File size: 88,142 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 |
{
"paper_id": "2020",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T01:35:56.559044Z"
},
"title": "EVIDENCEMINER: Textual Evidence Discovery for Life Sciences",
"authors": [
{
"first": "Xuan",
"middle": [],
"last": "Wang",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of Illinois at Urbana",
"location": {
"settlement": "Champaign"
}
},
"email": ""
},
{
"first": "Yingjun",
"middle": [],
"last": "Guan",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of Illinois at Urbana",
"location": {
"settlement": "Champaign"
}
},
"email": "yingjun2@illinois.edu"
},
{
"first": "Weili",
"middle": [],
"last": "Liu",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of Illinois at Urbana",
"location": {
"settlement": "Champaign"
}
},
"email": "weilil2@illinois.edu"
},
{
"first": "Aabhas",
"middle": [],
"last": "Chauhan",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of Illinois at Urbana",
"location": {
"settlement": "Champaign"
}
},
"email": "aabhasc2@illinois.edu"
},
{
"first": "Enyi",
"middle": [],
"last": "Jiang",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of Illinois at Urbana",
"location": {
"settlement": "Champaign"
}
},
"email": "enyij2@illinois.edu"
},
{
"first": "Qi",
"middle": [],
"last": "Li",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Iowa State University",
"location": {}
},
"email": ""
},
{
"first": "David",
"middle": [],
"last": "Liem",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of California",
"location": {
"settlement": "Los Angeles"
}
},
"email": ""
},
{
"first": "Dibakar",
"middle": [],
"last": "Sigdel",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of California",
"location": {
"settlement": "Los Angeles"
}
},
"email": ""
},
{
"first": "J",
"middle": [
"Harry"
],
"last": "Caufield",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of California",
"location": {
"settlement": "Los Angeles"
}
},
"email": ""
},
{
"first": "Peipei",
"middle": [],
"last": "Ping",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of California",
"location": {
"settlement": "Los Angeles"
}
},
"email": "pping@mednet.ucla.edu"
},
{
"first": "Jiawei",
"middle": [],
"last": "Han",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of Illinois at Urbana",
"location": {
"settlement": "Champaign"
}
},
"email": "hanj@illinois.edu"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "Traditional search engines for life sciences (e.g., PubMed) are designed for document retrieval and do not allow direct retrieval of specific statements. Some of these statements may serve as textual evidence that is key to tasks such as hypothesis generation and new finding validation. We present EVIDENCEM-INER, a web-based system that lets users query a natural language statement and automatically retrieves textual evidence from a background corpora for life sciences. EVIDENCEMINER is constructed in a completely automated way without any human effort for training data annotation. It is supported by novel data-driven methods for distantly supervised named entity recognition and open information extraction. The entities and patterns are pre-computed and indexed offline to support fast online evidence retrieval. The annotation results are also highlighted in the original document for better visualization. EVIDENCEMINER also includes analytic functionalities such as the most frequent entity and relation summarization. EVIDENCEMINER can help scientists uncover essential research issues, leading to more effective research and more indepth quantitative analysis. The system of EVIDENCEMINER is available at https:// evidenceminer.firebaseapp.com/ 1 .",
"pdf_parse": {
"paper_id": "2020",
"_pdf_hash": "",
"abstract": [
{
"text": "Traditional search engines for life sciences (e.g., PubMed) are designed for document retrieval and do not allow direct retrieval of specific statements. Some of these statements may serve as textual evidence that is key to tasks such as hypothesis generation and new finding validation. We present EVIDENCEM-INER, a web-based system that lets users query a natural language statement and automatically retrieves textual evidence from a background corpora for life sciences. EVIDENCEMINER is constructed in a completely automated way without any human effort for training data annotation. It is supported by novel data-driven methods for distantly supervised named entity recognition and open information extraction. The entities and patterns are pre-computed and indexed offline to support fast online evidence retrieval. The annotation results are also highlighted in the original document for better visualization. EVIDENCEMINER also includes analytic functionalities such as the most frequent entity and relation summarization. EVIDENCEMINER can help scientists uncover essential research issues, leading to more effective research and more indepth quantitative analysis. The system of EVIDENCEMINER is available at https:// evidenceminer.firebaseapp.com/ 1 .",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "Search engines on scientific literature have been widely used by life scientists for discoveries based on prior knowledge. Each day, millions of users query PubMed 2 and PubMed Central 3 (PMC) for their information needs in biomedicine (Allot et al., 2019) . However, traditional search engines for life sciences (e.g., PubMed) are designed for document 1 A brief demo of EVIDENCEMINER is available at https://youtu.be/iYuQ6gsr--I.",
"cite_spans": [
{
"start": 236,
"end": 256,
"text": "(Allot et al., 2019)",
"ref_id": "BIBREF0"
},
{
"start": 354,
"end": 355,
