File size: 81,917 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T01:55:18.694043Z"
    },
    "title": "Talk to Papers: Bringing Neural Question Answering to Academic Search",
    "authors": [
        {
            "first": "Tianchang",
            "middle": [],
            "last": "Zhao",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "SOCO AI",
                "location": {}
            },
            "email": "tonyzhao@soco.ai"
        },
        {
            "first": "Kyusong",
            "middle": [],
            "last": "Lee",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "SOCO AI",
                "location": {}
            },
            "email": "kyusongl@soco.ai"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "We introduce Talk to Papers 1 , which exploits the recent open-domain question answering (QA) techniques to improve the current experience of academic search. It's designed to enable researchers to use natural language queries to find precise answers and extract insights from a massive amount of academic papers. We present a large improvement over classic search engine baseline on several standard QA datasets, and provide the community a collaborative data collection tool to curate the first natural language processing research QA dataset via a community effort.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "We introduce Talk to Papers 1 , which exploits the recent open-domain question answering (QA) techniques to improve the current experience of academic search. It's designed to enable researchers to use natural language queries to find precise answers and extract insights from a massive amount of academic papers. We present a large improvement over classic search engine baseline on several standard QA datasets, and provide the community a collaborative data collection tool to curate the first natural language processing research QA dataset via a community effort.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Natural language processing (NLP) is one of the fastest growing field in computational linguistics and artificial intelligence, e.g. ACL has experienced a 140% growth from 2017 (1419 submissions) to 2020 (3429 submissions). Plus, there are more than 4000 pre-prints published at ArXiv in 2019. As a result, it has become increasingly stressful for researchers to keep up with the evolution of new methods. Today, the common way for researchers to find relevant papers is via searching keywords in Google Scholar 2 or Semantic Scholar 3 . Although these search engines are great at curating all the papers, they are limited in the following ways: (1) they are based on classic information retrieval methods, and do not handle natural language queries well, e.g. what effects can we get from label smoothing? (2) they are designed to find relevant documents (title and abstract) instead of direct answers to users' questions. Often researchers are looking for answers on specific research questions, e.g, how to prevent posterior collapse in VAE? or how much is it to label sentences via crowdsourcing? With current search engine, it requires one to read several papers to find these answer. Therefore, it is necessary to create better tools for researchers to find answers from the scientific publications in a more efficient manner.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Meanwhile, machine reading comprehension (MRC), aka question answering (QA) has advanced significantly. Pretrained and then fine-tuned transformer models (Devlin et al., 2018) have surpassed human performance on a number of datasets, e.g. SQuAD (Rajpurkar et al., 2016) . Further, Chen et al. (2017) extended single document MRC to machine reading at scale (MRS), combining the challenges of document retrieval with reading comprehension. Their open-domain QA system is able to find precise answers from millions of unstructured documents using natural language queries and has successfully been applied to the entire Wikipedia which contains more than 5 million articles.",
                "cite_spans": [
                    {
                        "start": 154,
                        "end": 175,
                        "text": "(Devlin et al., 2018)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 245,
                        "end": 269,
                        "text": "(Rajpurkar et al., 2016)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 281,
                        "end": 299,
                        "text": "Chen et al. (2017)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The goal of Talk to Papers is to create a new way of finding answers from scientific publications and advance QA research. Concretely, we first adapted MRS techniques to create a conversational search portal that enable users to ask natural language questions to find precise answers and extract insights from the last 3 year papers published in top-tier NLP conferences, including ACL, NAACL, EMNLP and etc. Second, an initial corpus on these papers is collected and will be released as a publicly available dataset for QA research. We also developed a collaborative annotation toolkit that enable any researcher to contribute to this dataset so that more potential answers from these papers can be annotated. The annotation results will be fed back to the QA corpus after manual validation. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Developing question answering system with text knowledge base has been studied for decades (Voorhees and Tice, 1999) . Many of the classic system as well as recent MRC-based opendomain QA systems have relied a pipeline approach (Ferrucci et al., 2010; Chen et al., 2017; : (1) a information retrieval-based retriever module first finds relevant passages from all the documents and then (2) a reader component (computationally more expensive) extracts precise answer spans from the retrieved passages. has shown that using paragraphs as the unit of passage outperform sentences or documents. Lee et al. (2019a) proposes a trainable first-stage retriever that improves the recall performance. Pipeline-based system often suffer from error propagation (Zhao and Eskenazi, 2016) . Thus another line of research has been finding an end-toend approach that enable precise-answer extraction from the entire dataset instead of only the output from the first-stage retriever. Seo et al. (2019) introduced the phrase level representation model that index every potential answer span as vector representation and exploited approximate nearest neighbour (ANN) methods to retrieve the final answer span directly from a large vector index (Slaney and Casey, 2008) . Ahmad et al. (2019) argued that phrase-level answer may not always be required or preferred. Instead they proposed to find the right \"sentence\" as an answer from large body of text, and used universal sentence encoder (Cer et al., 2018) to retrieved the correct sentence given a question.",
