sentence. Having access to more information provides a more reliable domain estimation. We present two document-level Transformer models which are capable of using large context sizes and we compare these models against strong Transformer baselines. We obtain improvements for the two zero-resource domains we study. We additionally provide an analysis where we vary the amount of context and look at the case where in-domain data is available.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Training robust neural machine translation models for a wide variety of domains is an active field of work. NMT requires large bilingual resources which are not available for many domains and languages. When there is no data available for a given domain, e.g., in the case of web-based MT tools, this is a significant challenge. Despite the fact that these tools are usually trained on large scale datasets, they are often used to translate documents from a domain which was not seen during training. We call this scenario zero-resource domain adaptation and present an approach using document-level context to address it.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "When an NMT model receives a test sentence from a zero-resource domain, it can be matched to similar domains in the training data. This is to some extent done implicitly by standard NMT. Alternatively, this matching can be facilitated by a domain adaptation technique such as using special domain tokens and features (Kobus et al., 2017; Tars and Fishel, 2018) . However, it is not always easy to determine the domain of a sentence without larger context. Access to document-level context makes it more probable that domain signals can be observed, i.e., words representative of a domain are more likely to be encountered. We hypothesize that this facilitates better matching of unseen domains to domains seen during training and provide experimental evidence supporting this hypothesis.",
                "cite_spans": [
                    {
                        "start": 317,
                        "end": 337,
                        "text": "(Kobus et al., 2017;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 338,
                        "end": 360,
                        "text": "Tars and Fishel, 2018)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Recent work has shown that contextual information improves MT (Miculicich et al., 2018; Voita et al., 2019b; Maruf et al., 2019) , often by improving anaphoric pronoun translation quality, which can be addressed well with limited context. However, in order to address discourse phenomena such as coherence and cohesion, access to larger context is preferable. Voita et al. (2019b,a) were the first to show large improvements on lexical cohesion in a controlled setting using challenge sets. However, previous work did not make clear whether previous models can help with disambiguation of polysemous words where the sense is domain-dependent.",
                "cite_spans": [
                    {
                        "start": 62,
                        "end": 87,
                        "text": "(Miculicich et al., 2018;",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 88,
                        "end": 108,
                        "text": "Voita et al., 2019b;",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 109,
                        "end": 128,
                        "text": "Maruf et al., 2019)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 360,
                        "end": 382,
                        "text": "Voita et al. (2019b,a)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this work, we study the usefulness of document-level context for zero-resource domain adaptation (which we think has not been studied in this way before). We propose two novel Transformer models which can efficiently handle large context and test their ability to model multiple domains at once. We show that document-level models trained on multi-domain datasets provide improvements on zero-resource domains. We evaluate on English\u2192German translation using TED and PatTR (patent descriptions) as zero-resource domains. In addition to measuring translation quality, we conduct a manual evaluation targeted at word disambiguation. We also present additional experiments on classical domain adaptation where access to in-domain TED and PatTR data is allowed. Our first proposed model, which we call the domain embedding model (DomEmb) applies average or max pooling over all context embeddings and adds this representation to each source tokenlevel embedding in the Transformer. The second model is conceptually similar to previous work on context-aware NMT Stojanovski and Fraser, 2018; Miculicich et al., 2018; and introduces additional multi-head attention components in the encoder and decoder in order to handle the context. However, in order to facilitate larger context sizes, it creates a compressed context representation by applying average or max pooling with a fixed window and stride size. We compare our proposed models against previous context-aware NMT architectures and techniques for handling multi-domain setups, and show they improve upon strong baselines. The proposed models encode context in a coarse-grained way. They only have a limited ability to model discourse phenomena such as coreference resolution, so the gains we see in a multi-domain setup show that they encode domain information. Evaluating on multiple and zero-resource domains allows us to show that context can be used to capture domain information.",
                "cite_spans": [
                    {
                        "start": 1060,
                        "end": 1089,
                        "text": "Stojanovski and Fraser, 2018;",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 1090,
                        "end": 1114,
                        "text": "Miculicich et al., 2018;",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The contributions of our work can be summarized as follows: we (i) propose two NMT models which are able to handle large context sizes, (ii) show that document-level context in a multidomain experimental setup is beneficial for handling zero-resource domains, (iii) show the effect of different context sizes and (iv) study traditional domain adaptation with access to in-domain data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Domain adaptation Several previous works address the problem that standard NMT may fail to adequately model all domains in a multi-domain setup even when all of the domains are known in advance. Kobus et al. (2017) introduce using domain tags for this problem, a similar method to the domain embedding model in our paper. These domain tags are mapped to corresponding embeddings and are either inserted at the beginning of the sentence or concatenated to the token-level embeddings. The domain embeddings are reserved for specific domains and are fixed for all sentences in a given domain. The number of distinct domain embeddings is limited to the number of known domains. Tars and Fishel (2018) define a similar approach which uses oracle domain tags and tags obtained using supervised methods and unsupervised clustering. However, clustering limits how many domains can be taken into consideration. Furthermore, this approach assumes that sufficient domain information can be obtained from a single sentence alone. Document-level classifiers (Xu et al., 2007) address this problem, but they are not jointly trained with the MT model. Further work in multi-domain MT is Foster and Kuhn (2007) who propose mixture models to dynamically adapt to the target domain, Foster et al. (2010) who build on this work and include instance weighting, Zeng et al. (2018) where domain-specific and domain-shared annotations from adversarial domain classifiers are used and Britz et al. (2017) where a discriminator is used to backpropagate domain signals.",
                "cite_spans": [
                    {
                        "start": 195,
                        "end": 214,
                        "text": "Kobus et al. (2017)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 674,
                        "end": 696,
                        "text": "Tars and Fishel (2018)",
                        "ref_id": null
                    },
                    {
                        "start": 1045,
                        "end": 1062,
                        "text": "(Xu et al., 2007)",
                        "ref_id": "BIBREF36"
                    },
                    {
                        "start": 1172,
                        "end": 1194,
                        "text": "Foster and Kuhn (2007)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 1265,
                        "end": 1285,
                        "text": "Foster et al. (2010)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 1341,
                        "end": 1359,
                        "text": "Zeng et al. (2018)",
                        "ref_id": "BIBREF38"
                    },
                    {
                        "start": 1461,
                        "end": 1480,
                        "text": "Britz et al. (2017)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Continued training is an established technique for domain adaptation if access to in-domain resources is possible. The method entails initially training on out-of-domain data, and then continuing training on in-domain data (Luong and Manning, 2015) . Chen et al. (2017) and Zhang and Xiong (2018) improve upon this paradigm by integrating a domain classifier or a domain similarity metric into NMT and modifying the training cost based on weights indicating in-domain or out-ofdomain data. Sajjad et al. (2017) and Farajian et al. (2017) use continued training in a multi-domain setup and propose various ways of fine-tuning to in-domain data. Standard continued training (Luong and Manning, 2015) leads to catastrophic forgetting, evident by the degrading performance on the out-of-domain dataset. Freitag and Al-Onaizan (2016) address this issue by ensembling the original and the fine-tuned model. We show that our model obtains significant improvements compared to a baseline with the ensembling paradigm. In contrast to these previous works, we do not know the domains during training. Our proposed approaches model the domain implicitly by looking at document-level context. Moreover, we evaluate performance on domains not seen during training. Naradowsky et al. (2020) adapt to unseen domains using bandit learning techniques. The method relies on explicit user feedback which is not always easily available. Bapna and Firat (2019) propose a retrieval-based method that, at inference time, adapts to domains not seen during training. However, they assume access to in-domain parallel data at inference time, and they retrieve parallel phrases from this in-domain data. In our zero-resource experiments, we have no access to in-domain parallel data.",
                "cite_spans": [
                    {
                        "start": 223,
                        "end": 248,
                        "text": "(Luong and Manning, 2015)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 251,
                        "end": 269,
                        "text": "Chen et al. (2017)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 274,
                        "end": 296,
                        "text": "Zhang and Xiong (2018)",
                        "ref_id": "BIBREF40"
                    },
                    {
                        "start": 490,
                        "end": 510,
                        "text": "Sajjad et al. (2017)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 515,
                        "end": 537,
                        "text": "Farajian et al. (2017)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 799,
                        "end": 828,
                        "text": "Freitag and Al-Onaizan (2016)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 1252,
                        "end": 1276,
                        "text": "Naradowsky et al. (2020)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 1417,
                        "end": 1439,
                        "text": "Bapna and Firat (2019)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Context-aware NMT A separate field of inquiry is context-aware NMT which proposes integrating cross-sentence context (Tiedemann and Scherrer, 2017; Bawden et al., 2018; Stojanovski and Fraser, 2018; Miculicich et al., 2018; Tu et al., 2018; Maruf and Haffari, 2018; Voita et al., 2019b; Maruf et al., 2019; Yang et al., 2019; Voita et al., 2019a; Tan et al., 2019) . These works show that context helps with discourse phenomena such as anaphoric pronouns, deixis and lexical cohesion. Kim et al. (2019) show that using context can improve topicaware lexical choice, but in a single-domain setup.",
                "cite_spans": [
                    {
                        "start": 117,
                        "end": 147,
                        "text": "(Tiedemann and Scherrer, 2017;",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 148,
                        "end": 168,
                        "text": "Bawden et al., 2018;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 169,