"text": "1",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "2 https://www.ncbi.nlm.nih.gov/pubmed/ 3 https://www.ncbi.nlm.nih.gov/pmc/ retrieval and do not allow direct retrieval of specific statements (Lu, 2011; Shen et al., 2018) . With the results from those search engines, scientists still need to read a large number of retrieved documents to find specific statements as textual evidence to validate the input query. This textual evidence is key to tasks such as developing new hypotheses, designing informative experiments, or comparing and validating new findings against previous knowledge. While the last several years have witnessed substantial growth in interests and efforts in evidence mining (Lippi and Torroni, 2016; Wachsmuth et al., 2017; Stab et al., 2018; Majithia et al., 2019; Chernodub et al., 2019; Allot et al., 2019) , little work has been done for evidence mining system development in the scientific literature. A significant difference between evidence in the scientific literature and evidence in other corpora (e.g., the online debate corpus) is that scientific evidence usually does not have a strong sentiment (i.e., positive, negative or neutral) in the opinion it holds. Most scientific evidence sentences are objective statements reflecting how strongly they support a query statement. Therefore, if scientists are interested in finding textual evidence for \"melanoma is treated with nivolumab\", they may expect a ranked list of statements with the top ones like \"bicytopenia in primary lung melanoma treated with nivolumab\" as the textual evidence that supports the input query.",
"cite_spans": [
{
"start": 142,
"end": 152,
"text": "(Lu, 2011;",
"ref_id": "BIBREF8"
},
{
"start": 153,
"end": 171,
"text": "Shen et al., 2018)",
"ref_id": "BIBREF15"
},
{
"start": 647,
"end": 672,
"text": "(Lippi and Torroni, 2016;",
"ref_id": "BIBREF7"
},
{
"start": 673,
"end": 696,
"text": "Wachsmuth et al., 2017;",
"ref_id": "BIBREF17"
},
{
"start": 697,
"end": 715,
"text": "Stab et al., 2018;",
"ref_id": "BIBREF16"
},
{
"start": 716,
"end": 738,
"text": "Majithia et al., 2019;",
"ref_id": "BIBREF9"
},
{
"start": 739,
"end": 762,
"text": "Chernodub et al., 2019;",
"ref_id": "BIBREF2"
},
{
"start": 763,
"end": 782,
"text": "Allot et al., 2019)",
"ref_id": "BIBREF0"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "This paper presents EVIDENCEMINER, a webbased system for textual evidence discovery for life sciences (Figure 1 ). Given a query as a natural language statement, EVIDENCEMINER automatically retrieves sentence-level textual evidence from a background corpora of biomedical literature. EVIDENCEMINER is constructed in a completely automated way without any human effort for training data annotation. It is supported by novel data-driven methods for distantly supervised named entity recognition and open information extraction. EVIDENCEMINER relies on external knowledge bases to provide distant supervision for named entity recognition (NER) (Shang et al., 2018b; Wang et al., , 2019 . Based on the entity annotation results, it automatically extracts informative meta-patterns (textual patterns containing entity types, e.g., CHEMICAL inhibit DIS-EASE) from sentences in the background corpora. Wang et al., 2018a; Li et al., 2018a,b) . Sentences with meta-patterns that better match the query statement is more likely to be textual evidence. The entities and patterns are precomputed and indexed offline to support fast online evidence retrieval. The annotation results are also highlighted in the original document for better visualization. EVIDENCEMINER also includes analytic functionalities such as the most frequent entity and relation summarization. The contributions and features of the EVIDENCEMINER system are summarized as follows.",
"cite_spans": [
{
"start": 641,
"end": 662,
"text": "(Shang et al., 2018b;",
"ref_id": "BIBREF14"
},
{
"start": 663,
"end": 682,
"text": "Wang et al., , 2019",
"ref_id": "BIBREF21"
},
{
"start": 895,
"end": 914,
"text": "Wang et al., 2018a;",
"ref_id": "BIBREF20"
},
{
"start": 915,
"end": 934,
"text": "Li et al., 2018a,b)",
"ref_id": null
}
],
"ref_spans": [
{
"start": 102,
"end": 111,
"text": "(Figure 1",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "1. We build EVIDENCEMINER, a web-based system for textual evidence discovery for life sciences. EVIDENCEMINER is supported by novel methods for distantly supervised named entity recognition and pattern-based open information extraction.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "2. The retrieved evidence sentences can be easily located in the original text. The entity and relation annotation results are also highlighted in the original document for better visualization.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "3. Analytic functionalities are included such as finding the most frequent entities/relations for given entity/relation types and finding the most frequent entities given a relation type with another entity.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Search engines performing sentence-level retrieval have been developed in the biomedical domain. For example, Textpresso (M\u00fcller et al., 2004) highlights the query-related sentences in the retrieved documents. However, the sentence highlighting is only based on query word matching, which does not necessarily find sentences semantically related to the input query. Another example is LitSense (Allot et al., 2019) , which retrieves semantically similar sentences in biomedical literature given a query sentence. It returns best-matching sentences using a combined approach of traditional word matching and neural embedding. However, their neural embeddings are noisy and thus negatively impact the effectiveness in retrieving queryspecific evidence sentences. EVIDENCEMINER is more effective compared with LitSense for textual evidence retrieval in biomedical literature.",
"cite_spans": [
{
"start": 121,
"end": 142,
"text": "(M\u00fcller et al., 2004)",
"ref_id": "BIBREF10"
},
{
"start": 394,
"end": 414,
"text": "(Allot et al., 2019)",
"ref_id": "BIBREF0"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Similar tools are also developed for other domains, such as claim mining and argument mining tools on Twitter or news articles. PerspectroScope allows users to query a natural language claim and extract textual evidence in support or against the claim. ClaimPortal (Majithia et al., 2019) is an integrated infrastructure for searching and checking factual claims on Twitter. TARGER (Chernodub et al., 2019) is an argument mining framework for tagging arguments in the free input text and keyword-based retrieval of arguments from the argument-tagged corpus. Most of these tools rely on fully supervised methods that require human-annotated training data. It is difficult to directly apply these systems to other domains, such as life sciences since it is non-trivial to retrieve the set of human-annotated articles and the annotations are prone to errors (Levy et al., 2017) . result visualization in the original document, and (3) the most frequent entity and relation summarization. Figure 1 shows the system architecture of EVIDENCEMINER. The functional modules are introduced in the following sections.",
