File size: 116,982 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T02:11:04.682896Z"
    },
    "title": "Few-Shot Learning of an Interleaved Text Summarization Model by Pretraining with Synthetic Data",
    "authors": [
        {
            "first": "Sanjeev",
            "middle": [
                "Kumar"
            ],
            "last": "Karn",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "LMU Munich",
                "location": {}
            },
            "email": "skarn@cis.lmu.de"
        },
        {
            "first": "Francine",
            "middle": [],
            "last": "Chen",
            "suffix": "",
            "affiliation": {},
            "email": "francine@acm.orgyan-ying.chen@tri.global"
        },
        {
            "first": "Yan-Ying",
            "middle": [],
            "last": "Chen",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Toyota Research Institute",
                "location": {
                    "addrLine": "California 4 Machine Intelligence",
                    "settlement": "Los Altos"
                }
            },
            "email": ""
        },
        {
            "first": "Ulli",
            "middle": [],
            "last": "Waltinger",
            "suffix": "",
            "affiliation": {},
            "email": "ulli.waltinger@siemens.com"
        },
        {
            "first": "Hinrich",
            "middle": [],
            "last": "Sch\u00fctze",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "LMU Munich",
                "location": {}
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Interleaved texts, where posts belonging to different threads occur in a sequence, commonly occur in online chat posts, so that it can be time-consuming to quickly obtain an overview of the discussions. Existing systems first disentangle the posts by threads and then extract summaries from those threads. A major issue with such systems is error propagation from the disentanglement component. While endto-end trainable summarization system could obviate explicit disentanglement, such systems require a large amount of labeled data. To address this, we propose to pretrain an endto-end trainable hierarchical encoder-decoder system using synthetic interleaved texts. We show that by fine-tuning on a real-world meeting dataset (AMI), such a system out-performs a traditional two-step system by 22%. We also compare against transformer models and observed that pretraining with synthetic data both the encoder and decoder outperforms the BertSumExtAbs transformer model which pretrains only the encoder on a large dataset.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Interleaved texts, where posts belonging to different threads occur in a sequence, commonly occur in online chat posts, so that it can be time-consuming to quickly obtain an overview of the discussions. Existing systems first disentangle the posts by threads and then extract summaries from those threads. A major issue with such systems is error propagation from the disentanglement component. While endto-end trainable summarization system could obviate explicit disentanglement, such systems require a large amount of labeled data. To address this, we propose to pretrain an endto-end trainable hierarchical encoder-decoder system using synthetic interleaved texts. We show that by fine-tuning on a real-world meeting dataset (AMI), such a system out-performs a traditional two-step system by 22%. We also compare against transformer models and observed that pretraining with synthetic data both the encoder and decoder outperforms the BertSumExtAbs transformer model which pretrains only the encoder on a large dataset.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Interleaved texts are increasingly common, occurring in social media conversations such as Slack and Stack Exchange, where posts belonging to different threads may be intermixed in the post sequence; see a meeting transcript from the AMI corpus (McCowan et al., 2005) in Table 1 . Due to the mixing, getting a quick sense of the different conversational threads is often difficult.",
                "cite_spans": [
                    {
                        "start": 245,
                        "end": 267,
                        "text": "(McCowan et al., 2005)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 271,
                        "end": 278,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In conversation disentanglement, interleaved posts are grouped by the thread. However, a reader still has to read all posts in each cluster of threads to get the gist. Shang et al. (2018) proposed a two-step system that takes an interleaved text as input and first disentangles the posts thread-wise by clustering, and then compresses the thread-wise posts to single-sentence summaries. However, disentanglement e.g., Wang and Oard (2009) , propagates error to the downstream summarization task. An end-to-end supervised summarization system that implicitly identifies the conversations would eliminate error propagation. However, labeling of interleaved texts is a difficult and expensive task Verberne et al., 2018) . AMI Utteracnes . . . Who is gonna do a PowerPoint presentation ? Think we all Huh. You will . . . . . . \u03be and uh the sender will send to the telly itself an infrared signal to tell it to switch on or switch. . . . . . \u03b6 so y so it's so it's so you got so that's something we should have a look into then i when desi when designing the ergonomics of see have a look . . . . . . \u03c8 ,the little tiny weeny batteries, all like special longlasting batteries. . .",
                "cite_spans": [
                    {
                        "start": 168,
                        "end": 187,
                        "text": "Shang et al. (2018)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 418,
                        "end": 438,
                        "text": "Wang and Oard (2009)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 695,
                        "end": 717,
                        "text": "Verberne et al., 2018)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": ". . . Summary 1) the project manager had the team members re-introduce . . . 2) the industrial designer discussed the interior workings of a remote and the team discussed options for batteries and infra-red signals.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": ". . . 5) the marketing expert presented research on consumer preferences on remotes in general and on voice recognition and the team discussed the option to have an ergonomically designed remote.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": ". . . Table 1 : The top section shows AMI ASR transcripts and the bottom section shows human-written summaries. \u03be=150 th , \u03b6=522 th and \u03c8=570 th utterances. a) refer to the a th sentence in a multi-sentence summary.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 6,
                        "end": 13,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We propose a pretraining approach to tackle these issues. We synthesized a corpus of interleaved text-summary pairs out of a corpus of regular document-summary pairs and train an end-toend trainable encoder-decoder system. To generate the summary the model learns to infer (disentangle) the major topics in several threads. We show on synthetic and real-world data that the encoderdecoder system not only obviates a disentanglement component but also enhances performance. Thus, the summarization task acts as an auxiliary task for the disentanglement. Additionally, we show that fine-tuning of the encoder-decode system with the learned disentanglement representations on a real-world AMI dataset achieves a substantial increment in evaluation metrics despite a small number of labels.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We also propose using a hierarchical attention in the encoder-decoder system with three levels of information from the interleaved text; posts, phrases, and words, rather than traditional two levels; post and word (Nallapati et al., 2017 (Nallapati et al., , 2016 Tan et al., 2017; Cheng and Lapata, 2016) .",
                "cite_spans": [
                    {
                        "start": 214,
                        "end": 237,
                        "text": "(Nallapati et al., 2017",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 238,
                        "end": 263,
                        "text": "(Nallapati et al., , 2016",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 264,
                        "end": 281,
                        "text": "Tan et al., 2017;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 282,
                        "end": 305,
                        "text": "Cheng and Lapata, 2016)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The remaining paper is structured as follows. In Section 2, we discuss related work. In Section 3, we provide a detailed description of our hierarchical seq2seq model. In Section 4, we provide a detailed description on the synthetic data creation algorithm. In Section 5, we describe and discuss the experiments. And in Section 6, we present our conclusions. (2018) each designed a system that summarizes posts in multi-party conversations in order to provide readers with overview on the discussed matters. They broadly follow the same two-step approach: cluster the posts and then extract a summary from each cluster.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "There are two kinds of summarization: abstractive and extractive. In abstractive summarization, the model utilizes a corpus level vocabulary and generates novel sentences as the summary, while extractive models extract or rearrange the source words as the summary. Abstractive models based on neural sequence-to-sequence (seq2seq) (Rush et al., 2015) proved to generate summaries with higher ROUGE scores than the feature-based abstractive models. Li et al. (2015) proposed an encoder-decoder (auto-encoder) model that utilizes a hierarchy of networks: word-to-word followed by sentence-tosentence. Their model is better at capturing the underlying structure than a vanilla sequential encoderdecoder model (seq2seq). Krause et al. (2017) and Jing et al. (2018) showed multi-sentence captioning of an image through a hierarchical Recurrent Neural Network (RNN), topic-to-topic followed by word-to-word, is better than seq2seq. These works suggest a hierarchical decoder, thread-tothread followed by word-to-word, may intrinsically disentangle the posts, and therefore, generate more appropriate summaries.",
                "cite_spans": [
                    {
                        "start": 331,