                "cite_spans": [
                    {
                        "start": 91,
                        "end": 116,
                        "text": "(Voorhees and Tice, 1999)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 228,
                        "end": 251,
                        "text": "(Ferrucci et al., 2010;",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 252,
                        "end": 270,
                        "text": "Chen et al., 2017;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 591,
                        "end": 609,
                        "text": "Lee et al. (2019a)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 749,
                        "end": 774,
                        "text": "(Zhao and Eskenazi, 2016)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 967,
                        "end": 984,
                        "text": "Seo et al. (2019)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 1225,
                        "end": 1249,
                        "text": "(Slaney and Casey, 2008)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 1252,
                        "end": 1271,
                        "text": "Ahmad et al. (2019)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 1470,
                        "end": 1488,
                        "text": "(Cer et al., 2018)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Our approach follows the sentence-level QA system from (Ahmad et al., 2019) for two reasons: (1) answers to many research questions cannot be cov-ered in a short phrase-level span, and a sentence answer can provide more context to deliver relevant solutions. (2) our preliminary study found that it is important to have a trainable retriever that goes beyond TF-IDF keyword matching to ensure enough recall in the paper domain. Nonetheless, we keep a machine reader as optional post-process to extract phrase-level span from the sentences.",
                "cite_spans": [
                    {
                        "start": 55,
                        "end": 75,
                        "text": "(Ahmad et al., 2019)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "3 The Proposed QA Toolkits: SOCO",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "We first introduce SOCO (Search Oriented COnversation), which we used to build our Talk to Paper. SOCO 4 is an answer-engine platform that enables developers to easily build universal question answering systems with unstructured documents as its knowledge base. Figure 1 shows the overall architecture of SOCO engine. It's designed to enable users to use natural language queries to find precise answers and extract insights from massive amount of text data. The typical workflow is as following:",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 262,
                        "end": 270,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "1. Split documents into sentences and convert each sentence with its context into semantic index (i.e. a collection of answer embedding, sparse features and other semantic features).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "2. Use natural language to query the index, which first converts the query into semantic embedding and then retrieves all the high probable answers.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "3. (Optional) Run machine reader to narrow down to phrase-level answers.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "We define a frame to be the basic building block of SOCO. Each frame contains N , where N is the total number of frames, a i is the potential answer sentence, c i is surrounding context of a i , and Q i is a set of questions that are manually/synthetically associated with the answer a i . Note that Q i is optional and often only a small set of frames are manually labelled. There are two neural network models involve in SOCO QA. The first model h a = F a (a, c) is an answer encoder that takes both the answer sentence and its surround context to create a contextsensitive answer embeddings h a . The second model is a question encoder h q = F q (q) that takes a query as input and maps it to a question embedding vector of the same size. Last, we define the relevance between a query and an answer frame to be s = cos(h a , h q ).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "SOCO-Question Answering",
                "sec_num": "3.1"
            },
            {
                "text": "f i = [a i , c i , Q i ] i \u2208",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "SOCO-Question Answering",
                "sec_num": "3.1"
            },
            {
                "text": "These two models are trained jointly via supervised learning on existing QA dataset with cross entropy loss, i.e.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "3.1.1"
            },
            {
                "text": "L = \u2212 j\u2208Jpos log(s j ) \u2212 j\u2208Jneg log(1 \u2212 s j ) (1)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "3.1.1"
            },
            {
                "text": "where J pos is the set of ground truth questionanswer pairs, and J neg is the set of negative examples with randomly sampled noisy answers.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "3.1.1"
            },
            {