                        "end": 198,
                        "text": "Stojanovski and Fraser, 2018;",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 199,
                        "end": 223,
                        "text": "Miculicich et al., 2018;",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 224,
                        "end": 240,
                        "text": "Tu et al., 2018;",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 241,
                        "end": 265,
                        "text": "Maruf and Haffari, 2018;",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 266,
                        "end": 286,
                        "text": "Voita et al., 2019b;",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 287,
                        "end": 306,
                        "text": "Maruf et al., 2019;",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 307,
                        "end": 325,
                        "text": "Yang et al., 2019;",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 326,
                        "end": 346,
                        "text": "Voita et al., 2019a;",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 347,
                        "end": 364,
                        "text": "Tan et al., 2019)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 485,
                        "end": 502,
                        "text": "Kim et al. (2019)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Previous work on context-aware NMT has mostly worked with limited context. Miculicich et al. (2018) address the problem by reusing previously computed encoder representations, but report no BLEU improvements by using context larger than 3 sentences. find 2 sentences of context to work the best. Maruf and Haffari (2018) use a fixed pretrained RNN encoder for context sentences and only train the documentlevel RNN. Junczys-Dowmunt (2019) concatenates sentences into very large inputs and outputs as in Tiedemann and Scherrer (2017) . Maruf et al. (2019) propose a scalable context-aware model by using sparsemax which can ignore certain words and hierarchical attention which first computes sentence-level attention scores and subsequently word-level scores. However, for domain adaptation, the full encoder representation is too granular and not the most efficient way to obtain domain signals, for which we present evidence in our experiments. Stojanovski and Fraser (2019a) ; Mac\u00e9 and Servan (2019) propose a similar approach to our domain embedding model, but they do not investigate it from a domain adaptation perspective.",
                "cite_spans": [
                    {
                        "start": 75,
                        "end": 99,
                        "text": "Miculicich et al. (2018)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 503,
                        "end": 532,
                        "text": "Tiedemann and Scherrer (2017)",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 535,
                        "end": 554,
                        "text": "Maruf et al. (2019)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 947,
                        "end": 977,
                        "text": "Stojanovski and Fraser (2019a)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 980,
                        "end": 1002,
                        "text": "Mac\u00e9 and Servan (2019)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "To our knowledge, our work is the first at the intersection of domain adaptation and context-aware NMT and shows that document-level context can be used to address zero-resource domains.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "The models we propose in this work are extensions of the Transformer (Vaswani et al., 2017) . The first approach introduces separate domain embeddings applied to each token-level embedding. The second is conceptually based on previous context-aware models Stojanovski and Fraser, 2018; Miculicich et al., 2018; . Both models are capable of handling documentlevel context. We modify the training data so that all sentences have access to the previous sentences within the corresponding source document. Access to the document-level context is available at test time as well. Sentences are separated with a special <SEP> token from the next sentence. We train and evaluate our models with a 10 sentence context.",
                "cite_spans": [
                    {
                        "start": 69,
                        "end": 91,
                        "text": "(Vaswani et al., 2017)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 256,
                        "end": 285,
                        "text": "Stojanovski and Fraser, 2018;",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 286,
                        "end": 310,
                        "text": "Miculicich et al., 2018;",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": "3"
            },
            {
                "text": "The first model is shown in Figure 1 . It is inspired by Kobus et al. (2017) which concatenates a special domain tag to each token-level embedding. Kobus et al. (2017) assume access to oracle domain tags during training. However, at inference, perfect domain knowledge is not possible. Consequently, the domain has to be predicted in advance which creates a mismatch between training and inference. An additional problem is inaccurately predicted do-main tags at test time. We modify this approach by replacing the predefined special domain tag with one inferred from the document context. A disadvantage of this approach as opposed to Kobus et al. (2017) is that there is no clear domain indicator. However, the model is trained jointly with the component inferring the domain which increases the capacity of the model to match a sentence from an unseen domain to a domain seen during training.",
                "cite_spans": [
                    {
                        "start": 57,
                        "end": 76,
                        "text": "Kobus et al. (2017)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 148,
                        "end": 167,
                        "text": "Kobus et al. (2017)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 636,
                        "end": 655,
                        "text": "Kobus et al. (2017)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 28,
                        "end": 36,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Domain Embedding Transformer",
                "sec_num": "3.1"
            },
            {
                "text": "The main challenge is producing the domain embedding from the context. We use maximum (DomEmb(max)) or average pooling (DomEmb(avg)) over all token-level context embeddings, both resulting in a single embedding representation. We do not apply self-attention over the context in this model. The intuition is that the embeddings will contain domain information in certain regions of the representation and that this can be extracted by max or average pooling. More domain-specific words will presumably increase the related domain signal. In contrast to a sentencelevel model, large context can help to more robustly estimate the domain. Based on preliminary experimental results, we add a feed-forward neural network after the pooled embedding representation in DomEmb(avg), but not in DomEmb(max). We represent each token as a sum of positional, tokenlevel embeddings and the inferred domain embedding. As the model only averages embeddings, the computational overhead is small. A computational efficiency analysis is provided in the appendix.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Domain Embedding Transformer",
                "sec_num": "3.1"
            },
            {
                "text": "The second approach (CtxPool) is similar to previous work on context-aware NMT (e.g., (Stojanovski and Fraser, 2018; ). The model is outlined in Figure 2 . It first creates a compact representation of the context by applying max or average pooling over the context with certain window and stride sizes. The intuition is similar to DomEmb, but pooling over a window provides a more granular representation. We use the concatenation of all context sentences (separated by <SEP>) as input to CtxPool.",
                "cite_spans": [
                    {
                        "start": 86,
                        "end": 116,
                        "text": "(Stojanovski and Fraser, 2018;",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 145,
                        "end": 153,
                        "text": "Figure 2",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Context-Aware Transformer with Pooling",
                "sec_num": "3.2"
            },
            {
                "text": "The output of applying max or average pooling over time is used as a context representation which is input to a Transformer encoder. We share the first L \u2212 1 encoder layers between the main sentence and the context. L is the number of encoder layers. In the decoder, we add an additional multi-head attention (MHA) over the context. This attention is conditioned on the MHA representation from the main sentence encoder. Subsequently, these two representations are merged using a gated sum. The gate controls information flow from the context.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Context-Aware Transformer with Pooling",
                "sec_num": "3.2"
            },
            {
                "text": "In contrast to DomEmb, CtxPool can be used to handle other discourse phenomena such as anaphora resolution. In this work, we use a window size of 10, suitable for domain adaptation. For anaphora, summarizing ten neighboring words makes it difficult to extract antecedent relationships. Careful tuning of these parameters in future work may allow modeling both local and global context.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Context-Aware Transformer with Pooling",
                "sec_num": "3.2"
            },
            {
                "text": "We train En\u2192De models on Europarl, NewsCommentary, OpenSubtitles, Rapid and Ubuntu. TED and PatTR are considered to be zero-resource domains for which we have no parallel data. In additional experiments, we also consider classical domain adaptation where we do use TED and PatTR parallel data in a continued training setup. The models are implemented in Sockeye (Hieber et al., 2017) . The code and the datasets are publicly available. 1 The preprocessing details and model hyperparameters are provided in the appendix.",
                "cite_spans": [
                    {
                        "start": 362,
                        "end": 383,
                        "text": "(Hieber et al., 2017)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 436,
                        "end": 437,
                        "text": "1",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments 4.1 Experimental Setup",
                "sec_num": "4"
            },
            {
                "text": "The datasets for some domains are very large. For example, OpenSubtitles contains 22M sentences and PatTR 12M. Due to limited computational resources, we randomly sample documents from these domains, ending up with approximately 10% of the initial dataset size. We keep the original size for the remaining datasets. Dataset sizes for all domains are presented in Table 1 . The development and test sets are also randomly sampled from the original datasets. We sample entire documents rather than specific sentences. For TED we use tst2012 as dev and tst2013 as test set. The TED and PatTR dev sets are only used in the fine-tuning experiments where we assume access to in-domain data and are not used in any other experiment.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 363,
                        "end": 370,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "4.2"
            },
            {
                "text": "Europarl from lack of document boundaries (M\u00fcller et al., 2018; Stojanovski and Fraser, 2019b) or random context . To a large extent, both issues can be ignored, given the nature of our models. DomEmb is oblivious to the sentence order. CtxPool preserves some notion of sequentiality, but it should also be robust to these issues. Furthermore, we focus on obtaining domain signals. Even in an extreme case where the context comes from a different document (but from the same domain) we hypothesize similar performance. We later conduct an ablation study into whether arbitrary context from the same domain has a negative effect on performance. The results partially support our hypothesis by either matching or exceeding sentence-level performance, but also show that the correct context is important to obtain the best results.",
                "cite_spans": [
                    {
                        "start": 42,
                        "end": 63,
                        "text": "(M\u00fcller et al., 2018;",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 64,
                        "end": 94,
                        "text": "Stojanovski and Fraser, 2019b)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "4.2"
            },
            {
