File size: 47,342 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T02:10:58.689711Z"
    },
    "title": "An Empirical Study of Compound PCFGs",
    "authors": [
        {
            "first": "Yanpeng",
            "middle": [],
            "last": "Zhao",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Ivan",
            "middle": [],
            "last": "Titov Eae",
            "suffix": "",
            "affiliation": {},
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Compound probabilistic context-free grammars (C-PCFGs) have recently established a new state of the art for phrase-structure grammar induction. However, due to the high timecomplexity of chart-based representation and inference, it is difficult to investigate them comprehensively. In this work, we rely on a fast implementation of C-PCFGs to conduct evaluation complementary to that of Kim et al. (2019). We highlight three key findings: (1) C-PCFGs are data-efficient, (2) C-PCFGs make the best use of global sentence-level information in preterminal rule probabilities, and (3) the best configurations of C-PCFGs on English do not always generalize to morphology-rich languages.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Compound probabilistic context-free grammars (C-PCFGs) have recently established a new state of the art for phrase-structure grammar induction. However, due to the high timecomplexity of chart-based representation and inference, it is difficult to investigate them comprehensively. In this work, we rely on a fast implementation of C-PCFGs to conduct evaluation complementary to that of Kim et al. (2019). We highlight three key findings: (1) C-PCFGs are data-efficient, (2) C-PCFGs make the best use of global sentence-level information in preterminal rule probabilities, and (3) the best configurations of C-PCFGs on English do not always generalize to morphology-rich languages.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Probabilistic context-free grammars (PCFGs) have been used for unsupervised constituency grammar learning since decades ago (Lari and Young, 1990) , while learning PCFGs with the Expectation Maximization algorithm (Dempster et al., 1977) has been difficult as being involving non-convex optimization. Recently, Kim et al. (2019) propose compound PCFGs, an over-parameterized neural model that extends corpus-level PCFGs by defining a mixture of PCFGs per sentence. C-PCFGs have achieved the state-of-the-art performance on English and Chinese treebanks. They are also shown to be effective in a visually-grounded learning setting (Zhao and Titov, 2020) . However, because of the high time-complexity of chart-based representation and inference, it is hard to inspect C-PCFGs comprehensively.",
                "cite_spans": [
                    {
                        "start": 124,
                        "end": 146,
                        "text": "(Lari and Young, 1990)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 214,
                        "end": 237,
                        "text": "(Dempster et al., 1977)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 311,
                        "end": 328,
                        "text": "Kim et al. (2019)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 630,
                        "end": 652,
                        "text": "(Zhao and Titov, 2020)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this work, we rely on a fast implementation 1 of C-PCFGs to conduct a set of experiments complementary to those of Kim et al. (2019) . Our 1 https://github.com/zhaoyanpeng/cpcfg. first experiment concerns data efficiency and length generalization of C-PCFGs. We empirically find that though trained only on short sentences, e.g., shorter than 30 tokens, C-PCFGs can generalize to longer sentences while maintaining high performance (54.8% F1) at test time. We further investigate which factors contribute to the good performance of C-PCFGs. Since a major difference between C-PCFGs and vanilla PCFGs is that C-PCFGs define sentence-dependent rule probabilities by using global sentence-level information, we ablate C-PCFGs by removing it from start, preterminal, and nonterminal rules, 2 individually. Our experimental results show that sentence-level information is most effective for preterminal rules. Despite the impressive performance of C-PCFGs on English, it is still unclear whether they can generalize to other languages. We thus conduct multilingual evaluation of C-PCFGs on the SPMRL dataset (Seddah et al., 2014) . The experimental results suggest that the best configurations of C-PCFGs on English do not necessarily generalize to morphology-rich languages.",
                "cite_spans": [
                    {
                        "start": 118,
                        "end": 135,
                        "text": "Kim et al. (2019)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 1106,
                        "end": 1127,
                        "text": "(Seddah et al., 2014)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Compound PCFGs provide a novel parameterization of PCFGs. Unlike PCFGs, which assign each grammar rule r a non-negative scalar \u03c0 r such that r:A \u03b3 \u03c0 r = 1 for each given left-hand-side symbol A, C-PCFGs relax the strong context-free assumption of PCFGs by assuming that rule probabilities follow a compound distribution:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compound PCFGs",