                        "end": 350,
                        "text": "(Rush et al., 2015)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 448,
                        "end": 464,
                        "text": "Li et al. (2015)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 717,
                        "end": 737,
                        "text": "Krause et al. (2017)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 742,
                        "end": 760,
                        "text": "Jing et al. (2018)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Integration of attention into a seq2seq model (Bahdanau et al., 2014) led to further advancement of abstractive summarization (Nallapati et al., 2016; Chopra et al., 2016) . Nallapati et al. (2016) devised a hierarchical attention mechanism for a seq2seq model, where two levels of attention distributions over the source, i.e., sentence and word, are computed at every step of the word decoding. Based on the sentence attentions, the word attentions are rescaled. Our hierarchical attention is more intuitive, computes post(sentence)-level and phraselevel attentions for every new summary sentence, and is trained end-to-end.",
                "cite_spans": [
                    {
                        "start": 46,
                        "end": 69,
                        "text": "(Bahdanau et al., 2014)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 126,
                        "end": 150,
                        "text": "(Nallapati et al., 2016;",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 151,
                        "end": 171,
                        "text": "Chopra et al., 2016)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 174,
                        "end": 197,
                        "text": "Nallapati et al. (2016)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Semi-supervised learning has recently gained popularity as it helps training parameters of large models without any training data. Researchers have pre-trained masked language models, in which only an encoder is used to reconstruct the text, e.g., BERT (Devlin et al., 2018) . Liu and Lapata (2019) used BERT as seq2seq encoder and showed improved performance on several abstractive summarization tasks. Similarly, researchers have published pre-trained seq2seq models using a different semi-supervised learning technique, where a seq2seq model is learned to reconstruct the original text, e.g., BART (Lewis et al., 2019) and MASS (Song et al., 2019) . In this work, we rely on transfer learning and demonstrate that by pretraining with appropriate interleaved text data, a seq2seq model readily transfers to a new domain with just a few examples.",
                "cite_spans": [
                    {
                        "start": 253,
                        "end": 274,
                        "text": "(Devlin et al., 2018)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 277,
                        "end": 298,
                        "text": "Liu and Lapata (2019)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 601,
                        "end": 621,
                        "text": "(Lewis et al., 2019)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 631,
                        "end": 650,
                        "text": "(Song et al., 2019)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Our hierarchical encoder (see Figure 1 left hand section) is based on Nallapati et al. (2017) , where word-to-word and post-to-post encoders are bidirectional LSTMs. The word-to-word BiLSTM encoder (E w2w ) runs over word embeddings of post P i and generates a set of hidden representations, h",
                "cite_spans": [
                    {
                        "start": 70,
                        "end": 93,
                        "text": "Nallapati et al. (2017)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 30,
                        "end": 38,
                        "text": "Figure 1",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Model",
                "sec_num": "3"
            },
            {
                "text": "E w2w i,0 , . . . , h E w2w i,p , of d dimensions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": "3"
            },
            {
                "text": "The average pooled value of the word-to-word representations of post",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": "3"
            },
            {
                "text": "P i ( 1 p p j=0 h E w2w i,j",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": "3"
            },
            {
                "text": ") is input to the post-to-post BiLSTM encoder (E t2t ), which then generates a set of representations, h",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": "3"
            },
            {
                "text": "E p2p 0 , . . . , h E p2p n",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": "3"
            },
            {
                "text": ", corresponding to the posts. i.e., word-to-word (E w2w ) followed by post-to-post (E p2p ). On the right, summaries are generated hierarchically, thread-to-thread (D t2t ) followed by word-to-word (D t2t ).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": "3"
            },
            {
                "text": "Overall, for a given channel C , output representations of word-to-word, W, and post-to-post, P, has n\u00d7p\u00d72d and n\u00d72d dimensions respectively. The hierarchical decoder has two uni-directional LSTM decoders, thread-to-thread and word-to-word (see right-hand side in Figure 1 ).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 264,
                        "end": 272,
                        "text": "Figure 1",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Model",
                "sec_num": "3"
            },
            {
                "text": "At step k of thread decoder (D t2t ), we compute elements of post-level attention as",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": "3"
            },
            {
                "text": "\u03b3 k i = \u03c3(attn \u03b3 (h D t2t k\u22121 , P i ) i \u2208 {1, .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": "3"
            },
            {
                "text": ". . , n}, where attn \u03b3 aligns the current thread decoder state vector h D t2t k\u22121 to vectors of matrix P i . A phrase is a short sequences of words in a sentence/post. Phrases in interleaved texts are equivalent to visual patterns in images, and therefore, attending phrases are more relevant for thread recognition than attending posts. Thus, we have phrase-level attentions focusing on words in a channel and with a responsibility of disentangling threads. At step k of thread decoder, we also compute a sequence of attention weights,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": "3"
            },
            {
                "text": "\u03b2 k = \u03b2 k 0,0 , . . . , \u03b2 k n,p , corresponding to the set of encoded word representations, h w2w 0,0 , . . . , h w2w n,p , as \u03b2 k i,j = \u03c3(attn \u03b2 (h D t2t k\u22121 , a i,j )) where a i,j = add(W i,j , P i ), i \u2208 {1, . . . , n}, j \u2208 {1, . . . , p}.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": "3"
            },
            {
                "text": "add aligns a post representation to its word representations and does element-wise addition, and attn \u03b2 maps the current thread decoder state h D t2t k\u22121 and vector a i,j to a scalar value. Then, we use the post-level attention, \u03b3 k , to rescale the sequence of attention weights \u03b2 k to obtain phrase-level atten-",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": "3"
            },
            {
                "text": "tions\u03b2 k as\u03b2 k i,j = \u03b2 k i,j * \u03b3 k i . A weighted representation of the words (crossed blue circle), n i=1 p j=1\u03b2 k i,j W",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": "3"
            },
            {
                "text": "ij , is used as an input to compute the next state of the thread-tothread decoder, D t2t . Additionally, we also use the last hidden state h D w2w k\u22121,q of the word-to-word decoder LSTM (D w2w ) of the previously generated summary sentence as the second input to D t2t .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": "3"
            },
            {
                "text": "The motivation is to provide information about the previous sentence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": "3"
            },
            {
                "text": "The current state h D t2t k is passed through a single layer feedforward network and a distribution over STOP=1 and CONTINUE=0 is computed:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": "3"
            },
            {
                "text": "p ST OP k = \u03c3(g h D t2t k )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": "3"
            },
            {
                "text": ", where g is a feedforward network. In Figure 1 , the process is depicted by a yellow circle. The thread-to-thread decoder keeps decoding until p ST OP k is greater than 0.5.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 39,
                        "end": 47,
                        "text": "Figure 1",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Model",
                "sec_num": "3"
            },
            {
                "text": "Additionally, the new state h D t2t k and inputs to D t2t at that step are passed through a two-layer feedforward network, r, followed by a dropout layer to compute the thread representation s k . Given a thread representation s k , the word-toword decoder, a unidirectional attentional LSTM (D w2w ), generates a summary for the thread; see the right-hand side of Figure 1 . Our word-to-word decoder is based on Bahdanau et al. (2014) .",
                "cite_spans": [
                    {
                        "start": 413,
                        "end": 435,
                        "text": "Bahdanau et al. (2014)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 365,
                        "end": 373,
                        "text": "Figure 1",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Model",
                "sec_num": "3"
            },
            {
                "text": "At step l of word-to-word decoding of summary of thread k, we compute elements of word level attention, i.e., \u03b1 k,l i,\u2022 ; we refer to Bahdanau et al. (2014) for further details on it. However, we use phrase-level word attentions for rescaling the word level attention as\u03b1 k,l i,j = norm(\u03b2 k i,j \u00d7 \u03b1 k,l ij ), where norm (softmax) renormalizes the values. Thus, contrary to popular two-level hierarchical attention (Nallapati et al., 2016; Cheng and Lapata, 2016; Tan et al., 2017) , we have three levels of hierarchical attention and each with its responsibility and is coordinated through the rescaling operation. ",