                "text": "We compare our proposed methods against a sentence-level baseline (SentBase) and the domain tag (TagBase) approach (Kobus et al., 2017) . We train TagBase with oracle domain tags, while at test time, we use tags obtained from a document-level domain classifier. All sentences within a document are marked with the same predicted domain tag. The domain classifier is a two-layer feed-forward network and the documents are represented as a bag-of-words. The classifier obtains an accuracy of 98.6%. By design, documents from TED and PatTR were marked with tags from the remaining domains. Additionally, we compare with a contextaware model (CtxBase) which is similar to CtxPool, but we feed the full context to the context Transformer encoder, without applying max or average pooling beforehand. This model has token-level granular access to the context. We also train a concatenation model (ConcBase) (Tiedemann and Scherrer, 2017) using source-side context.",
                "cite_spans": [
                    {
                        "start": 115,
                        "end": 135,
                        "text": "(Kobus et al., 2017)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Baselines",
                "sec_num": "4.3"
            },
            {
                "text": "In zero-resource domain adaptation experiments, we do not use any data from TED or PatTR, neither as training nor development data. The models are trained on our multi-domain dataset consisting of five domains. The results are shown in Table  2 . We compute statistical significance with paired bootstrap resampling (Koehn, 2004) . SentBase achieves 16.7 and 32.9 BLEU on PatTR and TED respectively. The domains seen during training are more similar to TED in comparison to PatTR which is the reason for the large BLEU score differences. Our proposed models improve on PatTR by up to 0.4 BLEU and on TED by up to 1.0 BLEU. Improvements vary, but all models increase the BLEU score. The TagBase model does not improve significantly over SentBase. Our document-level models are robust across the two domains. These results confirm our assumption that access to document-level context provides for a domain signal. These models are oblivious to the actual characteristics of the domain since it was not seen in training, but presumably, they managed to match the zero-resource domain to a similar one. We assume that the reason for the larger improvements on TED in comparison to PatTR is that TED is a more similar domain to the domains seen in training. As a result, matching TED to seen domains was easier for all models. Table 2 shows that our proposed models improve on PatTR and TED and provides evidence that document-level context is useful for addressing zero-resource domains.",
                "cite_spans": [
                    {
                        "start": 316,
                        "end": 329,
                        "text": "(Koehn, 2004)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 236,
                        "end": 244,
                        "text": "Table  2",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 1322,
                        "end": 1329,
                        "text": "Table 2",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Zero-Resource Domain Adaptation",
                "sec_num": "5.1"
            },
            {
                "text": "We assume that the improvements on zero-resource domains are because of document-level models having an increased capability to model domain. As a result, we also evaluate on the other domains which were seen during training. We show average BLEU and the BLEU score on the concatenation of all test sets. This is a useful way to evaluate in a multi-domain setting because it is less sensitive to larger improvements on a smaller test set. Table 3 shows the results. We first compare the baseline against DomEmb(avg). The smallest improvement is on NewsCommentary, only 0.2 BLEU. Improvements vary between 0.8 and 1.2 BLEU on Europarl, OpenSubtitles and Rapid. On Ubuntu, this model improves only by 0.4 BLEU. Joint and average BLEU improve by 0.7 and 0.6, respectively. Replacing average pooling with maximum pooling leads to slightly worse results on all domains except Ubuntu, but still improves upon the baseline. Our assumption is that averaging handles situations when there is a mix of domain signals because it can emphasize the more frequent domain signals. Max pooling is not able to differentiate between less and more frequent domain signals.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 439,
                        "end": 446,
                        "text": "Table 3",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Evaluating Domains Seen During Training",
                "sec_num": "5.2"
            },
            {
                "text": "CtxPool(avg) and DomEmb(avg) perform similarly and have the same average and joint BLEU scores. Max pooling is slightly worse as shown by the performance of CtxPool(max). TagBase is not very effective in our experiments, improving slightly on some domains and only performing well on Ubuntu. We show that document-level context is useful for modeling multiple known domains at the same time. In the appendix we show translation examples from SentBase and DomEmb(avg).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluating Domains Seen During Training",
                "sec_num": "5.2"
            },
            {
                "text": "We also investigate the effect of context size on DomEmb(avg). Previous work on context-aware NMT Miculicich et al., 2018) typically showed that large context fails to provide for consistent gains. But this applies to more granular models which resemble the context-aware baseline CtxBase. In contrast, we observe that larger context does provide for improvements. We assume that for DomEmb, access to more context improves the likelihood of encountering domainspecific tokens. We compare different context sizes and show the results in Table 4 . A context size of 1 (ctx=1) obtains the lowest scores on all domains. Using ctx=5 is comparable or slightly worse than ctx=10. Both ctx=1 and ctx=5 get higher scores on Ubuntu and obtain significant improvements over SentBase on the full test set. Significance indicators for ctx=10 compared with respect to SentBase were already presented in Table 3 . Due to resource limitations, we do not conduct a similar study for CtxPool.",
                "cite_spans": [
                    {
                        "start": 98,
                        "end": 122,
                        "text": "Miculicich et al., 2018)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 537,
                        "end": 544,
                        "text": "Table 4",
                        "ref_id": "TABREF6"
                    },
                    {
                        "start": 890,
                        "end": 897,
                        "text": "Table 3",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Context Length",
                "sec_num": "5.3"
            },
            {
                "text": "Previous work on context-aware NMT has shown improvements in single-domain scenarios. In our work, we put two context-aware models to the test in a multi-domain setup. All models are trained with a 5 sentence context. The results in Table 5 show that all models improve to varying degrees. They perform similarly on NewsCommentary and OpenSubtitles. CtxBase and ConcBase obtain better results on Europarl than DomEmb(avg) and worse on Ubuntu. CtxBase is best on Rapid. Both baselines obtained better scores on TED, showing they have some capacity to transfer to unseen domains. However, both failed to improve on PatTR. We use 5 sentences of context for this experiment. Scaling the baseline models to large context is challenging with regards to computational efficiency and memory usage. In contrast, DomEmb scales easily to larger context. Furthermore, our analysis shows that DomEmb(avg) has the best average and joint score (CtxBase obtains the same joint score), improves on both unseen domains and consistently obtains significant improvements on all domains except NewsCommentary. As previous works show (M\u00fcller et al., 2018) , these contextaware baselines improve fine-grained discourse phenomena such as anaphora resolution. We show in our manual analysis that DomEmb(avg) does not improve anaphoric pronoun translation which indicates that the improvements of our proposed model and the context-aware baselines are orthogonal.",
                "cite_spans": [
                    {
                        "start": 1112,
                        "end": 1133,
                        "text": "(M\u00fcller et al., 2018)",
                        "ref_id": "BIBREF22"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 233,
                        "end": 240,
                        "text": "Table 5",
                        "ref_id": "TABREF8"
                    }
                ],
                "eq_spans": [],
                "section": "Comparison to Context-Aware Baselines",
                "sec_num": "5.4"
            },
            {
                "text": "We also evaluated the translation of domainspecific words. We extracted the most important words from a domain based on TF-IDF scores and selected the top 100 with the highest scores which have more than 3 characters. Next, we follow and compute alignments using fastalign (Dyer et al., 2013) based on the training set and force align the test set source sentences to the references and generated translations. We then compute the F 1 score of the translation of the domainspecific words. Results are shown in Table 6 . We compare SentBase with DomEmb(avg). informal subtitles. Lack of context seems to have biased SentBase to generate more formal translations. We later conduct a manual analysis on the TED test set where we confirm that word sense disambiguation is indeed improved in DomEmb(avg).",
                "cite_spans": [
                    {
                        "start": 273,
                        "end": 292,
                        "text": "(Dyer et al., 2013)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 510,
                        "end": 517,
                        "text": "Table 6",
                        "ref_id": "TABREF10"
                    }
                ],
                "eq_spans": [],
                "section": "Translation of Domain-Specific Words",
                "sec_num": "5.5"
            },
            {
                "text": "We also conduct a classical domain adaptation evaluation where access to in-domain data is allowed. We either use PatTR or TED as in-domain data and evaluate with SentBase and DomEmb(avg). In both cases we consider the concatenation of the remaining domains as out-of-domain. This setup differs from zero-resource domain adaptation because we assume access to in-domain training and dev data. First, we train the baseline and DomEmb(avg) on out-of-domain data. Since these initial models are identical to the ones in the zero-resource setup, we reuse them. We then continue training on the corresponding in-domain data. Table 7 shows the results for PatTR. Fine-tuning the baseline and DomEmb(avg) on PatTR improves BLEU by a large margin, both obtaining 34.4 BLEU. The results are unsurprising because our model is tailored to multi-domain setups and is unlikely to contribute to large improvements when fine-tuning on a single domain. Identifying the domain in such a case is trivial and using large context should not be helpful.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 620,
                        "end": 627,
                        "text": "Table 7",
                        "ref_id": "TABREF11"
                    }
                ],
                "eq_spans": [],
                "section": "Domain Adaptation with Available In-Domain Data",
                "sec_num": "5.6"
            },
            {
                "text": "The strengths of our approach come to light by comparing it against SentBase in an ensembling scenario as in Freitag and Al-Onaizan (2016) . We ensemble DomEmb(avg) trained on out-ofdomain data with DomEmb(avg) fine-tuned on indomain data and do the same for SentBase. The DomEmb(avg) ensemble is better than the Sent-Base ensemble on all domains and on joint BLEU. Similar results are obtained when fine-tuning on TED which are shown in Table 8 .",
                "cite_spans": [
                    {
                        "start": 109,
                        "end": 138,
                        "text": "Freitag and Al-Onaizan (2016)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 438,
                        "end": 445,
                        "text": "Table 8",
                        "ref_id": "TABREF12"
                    }
                ],
                "eq_spans": [],
                "section": "Domain Adaptation with Available In-Domain Data",
                "sec_num": "5.6"
            },
            {
                "text": "We previously hypothesized that our models will benefit from context from different documents within the same domain. We conduct an ablation study to test this assumption using DomEmb(avg) model, similar to the study in (Kobus et al., 2017) , where they investigated the effect of giving the wrong domain tag to every sentence.",