"cite_spans": [
{
"start": 382,
"end": 406,
"text": "(Chernodub et al., 2019)",
"ref_id": "BIBREF2"
},
{
"start": 855,
"end": 874,
"text": "(Levy et al., 2017)",
"ref_id": "BIBREF4"
}
],
"ref_spans": [
{
"start": 985,
"end": 993,
"text": "Figure 1",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "The open information extraction pipeline extracts entities with distant supervision from knowledge bases and relations with automatic meta-pattern discovery methods. In particular, to extract highquality entities and relations, we design noiserobust neural models for distantly supervised named entity recognition (Shang et al., 2018b; Wang et al., 2019) and wide-window meta-pattern discovery methods to deal with the long and complex sentences in biomedical literature (Wang et al., 2018a; . Data Collection. To obtain the background corpora for EVIDENCEMINER, we collect the titles and abstracts of 26M papers from the entire PubMed 4 dump, and the full-text contents of 2.2M papers from PubMed Central 5 (PMC). For the demonstration purpose, we select a subset of documents published in 2019 that are specifically related to two important diseases (cancers and heart diseases) to form the background corpora. The subset of documents are selected by concept matching on MeSH 6 , a biomedical concept ontology with the concepts related to cancers (Neoplasms) and heart diseases (Cardiovascular Diseases). from UMLS as the entity types to be annotated. To tackle the problem of limited coverage of the input dictionary, we first apply a data-driven phrase mining algorithm, AutoPhrase (Shang et al., 2018a) , to extract high-quality phrases as additional entity candidates. Then we automatically expand the dictionary with a novel dictionary expansion method (Wang et al., 2019) . The expanded dictionary is used to label the input corpora with the 17 finegrained entity types to train a neural model. We apply AutoNER (Shang et al., 2018b) , a state-ofthe-art distantly supervised NER method that effectively deals with noisy distant supervision. Comparing with PubTator (Wei et al., 2013) , a stateof-the-art BioNER system trained with extensive human annotation on 5 biomedical entity types, EVIDENCEMINER can automatically annotate 17 fine-grained entity types with high quality without any human effort for training data annotation.",
"cite_spans": [
{
"start": 314,
"end": 335,
"text": "(Shang et al., 2018b;",
"ref_id": "BIBREF14"
},
{
"start": 336,
"end": 354,
"text": "Wang et al., 2019)",
"ref_id": "BIBREF21"
},
{
"start": 471,
"end": 491,
"text": "(Wang et al., 2018a;",
"ref_id": "BIBREF20"
},
{
"start": 1286,
"end": 1307,
"text": "(Shang et al., 2018a)",
"ref_id": "BIBREF13"
},
{
"start": 1460,
"end": 1479,
"text": "(Wang et al., 2019)",
"ref_id": "BIBREF21"
},
{
"start": 1620,
"end": 1641,
"text": "(Shang et al., 2018b)",
"ref_id": "BIBREF14"
},
{
"start": 1773,
"end": 1791,
"text": "(Wei et al., 2013)",
"ref_id": "BIBREF23"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Open Information Extraction",
"sec_num": "3.1"
},
{
"text": "Meta-pattern Discovery. Based on the entity annotation results above, meta-patterns can be automatically discovered from the corpora to support textual evidence discovery. Meta-patterns are defined as sub-sequences in an entity-type-replaced corpus with at least one entity type token in it. For example, \"PPAR gamma agonist\" and \"caspase 1 agonist\" are two word-sequences in the raw corpus. If we replace all the entities (i.e., \"PPAR gamma\" and \"caspase 1\") with their corresponding entity types (i.e., $GENE) in the raw corpus, \"PPAR gamma agonist\" and \"caspase 1 agonist\" are represented as one meta-pattern \"$GENE agonist\" in the entity-type-replaced corpus. Metapatterns containing at least two entity types (e.g., \"$CHEMICAL induce $DISEASE\") are relational meta-patterns. Quality relational meta-patterns can serve as informative textual patterns that guide textual evidence discovery. We apply two state-of-theart meta-pattern discovery methods, CPIE (Wang et al., 2018a) and WW-PIE , to extract high-quality meta-patterns from the NERtagged corpora. Both methods are specifically de-signed to better deal with the long and complex sentence structures in the biomedical literature. In EVIDENCEMINER, we combine the meta-pattern extraction results from CPIE and WW-PIE as our informative meta-patterns to guide textual evidence retrieval. We use Elasticsearch 8 to create the index for each sentence for fast online retrieval. In addition to indexing the keywords, we index each sentence with the meta-patterns it matches and the corresponding entities extracted by the meta-patterns in the sentence.",
"cite_spans": [
{
"start": 960,
"end": 980,
"text": "(Wang et al., 2018a)",
"ref_id": "BIBREF20"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Open Information Extraction",
"sec_num": "3.1"
},
{
"text": "The textual evidence retrieval and analysis pipeline retrieves textual evidence given a user-input query statement and the indexed corpora. The retrieved evidence sentence can be easily located in the original text. The entity and relation annotation results are also highlighted in the text for better visualization. EVIDENCEMINER also includes analytic functionalities such as finding the most frequent entities and relations as summarization.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Textual Evidence Retrieval and Analysis",
"sec_num": "3.2"
},
{