                "cite_spans": [
                    {
                        "start": 414,
                        "end": 438,
                        "text": "(Nallapati et al., 2016;",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 439,
                        "end": 462,
                        "text": "Cheng and Lapata, 2016;",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 463,
                        "end": 480,
                        "text": "Tan et al., 2017)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": "3"
            },
            {
                "text": "m k=1 q l=1 log p \u03b8 y k,l |w k,\u2022<l , W + \u03bb m k=1 y ST OP k log(p ST OP k )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": "3"
            },
            {
                "text": ", where w k,0 , . . . , w k,q and y k,0 , . . . , y k,q are words in a ground-truth summary and D w2w generation respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": "3"
            },
            {
                "text": "Obtaining labeled training data for interleaved conversation summarization is challenging. The available ones are either extractive Verberne et al. (2018) or too small Anguera et al., 2012) to train a neural model and thoroughly verify the architecture. To get around this issue, we synthesized a dataset by utilizing a corpus of conventional texts for which summaries are available. We created a corpus of interleaved texts from the abstracts and titles of articles from the PubMed corpus (Dernoncourt and Lee, 2017) . We chose PubMed abstracts as it has, in contrast to other corpora such as news articles or StackOverflow posts, a single-sentence summary that can only be comprehended out of a whole abstract. Further, the number of sentences more closely resembles that of a conversationalist in a conversation.",
                "cite_spans": [
                    {
                        "start": 132,
                        "end": 154,
                        "text": "Verberne et al. (2018)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 168,
                        "end": 189,
                        "text": "Anguera et al., 2012)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 490,
                        "end": 517,
                        "text": "(Dernoncourt and Lee, 2017)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Synthetic Dataset",
                "sec_num": "4"
            },
            {
                "text": "Algorithm 1 Interleaving Algorithm 1:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Synthetic Dataset",
                "sec_num": "4"
            },
            {
                "text": "procedure INTERLEAVE(C, a, b, m, n) 2: O, Z \u2190 WINDOW(C, w, t), Array() 3: while O = \u2205 do 4: E, I , M , S \u2190 O.NEXT(), Array(), Array(), {} 5:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Synthetic Dataset",
                "sec_num": "4"
            },
            {
                "text": "r \u223c U(a, b) 6:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Synthetic Dataset",
                "sec_num": "4"
            },
            {
                "text": "for j = 1 to r do Selection 7:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Synthetic Dataset",
                "sec_num": "4"
            },
            {
                "text": "A, T \u2190 E[j] 8:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Synthetic Dataset",
                "sec_num": "4"
            },
            {
                "text": "q \u223c U(m, n) 9:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Synthetic Dataset",
                "sec_num": "4"
            },
            {
                "text": "I .ADD(A[1:q]) 10:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Synthetic Dataset",
                "sec_num": "4"
            },
            {
                "text": "M .ADD(T) 11:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Synthetic Dataset",
                "sec_num": "4"
            },
            {
                "text": "S \u2190 S \u222a {j\u00d7q} 12:\u00ce,M, l \u2190 Array(), Array(), |S| 13:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Synthetic Dataset",
                "sec_num": "4"
            },
            {
                "text": "for 1 to l do Interleaving 14:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Synthetic Dataset",
                "sec_num": "4"
            },
            {
                "text": "k \u2190 U(S) 15:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Synthetic Dataset",
                "sec_num": "4"
            },
            {
                "text": "P \u2190 REVERSE(I [k]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Synthetic Dataset",
                "sec_num": "4"
            },
            {
                "text": ").POP() 16:\u00ce.ADD(P) 17:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Synthetic Dataset",
                "sec_num": "4"
            },
            {
                "text": "T \u2190 M [k] 18:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Synthetic Dataset",
                "sec_num": "4"
            },
            {
                "text": "if T \u2208M then: 19:M.ADD(T) 20:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Synthetic Dataset",
                "sec_num": "4"
            },
            {
                "text": "S \u2190 S \\ k 21: Z.ADD(\u00ce;M) 22:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Synthetic Dataset",
                "sec_num": "4"
            },
            {
                "text": "return Z",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Synthetic Dataset",
                "sec_num": "4"
            },
            {
                "text": "Random interleaving of the sentences from a small number of PubMed abstracts roughly resembles interleaved texts, and, correspondingly, interleaving of titles resembles its multi-sentence summary. We devised an algorithm for creating synthetic interleaved texts based on this idea.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Synthetic Dataset",
                "sec_num": "4"
            },
            {
                "text": "Interleave Algorithm: The Interleave Algorithm generates interleaved texts, each containing randomly interleaved sentences from a small number of abstracts, where the number is a random value within a specified range. The number of sentences used per abstract is also a random value within a specified range. Abstracts to be included in an interleaved text are first selected, then the selected abstracts are interleaved, and finally the interleaved texts together with a concatenation of the titles of the selected abstracts are returned.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Synthetic Dataset",
                "sec_num": "4"
            },
            {
                "text": "We first refer to Table 2 for terms and notations used in Algorithm. 1. INTERLEAVE takes a corpus of abstract-title pairs, C = A 1 ; T 1 , A 2 ; T 2 , . . . , A N ; T N , and returns a sequence of pairs of multi-thread interleaved texts and multi-sentence summaries, Z. Each interleaved text in the generated sequence will contain a number of threads ranging between a to b, where the number is randomly selected. Each thread, in turn, will contain a number of posts or sentences ranging between m and n, where this number is also randomly selected. The WINDOW function is given C, a desired window size, w, and step size, t, and it returns an iterator object, O, of size |N |\u2212w t +1.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 18,
                        "end": 25,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Synthetic Dataset",
                "sec_num": "4"
            },
            {
                "text": "WINDOW helps to enlarge the interleaved corpus without redundancy as abstracts are randomly sampled out of an iterator element, E, and also new abstracts are always included in the next element through sliding. Similarly, sets of sentences are randomly sampled out of the selected abstracts. Thus, interleaved text-summary pairs in the corpus are different. The two parts of the INTERLEAVE algorithm, Selection and Interleaving, will be described next.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Synthetic Dataset",
                "sec_num": "4"
            },
            {
                "text": "Selection: U in step 5 determines the number of threads, r. Then, thread candidates for an interleaved text are chosen out of an iterator element E, a window size sequence of pairs of single-thread texts and single-sentence summaries. Next, post candidates for each selected thread, A, are chosen. U in step 8 determines the number of posts, q. Thread indices are repeated as many times as its posts and stored in a set, S.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Synthetic Dataset",
                "sec_num": "4"
            },
            {
                "text": "Interleaving: In every step in a loop of a size equivalent to the length of indices S, U randomly selects a thread index. REVERSE and POP in step 15 help in selecting a post, P , in the selected thread in a FIFO manner. The single-sentence summary, T, of the thread is added to the multi-sentence summary sequence,M, if it didn't exist previously.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Synthetic Dataset",
                "sec_num": "4"
            },
            {
                "text": "As an interleaved text-summary pair in the corpus has a thread size between a and b and post size per thread between m and n, the larger the difference between a and b and m and n in a corpus, the harder the disentangling and summarization task. So, we vary these parameters and create different synthetic corpora of varying difficulty for the experiments. Table 3 shows an example of a data instance from a Interleaved PubMed corpus compiled using a=2, b=5, m=2 and n=5.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 357,
                        "end": 364,
                        "text": "Table 3",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Synthetic Dataset",
                "sec_num": "4"
            },
            {