                "cite_spans": [
                    {
                        "start": 220,
                        "end": 240,
                        "text": "(Kobus et al., 2017)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Ablation",
                "sec_num": "5.7"
            },
            {
                "text": "For DomEmb(avg), we simulate this approach by replacing the real contextual representation of each test sentence with C d , which is context representative of domain d. We first compute i is the average of the context token-level embeddings for sentence i. Finally,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Ablation",
                "sec_num": "5.7"
            },
            {
                "text": "C d = 1 N d N d i=1 c d i where c d i is",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Ablation",
                "sec_num": "5.7"
            },
            {
                "text": "C d = arg max c d i cos(c d i , C d ).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Ablation",
                "sec_num": "5.7"
            },
            {
                "text": "This procedure is conducted for each domain d separately. Table 9 shows the results. On OpenSubtitles, Rapid, PatTR and TED, DomEmb(avg) improves on the sentence-level baseline if presented with context from the same domain (which is usually not from the same document). On Europarl, News-Commentary and Ubuntu, it performs similarly to the baseline. In almost all cases, providing a mismatched context degrades the performance of the original DomEmb(avg). The results show that the model is relatively robust to incorrect but closely related context which provides evidence for our hypothesis that DomEmb captures domain-relevant features. However, the correct context is important to obtain the best results across all domains. Our finding is in contrast with recent results (Li et al., 2020) where they show that multi-encoder context-aware NMT models do not encode contextual information.",
                "cite_spans": [
                    {
                        "start": 777,
                        "end": 794,
                        "text": "(Li et al., 2020)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 58,
                        "end": 65,
                        "text": "Table 9",
                        "ref_id": "TABREF13"
                    }
                ],
                "eq_spans": [],
                "section": "Ablation",
                "sec_num": "5.7"
            },
            {
                "text": "We conduct a manual analysis of SentBase and DomEmb(avg) by inspecting them on the TED test set. We only consider translation differences related to word senses and ignore other types of mistakes. We find 156 cases where the two models translate a word in a different sense and at least one of them outputs the correct sense. We define 3 categories: (i) one model is correct while the other wrong; (ii) both are correct, but one is closer to the actual meaning and (iii) both are correct, but one matches the reference translation. DomEmb(avg) is better on (i) in 43 cases as opposed to the 19 cases where SentBase is better. The ratio of DomEmb(avg) being correct in contrast to SentBase is 23/12 in (ii) and 38/21 in (iii). This shows that DomEmb(avg) is better at coherence which is closely related to better domain modeling in multi-domain setups where the number of probable senses is larger than in a single domain. Furthermore, we find that DomEmb(avg) does not improve on pronoun translation. In fact, in several cases it introduced errors, thus ruling out better coreference resolution as a source of improvements.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Manual Analysis",
                "sec_num": "5.8"
            },
            {
                "text": "We presented document-level context-aware NMT models and showed their effectiveness in addressing zero-resource domains. We compared against strong baselines and showed that document-level context can be leveraged to obtain domain signals. The proposed models benefit from large context and also obtain strong performance in multidomain scenarios. Our experimental results show the proposed models obtain improvements of up to 1.0 BLEU in this difficult zero-resource domain setup. Furthermore, they show that document-level context should be further explored in future work on domain adaptation and suggest that larger context would be beneficial for other discourse phenomena such as coherence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "We tokenize all sentences using the script from Moses 2 . We apply BPE splitting 3 with 32K merge operations. We exclude TED and PatTR when computing the BPEs. The BPEs are computed jointly on the source and target data. Samples where the source or target are larger than 100 tokens are removed. We also apply a per-sentence limit of 100 tokens on the context, meaning that models trained on 10 sentences of context have a limit of 1000 tokens. A batch size of 4096 is used for all models.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A Preprocessing and Hyperparameters",
                "sec_num": null
            },
            {
                "text": "We first train a sentence-level baseline until convergence based on early-stopping. All contextaware models are initialized with the parameters from this pretrained sentence-level baseline. Parameters that are specific to the models' architectures are randomly initialized. All proposed models in this work share the source, target, output and context embeddings. The models' architecture is a 6 layer encoder/decoder Transformer with 8 attention heads. The embedding and model size is 512 and the size of the feed-forward layers is 2048. The number of parameters for all models is shown in Table 10 . We use label smoothing with 0.1 and dropout in the Transformer of 0.1. Models are trained on 2 GTX 1080 Ti GPUs with 11GB RAM.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 591,
                        "end": 599,
                        "text": "Table 10",
                        "ref_id": "TABREF14"
                    }
                ],
                "eq_spans": [],
                "section": "A Preprocessing and Hyperparameters",
                "sec_num": null
            },
            {
                "text": "parameters SentBase 61M CtxBase 74M CtxPool 74M DomEmb(avg) 63M The initial learning rate for the document-level models is 10 \u22124 . For the classical domain adaptation scenario with fine-tuning, we use a learning rate of 10 \u22125 in order not to deviate too much from the well-initialized out-of-domain model. We lower the learning rate by a factor of 0.7 if no improvements are observed on the validation perplexity in 8 checkpoints. A checkpoint is saved every 4000 updates. We did not do any systematic hyperparameter search.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": null
            },
            {
                "text": "We use the document-aligned versions of Europarl, NewsCommentary and Rapid from WMT 2019 6 . We also use OpenSubtitles 78 (Lison and Tiedemann, 2016) , Ubuntu 9 , PatTR 10 and TED 11 .",
                "cite_spans": [
                    {
                        "start": 122,
                        "end": 149,
                        "text": "(Lison and Tiedemann, 2016)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "B Datasets",
                "sec_num": null
            },
            {
                "text": "In Table 11, Table 12 and Table 13 we present BLEU scores on the development sets for all the experiments we ran. We only show results for the sets we actually used during training and therefore ignore TED and PatTR for which we had no access to data at training time. The results for TagBase are with oracle domain tags. For the experiments with continued training on TED and PatTR, we show results only on the development sets for TED and PatTR.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 3,
                        "end": 34,
                        "text": "Table 11, Table 12 and Table 13",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "C Validation performance",
                "sec_num": null
            },
            {
                "text": "In this section, we compare the computational efficiency of our proposed methods. We compare how many seconds on average are needed to translate a sentence from the test set. The average times are 0.2588, 0.2763 \u00b1 0.0124, 0.3662 for SentBase, DomEmb and CtxPool, respectively. DomEmb is insignificantly slower than the sentence-level baseline, in contrast to CtxPool, which is to be expected considering the additional applying of self-attention over the compressed context. In terms of training time, SentBase converged after 90 hours of training, DomEmb(avg) after 168h and CtxPool(avg) after 116h. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "D Computational Efficiency",
                "sec_num": null
            },
            {
                "text": "In Table 14 we show some example translations from the sentence-level baseline and our DomEmb(avg) model. We show examples where our model corrected erroneous translations from the baseline. Some of the proper translations should be evident from the main sentence itself, but some can only be inferred from context. The first four examples are from TED and the last from PatTR. In the first example, we can see that the sentencelevel baseline translates \"students\" as \"Studenten\" (university students), but the correct translation in this case is \"Sch\u00fcler\" (elementary or high school student). The main sentence itself is not informative enough for the sentence-level model to make this distinction. In contrast, the DomEmb model has access to more information which provides for the appropriate bias towards the correct translation.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 3,
                        "end": 11,
                        "text": "Table 14",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "E Examples",
                "sec_num": null
            },
            {
                "text": "The second sentence depicts an example where it's nearly impossible for the baseline to make a correct prediction for the translation of \"ambassador\" because it depends on whether the person is male (Botschafter) or female (Botschafterin). In the third example, the sentence-level model translated \"model\" as in \"a role model\" (Vorbild), but the context indicates that the speaker talks about \"fashion models\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "E Examples",
                "sec_num": null
            },
            {
                "text": "Examples 4 and 5 are relatively unintuitive because the main sentences themselves should be enough to infer the correct translation. In example 4, \"reflect\" refers to the physical process of reflection and should not be translated as in \"to reflect on oneself\" (\"denken\"), while in example 5, \"raise\" refers to the action of \"lifting\" or \"elevating\"(\"aufw\u00e4rtsbewegt\" or \"hochzuziehen\") some object instead of \"raising\" as in \"raising a plant (from a seed)\" (\"z\u00fcchten\").",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "E Examples",
                "sec_num": null
            },
            {
                "text": "The last example shows that the sentence-level model translates \"springs\" (\"Federn\" which is a part of the compound word \"Druckfedern\" in the reference) as in \"water springs\" (\"Quellen\" which is a part of the compound word \"Kompressionsquellen\") while it should be translated instead as in the physical elastic device. However, in other test sentences, both SentBase and DomEmb(avg) translated \"spring\" as a season, even though this should be less likely in PatTR, showing that our model does not always succeed in capturing domain perfectly.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "E Examples",
                "sec_num": null
            },
            {
                "text": "We all knew we were risking our lives -the teacher, the students and our parents. Reference Wir alle wussten, dass wir unser Leben riskierten: Lehrer, Sch\u00fcler und unsere Eltern. SentBase Wir alle wussten, dass wir unser Leben riskieren... den Lehrer, die Studenten und unsere Eltern. DomEmb(avg) Wir wussten alle, dass wir unser Leben riskierten. Der Lehrer, die Sch\u00fcler und unsere Eltern. Source That's why I am a global ambassador for 10x10, a global campaign to educate women. Reference Deshalb bin ich globale Botschafterin f\u00fcr 10x10, einer weltweiten Kampagne f\u00fcr die Bildung von Frauen. SentBase Aus diesem Grund bin ich ein globaler Botschafter f\u00fcr 10x10, eine weltweite Kampagne zur Ausbildung von Frauen. DomEmb(avg) Deshalb bin ich eine globale Botschafterin f\u00fcr 10x10, eine weltweite Kampagne zur Ausbildung von Frauen. Source And I am on this stage because I am a model. Reference Und ich stehe auf dieser B\u00fchne, weil ich ein Model bin. SentBase Und ich bin auf dieser B\u00fchne, weil ich ein Vorbild bin. DomEmb(avg) Und ich bin auf dieser B\u00fchne, weil ich ein Model bin. Source It's going to bounce, go inside the room, some of that is going to reflect back on the door ... Reference Es wird abprallen, in den Raum gehen, ein Teil davon wird wieder zur\u00fcck auf die T\u00fcr reflektiert ... SentBase Es wird abprallen, ins Zimmer gehen, etwas davon wird wieder an die T\u00fcr denken ...",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Source",