"text": "Textual Evidence Search. Given a user-input query statement and the indexed corpora, EVI-DENCEMINER retrieves and ranks the candidate sentences with a combined approach of keyword weighting and meta-pattern weighting. Sentences with meta-patterns that better match the query statement are ranked higher as textual evidence. This ranking mechanism is more effective compared with existing methods (e.g., LitSense) for textual evidence retrieval in biomedical literature (see Section 4). We use Elasticsearch to support keyword and meta-pattern search over the indexed corpora.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Textual Evidence Retrieval and Analysis",
"sec_num": "3.2"
},
{
"text": "In Figure 2 , we show an example of our search interface. For example, if scientists are interested in finding the textual evidence for \"melanoma is treated with nivolumab\", they can search it in EVI-DENCEMINER and see the top results such as \"bicytopenia in primary lung melanoma treated with nivolumab\" (Figure 2a ). If they click one of the top results, the retrieved sentence is highlighted in the original article (Figure 3 ) on the annotation interface. Moreover, EVIDENCEMINER allows more flexible queries, such as a mixture of keywords and relational patterns. For example, if scientists are interested in finding the diseases that can be treated with the chemical \"nivolumab\", but are not sure which disease to search, they may input a query like \"nivolumab, DISEASEORSYNDROME treat with 8 https://www.elastic.co/ CHEMICAL\". EVIDENCEMINER automatically finds all the textual evidence indicating a \"treatment\" relationship with the chemical \"nivolumab\" (Figure 2b) .",
"cite_spans": [],
"ref_spans": [
{
"start": 3,
"end": 11,
"text": "Figure 2",
"ref_id": "FIGREF3"
},
{
"start": 305,
"end": 315,
"text": "(Figure 2a",
"ref_id": "FIGREF3"
},
{
"start": 419,
"end": 428,
"text": "(Figure 3",
"ref_id": "FIGREF4"
},
{
"start": 961,
"end": 972,
"text": "(Figure 2b)",
"ref_id": "FIGREF3"
}
],
"eq_spans": [],
"section": "Textual Evidence Retrieval and Analysis",
"sec_num": "3.2"
},
{
"text": "Annotation Result Visualization. The annotation interface shows all the annotated entities and relations for better visualization. For example, in Figure 3 , we color all the annotated entities with different colors for different types. We use five different colors for the five major biomedical entity types and two additional colors for two specific finegrained types, \"Gene or Genome\" and \"Disease or Syndrome\", since those two are the most frequent biomedical entity types. In Figure 3 , we see that the \"melanoma\" is colored as a \"Disease or Syndrome\" and \"nivolumab\" is colored as a \"Chemical\". We also list all the meta-pattern instances and meta-patterns that match the sentences in the article. If the user clicks the meta-pattern instances, the corresponding sentences are also highlighted in the article. In Figure 3 , a meta-pattern \"DIS-EASEORSYNDROME patient treat with CHEM-ICAL\" captures the entity pair \"melanoma\" and \"nivolumab\" in the article.",
"cite_spans": [],
"ref_spans": [
{
"start": 147,
"end": 155,
"text": "Figure 3",
"ref_id": "FIGREF4"
},
{
"start": 481,
"end": 489,
"text": "Figure 3",
"ref_id": "FIGREF4"
},
{
"start": 819,
"end": 827,
"text": "Figure 3",
"ref_id": "FIGREF4"
}
],
"eq_spans": [],
"section": "Textual Evidence Retrieval and Analysis",
"sec_num": "3.2"
},
{
"text": "Entity and Relation Summarization. To make our system more user-friendly and interesting, we add analytic functionalities for the most frequent entity and relation summarization. For example, in Figure 4 , if scientists are interested in finding the most frequent diseases, they can search \"entity type = DISEASEORSYNDROME\" in our analytic interface and see the top entities such as tumor and breast cancer. Similarly, if scientists are interested in finding the most frequent chemicaldisease pairs with a treatment relation, they can search \"pattern = DISEASEORSYNDROME treat with CHEMICAL\" in our analytic interface and see the top entity pairs such as HCC&sorafenib. More interestingly, if researchers are interested in finding the most frequent diseases that can be treated by a specific chemical (e.g., nivolumab), they can search \"entity = nivolumab & pattern = DISEASE-ORSYNDROME treat with CHEMICAL\" in our analytic interface and see the most frequent diseases, such as melanoma and NSCLC, that can be treated with nivolumab. With these analytic functionalities, EVIDENCEMINER can help scientists uncover important research issues, leading to more effective research and more in-depth quantitative analysis. Method / nDCG @1 @5 @10 BM25 0.714 0.720 0.746 LitSense 0.599 0.624 0.658 EVIDENCEMINER 0.855 0.861 0.889 Table 2 : Performance comparison of the textual evidence retrieval systems with nDCG@1,5,10.",
"cite_spans": [],
"ref_spans": [
{
"start": 195,
"end": 203,
"text": "Figure 4",
"ref_id": "FIGREF5"
},
{
"start": 1322,
"end": 1329,
"text": "Table 2",
"ref_id": null
}
],
"eq_spans": [],
"section": "Textual Evidence Retrieval and Analysis",
"sec_num": "3.2"
},
{
"text": "To demonstrate the effectiveness of EVIDENCEM-INER in textual evidence retrieval, we compare its performance with the traditional BM25 (Robertson et al., 2009 ) and a recent sentence-level search engine, LitSense (Allot et al., 2019) . The background corpus is the same PubMed subset for all the compared methods. We first ask domain experts to generate 50 query statements based on the relationships between three biomedical entity types (gene, chemical, and disease) in the Comparative Toxicogenomics Database 9 . Then we ask domain experts to manually label the top-10 retrieved evidence sentences by each method with three grades indicating the confidence of the evidence. We use the average normalized Discounted Cumulative Gain (nDCG) score to evaluate the textual evidence retrieval performance. In Table 2 , we observe that EVIDENCEMINER always achieves the best performance compared with other methods. It demonstrates the effectiveness of using meta-patterns to guide textual evidence discovery in biomedical literature. smart query processor should automatically kick-in to do an approximate match, such as a graph-based approximate match or an embedding-based semantic match. In other cases, a user may query a set of entities (e.g., genes or diseases) or a timeline. We need to conduct a summary of the major differences among the set of entities or over time by analyzing large text.",