                "text": "Parameters: For the word-to-word encoder, the steps are limited to 20, while the steps in the wordto-word decoder are limited to 15. The steps in the post-to-post encoder and thread-to-thread decoder depend on the corpus type, e.g., a Hard corpus compiled using a=2, b=5, m=2 and n=5 has 25 steps in post-to-post encoder, i.e., b\u00d7n (the maximum possible size of posts in an item in the corpus) and 5 steps in thread-to-thread decoder, i.e., b (the maximum possible threads in an item in the corpus). We initialized all weights, including word embeddings, with a random normal distribution with mean 0 and standard deviation 0.1. The embedding vectors and hidden states of the encoder and decoder in the models are set to dimension 100. Texts are lowercased. The vocabulary size is limited to 8000. We pad short sequences with a special token, P AD . We use Adam (Kingma and Ba, 2014) with an initial learning rate of .0001 and batch size of 64 for training. The training, evaluation and test sets in a Hard Interleaved PubMed corpus (a=2, b=5, m=2 and n=5) are of sizes of 170k, 4k and 4k respectively. We report ROUGE-1, ROUGE-2, and ROUGE-L as the quantitative evaluation of the models.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "5"
            },
            {
                "text": "Upper-bound: In upper-bound experiments, we check the impact of disentanglement on the abstractive summarization models. In order to do this, we first evaluate the performance of a model when provided the ground-truth disentanglement (thread indices) information. We also evaluate the performance of models for either end-to-end or two-step summarization.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "5"
            },
            {
                "text": "Ground-truth Disentangled: The ground-truth disentanglement information is used and posts of threads are disentangled and concatenated (posts are thread-wise sequentially arranged, i.e., noninterleaved). The first row in Table 4 shows performance of the hier2hier summarization model. Clearly, the model can easily detect a thread boundary in concatenated threads and perform very well, and therefore, sets an upper bound for the task.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 221,
                        "end": 228,
                        "text": "Table 4",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "5"
            },
            {
                "text": "No disentanglement: In real-world scenarios, i.e., with no disentanglement, Shang et al. (2018) 's unsupervised two-step system first disentangles/clusters the posts thread-wise and then compresses clusters to single-sentence summaries. While hier2hier is trained end-to-end, and therefore, generates multi-sentence summaries for a given interleaved text. Table 4 shows Shang et al. (2018) performs worse than hier2hier (compare rows 2 and 3), indicating that a hier2hier model trained on a sufficiently large dataset is better at summarization than the unsupervised sentence compression method, especially in fluency as indicated by an approximately 12 point increase in Rouge-2. Additionally, the hier2hier model trained on entangled texts achieves slightly lower performance to when it is trained on disentangled texts (compare rows 1 and 3), indicating that the disentanglement component can be avoided if summaries are available. The bottom section in Table 5 show an example of the model generations (shown in color). The top indexes of the phrase-level attention (\u03b2) is directly visualized in the table through the color coding matching the generation. This shows phrase level attention actually supports in learning to disentangle the interleaved texts.",
                "cite_spans": [
                    {
                        "start": 76,
                        "end": 95,
                        "text": "Shang et al. (2018)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 370,
                        "end": 389,
                        "text": "Shang et al. (2018)",
                        "ref_id": "BIBREF22"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 356,
                        "end": 363,
                        "text": "Table 4",
                        "ref_id": "TABREF3"
                    },
                    {
                        "start": 957,
                        "end": 964,
                        "text": "Table 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "5"
            },
            {
                "text": "Transfer Learning: We utilize our interleaving algorithm and PubMed data to compile an interleaved corpus with a similar thread distribution as a corpus of real meetings, the AMI meeting corpus. AMI is a very small size corpus, so we have a train, eval and test split of 112, 10 and 20 respectively. Our analysis of the AMI corpus show that 90% of meetings have \u2264 12 summary sentences while 60% of meetings have \u2265 8 summary sentences, so we used 8 and 12 as the min (a) and max (b) number of threads respectively in the algorithm and create a synthetic corpus. We pretrain the hier2hier model for several iterations on the synthetic corpus, and then transfer and fine-tune the model on the AMI corpus with all parameters fixed except for the word-to-word decoder and hierarchical attention parameters. As PubMed and AMI are from Table 5 : An example of hier2hier generated summary sentences of a three thread interleaved text. Summaries are coloured differently and colors of attended phrases (\u03b2) in the text are identical to those of the generations. The table is best viewed in color. different domains, we use the byte pair encoding (BPE) (Sennrich et al., 2016) based subword dictionary. As shown in Table 6 , hier2hier readily transfers its disentangling knowledge, and therefore, obtains a boost in recall while maintaining its precision. The Li et al. (2019) system has the best ROUGE-1 scores, however their model is not directly comparable as unlike Shang et al. (2018) and our text-based model, it uses audio and video in addition to text.",
                "cite_spans": [
                    {
                        "start": 1142,
                        "end": 1165,
                        "text": "(Sennrich et al., 2016)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 1349,
                        "end": 1365,
                        "text": "Li et al. (2019)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 1459,
                        "end": 1478,
                        "text": "Shang et al. (2018)",
                        "ref_id": "BIBREF22"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 829,
                        "end": 836,
                        "text": "Table 5",
                        "ref_id": null
                    },
                    {
                        "start": 1204,
                        "end": 1211,
                        "text": "Table 6",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "5"
            },
            {
                "text": "Additionally, we also performed transfer learning experiments with models pre-trained for a dif-ferent number of iterations, and as seen in Figure 2 , hier2hier readily transfers its disentangling knowledge, and therefore, obtains a boost in recall while maintaining its precision. However, longer pretraining drives the model to generate shorter summaries similar to PubMed abstracts, and thereby, results in increasing precision and decreasing recall.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 140,
                        "end": 148,
                        "text": "Figure 2",
                        "ref_id": "FIGREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "5"
            },
            {
                "text": "We also experimented with state of the art transformer-based seq2seq models, e.g., Bert-SumExtAbs (Liu and Lapata, 2019) and BART (Lewis et al., 2019) . BertSumExtAbs requires finetuning of the encoder and a de novo training of decoder while both encoder and decoder of BART are only fine-tuned. We use only AMI data for the de novo training and fine-tuning purpose, and the bottom two rows in Table 6 show the results from these models. 1 Although our hier2hier t-learn also only requires fine-tuning of the decoder and hierarchical attention, a highly-sophisticated semisupervised training of both the encoder and decoder of BART and larger model size (100x) yields better performance. However, for applications that have limited memory, as on some mobile devices, our model may be more desirable. Furthermore, despite a pre-trained encoder of BertSumExtAbs, a de novo training of a large size decoder with a tiny AMI data lead to over-fitting, and therefore, lower scores.",
                "cite_spans": [
                    {
                        "start": 98,
                        "end": 120,
                        "text": "(Liu and Lapata, 2019)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 130,
                        "end": 150,
                        "text": "(Lewis et al., 2019)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 394,
                        "end": 401,
                        "text": "Table 6",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "5"
            },
            {
                "text": "Human Evaluation: We also performed a qualitative evaluation of our system using human judgments. Following Chen and Bansal (2018), we performed a comparative evaluation, where we provided six human judges (graduate students fluent in English) with meetings (\u2248 6000 words) and summaries from three sources, i.e., human reference, two-step baseline and hier2hier t-learn (here after referred to as the \"our model\"), and asked them to rate on a scale of 1 to 5 the two questions: 1) is the summary concise, fluent and grammatical (fluency) and 2) does the summary retain key information from the meeting (relevancy)?",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "5"
            },
            {
                "text": "We sampled six meetings (each with three summaries corresponding to three sources), duplicated them, and then randomly sampled two dissimilar meetings and assigned them to each judge to annotate. For reference, an annotation sample would be an ASR transcript and human written summaries 1 Due to the small AMI data size, batch size and initial learning rate of BERTSumExt are set to 8 and 5e-4 respectively, batch size in BERTSumExtAbs is 16 and initial learning rates of BERT and transformer decoder in BERTSumExtAbs are 0.001 and 0.01 respectively. ROUGE-1 ROUGE-2 Model P R F1 P R F1 two-step (Shang et al., 2018) Table 6 : Rouge Scores for summary size 300 words on the AMI Corpus. t-learn=transfer-leaning. BART(base) = BART with 6 encoder and decoder layers and 140M parameters. Li et al. uses audio+video in addition to text and the transformer models (the bottom two rows) have lots of extra data for pre-training. . . . 5) the group discussed the shape of the device and decided to make the device easier. . .",