                "sec_num": "2"
            },
            {
                "text": "\u03c0 r = g r (z; \u03b8), z \u223c p(z) ,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compound PCFGs",
                "sec_num": "2"
            },
            {
                "text": "where p(z) is a prior distribution and allows for capturing interdependencies between the rules; g r (z; \u03b8) takes a latent z as input and incorporates the interdependencies into rule probabilities. Typically, g r (z; \u03b8) is parameterized by flexible neural networks and is amenable to gradient-based optimization techniques (we refer interested readers to Kim et al. (2019) for the detailed parameterization).",
                "cite_spans": [
                    {
                        "start": 355,
                        "end": 372,
                        "text": "Kim et al. (2019)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compound PCFGs",
                "sec_num": "2"
            },
            {
                "text": "Learning C-PCFGs is formalized as maximizing the log likelihood of each observed sentence w = w 1 w 2 . . . w n :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compound PCFGs",
                "sec_num": "2"
            },
            {
                "text": "log p \u03b8 (w) = log z t\u2208T G (w) p \u03b8 (t|z)p(z) dz ,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compound PCFGs",
                "sec_num": "2"
            },
            {
                "text": "where T G (w) consists of all parses of a sentence w under a PCFG G. As standard in learning latent variable models, C-PCFGs resort to variational inference for tractable learning and instead maximize the evidence lower bound (ELBO):",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compound PCFGs",
                "sec_num": "2"
            },
            {
                "text": "log p \u03b8 (w) \u2265 ELBO(w; \u03c6, \u03b8) = E q \u03c6 (z|w) [log p \u03b8 (w|z)] \u2212 KL[q \u03c6 (z|w)||p(z)] ,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compound PCFGs",
                "sec_num": "2"
            },
            {
                "text": "where the first term computes the expected log likelihood under a variational posterior q \u03c6 (z|w); the KL term can be estimated analytically when p(z) and q \u03c6 (z|w) are normally distributed. q \u03c6 (z|w) is parameterized by a neural network and defines a distribution over the latent z.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compound PCFGs",
                "sec_num": "2"
            },
            {
                "text": "C-PCFGs satisfy the context-free assumption conditioned on z and thus admit tractable inference for each given z. Inference with C-PCFGs seeks the most probable parse t * of w:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compound PCFGs",
                "sec_num": "2"
            },
            {
                "text": "t * = argmax z p \u03b8 (t|w, z)p \u03b8 (z|w) dz .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compound PCFGs",
                "sec_num": "2"
            },
            {
                "text": "Though given z, the maximum a posterior (MAP) inference over p \u03b8 (t|w, z) can be exactly solved by using the CYK algorithm, the integral over z renders inference intractable. The MAP inference is instead approximated by:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compound PCFGs",
                "sec_num": "2"
            },
            {
                "text": "t * \u2248 argmax z p \u03b8 (t|w, z)\u03b4(z \u2212 \u00b5 \u03c6 (w)) dz ,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compound PCFGs",
                "sec_num": "2"
            },
            {
                "text": "where \u03b4(\u2022) is the Dirac delta function and \u00b5 \u03c6 (w) is the mean vector of the variational posterior.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compound PCFGs",
                "sec_num": "2"
            },
            {
                "text": "Similarly to C-PCFGs, neural PCFGs (N-PCFGs) also use neural networks to parameterize PCFGs, but their parameterization does not rely on the sentence-dependent z. In the following discussion, we will refer to z as 'sentence embedding'.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compound PCFGs",
                "sec_num": "2"
            },
            {
                "text": "Datasets: We investigate the parsing performance of C-PCFGs across ten languages. Specifically, we conduct experiments on the Wall Street Journal (WSJ) corpus of the Penn Treebank (Marcus et al., 1994) for English, the Penn Chinese Treebank 5.1 (CTB) (Xue et al., 2005) for Chinese, and eight additional treebanks from the SPMRL 2014 shared task (Seddah et al., 2014) for the other eight languages (Basque, German, French, Hebrew, Hungarian, Korean, Polish, Swedish). We use the standard data splits for each treebank. Following Kim et al. (2019) , punctuation is removed from all data; the top 10000 frequent tokens in the training data of each treebank are kept as the vocabulary. 3 Unless otherwise specified, we train C-PCFGs on sentences no longer than 40 tokens.",
                "cite_spans": [
                    {
                        "start": 180,
                        "end": 201,