"cite_spans": [
{
"start": 135,
"end": 158,
"text": "(Robertson et al., 2009",
"ref_id": "BIBREF12"
},
{
"start": 213,
"end": 233,
"text": "(Allot et al., 2019)",
"ref_id": "BIBREF0"
}
],
"ref_spans": [
{
"start": 806,
"end": 813,
"text": "Table 2",
"ref_id": null
}
],
"eq_spans": [],
"section": "Evaluation",
"sec_num": "4"
},
{
"text": "We build EVIDENCEMINER, a web-based system for textual evidence discovery for life sciences. The retrieved evidence sentences can be easily located in the background corpora for better visualization. EVIDENCEMINER also includes analytic functionalities such as the most frequent entity and relation summarization. We incorporated another corpus on COVID-19 in EVIDENCEMINER to help boost the scientific discoveries (Wang et al., 2020b,a) . We are further developing EVIDENCEMINER to be a more intelligent system that can assist in more efficient and in-depth scientific discoveries.",
"cite_spans": [
{
"start": 415,
"end": 437,
"text": "(Wang et al., 2020b,a)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "6"
},
{
"text": "https://pubmed.gov/pubmed 5 https://pubmed.gov/pmc 6 https://www.nlm.nih.gov/mesh/ 7 https://www.nlm.nih.gov/research/ umls/index.html",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "Further DevelopmentIn some cases, a strict query matching may not find sufficiently high-quality answers due to the stringent search requirements or limited available entities that match the search queries. In this case, a 9 http://ctdbase.org",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "Research was sponsored in part by US DARPA KAIROS Program No. FA8750-19-2-1004 and SocialSim Program No. W911NF-17-C-0099, National Science Foundation IIS 16-18481, IIS 17-04532, and IIS-17-41317, and DTRA HD-TRA11810026. Any opinions, findings, and conclusions or recommendations expressed herein are those of the authors and should not be interpreted as necessarily representing the views, either expressed or implied, of DARPA or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for government purposes notwithstanding any copyright annotation hereon.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgment",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Litsense: making sense of biomedical literature at sentence level",
"authors": [
{
"first": "Alexis",
"middle": [],
"last": "Allot",
"suffix": ""
},
{
"first": "Qingyu",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Sun",
"middle": [],
"last": "Kim",
"suffix": ""
},
{
"first": "Roberto",
"middle": [
"Vera"
],
"last": "Alvarez",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Donald",
"suffix": ""
},
{
"first": "John",
"middle": [],
"last": "Comeau",
"suffix": ""
},
{
"first": "Zhiyong",
"middle": [],
"last": "Wilbur",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Lu",
"suffix": ""
}
],
"year": 2019,
"venue": "Nucleic acids research",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Alexis Allot, Qingyu Chen, Sun Kim, Roberto Vera Al- varez, Donald C Comeau, W John Wilbur, and Zhiy- ong Lu. 2019. Litsense: making sense of biomedical literature at sentence level. Nucleic acids research.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Perspectroscope: A window to the world of diverse perspectives",
"authors": [
{
"first": "Sihao",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "Khashabi",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Callison-Burch",
"suffix": ""
},
{
"first": "Dan",
"middle": [],
"last": "Roth",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sihao Chen, Daniel Khashabi, Chris Callison-Burch, and Dan Roth. 2019. Perspectroscope: A window to the world of diverse perspectives. page 129134.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Targer: Neural argument mining at your fingertips",
"authors": [
{
"first": "Artem",
"middle": [],
"last": "Chernodub",
"suffix": ""
},
{
"first": "Oleksiy",
"middle": [],
"last": "Oliynyk",
"suffix": ""
},
{
"first": "Philipp",
"middle": [],
"last": "Heidenreich",
"suffix": ""
},
{
"first": "Alexander",
"middle": [],
"last": "Bondarenko",
"suffix": ""
},
{
"first": "Matthias",
"middle": [],
"last": "Hagen",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Biemann",
"suffix": ""
},
{
"first": "Alexander",
"middle": [],
"last": "Panchenko",
"suffix": ""
}
],
"year": 2019,
"venue": "ACL: System Demonstrations",
"volume": "",
"issue": "",
"pages": "195--200",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Artem Chernodub, Oleksiy Oliynyk, Philipp Heidenre- ich, Alexander Bondarenko, Matthias Hagen, Chris Biemann, and Alexander Panchenko. 2019. Targer: Neural argument mining at your fingertips. In ACL: System Demonstrations, pages 195-200.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Metapad: Meta pattern discovery from massive text corpora",
"authors": [
{
"first": "Meng",
"middle": [],
"last": "Jiang",
"suffix": ""
},
{
"first": "Jingbo",
"middle": [],
"last": "Shang",
"suffix": ""
},
{
"first": "Taylor",
"middle": [],
"last": "Cassidy",
"suffix": ""
},
{
"first": "Xiang",
"middle": [],
"last": "Ren",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Lance",
"suffix": ""
},
{
"first": "Timothy",
"middle": [
"P"
],
"last": "Kaplan",
"suffix": ""
},
{
"first": "Jiawei",
"middle": [],
"last": "Hanratty",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Han",
"suffix": ""
}
],
"year": 2017,
"venue": "KDD",
"volume": "",
"issue": "",
"pages": "877--886",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Meng Jiang, Jingbo Shang, Taylor Cassidy, Xiang Ren, Lance M Kaplan, Timothy P Hanratty, and Jiawei Han. 2017. Metapad: Meta pattern discovery from massive text corpora. In KDD, pages 877-886. ACM.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Unsupervised corpus-wide claim detection",
"authors": [
{
"first": "Ran",
"middle": [],
"last": "Levy",
"suffix": ""
},
{
"first": "Shai",
"middle": [],
"last": "Gretz",
"suffix": ""
},
{
"first": "Benjamin",
"middle": [],
"last": "Sznajder",