                "cite_spans": [
                    {
                        "start": 596,
                        "end": 616,
                        "text": "(Shang et al., 2018)",
                        "ref_id": "BIBREF22"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 617,
                        "end": 624,
                        "text": "Table 6",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "5"
            },
            {
                "text": ". . . two-step (Shang et al., 2018) summaries 1) marketing report uh we observed remote control users in a usability lab . . . 7) majority except for the forty five to fifty five year olds for some reason didnt want a voice act speech. . .",
                "cite_spans": [
                    {
                        "start": 15,
                        "end": 35,
                        "text": "(Shang et al., 2018)",
                        "ref_id": "BIBREF22"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "5"
            },
            {
                "text": ". . . 14) headed towards like a b a big yellow and black remote as far as maybe thats our next meeting that we discuss that . . . as in Table 1 and our model and Shang et al. (2018) summaries as in Table 7 . The judges were not shown the source of the summaries. The twelve ratings that we received are converted into two binary comparisons and are summarized in Table 8 . Our model summaries were often judged to be better than the Shang et al. (2018) system summaries in both fluency and relevancy. Gwet's AC1 and Brennan's and Prediger's kappa inter-rater agreement statistics show strong agreement for fluency. 2 However, compared to human summaries, our model summaries were similar in terms of fluency but were lower in terms of relevancy, with interrater statistics indicating fair strength of agreement. We also compared statistics of reference summaries against Our and Shang et al. (2018) model generated summaries of maximum 300 words. We observe our model generates approximately 145 words outputs, which is close to ground-truth human written summaries of size approximately 165 words. However, the Shang et al. (2018) system generates summaries of average 290 words. Further, the median number of threads (number of summaries) of our model, human written summaries and Shang et al. (2018) are 8, 8.5, 17, respectively. This indicates our model is learning to generate human-like summaries, while Shang et al. (2018) aims to distill words up to the permissible limit, and therefore, has high recall and very low precision; see Table 6 . Additionally, our model has twice the Shang et al. (2018) Rouge-2 values, which indicates high readability and was supported by human judges. Further, the difference in number of threads (summaries) between our model and reference are \u2264 3, 2, and 1 for 85%, 65%, and 40% of cases, respectively. This clearly indicates the strength of our hierarchical model in disentangling threads.",
                "cite_spans": [
                    {
                        "start": 162,
                        "end": 181,
                        "text": "Shang et al. (2018)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 879,
                        "end": 898,
                        "text": "Shang et al. (2018)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 1112,
                        "end": 1131,
                        "text": "Shang et al. (2018)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 1283,
                        "end": 1302,
                        "text": "Shang et al. (2018)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 1410,
                        "end": 1429,
                        "text": "Shang et al. (2018)",
                        "ref_id": "BIBREF22"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 136,
                        "end": 143,
                        "text": "Table 1",
                        "ref_id": null
                    },
                    {
                        "start": 198,
                        "end": 205,
                        "text": "Table 7",
                        "ref_id": "TABREF5"
                    },
                    {
                        "start": 363,
                        "end": 370,
                        "text": "Table 8",
                        "ref_id": "TABREF7"
                    },
                    {
                        "start": 1540,
                        "end": 1547,
                        "text": "Table 6",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "5"
            },
            {
                "text": "We investigated the use of an end-to-end hierarchical encoder-decoder model, hier2hier, with three levels of hierarchical attention for jointly summarizing and implicitly disentangling interleaved text. To train this model, we examined the use of pretraining using synthesized data and fine-tuning for adaptation to a new domain with limited labeled real-world data. On real-world AMI data, our fine-tuned end-to-end system outperforms a twostep system by 22% (Rouge-1). Experiments were also conducted against the transformer-based Bert-SumExtAbs and BART systems, which indicate that these transformer models can also summa-rize interleaved texts. Specifically our hier2hier model also outperformed the transformer-based BertSumExtAbs but not BART, which suggests that use of pretraining of both the decoder as well as the encoder is important, and also indicates the utility of our synthetic data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "Gwet's AC(1) and Brennan and Prediger's Kappa adjust the impact of the empirical distributions over the chance agreement, and therefore, are better suited for cases where the proportion of agreements on one class differs from that of another.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Automatic label generation for news comment clusters",
                "authors": [
                    {
                        "first": "Ahmet",
                        "middle": [],
                        "last": "Aker",
                        "suffix": ""
                    },
                    {
                        "first": "Monica",
                        "middle": [],
                        "last": "Paramita",
                        "suffix": ""
                    },
                    {
                        "first": "Emina",
                        "middle": [],
                        "last": "Kurtic",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Funk",
                        "suffix": ""
                    },
                    {
                        "first": "Emma",
                        "middle": [],
                        "last": "Barker",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Hepple",
                        "suffix": ""
                    },
                    {
                        "first": "Rob",
                        "middle": [],
                        "last": "Gaizauskas",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 9th International Natural Language Generation Conference",
                "volume": "",
                "issue": "",
                "pages": "61--69",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ahmet Aker, Monica Paramita, Emina Kurtic, Adam Funk, Emma Barker, Mark Hepple, and Rob Gaizauskas. 2016. Automatic label generation for news comment clusters. In Proceedings of the 9th International Natural Language Generation Confer- ence, pages 61-69.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Speaker diarization: A review of recent research",
                "authors": [
                    {
                        "first": "Xavier",
                        "middle": [],
                        "last": "Anguera",
                        "suffix": ""
                    },
                    {
                        "first": "Simon",
                        "middle": [],
                        "last": "Bozonnet",
                        "suffix": ""
                    },
                    {
                        "first": "Nicholas",
                        "middle": [],
                        "last": "Evans",
                        "suffix": ""
                    },
                    {
                        "first": "Corinne",
                        "middle": [],
                        "last": "Fredouille",
                        "suffix": ""
                    },
                    {
                        "first": "Gerald",
                        "middle": [],
                        "last": "Friedland",
                        "suffix": ""
                    },
                    {
                        "first": "Oriol",
                        "middle": [],
                        "last": "Vinyals",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "IEEE Transactions on Audio, Speech, and Language Processing",
                "volume": "20",
                "issue": "2",
                "pages": "356--370",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xavier Anguera, Simon Bozonnet, Nicholas Evans, Corinne Fredouille, Gerald Friedland, and Oriol Vinyals. 2012. Speaker diarization: A review of re- cent research. IEEE Transactions on Audio, Speech, and Language Processing, 20(2):356-370.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Neural machine translation by jointly learning to align and translate",
                "authors": [
                    {
                        "first": "Dzmitry",
                        "middle": [],
                        "last": "Bahdanau",
                        "suffix": ""
                    },
                    {
                        "first": "Kyunghyun",
                        "middle": [],
                        "last": "Cho",
                        "suffix": ""
                    },
                    {
                        "first": "Yoshua",
                        "middle": [],
                        "last": "Bengio",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to align and translate. CoRR, abs/1409.0473.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "The sensei annotated corpus: Human summaries of reader comment conversations in on-line news",
                "authors": [
                    {
                        "first": "Emma",
                        "middle": [],
                        "last": "Barker",
                        "suffix": ""
                    },
                    {
                        "first": "Monica",