                        "text": "(Marcus et al., 1994)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 251,
                        "end": 269,
                        "text": "(Xue et al., 2005)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 346,
                        "end": 367,
                        "text": "(Seddah et al., 2014)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 529,
                        "end": 546,
                        "text": "Kim et al. (2019)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental setup",
                "sec_num": "3"
            },
            {
                "text": "We re-implement C-PCFGs relying on Torch-Struct (Rush, 2020) and adopt the same hyperparameter settings as in Kim et al. (2019) . We train C-PCFGs for each language separately. On each treebank we run C-PCFGs four times with different random seeds and for 30 epochs. The best model in each run is selected according to the perplexity on the validation data. At test time, trivial spans, such as single-word and sentence-level spans, are ignored. We report average corpus-and sentence-level F1 numbers as well as the unbiased standard deviations.",
                "cite_spans": [
                    {
                        "start": 48,
                        "end": 60,
                        "text": "(Rush, 2020)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 110,
                        "end": 127,
                        "text": "Kim et al. (2019)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model hyperparameters and evaluation:",
                "sec_num": null
            },
            {
                "text": "We compare C-PCFGs against three trivial baselines (left-/ right-branching model and random trees) and a neural PCFG model. In short, C-PCFGs beats all baselines in terms of corpus-and sentence-level F1 (see the second row of Table 1 ). Our re-implementation of C-PCFGs reaches the highest sentence-level F1, slightly outperforming the model of Kim et al. (2019) by 0.5% F1. To give an in-depth analysis of the model gains, we present recall numbers on six most frequent constituent labels in the test data (NP, VP, PP, SBAR, ADJP, ADVP). Unsurprisingly, C-PCFGs achieve the best recall for most labels (4 out of 6 constituent labels). However, on verb phrases (VPs) they fall far behind the right-branching baseline (-30 Table 1 : Recall on six frequent constituent labels (NP, VP, PP, SBAR, ADJP, ADVP) in the WSJ test data, corpuslevel F1 (C-F1), and sentence-level F1 (S-F1) results. The best mean number in each column is in bold. \u2020 denotes results reported by Kim et al. (2019) . L# indicates that the models are trained on sentences no longer than # tokens. recall), presumably because VPs are longer and involve more complex linguistic structures. We further plot distributions of the six labels across constituent lengths (see Figure 1) . We can see that VPs are nearly uniformly distributed over different constituent lengths. In contrast, noun phrases (NPs) account for 61% of short constituents that have less than 6 tokens and cover 51% of total constituents. It suggests that C-PCFGs can recognize local and short constituents with a high accuracy but struggles with long constituents; there is clearly a room for improvement on VPs. 0.03 0.04 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.14 0.09 0.07 0.05 0.04 0.04 0.03 0.02 0.02 0.02 ",
                "cite_spans": [
                    {
                        "start": 345,
                        "end": 362,
                        "text": "Kim et al. (2019)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 717,
                        "end": 721,
                        "text": "(-30",
                        "ref_id": null
                    },
                    {
                        "start": 966,
                        "end": 983,
                        "text": "Kim et al. (2019)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 226,
                        "end": 233,
                        "text": "Table 1",
                        "ref_id": null
                    },
                    {
                        "start": 722,
                        "end": 729,
                        "text": "Table 1",
                        "ref_id": null
                    },
                    {
                        "start": 1236,
                        "end": 1245,
                        "text": "Figure 1)",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Main results",
                "sec_num": "4.1"
            },
            {
                "text": "A crucial aspect of human languages is their compositionality. Humans can derive grammar rules from a few sentences and combine the rules to generate new sentences compositionally. As C-PCFGs are backed by context-free grammar, we hypothesize that C-PCFGs are data-efficient and have a good generalizability to unseen sentences and constituents.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data efficiency and length generalization",
                "sec_num": "4.2"
            },
            {