                "text": "Given these two models and a set of frames, SOCO creates an index by encoding both the answers and annotated questions using F a and F q and save the resulting vectors D for nearest neighbour retrieval. Since F q and F a are trained to map the input text into the same embedding space, questionto-answer relevance and question-to-question relevance can be computed and compared in the same scale via cosine similarity.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "3.1.1"
            },
            {
                "text": "At inference stage, SOCO first encodes the input query q via h q = F q (q ). Then each answer in the QA-index is scored by the cosine similarity between the query embedding and each answer embedding with a weighted auxiliary score from classic BM25 score (Robertson et al., 2009) .",
                "cite_spans": [
                    {
                        "start": 255,
                        "end": 279,
                        "text": "(Robertson et al., 2009)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inference",
                "sec_num": "3.1.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "y i = cos(h i , h q ) + \u03b1BM25(a i , q ) i \u2208 |D|",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Inference",
                "sec_num": "3.1.2"
            },
            {
                "text": "Note that an answer may have more than one vectors in the index because of the optional annotated question Q set in the frame, i.e. [h a , {h q }] q \u2208 Q. We merge the scores for the same answers via max pooling. Eventually, SOCO outputs the top K answers based on the final score.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inference",
                "sec_num": "3.1.2"
            },
            {
                "text": "One common issue for new users to use question answering system is that they may not know what kind of questions they can ask. Question generation (Du et al., 2017) is one of the solutions to this issue by suggesting users potential questions they may enter. Concretely, we created a question generator by fine-tuning a GPT-2 language model (Radford et al., 2019) . We train the model by concatenating question answers pairs [a, q] from QA corpus and fine tune a GPT-2 by maximizing the conditional log likelihood log P (q|a). The results questions are added to the Q set of each frame and is used to provide auto completion and FAQs in the search interface.",
                "cite_spans": [
                    {
                        "start": 147,
                        "end": 164,
                        "text": "(Du et al., 2017)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 341,
                        "end": 363,
                        "text": "(Radford et al., 2019)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "SOCO-Question Generation",
                "sec_num": "3.2"
            },
            {
                "text": "The SOCO python package (soco-core-python) is publicly available and can be installed as a Python package by running pip3 install soco-core-python. Internally, SOCO uses Elastic search (ES) (Gormley and Tong, 2015) as its index backbone. ES has built-in support for vector search, BM25 as well as context filtering. The answer and question encoder are trained on publicly available QA datasets, including SQuAD (Rajpurkar et al., 2016) , Natural Questions and MSMARCO (Nguyen et al., 2016) .",
                "cite_spans": [
                    {
                        "start": 411,
                        "end": 435,
                        "text": "(Rajpurkar et al., 2016)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 468,
                        "end": 489,
                        "text": "(Nguyen et al., 2016)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Implementation Details",
                "sec_num": "3.3"
            },
            {
                "text": "Now we are ready to describe the proposed Talk to Paper application, powered by our SOCO QA framework.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Talk to Paper",
                "sec_num": "4"
            },
            {
                "text": "Talk to Paper's data source contains NLP papers published last 3 years in ACL, NAACL, EMNLP and SiGdial in ACL Anthology 5 , which attributes to 3897 papers published in the proceedings of these conferences (we will continuously expand the database by adding more papers from previous years as well as new published papers). We first use SOCO's document parser to extract text data from the PDFs and converted them into the frame format defined in the previous section. Then we use soco-core-python to index the frames and query for answers via its RESTful API endpoint. The indexing process takes about 2 hours.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Source",
                "sec_num": "4.1"
            },
            {
                "text": "Talk to Paper is an web app that can be used on any modern browser. There are three major pages:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "User Interfaces",
                "sec_num": "4.2"
            },
            {
                "text": "\u2022 Main search page",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "User Interfaces",
                "sec_num": "4.2"
            },
            {
                "text": "\u2022 In-paper search page",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "User Interfaces",
                "sec_num": "4.2"
            },
            {
                "text": "\u2022 Annotation page.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "User Interfaces",
                "sec_num": "4.2"
            },
            {
                "text": "Main Search page: The main search page is similar to the standard Google-like search interface as shown in Figure 3 , including input search box and query auto completion (based on generated questions from GPT-2).The responding answers will be highlighted in each returned results.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 107,
                        "end": 115,
                        "text": "Figure 3",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "User Interfaces",