"suffix": ""
},
{
"first": "Shay",
"middle": [],
"last": "Hummel",
"suffix": ""
},
{
"first": "Ranit",
"middle": [],
"last": "Aharonov",
"suffix": ""
},
{
"first": "Noam",
"middle": [],
"last": "Slonim",
"suffix": ""
}
],
"year": 2017,
"venue": "Proc. Work. Arg. Min",
"volume": "",
"issue": "",
"pages": "79--84",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ran Levy, Shai Gretz, Benjamin Sznajder, Shay Hum- mel, Ranit Aharonov, and Noam Slonim. 2017. Un- supervised corpus-wide claim detection. In Proc. Work. Arg. Min., pages 79-84.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Truepie: Discovering reliable patterns in patternbased information extraction",
"authors": [
{
"first": "Qi",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Meng",
"middle": [],
"last": "Jiang",
"suffix": ""
},
{
"first": "Xikun",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Meng",
"middle": [],
"last": "Qu",
"suffix": ""
},
{
"first": "Timothy",
"middle": [
"P"
],
"last": "Hanratty",
"suffix": ""
},
{
"first": "Jing",
"middle": [],
"last": "Gao",
"suffix": ""
},
{
"first": "Jiawei",
"middle": [],
"last": "Han",
"suffix": ""
}
],
"year": 2018,
"venue": "KDD",
"volume": "",
"issue": "",
"pages": "1675--1684",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Qi Li, Meng Jiang, Xikun Zhang, Meng Qu, Timo- thy P Hanratty, Jing Gao, and Jiawei Han. 2018a. Truepie: Discovering reliable patterns in pattern- based information extraction. In KDD, pages 1675- 1684. ACM.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Pattern discovery for wide-window open information extraction in biomedical literature",
"authors": [
{
"first": "Qi",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Xuan",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Yu",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Qi",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Fei",
"middle": [],
"last": "Ling",
"suffix": ""
},
{
"first": "Cathy",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "",
"suffix": ""
},
{
"first": "Jiawei",
"middle": [],
"last": "Han",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Qi Li, Xuan Wang, Yu Zhang, Qi Li, Fei Ling, Cathy Wu H, and Jiawei Han. 2018b. Pattern discov- ery for wide-window open information extraction in biomedical literature. In BIBM. IEEE.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Margot: A web server for argumentation mining",
"authors": [
{
"first": "Marco",
"middle": [],
"last": "Lippi",
"suffix": ""
},
{
"first": "Paolo",
"middle": [],
"last": "Torroni",
"suffix": ""
}
],
"year": 2016,
"venue": "Expert Systems with Applications",
"volume": "65",
"issue": "",
"pages": "292--303",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Marco Lippi and Paolo Torroni. 2016. Margot: A web server for argumentation mining. Expert Systems with Applications, 65:292-303.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Pubmed and beyond: a survey of web tools for searching biomedical literature",
"authors": [
{
"first": "Zhiyong",
"middle": [],
"last": "Lu",
"suffix": ""
}
],
"year": 2011,
"venue": "Database",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zhiyong Lu. 2011. Pubmed and beyond: a survey of web tools for searching biomedical literature. Database, 2011.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Claimportal: Integrated monitoring, searching, checking, and analytics of factual claims on twitter",
"authors": [
{
"first": "Sarthak",
"middle": [],
"last": "Majithia",
"suffix": ""
},
{
"first": "Fatma",
"middle": [],
"last": "Arslan",
"suffix": ""
},
{
"first": "Sumeet",
"middle": [],
"last": "Lubal",
"suffix": ""
},
{
"first": "Damian",
"middle": [],
"last": "Jimenez",
"suffix": ""
},
{
"first": "Priyank",
"middle": [],
"last": "Arora",
"suffix": ""
},
{
"first": "Josue",
"middle": [],
"last": "Caraballo",
"suffix": ""
},
{
"first": "Chengkai",
"middle": [],
"last": "Li",
"suffix": ""
}
],
"year": 2019,
"venue": "ACL: System Demonstrations",
"volume": "",
"issue": "",
"pages": "153--158",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sarthak Majithia, Fatma Arslan, Sumeet Lubal, Damian Jimenez, Priyank Arora, Josue Caraballo, and Chengkai Li. 2019. Claimportal: Integrated monitoring, searching, checking, and analytics of factual claims on twitter. In ACL: System Demon- strations, pages 153-158.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Textpresso: an ontology-based information retrieval and extraction system for biological literature",
"authors": [
{
"first": "Hans-Michael",
"middle": [],
"last": "M\u00fcller",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Eimear",
"suffix": ""
},
{
"first": "Paul",
"middle": [
"W"
],
"last": "Kenny",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Sternberg",
"suffix": ""
}
],
"year": 2004,
"venue": "PLoS Biol",
"volume": "2",
"issue": "11",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hans-Michael M\u00fcller, Eimear E Kenny, and Paul W Sternberg. 2004. Textpresso: an ontology-based in- formation retrieval and extraction system for biolog- ical literature. PLoS Biol., 2(11):e309.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Life-inet: A structured network-based knowledge exploration and analytics system for life sciences",
"authors": [
{
"first": "Xiang",
"middle": [],
"last": "Ren",
"suffix": ""
},
{
"first": "Jiaming",
"middle": [],
"last": "Shen",
"suffix": ""
},
{
"first": "Meng",
"middle": [],
"last": "Qu",
"suffix": ""
},
{
"first": "Xuan",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Zeqiu",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Qi",
"middle": [],
"last": "Zhu",
"suffix": ""
},
{
"first": "Meng",
"middle": [],
"last": "Jiang",
"suffix": ""
},
{
"first": "Fangbo",
"middle": [],
"last": "Tao",
"suffix": ""
},
{
"first": "Saurabh",
"middle": [],
"last": "Sinha",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Liem",
"suffix": ""
}
],
"year": 2017,
"venue": "ACL: System Demonstrations",
"volume": "",
"issue": "",