                "text": "We design a length-generalization test to verify our hypothesis. Specifically, we train C-PCFGs using training sentences of length equal to or below a chosen sentence length. We choose five sentence lengths, 10, 20, 30, 40 and 50, indicated by L10, L20, L30, L40 and L50, respectively (see the third row of Table 1)). Figure 3 illustrates sentence-level F1 numbers on the test data of WSJ. Overall, training C-PCFGs on more / longer sentences results in higher F1 numbers. But using training sentences longer than 40 tokens only trivially improves the performance (+0.2% F1). Given that 97% test sentences are shorter than 40 tokens, we conjecture that training sentences shorter than 40 tokens can adequately cover lexical / structural characteristics in the test data. On the other hand, longer sentences have a larger tree space and probably make it harder for the model to learn. Notably, discarding training sentences longer than 30 tokens only decreases the model performance by 1.2% F1, suggesting that C-PCFGs are data-efficient.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 318,
                        "end": 326,
                        "text": "Figure 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Data efficiency and length generalization",
                "sec_num": "4.2"
            },
            {
                "text": "We also conduct a constituent-length generalization test to study the generalizability of C-PCFGs on unseen long constituents. Since the test data of WSJ is too small to provide reliable statistics across constituent lengths, we test C-PCFGs on training sentences and report F1 numbers across constituent lengths (see Figure 2) . In general, F1 numbers become lower as constituent length increases. This is reasonable because large constituents merge from small constituents; errors in small constituents accumulate when composing larger constituents.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 318,
                        "end": 327,
                        "text": "Figure 2)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Data efficiency and length generalization",
                "sec_num": "4.2"
            },
            {
                "text": "We further investigate the influence of training data on length generalization. We use sentence lengths 30 and 40 as an illustration. Compare with L40C-PCFG, when tested on constituents longer than 40 tokens, L30C-PCFG shows a slightly better generalizability (see Figure 2b) . It consistently outperforms L40C-PCFG on sentences of length ranging from 30 to 40, though L40C-PCFG can access all sentences shorter than 40 tokens during training. This implies that C-PCFGs generalize well from short sentences; using additional long training sentences may hurt the generalizability. We also plots the proportions of constituent lengths. For example, there are about 6400 constituents of length from 30 to 40, which account for about 1.1% of total constituents, suggesting that the conclusion about the better generalizability of L30C-PCFGs is reliable. Figure 2b visualizes the performance of an L40N-PCFG. Surprisingly, L40N-PCFG shows the best generalizability on long constituents. Where does the F1 improvement of C-PCFGs over N-PCFGs come from? Look at the F1 numbers on shorter constituents in Figure 2a , clearly C-PCFGs are better on constituents that are shorter than 11 tokens, while L40N-PCFGs consistently outperform C-PCFGs on constituents of length above 11. L30C-PCFGs fall in between L40C-PCFGs and L40N-PCFGs, once again showing that restricting training to short sentences can endow C-PCFGs good parsing performance as well as lead to improved generalization.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 265,
                        "end": 275,
                        "text": "Figure 2b)",
                        "ref_id": null
                    },
                    {
                        "start": 850,
                        "end": 859,
                        "text": "Figure 2b",
                        "ref_id": null
                    },
                    {
                        "start": 1097,
                        "end": 1106,
                        "text": "Figure 2a",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Data efficiency and length generalization",
                "sec_num": "4.2"
            },
            {
                "text": "C-PCFGs demonstrate a significant improvement over N-PCFGs. Compare with N-PCFGs, C-PCFGs use an additional sentence embedding (i.e., the latent variable z, see Section 2) to parameterize sentence-specific PCFGs. Concretely, the sentence embedding is used to parameterize three types of rules: preterminal rules (P), nonterminal rules (N), and start rules (R). We would like to know which type of rules makes the best use of the sentence embedding? To this end, we let a C-PCFG use corpus-level parameters for each of the three types of rules, individually, i.e., parameters for a rule type are shared among sentences. Interestingly, C-PCFGs degenerate into N-PCFGs when using corpus-level parameters for preterminal rules (see Figure 4 ). It implies that the sentence embedding is most crucial for the parameterization of preterminal rules, presumably because the sentence embedding helps preterminal rules derive the knowledge of Kim et al. (2019) , we observe that C-PCFGs suffer a huge variance, e.g., on the Chinese and Swedish treebanks. part-of-speech tags, which is beneficial for parsing. ",
                "cite_spans": [
                    {
                        "start": 932,
                        "end": 949,
                        "text": "Kim et al. (2019)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 728,