                "sec_num": "4.2"
            },
            {
                "text": "In-paper Search Page: Previously, people search information in the paper by clicking Con-trol+F, which is a well-known shortcut key often used to find text in the current page using the exact character matching or regular expression. It is often used to input a keyword and highlight the matched string and allow to navigate the next matching or previous matching. We provide a similar interface to find the answer inside a specific paper as shown in Figure 2 . Instead of searching information using a keyword, the proposed method allow to find the information using natural language queries. The retrieved answers are highlighted and it is also allowed to navigate next answer or previous answer. It will be useful to find multiple answers in the paper.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 451,
                        "end": 459,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "User Interfaces",
                "sec_num": "4.2"
            },
            {
                "text": "Annotation Page: We allow to annotate the question and answer spans in the in-paper search page as shown in Figure 4 . All annotated data are visible in the preview page. If a user wants to annotate the data, the user can simply drag the text and write a question. The data will be automatically saved in the database. Unlike other open-domain QA datasets, we cannot ask to crowd workers, students, or part-time contractors to annotate on academic papers because it is hard to annotate without the domain knowledge. Therefore, we will welcome contributions from the research community to make useful resources together for the further research. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 108,
                        "end": 116,
                        "text": "Figure 4",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "User Interfaces",
                "sec_num": "4.2"
            },
            {
                "text": "The typical use cases are as following: ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Use Cases",
                "sec_num": "4.3"
            },
            {
                "text": "A: Currently, one of the best performing NLI models (e.g., on the SNLI dataset) for three way classification is (Liu et al., 2019) .",
                "cite_spans": [
                    {
                        "start": 112,
                        "end": 130,
                        "text": "(Liu et al., 2019)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Q: What is the best system for NLI?",
                "sec_num": null
            },
            {
                "text": "Identification of Tasks, Datasets, Evaluation Metrics, and Numeric Scores for Scientific Leaderboards Construction ... Our work differs in the information extracted and consequently in what context and hypothesis information we model. Currently, one of the best performing NLI models (e.g., on the SNLI dataset) for three way classification is (Liu et al., 2019) . The authors apply deep neural networks and make use of BERT (Devlin et al., 2019) ,... with its previous and next context. The related FAQs are also presented with the \"You may also want to know\" message. The user can also uses filters to narrow down to the answer in one or more specific paper.",
                "cite_spans": [
                    {
                        "start": 344,
                        "end": 362,
                        "text": "(Liu et al., 2019)",
                        "ref_id": null
                    },
                    {
                        "start": 425,
                        "end": 446,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Title:",
                "sec_num": null
            },
            {
                "text": "2. the user clicks the \"view in document\" to check the answer with the original paper. The in-paper search page will be shown. The user can either read the paper or uses in-paper search, e.g. what is the main contribution? to let Talk to Paper auto scroll and highlight relevant answer spans (Figure 2) .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 292,
                        "end": 302,
                        "text": "(Figure 2)",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Title:",
                "sec_num": null
            },
            {
                "text": "3. the user may think certain span in the paper contains important information and uses the annotation function to add related questions to this span. This new annotations will be saved in to databases and will be added to the public dataset after manual inspection.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Title:",
                "sec_num": null
            },
            {
                "text": "4. the user may uses the dataset as way to train and test performance of a question answering system. The Talk to Paper dataset is different from existing corpus because it contains highly technical text data that are substantially different from Wikipedia, which is a major source of most of the existing QA datasets.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Title:",
                "sec_num": null
            },
            {
                "text": "In this section, we first present quantitative preliminary evaluation results the effectiveness of the proposed SOCO-QA framework on a number of standard QA datasets. Then we show results on the data collected from our initial user study.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments and Results",
                "sec_num": "5"
            },
            {