                        "middle": [
                            "Lestari"
                        ],
                        "last": "Paramita",
                        "suffix": ""
                    },
                    {
                        "first": "Ahmet",
                        "middle": [],
                        "last": "Aker",
                        "suffix": ""
                    },
                    {
                        "first": "Emina",
                        "middle": [],
                        "last": "Kurtic",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Hepple",
                        "suffix": ""
                    },
                    {
                        "first": "Robert",
                        "middle": [],
                        "last": "Gaizauskas",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 17th annual meeting of the special interest group on discourse and dialogue",
                "volume": "",
                "issue": "",
                "pages": "42--52",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Emma Barker, Monica Lestari Paramita, Ahmet Aker, Emina Kurtic, Mark Hepple, and Robert Gaizauskas. 2016. The sensei annotated corpus: Human sum- maries of reader comment conversations in on-line news. In Proceedings of the 17th annual meeting of the special interest group on discourse and dialogue, pages 42-52.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Fast abstractive summarization with reinforce-selected sentence rewriting",
                "authors": [
                    {
                        "first": "Yen-Chun",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Mohit",
                        "middle": [],
                        "last": "Bansal",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "675--686",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P18-1063"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yen-Chun Chen and Mohit Bansal. 2018. Fast abstrac- tive summarization with reinforce-selected sentence rewriting. In Proceedings of the 56th Annual Meet- ing of the Association for Computational Linguis- tics (Volume 1: Long Papers), pages 675-686, Mel- bourne, Australia. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Neural summarization by extracting sentences and words",
                "authors": [
                    {
                        "first": "Jianpeng",
                        "middle": [],
                        "last": "Cheng",
                        "suffix": ""
                    },
                    {
                        "first": "Mirella",
                        "middle": [],
                        "last": "Lapata",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "484--494",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jianpeng Cheng and Mirella Lapata. 2016. Neural sum- marization by extracting sentences and words. In Proceedings of the 54th Annual Meeting of the As- sociation for Computational Linguistics (Volume 1: Long Papers), pages 484-494.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Abstractive sentence summarization with attentive recurrent neural networks",
                "authors": [
                    {
                        "first": "Sumit",
                        "middle": [],
                        "last": "Chopra",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Auli",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [
                            "M"
                        ],
                        "last": "Rush",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "The 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "93--98",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sumit Chopra, Michael Auli, and Alexander M. Rush. 2016. Abstractive sentence summarization with at- tentive recurrent neural networks. In NAACL HLT 2016, The 2016 Conference of the North American Chapter of the Association for Computational Lin- guistics: Human Language Technologies, San Diego California, USA, June 12-17, 2016, pages 93-98. The Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Pubmed 200k rct: a dataset for sequential sentence classification in medical abstracts",
                "authors": [
                    {
                        "first": "Franck",
                        "middle": [],
                        "last": "Dernoncourt",
                        "suffix": ""
                    },
                    {
                        "first": "Ji",
                        "middle": [
                            "Young"
                        ],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the Eighth International Joint Conference on Natural Language Processing",
                "volume": "2",
                "issue": "",
                "pages": "308--313",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Franck Dernoncourt and Ji Young Lee. 2017. Pubmed 200k rct: a dataset for sequential sentence classi- fication in medical abstracts. In Proceedings of the Eighth International Joint Conference on Natu- ral Language Processing (Volume 2: Short Papers), pages 308-313. Asian Federation of Natural Lan- guage Processing.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Bert: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1810.04805"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understand- ing. arXiv preprint arXiv:1810.04805.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "On the automatic generation of medical imaging reports",
                "authors": [
                    {
                        "first": "Baoyu",
                        "middle": [],
                        "last": "Jing",
                        "suffix": ""
                    },
                    {
                        "first": "Pengtao",
                        "middle": [],
                        "last": "Xie",
                        "suffix": ""
                    },
                    {
                        "first": "Eric",
                        "middle": [],
                        "last": "Xing",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "2577--2586",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Baoyu Jing, Pengtao Xie, and Eric Xing. 2018. On the automatic generation of medical imaging reports. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2577-2586. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Adam: A method for stochastic optimization",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Diederik",
                        "suffix": ""
                    },
                    {
                        "first": "Jimmy",
                        "middle": [],
                        "last": "Kingma",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ba",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. CoRR, abs/1412.6980.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "A hierarchical approach for generating descriptive image paragraphs",
                "authors": [
                    {
                        "first": "Jonathan",
                        "middle": [],
                        "last": "Krause",
                        "suffix": ""
                    },
                    {
                        "first": "Justin",
                        "middle": [],
                        "last": "Johnson",
                        "suffix": ""
                    },
                    {
                        "first": "Ranjay",
                        "middle": [],
                        "last": "Krishna",
                        "suffix": ""
                    },
                    {
                        "first": "Li",
                        "middle": [],
                        "last": "Fei-Fei",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Computer Vision and Patterm Recognition (CVPR)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jonathan Krause, Justin Johnson, Ranjay Krishna, and Li Fei-Fei. 2017. A hierarchical approach for gen- erating descriptive image paragraphs. In Computer Vision and Patterm Recognition (CVPR).",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Bart: Denoising sequence-to-sequence pretraining for natural language generation, translation, and comprehension",
                "authors": [
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Lewis",
                        "suffix": ""
                    },
                    {
                        "first": "Yinhan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Naman",
                        "middle": [],
                        "last": "Goyal ; Abdelrahman Mohamed",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "Veselin",
                        "middle": [],
                        "last": "Stoyanov",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1910.13461"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Mike Lewis, Yinhan Liu, Naman Goyal, Mar- jan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2019. Bart: Denoising sequence-to-sequence pre- training for natural language generation, trans- lation, and comprehension. arXiv preprint arXiv:1910.13461.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "A hierarchical neural autoencoder for paragraphs and documents",
                "authors": [
                    {
                        "first": "Jiwei",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Thang",
                        "middle": [],
                        "last": "Luong",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Jurafsky",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing",
                "volume": "1",
                "issue": "",
                "pages": "1106--1115",
                "other_ids": {
                    "DOI": [
                        "10.3115/v1/P15-1107"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jiwei Li, Thang Luong, and Dan Jurafsky. 2015. A hierarchical neural autoencoder for paragraphs and documents. In Proceedings of the 53rd Annual Meet- ing of the Association for Computational Linguis- tics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Pa- pers), pages 1106-1115. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Keep meeting summaries on topic: Abstractive multi-modal meeting summarization",
                "authors": [
                    {
                        "first": "Manling",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Lingyu",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Ji",
                        "middle": [],
                        "last": "Heng",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [
                            "J"
                        ],