                        "end": 736,
                        "text": "Figure 4",
                        "ref_id": "FIGREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Model ablation",
                "sec_num": "4.3"
            },
            {
                "text": "Despite the surprisingly good performance on English, it is still unclear whether C-PCFGs can generalize to languages beyond English. We thus conduct multilingual evaluation of C-PCFGs on nine additional languages (see Tablel 2). When training C-PCFGs on the nine languages, we use the hyperparameters of the best-performing C-PCFG on English, i.e., we tune C-PCFGs only on WSJ and use the best configurations on the other treebanks.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Multilingual evaluation",
                "sec_num": "4.4"
            },
            {
                "text": "We can see that C-PCFGs achieve the highest overall mean F1 (average F1 number over all treebanks), though they have two fewer winning treebanks than N-PCFGs. Notably, both C-PCFGs and N-PCFGs outperform the trivial baselines by a large margin, suggesting their nice generalizability on languages beyond English. However, they are worse than the right-branching baseline on the Polish and Swedish treebanks. As these languages have rich morphologies, we anticipate an improvement from encoding the knowledge of morphologies into the sentence embedding.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Multilingual evaluation",
                "sec_num": "4.4"
            },
            {
                "text": "We have presented an in-depth analysis of C-PCFGs from a quantitative perspective. The analysis concerns three aspects of C-PCFGs: data efficiency and length generalization, the role of the latent sentence embedding, and multilingual performance. Our experimental results show that C-PCFGs can learn well only from short sentences and maintain good performance at test time. The latent sentence embedding is crucial for the good performance of C-PCFGs. Among the three rule types, preterminal rules make the most of it. However, the configurations of the best-performing C-PCFGs on English do not always generalize to morphologyrich languages.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            },
            {
                "text": "Start rules generate a nonterminal symbol from the start symbol S (e.g., S A), preterminal rules generate a word from a nonterminal symbol (e.g., A w), and nonterminal rules are binary rules of the form A BC, which involve only nonterminal symbols.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "A unified data preprocessing pipeline is available at https://github.com/zhaoyanpeng/xcfg.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "We would like to thank anonymous reviewers for their suggestions and comments. The project was supported by the European Research Council (ERC Starting Grant BroadSem 678254) and the Dutch National Science Foundation (NWO VIDI 639.022.518).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Model Chinese Basque German French Hebrew Hungarian Korean Polish Swedish Mean",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Model Chinese Basque German French Hebrew Hungarian Korean Polish Swedish Mean",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Maximum likelihood from incomplete data via the em algorithm",
                "authors": [
                    {
                        "first": "A",
                        "middle": [
                            "P"
                        ],
                        "last": "References",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [
                            "M"
                        ],
                        "last": "Dempster",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [
                            "B"
                        ],
                        "last": "Laird",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Rubin",
                        "suffix": ""
                    }
                ],
                "year": 1977,
                "venue": "Journal of the Royal Statistical Society: Series B (Methodological)",
                "volume": "39",
                "issue": "1",
                "pages": "1--22",
                "other_ids": {
                    "DOI": [
                        "10.1111/j.2517-6161.1977.tb01600.x"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "References A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977. Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Soci- ety: Series B (Methodological), 39(1):1-22.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Compound probabilistic context-free grammars for grammar induction",
                "authors": [
                    {
                        "first": "Yoon",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Dyer",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [],
                        "last": "Rush",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "2369--2385",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1228"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yoon Kim, Chris Dyer, and Alexander Rush. 2019. Compound probabilistic context-free grammars for grammar induction. In Proceedings of the 57th An- nual Meeting of the Association for Computational Linguistics, pages 2369-2385, Florence, Italy. Asso- ciation for Computational Linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "The estimation of stochastic context-free grammars using the insideoutside algorithm",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Lari",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "J"