                "text": "This preliminary studies focuses on comparison between SOCO-QA against classic BM25 (Robertson et al., 2009) . BM25-based methods remain to be the mainstream methods for document retrieval in industry. Previous work in open domain question answering has shown that BM25 is a difficult baseline to surpass when questions were written by workers who have prior knowledge of the answer (Lee et al., 2019a) . We will leave more comprehensive comparisons against other learning-based methods to future work, since the main goal of this demo paper is to present the system along with its dataset. We use the built-in elastic search (Gormley and Tong, 2015) (NQ) , MS MARCO (Nguyen et al., 2016) and Trivia QA (Joshi et al., 2017) . We break documents from the development set into sentence-level answer frames, and uses the queries in the development set to compute Mean Reciprocal Rank (MRR) and Recall at 5 (R@5) as the evaluation metrics. The data statics are summarized in Table 2 .",
                "cite_spans": [
                    {
                        "start": 84,
                        "end": 108,
                        "text": "(Robertson et al., 2009)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 383,
                        "end": 402,
                        "text": "(Lee et al., 2019a)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 626,
                        "end": 650,
                        "text": "(Gormley and Tong, 2015)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 667,
                        "end": 688,
                        "text": "(Nguyen et al., 2016)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 703,
                        "end": 723,
                        "text": "(Joshi et al., 2017)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 971,
                        "end": 978,
                        "text": "Table 2",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Results for SOCO-QA performance",
                "sec_num": "5.1"
            },
            {
                "text": "Quantitative Results: Table 3 shows the main results. The proposed SOCO-QA model is able to significantly outperform the baseline BM25 on all datasets. The proposed method is particularly powerful on real query data, e.g. NQ and MARCO where the question writer does not the exact answer they are looking for, so that there is often a low word overlapping between the question and the answer. Table 3 shows a striking 251% and 253.6% relative MRR improvement on the NQ and MARCO dataset. On the other hand, SOCO is also able to beat BM25 on SQuAD and Trivia dataset, where there is significant more question-to-answer word lapping.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 22,
                        "end": 29,
                        "text": "Table 3",
                        "ref_id": "TABREF3"
                    },
                    {
                        "start": 392,
                        "end": 399,
                        "text": "Table 3",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Results for SOCO-QA performance",
                "sec_num": "5.1"
            },
            {
                "text": "Qualitative Results: to provide better understanding between BM25-based search versus SOCO-QA, the following are some example sideby-side comparisons:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results for SOCO-QA performance",
                "sec_num": "5.1"
            },
            {
                "text": "\u2022 SOCO: We compare our baselines with a fine-tuned BERT model (Devlin et al., 2018) .",
                "cite_spans": [
                    {
                        "start": 62,
                        "end": 83,
                        "text": "(Devlin et al., 2018)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results for SOCO-QA performance",
                "sec_num": "5.1"
            },
            {
                "text": "BERT is a pre-trained deep bidirectional transformer model that can encode sentences into dense vector representations. It is trained on large un-annotated corpora such as Wikipedia and the BooksCorpus (Zhu et al., 2015).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results for SOCO-QA performance",
                "sec_num": "5.1"
            },
            {
                "text": "\u2022 ES Default (BM25): for the claim pairs with distance values 2 to 5 as shown in Table 3 . We find that BERT model is consistently the best performing model for all distance pairs. As we increase the distance, the models achieve higher prediction performance.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 81,
                        "end": 88,
                        "text": "Table 3",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Results for SOCO-QA performance",
                "sec_num": "5.1"
            },
            {
                "text": "The main observations is that BM25 falls short in understanding the intent of the query. Although it is also able to find sentences that are relevant to the query terms, it does not rank sentences that can \"answer\" the query higher. On the other hand, SOCO-QA is able to recognize target answer a query is looking for, e.g. a definition, and rank sentences that can directly resolves the questions higher.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results for SOCO-QA performance",
                "sec_num": "5.1"
            },
            {
                "text": "We asked NLP researchers via social network, e.g. Twitter, to try out Talk to Paper and we are able to collect 3137 queries in roughly two weeks. The logged query data and its annotation will soon be made publicly available). Table 1 shows example queries where the system is able to find relevant answers to real user queries. Analysis shows that the most frequent query type were asking about the objectives or the meaning of terms (e.g., what are pretraining objectives, what is LSTM?). Another popular question type is to ask about the state-ofthe-art method to solve a particular problem, e.g. What is the best system for NLI?. We also found that the generated questions that are presented as auto-completion and FAQs are particularly popular. About 51.7% of queries were from the suggested questions. This results is inline with research work in human-computer interaction that utilizes machine intelligent systems to assist human users to better discover knowledge (Lee et al., 2019b) .",
                "cite_spans": [
                    {
                        "start": 972,
                        "end": 991,