                "sec_num": null
            },
            {
                "text": "Es wird abprallen, ins Zimmer gehen, etwas davon wird wieder\u00fcber die T\u00fcr reflektieren ... Source Tie member 60 is driven to raise movable cone 58 ... Reference Mit dem Zugelement 60 wird durch den An der bewegliche Kegel 58 aufw\u00e4rtsbewegt ... SentBase Tie-Mitglied 60 wird angetrieben, bewegliche Konfit\u00fcre 58 zu z\u00fcchten ...",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "DomEmb(avg)",
                "sec_num": null
            },
            {
                "text": "Teemitglied 60 wird angetrieben, bewegliche Kegel 58 hochzuziehen ... Source It is only when a certain pressure level is reached that the pistons are pushed back against the action of the compression springs ... Reference Erst bei Erreichen eines bestimmten Druckniveaus werden die Kolben gegen die Wirkung der Druckfedern zur\u00fcckgeschoben ... SentBase Erst wenn ein gewisses Druckniveau erreicht ist, werden die Pistonen gegen die Wirkung der Kompressionsquellen zur\u00fcckgedr\u00e4ngt ...",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "DomEmb(avg)",
                "sec_num": null
            },
            {
                "text": "Erst wenn ein bestimmtes Druckniveau erreicht ist, werden die Pistonen gegen die Wirkung der Kompressionsfedern zur\u00fcckgedr\u00e4ngt ... ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "DomEmb(avg)",
                "sec_num": null
            },
            {
                "text": "https://www.cis.uni-muenchen.de/ dario/projects/zero_domain",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://github.com/moses-smt/ mosesdecoder/blob/master/scripts/ tokenizer/tokenizer.perl 3 https://github.com/rsennrich/ subword-nmt Before inference, we average the parameters of the 8 best checkpoints based on the validation perplexity. We use a beam size of 12. BLEU scores are computed on detokenized text using multi-bleudetok.perl from the Moses scripts 4 . For the evaluation of translation of domain-specific words, we used the script from 5 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This work was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 640550) and by the German Research Foundation (DFG; grant FR 2829/4-1).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Non-Parametric Adaptation for Neural Machine Translation",
                "authors": [
                    {
                        "first": "Ankur",
                        "middle": [],
                        "last": "Bapna",
                        "suffix": ""
                    },
                    {
                        "first": "Orhan",
                        "middle": [],
                        "last": "Firat",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "1921--1931",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1191"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ankur Bapna and Orhan Firat. 2019. Non-Parametric Adaptation for Neural Machine Translation. In Pro- ceedings of the 2019 Conference of the North Amer- ican Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol- ume 1 (Long and Short Papers), pages 1921-1931, Minneapolis, Minnesota. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Evaluating Discourse Phenomena in Neural Machine Translation",
                "authors": [
                    {
                        "first": "Rachel",
                        "middle": [],
                        "last": "Bawden",
                        "suffix": ""
                    },
                    {
                        "first": "Rico",
                        "middle": [],
                        "last": "Sennrich",
                        "suffix": ""
                    },
                    {
                        "first": "Alexandra",
                        "middle": [],
                        "last": "Birch",
                        "suffix": ""
                    },
                    {
                        "first": "Barry",
                        "middle": [],
                        "last": "Haddow",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "NAACL 2018",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rachel Bawden, Rico Sennrich, Alexandra Birch, and Barry Haddow. 2018. Evaluating Discourse Phe- nomena in Neural Machine Translation. In NAACL 2018, New Orleans, USA.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Effective Domain Mixing for Neural Machine Translation",
                "authors": [
                    {
                        "first": "Denny",
                        "middle": [],
                        "last": "Britz",
                        "suffix": ""
                    },
                    {
                        "first": "Quoc",
                        "middle": [],
                        "last": "Le",
                        "suffix": ""
                    },
                    {
                        "first": "Reid",
                        "middle": [],
                        "last": "Pryzant",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the Second Conference on Machine Translation",
                "volume": "",
                "issue": "",
                "pages": "118--126",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W17-4712"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Denny Britz, Quoc Le, and Reid Pryzant. 2017. Effec- tive Domain Mixing for Neural Machine Translation. In Proceedings of the Second Conference on Ma- chine Translation, pages 118-126. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Cost Weighting for Neural Machine Translation Domain Adaptation",
                "authors": [
                    {
                        "first": "Boxing",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Colin",
                        "middle": [],
                        "last": "Cherry",
                        "suffix": ""
                    },
                    {
                        "first": "George",
                        "middle": [],
                        "last": "Foster",
                        "suffix": ""
                    },
                    {
                        "first": "Samuel",
                        "middle": [],
                        "last": "Larkin",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the First Workshop on Neural Machine Translation",
                "volume": "",
                "issue": "",
                "pages": "40--46",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W17-3205"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Boxing Chen, Colin Cherry, George Foster, and Samuel Larkin. 2017. Cost Weighting for Neural Machine Translation Domain Adaptation. In Pro- ceedings of the First Workshop on Neural Machine Translation, pages 40-46. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "A Simple, Fast, and Effective Reparameterization of IBM Model 2",
                "authors": [
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Dyer",
                        "suffix": ""
                    },
                    {
                        "first": "Victor",
                        "middle": [],
                        "last": "Chahuneau",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [
                            "A"
                        ],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "644--648",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chris Dyer, Victor Chahuneau, and Noah A. Smith. 2013. A Simple, Fast, and Effective Reparameter- ization of IBM Model 2. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Hu- man Language Technologies, pages 644-648. Asso- ciation for Computational Linguistics.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Multi-Domain Neural Machine Translation through Unsupervised Adaptation",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Amin Farajian",
                        "suffix": ""
                    },
                    {
                        "first": "Marco",
                        "middle": [],
                        "last": "Turchi",
                        "suffix": ""
                    },
                    {
                        "first": "Matteo",
                        "middle": [],
                        "last": "Negri",
                        "suffix": ""
                    },
                    {
                        "first": "Marcello",
                        "middle": [],
                        "last": "Federico",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the Second Conference on Machine Translation",
                "volume": "",
                "issue": "",
                "pages": "127--137",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W17-4713"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "M. Amin Farajian, Marco Turchi, Matteo Negri, and Marcello Federico. 2017. Multi-Domain Neural Ma- chine Translation through Unsupervised Adaptation. In Proceedings of the Second Conference on Ma- chine Translation, pages 127-137. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Discriminative instance weighting for domain adaptation in statistical machine translation",
                "authors": [
                    {
                        "first": "George",
                        "middle": [],
                        "last": "Foster",
                        "suffix": ""
                    },
                    {
                        "first": "Cyril",
                        "middle": [],
                        "last": "Goutte",
                        "suffix": ""
                    },
                    {
                        "first": "Roland",
                        "middle": [],
                        "last": "Kuhn",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "451--459",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "George Foster, Cyril Goutte, and Roland Kuhn. 2010. Discriminative instance weighting for domain adap- tation in statistical machine translation. In Proceed- ings of the 2010 Conference on Empirical Meth- ods in Natural Language Processing, pages 451- 459, Cambridge, MA. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Mixture-model adaptation for SMT",
                "authors": [
                    {
                        "first": "George",
                        "middle": [],
                        "last": "Foster",
                        "suffix": ""
                    },
                    {
                        "first": "Roland",
                        "middle": [],
                        "last": "Kuhn",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the Second Workshop on Statistical Machine Translation",
                "volume": "",
                "issue": "",
                "pages": "128--135",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "George Foster and Roland Kuhn. 2007. Mixture-model adaptation for SMT. In Proceedings of the Second Workshop on Statistical Machine Translation, pages 128-135, Prague, Czech Republic. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Fast Domain Adaptation for Neural Machine Translation",
                "authors": [
                    {
                        "first": "Markus",
                        "middle": [],
                        "last": "Freitag",
                        "suffix": ""
                    },
                    {
                        "first": "Yaser",
                        "middle": [],
                        "last": "Al-Onaizan",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Markus Freitag and Yaser Al-Onaizan. 2016. Fast Do- main Adaptation for Neural Machine Translation. CoRR, abs/1612.06897.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Sockeye: A Toolkit for Neural Machine Translation",
                "authors": [
                    {
                        "first": "Felix",
                        "middle": [],
                        "last": "Hieber",
                        "suffix": ""
                    },
                    {
                        "first": "Tobias",
                        "middle": [],
                        "last": "Domhan",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Denkowski",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Vilar",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Felix Hieber, Tobias Domhan, Michael Denkowski, David Vilar, Artem Sokolov, Ann Clifton, and Matt Post. 2017. Sockeye: A Toolkit for Neural Machine Translation. ArXiv e-prints.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Microsoft Translator at WMT 2019: Towards Large-Scale Document-Level Neural Machine Translation",
                "authors": [
                    {
                        "first": "Marcin",
                        "middle": [],
                        "last": "Junczys-Dowmunt",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the Fourth Conference on Machine Translation",
                "volume": "2",
                "issue": "",