                        ],
                        "last": "Young",
                        "suffix": ""
                    }
                ],
                "year": 1990,
                "venue": "Computer Speech and Language",
                "volume": "4",
                "issue": "1",
                "pages": "35--56",
                "other_ids": {
                    "DOI": [
                        "10.1016/0885-2308(90)90022-X"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "K. Lari and S.J. Young. 1990. The estimation of stochastic context-free grammars using the inside- outside algorithm. Computer Speech and Language, 4(1):35 -56.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "The Penn Treebank: Annotating predicate argument structure",
                "authors": [
                    {
                        "first": "Mitchell",
                        "middle": [],
                        "last": "Marcus",
                        "suffix": ""
                    },
                    {
                        "first": "Grace",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "Mary",
                        "middle": [
                            "Ann"
                        ],
                        "last": "Marcinkiewicz",
                        "suffix": ""
                    },
                    {
                        "first": "Robert",
                        "middle": [],
                        "last": "Macintyre",
                        "suffix": ""
                    },
                    {
                        "first": "Ann",
                        "middle": [],
                        "last": "Bies",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Ferguson",
                        "suffix": ""
                    },
                    {
                        "first": "Karen",
                        "middle": [],
                        "last": "Katz",
                        "suffix": ""
                    },
                    {
                        "first": "Britta",
                        "middle": [],
                        "last": "Schasberger",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "Human Language Technology: Proceedings of a Workshop",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann Bies, Mark Ferguson, Karen Katz, and Britta Schasberger. 1994. The Penn Treebank: Annotating predicate ar- gument structure. In Human Language Technology: Proceedings of a Workshop held at Plainsboro, New Jersey, March 8-11, 1994.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Torch-struct: Deep structured prediction library",
                "authors": [
                    {
                        "first": "Alexander",
                        "middle": [],
                        "last": "Rush",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations",
                "volume": "",
                "issue": "",
                "pages": "335--342",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.acl-demos.38"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Alexander Rush. 2020. Torch-struct: Deep structured prediction library. In Proceedings of the 58th An- nual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 335- 342, Online. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Introducing the SPMRL 2014 shared task on parsing morphologically-rich languages",
                "authors": [
                    {
                        "first": "Djam\u00e9",
                        "middle": [],
                        "last": "Seddah",
                        "suffix": ""
                    },
                    {
                        "first": "Sandra",
                        "middle": [],
                        "last": "K\u00fcbler",
                        "suffix": ""
                    },
                    {
                        "first": "Reut",
                        "middle": [],
                        "last": "Tsarfaty",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the First Joint Workshop on Statistical Parsing of Morphologically Rich Languages and Syntactic Analysis of Non-Canonical Languages",
                "volume": "",
                "issue": "",
                "pages": "103--109",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Djam\u00e9 Seddah, Sandra K\u00fcbler, and Reut Tsarfaty. 2014. Introducing the SPMRL 2014 shared task on pars- ing morphologically-rich languages. In Proceedings of the First Joint Workshop on Statistical Parsing of Morphologically Rich Languages and Syntactic Analysis of Non-Canonical Languages, pages 103- 109, Dublin, Ireland. Dublin City University.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "The penn chinese treebank: Phrase structure annotation of a large corpus",
                "authors": [
                    {
                        "first": "Naiwen",
                        "middle": [],
                        "last": "Xue",
                        "suffix": ""
                    },
                    {