                        "last": "Radke",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "2190--2196",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1210"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Manling Li, Lingyu Zhang, Heng Ji, and Richard J. Radke. 2019. Keep meeting summaries on topic: Abstractive multi-modal meeting summarization. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2190-2196, Florence, Italy. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Text summarization with pretrained encoders",
                "authors": [
                    {
                        "first": "Yang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Mirella",
                        "middle": [],
                        "last": "Lapata",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "3730--3740",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1387"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yang Liu and Mirella Lapata. 2019. Text summariza- tion with pretrained encoders. In Proceedings of the 2019 Conference on Empirical Methods in Nat- ural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3730-3740, Hong Kong, China. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Topic-driven reader comments summarization",
                "authors": [
                    {
                        "first": "Zongyang",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Aixin",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "Quan",
                        "middle": [],
                        "last": "Yuan",
                        "suffix": ""
                    },
                    {
                        "first": "Gao",
                        "middle": [],
                        "last": "Cong",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the 21st ACM international conference on Information and knowledge management",
                "volume": "",
                "issue": "",
                "pages": "265--274",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zongyang Ma, Aixin Sun, Quan Yuan, and Gao Cong. 2012. Topic-driven reader comments summariza- tion. In Proceedings of the 21st ACM international conference on Information and knowledge manage- ment, pages 265-274. ACM.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "The ami meeting corpus",
                "authors": [
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Mccowan",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Carletta",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Kraaij",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Ashby",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Bourban",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Flynn",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Guillemot",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Hain",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Kadlec",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Karaiskos",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Kronenthal",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Lathoud",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Lincoln",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Lisowska",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Post",
                        "suffix": ""
                    },
                    {
                        "first": "Dennis",
                        "middle": [],
                        "last": "Reidsma",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Wellner",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of Measuring Behavior 2005, 5th International Conference on Methods and Techniques in Behavioral Research",
                "volume": "",
                "issue": "",
                "pages": "137--140",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "I. McCowan, J. Carletta, W. Kraaij, S. Ashby, S. Bour- ban, M. Flynn, M. Guillemot, T. Hain, J. Kadlec, V. Karaiskos, M. Kronenthal, G. Lathoud, M. Lin- coln, A. Lisowska, W. Post, Dennis Reidsma, and P. Wellner. 2005. The ami meeting corpus. In Pro- ceedings of Measuring Behavior 2005, 5th Interna- tional Conference on Methods and Techniques in Be- havioral Research, pages 137-140. Noldus Informa- tion Technology.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Summarunner: A recurrent neural network based sequence model for extractive summarization of documents",
                "authors": [
                    {
                        "first": "Ramesh",
                        "middle": [],
                        "last": "Nallapati",
                        "suffix": ""
                    },
                    {
                        "first": "Feifei",
                        "middle": [],
                        "last": "Zhai",
                        "suffix": ""
                    },
                    {
                        "first": "Bowen",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "AAAI Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017. Summarunner: A recurrent neural network based se- quence model for extractive summarization of doc- uments. In AAAI Conference on Artificial Intelli- gence.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Abstractive text summarization using sequence-tosequence rnns and beyond",
                "authors": [
                    {
                        "first": "Ramesh",
                        "middle": [],
                        "last": "Nallapati",
                        "suffix": ""
                    },
                    {
                        "first": "Bowen",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "C\u00edcero",
                        "middle": [],
                        "last": "Nogueira",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Santos",
                        "suffix": ""
                    },
                    {
                        "first": "Bing",
                        "middle": [],
                        "last": "Aglar G\u00fcl\u00e7ehre",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Xiang",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning",
                "volume": "",
                "issue": "",
                "pages": "280--290",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ramesh Nallapati, Bowen Zhou, C\u00edcero Nogueira dos Santos, \u00c7 aglar G\u00fcl\u00e7ehre, and Bing Xiang. 2016. Abstractive text summarization using sequence-to- sequence rnns and beyond. In Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning, CoNLL 2016, Berlin, Germany, August 11-12, 2016, pages 280-290. ACL.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "A neural attention model for abstractive sentence summarization",
                "authors": [
                    {
                        "first": "Alexander",
                        "middle": [
                            "M"
                        ],
                        "last": "Rush",
                        "suffix": ""
                    },
                    {
                        "first": "Sumit",
                        "middle": [],
                        "last": "Chopra",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Weston",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "379--389",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alexander M. Rush, Sumit Chopra, and Jason Weston. 2015. A neural attention model for abstractive sen- tence summarization. In Proceedings of the 2015 Conference on Empirical Methods in Natural Lan- guage Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, pages 379-389. The Asso- ciation for Computational Linguistics.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Neural machine translation of rare words with subword units",
                "authors": [
                    {
                        "first": "Rico",
                        "middle": [],
                        "last": "Sennrich",
                        "suffix": ""
                    },
                    {
                        "first": "Barry",
                        "middle": [],
                        "last": "Haddow",
                        "suffix": ""
                    },
                    {
                        "first": "Alexandra",
                        "middle": [],
                        "last": "Birch",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "1715--1725",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P16-1162"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation of rare words with subword units. In Proceedings of the 54th An- nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1715- 1725, Berlin, Germany. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Unsupervised abstractive meeting summarization with multisentence compression and budgeted submodular maximization",
                "authors": [
                    {
                        "first": "Guokan",
                        "middle": [],
                        "last": "Shang",
                        "suffix": ""
                    },
                    {
                        "first": "Wensi",
                        "middle": [],
                        "last": "Ding",
                        "suffix": ""
                    },
                    {
                        "first": "Zekun",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Antoine",
                        "middle": [],
                        "last": "Tixier",
                        "suffix": ""
                    },
                    {
                        "first": "Polykarpos",
                        "middle": [],
                        "last": "Meladianos",
                        "suffix": ""
                    },
                    {
                        "first": "Michalis",
                        "middle": [],
                        "last": "Vazirgiannis",
                        "suffix": ""
                    },
                    {
                        "first": "Jean-Pierre",
                        "middle": [],
                        "last": "Lorr\u00e9",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "664--674",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Guokan Shang, Wensi Ding, Zekun Zhang, An- toine Tixier, Polykarpos Meladianos, Michalis Vazir- giannis, and Jean-Pierre Lorr\u00e9. 2018. Unsuper- vised abstractive meeting summarization with multi- sentence compression and budgeted submodular maximization. In Proceedings of the 56th Annual Meeting of the Association for Computational Lin- guistics (Volume 1: Long Papers), pages 664-674. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Mass: Masked sequence to sequence pre-training for language generation",