                "pages": "225--233",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W19-5321"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Marcin Junczys-Dowmunt. 2019. Microsoft Transla- tor at WMT 2019: Towards Large-Scale Document- Level Neural Machine Translation. In Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1), pages 225- 233, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "When and why is document-level context useful in neural machine translation?",
                "authors": [
                    {
                        "first": "Yunsu",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "Thanh",
                        "middle": [],
                        "last": "Tran",
                        "suffix": ""
                    },
                    {
                        "first": "Hermann",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "DiscoMT@EMNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yunsu Kim, Thanh Tran, and Hermann Ney. 2019. When and why is document-level context useful in neural machine translation? In DiscoMT@EMNLP.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Domain Control for Neural Machine Translation",
                "authors": [
                    {
                        "first": "Catherine",
                        "middle": [],
                        "last": "Kobus",
                        "suffix": ""
                    },
                    {
                        "first": "Josep",
                        "middle": [],
                        "last": "Crego",
                        "suffix": ""
                    },
                    {
                        "first": "Jean",
                        "middle": [],
                        "last": "Senellart",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the International Conference Recent Advances in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "372--378",
                "other_ids": {
                    "DOI": [
                        "10.26615/978-954-452-049-6_049"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Catherine Kobus, Josep Crego, and Jean Senellart. 2017. Domain Control for Neural Machine Transla- tion. In Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017, pages 372-378. INCOMA Ltd.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Statistical Significance Tests for Machine Translation Evaluation",
                "authors": [
                    {
                        "first": "Philipp",
                        "middle": [],
                        "last": "Koehn",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "388--395",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Philipp Koehn. 2004. Statistical Significance Tests for Machine Translation Evaluation. In Proceed- ings of the 2004 Conference on Empirical Meth- ods in Natural Language Processing, pages 388- 395, Barcelona, Spain. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Does multi-encoder help? a case study on contextaware neural machine translation",
                "authors": [
                    {
                        "first": "Bei",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Hui",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Ziyang",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Yufan",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "Tong",
                        "middle": [],
                        "last": "Xiao",
                        "suffix": ""
                    },
                    {
                        "first": "Jingbo",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    },
                    {
                        "first": "Tongran",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Changliang",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "3512--3518",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.acl-main.322"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Bei Li, Hui Liu, Ziyang Wang, Yufan Jiang, Tong Xiao, Jingbo Zhu, Tongran Liu, and Changliang Li. 2020. Does multi-encoder help? a case study on context- aware neural machine translation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 3512-3518, On- line. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "OpenSub-titles2016: Extracting large parallel corpora from movie and TV subtitles",
                "authors": [
                    {
                        "first": "Pierre",
                        "middle": [],
                        "last": "Lison",
                        "suffix": ""
                    },
                    {
                        "first": "J\u00f6rg",
                        "middle": [],
                        "last": "Tiedemann",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)",
                "volume": "",
                "issue": "",
                "pages": "923--929",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Pierre Lison and J\u00f6rg Tiedemann. 2016. OpenSub- titles2016: Extracting large parallel corpora from movie and TV subtitles. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16), pages 923-929, Por- toro\u017e, Slovenia. European Language Resources As- sociation (ELRA).",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Handling Homographs in Neural Machine Translation",
                "authors": [
                    {
                        "first": "Frederick",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Han",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    },
                    {
                        "first": "Graham",
                        "middle": [],
                        "last": "Neubig",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "1336--1345",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Frederick Liu, Han Lu, and Graham Neubig. 2018. Handling Homographs in Neural Machine Transla- tion. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Com- putational Linguistics: Human Language Technolo- gies, Volume 1 (Long Papers), pages 1336-1345.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Stanford Neural Machine Translation Systems for Spoken Language Domains",
                "authors": [
                    {
                        "first": "Minh-Thang",
                        "middle": [],
                        "last": "Luong",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher D",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the International Workshop on Spoken Language Translation",
                "volume": "",
                "issue": "",
                "pages": "76--79",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Minh-Thang Luong and Christopher D Manning. 2015. Stanford Neural Machine Translation Systems for Spoken Language Domains. In Proceedings of the International Workshop on Spoken Language Trans- lation, pages 76-79.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Using whole document context in neural machine translation",
                "authors": [
                    {
                        "first": "Valentin",
                        "middle": [],
                        "last": "Mac\u00e9",
                        "suffix": ""
                    },
                    {
                        "first": "Christophe",
                        "middle": [],
                        "last": "Servan",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1910.07481"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Valentin Mac\u00e9 and Christophe Servan. 2019. Using whole document context in neural machine transla- tion. arXiv preprint arXiv:1910.07481.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Document Context Neural Machine Translation with Memory Networks",
                "authors": [
                    {
                        "first": "Sameen",
                        "middle": [],
                        "last": "Maruf",
                        "suffix": ""
                    },
                    {
                        "first": "Gholamreza",
                        "middle": [],
                        "last": "Haffari",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "1275--1284",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sameen Maruf and Gholamreza Haffari. 2018. Doc- ument Context Neural Machine Translation with Memory Networks. In Proceedings of the 56th An- nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1275- 1284, Melbourne, Australia. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Selective Attention for Contextaware Neural Machine Translation",
                "authors": [
                    {
                        "first": "Sameen",
                        "middle": [],
                        "last": "Maruf",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [
                            "T"
                        ],
                        "last": "Andr\u00e9",
                        "suffix": ""
                    },
                    {
                        "first": "Gholamreza",
                        "middle": [],
                        "last": "Martins",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Haffari",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "3092--3102",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1313"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Sameen Maruf, Andr\u00e9 F. T. Martins, and Gholam- reza Haffari. 2019. Selective Attention for Context- aware Neural Machine Translation. In Proceedings of the 2019 Conference of the North American Chap- ter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 3092-3102, Minneapolis, Minnesota. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Document-Level Neural Machine Translation with Hierarchical Attention Networks",
                "authors": [
                    {
                        "first": "Lesly",
                        "middle": [],
                        "last": "Miculicich",
                        "suffix": ""
                    },
                    {
                        "first": "Dhananjay",
                        "middle": [],
                        "last": "Ram",
                        "suffix": ""
                    },
                    {
                        "first": "Nikolaos",
                        "middle": [],
                        "last": "Pappas",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Henderson",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "2947--2954",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lesly Miculicich, Dhananjay Ram, Nikolaos Pappas, and James Henderson. 2018. Document-Level Neu- ral Machine Translation with Hierarchical Attention Networks. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Pro- cessing, pages 2947-2954. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "A Large-Scale Test Set for the Evaluation of Context-Aware Pronoun Translation in Neural Machine Translation",
                "authors": [
                    {
                        "first": "Mathias",
                        "middle": [],
                        "last": "M\u00fcller",
                        "suffix": ""
                    },
                    {
                        "first": "Annette",
                        "middle": [],
                        "last": "Rios",
                        "suffix": ""
                    },
                    {
                        "first": "Elena",
                        "middle": [],
                        "last": "Voita",
                        "suffix": ""
                    },
                    {
                        "first": "Rico",
                        "middle": [],
                        "last": "Sennrich",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the Third Conference on Machine Translation",
                "volume": "1",
                "issue": "",
                "pages": "61--72",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mathias M\u00fcller, Annette Rios, Elena Voita, and Rico Sennrich. 2018. A Large-Scale Test Set for the Evaluation of Context-Aware Pronoun Translation in Neural Machine Translation. In Proceedings of the Third Conference on Machine Translation, Vol- ume 1: Research Papers, pages 61-72, Brussels, Belgium. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Machine translation system selection from bandit feedback",
                "authors": [
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Naradowsky",
                        "suffix": ""
                    },
                    {
                        "first": "Xuan",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Duh",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 14th Conference of the Association for Machine Translation in the Americas",
                "volume": "1",
                "issue": "",
                "pages": "50--63",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jason Naradowsky, Xuan Zhang, and Kevin Duh. 2020. Machine translation system selection from bandit feedback. In Proceedings of the 14th Conference of the Association for Machine Translation in the Americas (Volume 1: Research Track), pages 50-63, Virtual. Association for Machine Translation in the Americas.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Neural Machine Translation Training in a Multi-Domain Scenario",