"pages": "55--60",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xiang Ren, Jiaming Shen, Meng Qu, Xuan Wang, Ze- qiu Wu, Qi Zhu, Meng Jiang, Fangbo Tao, Saurabh Sinha, David Liem, et al. 2017. Life-inet: A struc- tured network-based knowledge exploration and an- alytics system for life sciences. In ACL: System Demonstrations, pages 55-60.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "The probabilistic relevance framework: Bm25 and beyond",
"authors": [
{
"first": "Stephen",
"middle": [],
"last": "Robertson",
"suffix": ""
},
{
"first": "Hugo",
"middle": [],
"last": "Zaragoza",
"suffix": ""
}
],
"year": 2009,
"venue": "FnT Inf. Ret",
"volume": "3",
"issue": "4",
"pages": "333--389",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance framework: Bm25 and be- yond. FnT Inf. Ret., 3(4):333-389.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Automated phrase mining from massive text corpora",
"authors": [
{
"first": "Jingbo",
"middle": [],
"last": "Shang",
"suffix": ""
},
{
"first": "Jialu",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Meng",
"middle": [],
"last": "Jiang",
"suffix": ""
},
{
"first": "Xiang",
"middle": [],
"last": "Ren",
"suffix": ""
},
{
"first": "Clare",
"middle": [
"R"
],
"last": "Voss",
"suffix": ""
},
{
"first": "Jiawei",
"middle": [],
"last": "Han",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jingbo Shang, Jialu Liu, Meng Jiang, Xiang Ren, Clare R Voss, and Jiawei Han. 2018a. Automated phrase mining from massive text corpora. TKDE.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Learning named entity tagger using domain-specific dictionary",
"authors": [
{
"first": "Jingbo",
"middle": [],
"last": "Shang",
"suffix": ""
},
{
"first": "Liyuan",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Xiang",
"middle": [],
"last": "Ren",
"suffix": ""
},
{
"first": "Xiaotao",
"middle": [],
"last": "Gu",
"suffix": ""
},
{
"first": "Teng",
"middle": [],
"last": "Ren",
"suffix": ""
},
{
"first": "Jiawei",
"middle": [],
"last": "Han",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jingbo Shang, Liyuan Liu, Xiang Ren, Xiaotao Gu, Teng Ren, and Jiawei Han. 2018b. Learning named entity tagger using domain-specific dictionary. In EMNLP. ACL.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Entity set search of scientific literature: An unsupervised ranking approach",
"authors": [
{
"first": "Jiaming",
"middle": [],
"last": "Shen",
"suffix": ""
},
{
"first": "Jinfeng",
"middle": [],
"last": "Xiao",
"suffix": ""
},
{
"first": "Xinwei",
"middle": [],
"last": "He",
"suffix": ""
},
{
"first": "Jingbo",
"middle": [],
"last": "Shang",
"suffix": ""
},
{
"first": "Saurabh",
"middle": [],
"last": "Sinha",
"suffix": ""
},
{
"first": "Jiawei",
"middle": [],
"last": "Han",
"suffix": ""
}
],
"year": 2018,
"venue": "SIGIR",
"volume": "",
"issue": "",
"pages": "565--574",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jiaming Shen, Jinfeng Xiao, Xinwei He, Jingbo Shang, Saurabh Sinha, and Jiawei Han. 2018. Entity set search of scientific literature: An unsupervised rank- ing approach. In SIGIR, pages 565-574. ACM.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Argumentext: Searching for arguments in heterogeneous sources",
"authors": [
{
"first": "Christian",
"middle": [],
"last": "Stab",
"suffix": ""
},
{
"first": "Johannes",
"middle": [],
"last": "Daxenberger",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Stahlhut",
"suffix": ""
},
{
"first": "Tristan",
"middle": [],
"last": "Miller",
"suffix": ""
},
{
"first": "Benjamin",
"middle": [],
"last": "Schiller",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "Tauchmann",
"suffix": ""
},
{
"first": "Steffen",
"middle": [],
"last": "Eger",
"suffix": ""
},
{
"first": "Iryna",
"middle": [],
"last": "Gurevych",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 conference of the North American chapter of the association for computational linguistics: demonstrations",
"volume": "",
"issue": "",
"pages": "21--25",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Christian Stab, Johannes Daxenberger, Chris Stahlhut, Tristan Miller, Benjamin Schiller, Christopher Tauchmann, Steffen Eger, and Iryna Gurevych. 2018. Argumentext: Searching for arguments in heteroge- neous sources. In Proceedings of the 2018 confer- ence of the North American chapter of the associa- tion for computational linguistics: demonstrations, pages 21-25.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Building an argument search engine for the web",
"authors": [
{
"first": "Henning",
"middle": [],
"last": "Wachsmuth",
"suffix": ""
},
{
"first": "Martin",
"middle": [],
"last": "Potthast",
"suffix": ""
},
{
"first": "Khalid",
"middle": [
"Al"
],
"last": "Khatib",
"suffix": ""
},
{
"first": "Yamen",
"middle": [],
"last": "Ajjour",
"suffix": ""
},
{
"first": "Jana",
"middle": [],
"last": "Puschmann",
"suffix": ""
},
{
"first": "Jiani",
"middle": [],
"last": "Qu",
"suffix": ""
},
{
"first": "Jonas",
"middle": [],
"last": "Dorsch",
"suffix": ""
},
{
"first": "Viorel",
"middle": [],
"last": "Morari",
"suffix": ""
},
{
"first": "Janek",
"middle": [],
"last": "Bevendorff",
"suffix": ""
},
{
"first": "Benno",
"middle": [],
"last": "Stein",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 4th Workshop on Argument Mining",
"volume": "",
"issue": "",
"pages": "49--59",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Henning Wachsmuth, Martin Potthast, Khalid Al Khatib, Yamen Ajjour, Jana Puschmann, Jiani Qu, Jonas Dorsch, Viorel Morari, Janek Bevendorff, and Benno Stein. 2017. Building an argument search engine for the web. In Proceedings of the 4th Workshop on Argument Mining, pages 49-59.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Automatic textual evidence mining in covid-19 literature",
"authors": [
{
"first": "Xuan",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Weili",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Aabhas",
"middle": [],
"last": "Chauhan",
"suffix": ""
},
{
"first": "Yingjun",
"middle": [],
"last": "Guan",
"suffix": ""
},
{
"first": "Jiawei",
"middle": [],
"last": "Han",
"suffix": ""
}
],
"year": 2020,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xuan Wang, Weili Liu, Aabhas Chauhan, Yingjun Guan, and Jiawei Han. 2020a. Automatic textual evidence mining in covid-19 literature.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Comprehensive named entity recognition on cord-19 with distant or weak supervision",