                "authors": [
                    {
                        "first": "Kaitao",
                        "middle": [],
                        "last": "Song",
                        "suffix": ""
                    },
                    {
                        "first": "Xu",
                        "middle": [],
                        "last": "Tan",
                        "suffix": ""
                    },
                    {
                        "first": "Tao",
                        "middle": [],
                        "last": "Qin",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    },
                    {
                        "first": "Tie-Yan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1905.02450"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie- Yan Liu. 2019. Mass: Masked sequence to sequence pre-training for language generation. arXiv preprint arXiv:1905.02450.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "From neural sentence summarization to headline generation: A coarse-to-fine approach",
                "authors": [
                    {
                        "first": "Jiwei",
                        "middle": [],
                        "last": "Tan",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaojun",
                        "middle": [],
                        "last": "Wan",
                        "suffix": ""
                    },
                    {
                        "first": "Jianguo",
                        "middle": [],
                        "last": "Xiao",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "IJCAI",
                "volume": "",
                "issue": "",
                "pages": "4109--4115",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jiwei Tan, Xiaojun Wan, and Jianguo Xiao. 2017. From neural sentence summarization to headline generation: A coarse-to-fine approach. In IJCAI, pages 4109-4115.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Creating a reference data set for the summarization of discussion forum threads",
                "authors": [
                    {
                        "first": "Suzan",
                        "middle": [],
                        "last": "Verberne",
                        "suffix": ""
                    },
                    {
                        "first": "Emiel",
                        "middle": [],
                        "last": "Krahmer",
                        "suffix": ""
                    },
                    {
                        "first": "Iris",
                        "middle": [],
                        "last": "Hendrickx",
                        "suffix": ""
                    },
                    {
                        "first": "Sander",
                        "middle": [],
                        "last": "Wubben",
                        "suffix": ""
                    },
                    {
                        "first": "Antal",
                        "middle": [],
                        "last": "Van Den",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Bosch",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Language Resources and Evaluation",
                "volume": "",
                "issue": "",
                "pages": "1--23",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Suzan Verberne, Emiel Krahmer, Iris Hendrickx, Sander Wubben, and Antal van Den Bosch. 2018. Creating a reference data set for the summarization of discussion forum threads. Language Resources and Evaluation, pages 1-23.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Contextbased message expansion for disentanglement of interleaved text conversations",
                "authors": [
                    {
                        "first": "Lidan",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Douglas",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Oard",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of human language technologies: The 2009 annual conference of the North American chapter of the association for computational linguistics",
                "volume": "",
                "issue": "",
                "pages": "200--208",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lidan Wang and Douglas W Oard. 2009. Context- based message expansion for disentanglement of in- terleaved text conversations. In Proceedings of hu- man language technologies: The 2009 annual con- ference of the North American chapter of the associ- ation for computational linguistics, pages 200-208. Association for Computational Linguistics.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "text": "Ma et al. (2012); Aker et al. (2016); Shang et al.",
                "type_str": "figure",
                "num": null
            },
            "FIGREF1": {
                "uris": null,
                "text": "Hierarchical encoder-decoder architecture. On the left, interleaved posts are encoded hierarchically,",
                "type_str": "figure",
                "num": null
            },
            "FIGREF2": {
                "uris": null,
                "text": "Interleaved text \u03c0 . . . conducted to evaluate the influence of excessive sweating during long-distance running on the urinary concentration of caffeine. . . \u03c9 . . . to assess the effect of a program of supervised fitness walking and patient education on functional status. . . . . . \u03c0 . . . 102 patients with a documented diagnosis of primary osteoarthritis of one or both knees participated. . . \u03c6 . . . examined the effects of intensity of training on ratings of perceived exertion (. . . . . . Summary \u03c0 caffeine in sport. influence of endurance exercise on the urinary caffeine concentration. \u03c9 supervised fitness walking in patients with osteoarthritis of the knee. a randomized , controlled trial. \u03c6 the effect of training intensity on ratings of perceived exertion.",
                "type_str": "figure",
                "num": null
            },
            "FIGREF3": {
                "uris": null,
                "text": "conducted to evaluate the influence of excessive sweating during long-distance running on the urinary concentration of caffeine. . . . . . to assess the effect of a program of supervised fitness walking and patient education on functional status. . . . . . . . . 102 patients with a documented diagnosis of primary osteoarthritis of one or both knees participated. . . . . . examined the effects of intensity of training on ratings of perceived exertion (. . . . . . Generation effect of excessive [UNK] during [UNK] running on the urinary concentration of caffeine . effect of a physical fitness walking on functional status , pain , and pain effects of intensity of training on perceived [UNK] in [UNK] athletes .",
                "type_str": "figure",
                "num": null
            },
            "FIGREF4": {
                "uris": null,
                "text": "ROUGE uni-and bi-gram precision (green)   and recall (blue) of AMI fine-tuned hier2hier models with different numbers of pretraining iterations. Maximum words in a summary is 300. As a reference, solid horizontal lines show the scores of a model trained only on AMI.",
                "type_str": "figure",
                "num": null
            },
            "FIGREF5": {
                "uris": null,
                "text": "h2h t-learn summaries 1) the project manager opened the meeting and went over the minutes of the previous. . .. . . 3) the industrial designer discussed the interior workings of a remote and the team. . .",
                "type_str": "figure",
                "num": null
            },
            "TABREF1": {
                "text": "We use lowercase italics for variables, uppercase italics for sets and sequences, math symbols for mathematical operations and uppercase words for methods.",
                "content": "<table/>",
                "html": null,
                "num": null,
                "type_str": "table"
            },
            "TABREF2": {
                "text": "An example of a synthetic Interleaved text and summary pair compiled using PubMed corpus and Algorithm. 1. It includes three threads (abstracts) identifiable through superscribed symbols \u03c0, \u03c9, and \u03c6.",
                "content": "<table><tr><td>Input Text</td><td>Model</td><td colspan=\"3\">Rouge-1 Rouge-2 Rouge-L</td></tr><tr><td colspan=\"2\">dis (upper bd) hier2hier</td><td>39.09</td><td>30.11</td><td>15.22</td></tr><tr><td colspan=\"2\">(Shang et al., 2018)</td><td>29.11</td><td>15.76</td><td>10.13</td></tr><tr><td>ent</td><td>hier2hier</td><td>37.11</td><td>27.97</td><td>14.26</td></tr></table>",
                "html": null,
                "num": null,
                "type_str": "table"
            },
            "TABREF3": {
                "text": "",
                "content": "<table><tr><td>: Synthetic interleaved text summarization</td></tr><tr><td>performance (Rouge Recall-Scores) comparing models</td></tr><tr><td>when the threads are disentangled (top section, upper</td></tr><tr><td>bound) and when the threads are entangled (bottom sec-</td></tr><tr><td>tion, real-world) on an Interleaved PubMed Corpus. dis</td></tr><tr><td>= disentangled (ground-truth) and ent = entangled.</td></tr></table>",
                "html": null,
                "num": null,
                "type_str": "table"
            },
            "TABREF4": {
                "text": "34.61 41.84 37.37 6.92 8.29 7.45 hier2hier 46.30 38.17 41.30 14.84 12.23 13.13 hier2hier t-learn 47.68 44.37 45.56 16.02 14.98 15.35 (Li et al., 2019) --53.29 --13.51 BertSumExtAbs 55.95 36.21 43.24 18.35 12.16 14.39 BART(base) 42.17 59.19 49.03 16.52 23.05 19.15",
                "content": "<table/>",
                "html": null,
                "num": null,
                "type_str": "table"
            },
            "TABREF5": {
                "text": "The top and bottom sections show our hierarchical and the Shang et al. (2018) system summaries respectively for ASR transcripts inTable 1. a) refer to the a th sentence in a multi-sentence summary.",
                "content": "<table/>",
                "html": null,
                "num": null,
                "type_str": "table"
            },
            "TABREF7": {
                "text": "Comparative ratings by human judges of summaries on fluency and relevancy metrics. gwet ac1 and bp refer to Gwet's AC(1) and Brennan-Prediger Kappa coefficients respectively.",
                "content": "<table/>",
                "html": null,
                "num": null,
                "type_str": "table"
            }
        }
    }
}