                "authors": [
                    {
                        "first": "Hassan",
                        "middle": [],
                        "last": "Sajjad",
                        "suffix": ""
                    },
                    {
                        "first": "Nadir",
                        "middle": [],
                        "last": "Durrani",
                        "suffix": ""
                    },
                    {
                        "first": "Fahim",
                        "middle": [],
                        "last": "Dalvi",
                        "suffix": ""
                    },
                    {
                        "first": "Yonatan",
                        "middle": [],
                        "last": "Belinkov",
                        "suffix": ""
                    },
                    {
                        "first": "Stephan",
                        "middle": [],
                        "last": "Vogel",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hassan Sajjad, Nadir Durrani, Fahim Dalvi, Yonatan Belinkov, and Stephan Vogel. 2017. Neural Ma- chine Translation Training in a Multi-Domain Sce- nario. CoRR, abs/1708.08712.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Coreference and Coherence in Neural Machine Translation: A Study Using Oracle Experiments",
                "authors": [
                    {
                        "first": "Dario",
                        "middle": [],
                        "last": "Stojanovski",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [],
                        "last": "Fraser",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the Third Conference on Machine Translation",
                "volume": "1",
                "issue": "",
                "pages": "49--60",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dario Stojanovski and Alexander Fraser. 2018. Coref- erence and Coherence in Neural Machine Transla- tion: A Study Using Oracle Experiments. In Pro- ceedings of the Third Conference on Machine Trans- lation, Volume 1: Research Papers, pages 49-60, Brussels, Belgium. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Combining local and document-level context: The lmu munich neural machine translation system at wmt19",
                "authors": [
                    {
                        "first": "Dario",
                        "middle": [],
                        "last": "Stojanovski",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [],
                        "last": "Fraser",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the Fourth Conference on Machine Translation",
                "volume": "2",
                "issue": "",
                "pages": "400--406",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dario Stojanovski and Alexander Fraser. 2019a. Com- bining local and document-level context: The lmu munich neural machine translation system at wmt19. In Proceedings of the Fourth Conference on Ma- chine Translation (Volume 2: Shared Task Papers, Day 1), pages 400-406, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Improving Anaphora Resolution in Neural Machine Translation Using Curriculum Learning",
                "authors": [
                    {
                        "first": "Dario",
                        "middle": [],
                        "last": "Stojanovski",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [],
                        "last": "Fraser",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Research Track",
                "volume": "1",
                "issue": "",
                "pages": "140--150",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dario Stojanovski and Alexander Fraser. 2019b. Im- proving Anaphora Resolution in Neural Machine Translation Using Curriculum Learning. In Proceed- ings of Machine Translation Summit XVII Volume 1: Research Track, pages 140-150, Dublin, Ireland. Eu- ropean Association for Machine Translation.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Hierarchical Modeling of Global Context for Document-Level Neural Machine Translation",
                "authors": [
                    {
                        "first": "Xin",
                        "middle": [],
                        "last": "Tan",
                        "suffix": ""
                    },
                    {
                        "first": "Longyin",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Deyi",
                        "middle": [],
                        "last": "Xiong",
                        "suffix": ""
                    },
                    {
                        "first": "Guodong",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "1576--1585",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1168"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Xin Tan, Longyin Zhang, Deyi Xiong, and Guodong Zhou. 2019. Hierarchical Modeling of Global Con- text for Document-Level Neural Machine Transla- tion. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natu- ral Language Processing (EMNLP-IJCNLP), pages 1576-1585, Hong Kong, China. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Neural Machine Translation with Extended Context",
                "authors": [
                    {
                        "first": "J\u00f6rg",
                        "middle": [],
                        "last": "Tiedemann",
                        "suffix": ""
                    },
                    {
                        "first": "Yves",
                        "middle": [],
                        "last": "Scherrer",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the Third Workshop on Discourse in Machine Translation",
                "volume": "",
                "issue": "",
                "pages": "82--92",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J\u00f6rg Tiedemann and Yves Scherrer. 2017. Neural Ma- chine Translation with Extended Context. In Pro- ceedings of the Third Workshop on Discourse in Ma- chine Translation, pages 82-92.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Learning to Remember Translation History with a Continuous Cache",
                "authors": [
                    {
                        "first": "Zhaopeng",
                        "middle": [],
                        "last": "Tu",
                        "suffix": ""
                    },
                    {
                        "first": "Yang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Shuming",
                        "middle": [],
                        "last": "Shi",
                        "suffix": ""
                    },
                    {
                        "first": "Tong",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Transactions of the Association for Computational Linguistics",
                "volume": "6",
                "issue": "",
                "pages": "407--420",
                "other_ids": {
                    "DOI": [
                        "10.1162/tacl_a_00029"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Zhaopeng Tu, Yang Liu, Shuming Shi, and Tong Zhang. 2018. Learning to Remember Translation History with a Continuous Cache. Transactions of the Asso- ciation for Computational Linguistics, 6:407-420.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Attention is All you Need",
                "authors": [
                    {
                        "first": "Ashish",
                        "middle": [],
                        "last": "Vaswani",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Shazeer",
                        "suffix": ""
                    },
                    {
                        "first": "Niki",
                        "middle": [],
                        "last": "Parmar",
                        "suffix": ""
                    },
                    {
                        "first": "Jakob",
                        "middle": [],
                        "last": "Uszkoreit",
                        "suffix": ""
                    },
                    {
                        "first": "Llion",
                        "middle": [],
                        "last": "Jones",
                        "suffix": ""
                    },
                    {
                        "first": "Aidan",
                        "middle": [
                            "N"
                        ],
                        "last": "Gomez",
                        "suffix": ""
                    },
                    {
                        "first": "\u0141ukasz",
                        "middle": [],
                        "last": "Kaiser",
                        "suffix": ""
                    },
                    {
                        "first": "Illia",
                        "middle": [],
                        "last": "Polosukhin",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Advances in Neural Information Processing Systems",
                "volume": "",
                "issue": "",
                "pages": "6000--6010",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, \u0141ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need. In Advances in Neural Information Pro- cessing Systems, pages 6000-6010.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Context-Aware Monolingual Repair for Neural Machine Translation",
                "authors": [
                    {
                        "first": "Elena",
                        "middle": [],
                        "last": "Voita",
                        "suffix": ""
                    },
                    {
                        "first": "Rico",
                        "middle": [],
                        "last": "Sennrich",
                        "suffix": ""
                    },
                    {
                        "first": "Ivan",
                        "middle": [],
                        "last": "Titov",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "876--885",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1081"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Elena Voita, Rico Sennrich, and Ivan Titov. 2019a. Context-Aware Monolingual Repair for Neural Ma- chine Translation. In Proceedings of the 2019 Con- ference on Empirical Methods in Natural Language Processing and the 9th International Joint Confer- ence on Natural Language Processing (EMNLP- IJCNLP), pages 876-885, Hong Kong, China. As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "When a Good Translation is Wrong in Context: Context-Aware Machine Translation Improves on Deixis, Ellipsis, and Lexical Cohesion",
                "authors": [
                    {
                        "first": "Elena",
                        "middle": [],
                        "last": "Voita",
                        "suffix": ""
                    },
                    {
                        "first": "Rico",
                        "middle": [],
                        "last": "Sennrich",
                        "suffix": ""
                    },
                    {
                        "first": "Ivan",
                        "middle": [],
                        "last": "Titov",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "1198--1212",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1116"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Elena Voita, Rico Sennrich, and Ivan Titov. 2019b. When a Good Translation is Wrong in Context: Context-Aware Machine Translation Improves on Deixis, Ellipsis, and Lexical Cohesion. In Pro- ceedings of the 57th Annual Meeting of the Asso- ciation for Computational Linguistics, pages 1198- 1212, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "Context-Aware Neural Machine Translation Learns Anaphora Resolution",
                "authors": [
                    {
                        "first": "Elena",
                        "middle": [],
                        "last": "Voita",
                        "suffix": ""
                    },
                    {
                        "first": "Pavel",
                        "middle": [],
                        "last": "Serdyukov",
                        "suffix": ""
                    },
                    {
                        "first": "Rico",
                        "middle": [],
                        "last": "Sennrich",
                        "suffix": ""
                    },
                    {
                        "first": "Ivan",
                        "middle": [],
                        "last": "Titov",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "1264--1274",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Elena Voita, Pavel Serdyukov, Rico Sennrich, and Ivan Titov. 2018. Context-Aware Neural Machine Trans- lation Learns Anaphora Resolution. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1264-1274, Melbourne, Australia.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "Domain Dependent Statistical Machine Translation",
                "authors": [
                    {
                        "first": "Jia",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Yonggang",
                        "middle": [],
                        "last": "Deng",
                        "suffix": ""