                        "first": "Fei",
                        "middle": [],
                        "last": "Xia",
                        "suffix": ""
                    },
                    {
                        "first": "Fu-Dong",
                        "middle": [],
                        "last": "Chiou",
                        "suffix": ""
                    },
                    {
                        "first": "Marta",
                        "middle": [],
                        "last": "Palmer",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Natural Language Engineering",
                "volume": "11",
                "issue": "2",
                "pages": "207--238",
                "other_ids": {
                    "DOI": [
                        "10.1017/S135132490400364X"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Naiwen Xue, Fei Xia, Fu-dong Chiou, and Marta Palmer. 2005. The penn chinese treebank: Phrase structure annotation of a large corpus. Natural Lan- guage Engineering, 11(2):207-238.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Visually grounded compound PCFGs",
                "authors": [
                    {
                        "first": "Yanpeng",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Ivan",
                        "middle": [],
                        "last": "Titov",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "4369--4379",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.emnlp-main.354"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yanpeng Zhao and Ivan Titov. 2020. Visually grounded compound PCFGs. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 4369-4379, Online. Association for Computational Linguistics.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF1": {
                "num": null,
                "type_str": "figure",
                "text": "Label distribution over constituent lengths on the WSJ test data. All denotes frequencies of constituent lengths. Zero frequencies are due to the limited numerical precision.",
                "uris": null
            },
            "FIGREF2": {
                "num": null,
                "type_str": "figure",
                "text": "F1 w.r.t. constituent length above 30",
                "uris": null
            },
            "FIGREF3": {
                "num": null,
                "type_str": "figure",
                "text": "F1 numbers broken down by constituent lengths on the WSJ training data. During training, constituents (sentences) longer than 30 tokens (L30) are unseen to L30C-PCFG and are unseen to L40C-PCFG and L40N-PCFG when longer than 40 tokens (L40). F1 numbers on the WSJ test data with varying maximum lengths of training sentences.",
                "uris": null
            },
            "FIGREF5": {
                "num": null,
                "type_str": "figure",
                "text": "F1 numbers on the WSJ test data. Shared P / N / R indicates C-PCFGs that use corpus-level parameters for preterminal / nonterminal / start rules (see Section 4.3).",
                "uris": null
            },
            "TABREF0": {
                "content": "<table><tr><td>Model NP</td><td>VP</td><td>PP</td><td>SBAR</td><td>ADJP</td><td>ADVP</td><td>C-F1</td><td>S-F1</td></tr><tr><td>Left Branching 10.4</td><td>0.5</td><td>5.0</td><td>5.3</td><td>2.5</td><td>8.0</td><td>6.0</td><td>8.7</td></tr><tr><td>Right Branching 24.1</td><td>71.5</td><td>42.4</td><td>68.7</td><td>27.7</td><td>38.1</td><td>36.1</td><td>39.5</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td>\u00b10.1</td></tr><tr><td>\u2020 N-PCFG 71.2</td><td>33.8</td><td>58.8</td><td>52.5</td><td>32.5</td><td>45.5</td><td/><td>50.8</td></tr><tr><td colspan=\"8\">N-\u00b13.8</td></tr><tr><td>\u2020 C-PCFG 74.7</td><td>41.7</td><td>68.8</td><td>56.1</td><td>40.4</td><td>52.5</td><td/><td>55.2</td></tr><tr><td>C-PCFG 76.7</td><td/><td/><td/><td/><td/><td/><td/></tr><tr><td/><td/><td/><td/><td/><td/><td/><td>.8%</td></tr></table>",
                "text": "Random Trees 22.5 \u00b10.3 12.3 \u00b10.3 19.0 \u00b10.5 9.3 \u00b10.6 24.3 \u00b11.7 26.9 \u00b11.3 15.3 \u00b10.1 18.1 PCFG 72.2 \u00b14.8 31.4 \u00b19.7 66.8 \u00b14.7 50.2 \u00b19.1 46.3 \u00b15.7 55.2 \u00b15.0 49.0 \u00b13.5 50.8 \u00b12.0 40.7 \u00b15.5 71.3 \u00b12.1 53.8 \u00b13.1 45.9 \u00b12.8 64.2 \u00b12.8 53.5 \u00b11.4 55.7 \u00b11.3 L50C-PCFG 76.9 \u00b13.6 40.7 \u00b13.7 72.3 \u00b10.6 60.1 \u00b15.5 46.9 \u00b15.8 63.2 \u00b15.0 53.8 \u00b12.1 55.9 \u00b11.9 L40C-PCFG 76.7 \u00b12.0 40.7 \u00b15.5 71.3 \u00b12.1 53.8 \u00b13.1 45.9 \u00b12.8 64.2 \u00b12.8 53.5 \u00b11.4 55.7 \u00b11.3 L30C-PCFG 74.5 \u00b12.8 38.4 \u00b11.7 71.1 \u00b11.2 59.7 \u00b14.8 44.2 \u00b14.1 64.3 \u00b13.1 52.5 \u00b11.5 54.8 \u00b11.4 L20C-PCFG 72.4 \u00b12.3 36.5 \u00b11.1 69.2 \u00b11.7 54.1 \u00b13.2 41.9 \u00b12.3 58.1 \u00b17.1 50.6 \u00b10.9 52.8 \u00b10.7 L10C-PCFG 67.1 \u00b13.8 31.0 \u00b19.8 61.3 \u00b12.2 45.9 \u00b18.2 36.7 \u00b12.3 41.3 \u00b16.0 45.5 \u00b12.4 48.2 \u00b12.3",
                "html": null,
                "num": null,
                "type_str": "table"
            },
            "TABREF1": {
                "content": "<table/>",
                "text": "Sentence-level F1 numbers on multilingual treebanks. Similarly to",
                "html": null,
                "num": null,
                "type_str": "table"
            }
        }
    }
}