"authors": [
{
"first": "Xuan",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Xiangchen",
"middle": [],
"last": "Song",
"suffix": ""
},
{
"first": "Yingjun",
"middle": [],
"last": "Guan",
"suffix": ""
},
{
"first": "Bangzheng",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Jiawei",
"middle": [],
"last": "Han",
"suffix": ""
}
],
"year": 2020,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:2003.12218"
]
},
"num": null,
"urls": [],
"raw_text": "Xuan Wang, Xiangchen Song, Yingjun Guan, Bangzheng Li, and Jiawei Han. 2020b. Com- prehensive named entity recognition on cord-19 with distant or weak supervision. arXiv preprint arXiv:2003.12218.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Open information extraction with metapattern discovery in biomedical literature",
"authors": [
{
"first": "Xuan",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Yu",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Qi",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Yinyin",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Jiawei",
"middle": [],
"last": "Han",
"suffix": ""
}
],
"year": 2018,
"venue": "BCB",
"volume": "",
"issue": "",
"pages": "291--300",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xuan Wang, Yu Zhang, Qi Li, Yinyin Chen, and Jiawei Han. 2018a. Open information extraction with meta- pattern discovery in biomedical literature. In BCB, pages 291-300. ACM.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Distantly supervised biomedical named entity recognition with dictionary expansion",
"authors": [
{
"first": "Xuan",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Yu",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Qi",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Xiang",
"middle": [],
"last": "Ren",
"suffix": ""
},
{
"first": "Jingbo",
"middle": [],
"last": "Shang",
"suffix": ""
},
{
"first": "Jiawei",
"middle": [],
"last": "Han",
"suffix": ""
}
],
"year": 2019,
"venue": "2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)",
"volume": "",
"issue": "",
"pages": "496--503",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xuan Wang, Yu Zhang, Qi Li, Xiang Ren, Jingbo Shang, and Jiawei Han. 2019. Distantly supervised biomedical named entity recognition with dictionary expansion. In 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages 496-503. IEEE.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "PENNER: pattern-enhanced nested named entity recognition in biomedical literature",
"authors": [
{
"first": "Xuan",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Yu",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Qi",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Cathy",
"middle": [
"H"
],
"last": "Wu",
"suffix": ""
},
{
"first": "Jiawei",
"middle": [],
"last": "Han",
"suffix": ""
}
],
"year": 2018,
"venue": "BIBM",
"volume": "",
"issue": "",
"pages": "540--547",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xuan Wang, Yu Zhang, Qi Li, Cathy H. Wu, and Jiawei Han. 2018b. PENNER: pattern-enhanced nested named entity recognition in biomedical literature. In BIBM, pages 540-547.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Pubtator: a web-based text mining tool for assisting biocuration",
"authors": [
{
"first": "Chih-Hsuan",
"middle": [],
"last": "Wei",
"suffix": ""
},
{
"first": "Hung-Yu",
"middle": [],
"last": "Kao",
"suffix": ""
},
{
"first": "Zhiyong",
"middle": [],
"last": "Lu",
"suffix": ""
}
],
"year": 2013,
"venue": "Nucleic Acids Res",
"volume": "41",
"issue": "W1",
"pages": "518--522",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Chih-Hsuan Wei, Hung-Yu Kao, and Zhiyong Lu. 2013. Pubtator: a web-based text mining tool for assist- ing biocuration. Nucleic Acids Res., 41(W1):W518- W522.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"type_str": "figure",
"uris": null,
"num": null,
"text": "System architecture of EVIDENCEMINER."
},
"FIGREF1": {
"type_str": "figure",
"uris": null,
"num": null,
"text": "EVIDENCEMINER consists of two major components: an open information extraction pipeline and a textual evidence retrieval and analysis pipeline. The open information extraction pipeline includes two functional modules: (1) distantly supervised NER, and (2) meta-pattern-based open information extraction; whereas the textual evidence retrieval and analysis pipeline includes three functional modules: (1) textual evidence search, (2) annotation"
},
"FIGREF2": {
"type_str": "figure",
"uris": null,
"num": null,
"text": "(a) Query: melanoma is treated with nivolumab (b) Query: (nivolumab, DISEASEORSYNDROME treat with CHEMICAL)"
},
"FIGREF3": {
"type_str": "figure",
"uris": null,
"num": null,
"text": "The search interface with the textual evidence retrieved. The evidence score indicates the confidence of each retrieved sentence being a supporting evidence of the input query."
},
"FIGREF4": {
"type_str": "figure",
"uris": null,
"num": null,
"text": "The annotation interface with all the entity and relation annotation results."
},
"FIGREF5": {
"type_str": "figure",
"uris": null,
"num": null,
"text": "The analytic interface with the entity and relation summarization results. The queries used are (a) entity type=DISEASEORSYNDROME, (b) pattern=DISEASEORSYNDROME treat with CHEMICAL, and (c) entity=nivolumab&pattern=DISEASEORSYNDROME treat with CHEMICAL."
},
"TABREF1": {
"content": "<table/>",
"html": null,
"num": null,
"type_str": "table",
"text": "Basic statistics of background corpora. It includes PubMed abstracts and PMC full-text papers related to cancers and heart diseases published in 2019."
},
"TABREF2": {
"content": "<table><tr><td>Distantly Supervised Named Entity Recogni-</td></tr><tr><td>tion. EVIDENCEMINER relies on UMLS 7 , a com-</td></tr><tr><td>prehensive biomedical knowledge base to pro-</td></tr><tr><td>vide distant supervision for named entity recog-</td></tr><tr><td>nition. We select 5 major biomedical entity types</td></tr><tr><td>(Organism, Fully Formed Anatomical Structure,</td></tr></table>",
"html": null,
"num": null,
"type_str": "table",
"text": "summarizes the statistics of the background corpora."
}
}
}
} |