                    },
                    {
                        "first": "Yuqing",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Hermann",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jia Xu, Yonggang Deng, Yuqing Gao, and Hermann Ney. 2007. Domain Dependent Statistical Machine Translation. In MT Summit.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "Enhancing Context Modeling with a Query-Guided Capsule Network for Document-level Translation",
                "authors": [
                    {
                        "first": "Zhengxin",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Jinchao",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Fandong",
                        "middle": [],
                        "last": "Meng",
                        "suffix": ""
                    },
                    {
                        "first": "Shuhao",
                        "middle": [],
                        "last": "Gu",
                        "suffix": ""
                    },
                    {
                        "first": "Yang",
                        "middle": [],
                        "last": "Feng",
                        "suffix": ""
                    },
                    {
                        "first": "Jie",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "1527--1537",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1164"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Zhengxin Yang, Jinchao Zhang, Fandong Meng, Shuhao Gu, Yang Feng, and Jie Zhou. 2019. En- hancing Context Modeling with a Query-Guided Capsule Network for Document-level Translation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Lan- guage Processing (EMNLP-IJCNLP), pages 1527- 1537, Hong Kong, China. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "Multi-Domain Neural Machine Translation with Word-Level Domain Context Discrimination",
                "authors": [
                    {
                        "first": "Jiali",
                        "middle": [],
                        "last": "Zeng",
                        "suffix": ""
                    },
                    {
                        "first": "Jinsong",
                        "middle": [],
                        "last": "Su",
                        "suffix": ""
                    },
                    {
                        "first": "Huating",
                        "middle": [],
                        "last": "Wen",
                        "suffix": ""
                    },
                    {
                        "first": "Yang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Jun",
                        "middle": [],
                        "last": "Xie",
                        "suffix": ""
                    },
                    {
                        "first": "Yongjing",
                        "middle": [],
                        "last": "Yin",
                        "suffix": ""
                    },
                    {
                        "first": "Jianqiang",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "447--457",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jiali Zeng, Jinsong Su, Huating Wen, Yang Liu, Jun Xie, Yongjing Yin, and Jianqiang Zhao. 2018. Multi- Domain Neural Machine Translation with Word- Level Domain Context Discrimination. In Proceed- ings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 447-457. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "Improving the Transformer Translation Model with Document-Level Context",
                "authors": [
                    {
                        "first": "Jiacheng",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Huanbo",
                        "middle": [],
                        "last": "Luan",
                        "suffix": ""
                    },
                    {
                        "first": "Maosong",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "Feifei",
                        "middle": [],
                        "last": "Zhai",
                        "suffix": ""
                    },
                    {
                        "first": "Jingfang",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Min",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Yang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "533--542",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jiacheng Zhang, Huanbo Luan, Maosong Sun, Feifei Zhai, Jingfang Xu, Min Zhang, and Yang Liu. 2018. Improving the Transformer Translation Model with Document-Level Context. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 533-542. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF40": {
                "ref_id": "b40",
                "title": "Sentence Weighting for Neural Machine Translation Domain Adaptation",
                "authors": [
                    {
                        "first": "Shiqi",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Deyi",
                        "middle": [],
                        "last": "Xiong",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 27th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "3181--3190",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shiqi Zhang and Deyi Xiong. 2018. Sentence Weight- ing for Neural Machine Translation Domain Adapta- tion. In Proceedings of the 27th International Con- ference on Computational Linguistics, pages 3181- 3190. Association for Computational Linguistics. 4 https://github.com/moses-smt/ mosesdecoder/blob/master/scripts/ generic/multi-bleu-detok.perl 5 https://github.com/frederick0329/ Evaluate-Word-Level-Translation 6 http://statmt.org/wmt19/ translation-task.html 7 http://opus.nlpl.eu/ OpenSubtitles-v2018.php 8 http://www.opensubtitles.org/ 9 http://opus.nlpl.eu/Ubuntu.php 10 http://www.cl.uni-heidelberg.de/ statnlpgroup/pattr/ 11 https://wit3.fbk.eu/2015-01",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "Context-aware Transformer with pooling.",
                "type_str": "figure",
                "num": null,
                "uris": null
            },
            "FIGREF1": {
                "text": "the contextual representation of a test sentence in domain d and N d is the number of test sentences in d. c d",
                "type_str": "figure",
                "num": null,
                "uris": null
            },
            "TABREF2": {
                "num": null,
                "content": "<table/>",
                "html": null,
                "text": "",
                "type_str": "table"
            },
            "TABREF4": {
                "num": null,
                "content": "<table/>",
                "html": null,
                "text": "Results on the multi-domain dataset. Joint and average scores including PatTR and TED. Statistical significance computed for all scores except for Average. \u2020-p < 0.01, \u2021-p < 0.05.",
                "type_str": "table"
            },
            "TABREF6": {
                "num": null,
                "content": "<table><tr><td>: Results using the DomEmb(avg) model with</td></tr><tr><td>different context sizes. Context size in number of pre-</td></tr><tr><td>vious sentences.  \u2021-p &lt; 0.01, ** -p &lt; 0.05, compared</td></tr><tr><td>to SentBase.  \u2020-p &lt; 0.01, * -p &lt; 0.05, compared to</td></tr><tr><td>ctx=1.</td></tr></table>",
                "html": null,
                "text": "",
                "type_str": "table"
            },
            "TABREF8": {
                "num": null,
                "content": "<table/>",
                "html": null,
                "text": "",
                "type_str": "table"
            },
            "TABREF10": {
                "num": null,
                "content": "<table><tr><td>domain</td><td colspan=\"2\">SentBase DomEmb(a)</td></tr><tr><td>PatTR</td><td>34.4</td><td>34.4</td></tr><tr><td/><td/><td>ensemble</td></tr><tr><td>Europarl</td><td>29.0</td><td>29.6 \u2020</td></tr><tr><td>NewsCommentary</td><td>28.7</td><td>28.9</td></tr><tr><td>OpenSubtitles</td><td>22.8</td><td>23.4 \u2020</td></tr><tr><td>Rapid</td><td>35.1</td><td>35.7 \u2020</td></tr><tr><td>Ubuntu</td><td>33.0</td><td>33.4</td></tr><tr><td>PatTR</td><td>29.2</td><td>29.4</td></tr><tr><td>TED</td><td>29.8</td><td>30.4 \u2021</td></tr><tr><td>Average</td><td>29.7</td><td>30.1</td></tr><tr><td>Joint</td><td>30.2</td><td>30.6 \u2020</td></tr></table>",
                "html": null,
                "text": "F 1 score for domain-specific words.",
                "type_str": "table"
            },
            "TABREF11": {
                "num": null,
                "content": "<table><tr><td colspan=\"3\">: Domain adaptation results on PatTR for Sent-</td></tr><tr><td colspan=\"3\">Base and DomEmb(avg).  \u2020-p &lt; 0.01,  \u2021-p &lt; 0.05.</td></tr><tr><td>domain</td><td colspan=\"2\">SentBase DomEmb(a)</td></tr><tr><td>TED</td><td>36.1</td><td>36.6 \u2021</td></tr><tr><td/><td/><td>ensemble</td></tr><tr><td>Europarl</td><td>30.4</td><td>30.8 \u2020</td></tr><tr><td>NewsCommentary</td><td>31.9</td><td>32.2 \u2021</td></tr><tr><td>OpenSubtitles</td><td>24.6</td><td>25.4 \u2020</td></tr><tr><td>Rapid</td><td>38.8</td><td>39.5 \u2020</td></tr><tr><td>Ubuntu</td><td>32.7</td><td>32.4</td></tr><tr><td>PatTR</td><td>16.9</td><td>17.0 \u2021</td></tr><tr><td>TED</td><td>35.4</td><td>35.8 \u2021</td></tr><tr><td>Average</td><td>30.1</td><td>30.4</td></tr><tr><td>Joint</td><td>28.4</td><td>28.8 \u2020</td></tr></table>",
                "html": null,
                "text": "",
                "type_str": "table"
            },
            "TABREF12": {
                "num": null,
                "content": "<table><tr><td>: Domain adaptation results on TED for Sent-</td></tr><tr><td>Base and DomEmb(avg).  \u2020-p &lt; 0.01,  \u2021-p &lt; 0.05.</td></tr><tr><td>DomEmb(avg) improved the F 1 score across all</td></tr><tr><td>domains with the largest improvements on Open-</td></tr><tr><td>Subtitles and TED. Our assumption is that the base-</td></tr><tr><td>line translation of OpenSubtitles domain-specific</td></tr><tr><td>words is more formal. A large part of the seen do-</td></tr><tr><td>mains contain formal language in contrast to the</td></tr></table>",
                "html": null,
                "text": "",
                "type_str": "table"
            },
            "TABREF13": {
                "num": null,
                "content": "<table/>",
                "html": null,
                "text": "Results from the ablation study investigating the influence of context from a different domain. Each row shows which domain is used as the test set and each column shows from which domain the context originates.",
                "type_str": "table"
            },
            "TABREF14": {
                "num": null,
                "content": "<table><tr><td>: Number of model parameters. TagBase, Con-</td></tr><tr><td>cBase and DomEmb(max) have the same number of</td></tr><tr><td>parameters as SentBase.</td></tr></table>",
                "html": null,
                "text": "",
                "type_str": "table"
            },
            "TABREF16": {
                "num": null,
                "content": "<table><tr><td>domain</td><td>ctx=1</td><td>ctx=5</td><td>ctx=10</td></tr><tr><td>Europarl</td><td>33.5</td><td>33.8</td><td>33.7</td></tr><tr><td colspan=\"2\">NewsComm 34.0</td><td>34.2</td><td>34.1</td></tr><tr><td>OpenSub</td><td>33.7</td><td>34.1</td><td>34.5</td></tr><tr><td>Rapid</td><td>39.7</td><td>39.8</td><td>39.7</td></tr><tr><td>Ubuntu</td><td>41.5</td><td>43.0</td><td>42.6</td></tr><tr><td>domain</td><td colspan=\"3\">CtxBase ConcBase DomEmb(a)</td></tr><tr><td>Europarl</td><td>34.0</td><td>34.1</td><td>33.7</td></tr><tr><td colspan=\"2\">NewsComm 34.0</td><td>33.9</td><td>34.1</td></tr><tr><td>OpenSub</td><td>33.9</td><td>34.5</td><td>34.5</td></tr><tr><td>Rapid</td><td>40.1</td><td>39.1</td><td>39.7</td></tr><tr><td>Ubuntu</td><td>42.3</td><td>42.3</td><td>42.6</td></tr></table>",
                "html": null,
                "text": "BLEU scores on the development sets of the multi-domain dataset.",
                "type_str": "table"
            },
            "TABREF17": {
                "num": null,
                "content": "<table><tr><td colspan=\"3\">domain SentBase DomEmb(a)</td></tr><tr><td>TED</td><td>33.2</td><td>33.4</td></tr><tr><td>PatTR</td><td>36.4</td><td>36.3</td></tr></table>",
                "html": null,
                "text": "Results on the development sets using the DomEmb(avg) model with different context sizes and comparing DomEmb(avg) with ctx=10 against CtxBase and ConcBase.",
                "type_str": "table"
            },
            "TABREF18": {
                "num": null,
                "content": "<table/>",
                "html": null,
                "text": "Domain adaptation results on PatTR and TED for SentBase and DomEmb(avg) on the development sets.",
                "type_str": "table"
            },
            "TABREF19": {
                "num": null,
                "content": "<table/>",
                "html": null,
                "text": "Example translations obtained using sentence-level baseline and the DomEmb(avg) model. Relevant parts of the examples are in bold.",
                "type_str": "table"
            }
        }
    }
}