                        "text": "(Lee et al., 2019b)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 226,
                        "end": 233,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Data Analysis",
                "sec_num": "5.2"
            },
            {
                "text": "We present Talk to Paper, a QA system for NLP papers powered by SOCO-QA. Experiments confirm the effectiveness of our proposed approach and show superior search experience compared to traditional search engine. We welcome contributions from the research community to curate useful resources together for the further research. Future work include (1) expanding the database to more papers (2) improving the QA model using the collected data to better handle question answering in the context of research domain.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "https://docs.soco.ai/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://www.aclweb.org/anthology/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "We would like to acknowledge the joint effort from SOCO's development team, including Haolin Wang, Yanran Han and Omer Riaz to make this work possible.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Reqa: An evaluation for endto-end answer retrieval models",
                "authors": [
                    {
                        "first": "Amin",
                        "middle": [],
                        "last": "Ahmad",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [],
                        "last": "Constant",
                        "suffix": ""
                    },
                    {
                        "first": "Yinfei",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Cer",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1907.04780"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Amin Ahmad, Noah Constant, Yinfei Yang, and Daniel Cer. 2019. Reqa: An evaluation for end- to-end answer retrieval models. arXiv preprint arXiv:1907.04780.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Universal sentence encoder",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Cer",
                        "suffix": ""
                    },
                    {
                        "first": "Yinfei",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Sheng-Yi",
                        "middle": [],
                        "last": "Kong",
                        "suffix": ""
                    },
                    {
                        "first": "Nan",
                        "middle": [],
                        "last": "Hua",
                        "suffix": ""
                    },
                    {
                        "first": "Nicole",
                        "middle": [],
                        "last": "Limtiaco",
                        "suffix": ""
                    },
                    {
                        "first": "Rhomni",
                        "middle": [],
                        "last": "St John",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [],
                        "last": "Constant",
                        "suffix": ""
                    },
                    {
                        "first": "Mario",
                        "middle": [],
                        "last": "Guajardo-Cespedes",
                        "suffix": ""
                    },
                    {
                        "first": "Steve",
                        "middle": [],
                        "last": "Yuan",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Tar",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1803.11175"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, et al. 2018. Universal sentence encoder. arXiv preprint arXiv:1803.11175.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Reading Wikipedia to answer opendomain questions",
                "authors": [
                    {
                        "first": "Danqi",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Fisch",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Weston",
                        "suffix": ""
                    },
                    {
                        "first": "Antoine",
                        "middle": [],
                        "last": "Bordes",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Association for Computational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. 2017. Reading Wikipedia to answer open- domain questions. In Association for Computa- tional Linguistics (ACL).",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Bert: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1810.04805"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understand- ing. arXiv preprint arXiv:1810.04805.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Learning to ask: Neural question generation for reading comprehension",
                "authors": [
                    {
                        "first": "Xinya",
                        "middle": [],
                        "last": "Du",
                        "suffix": ""
                    },
                    {
                        "first": "Junru",
                        "middle": [],
                        "last": "Shao",
                        "suffix": ""
                    },
                    {
                        "first": "Claire",
                        "middle": [],
                        "last": "Cardie",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "1342--1352",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xinya Du, Junru Shao, and Claire Cardie. 2017. Learn- ing to ask: Neural question generation for reading comprehension. In Proceedings of the 55th An- nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1342- 1352.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Building watson: An overview of the deepqa project",
                "authors": [
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Ferrucci",
                        "suffix": ""
                    },
                    {
                        "first": "Eric",
                        "middle": [],
                        "last": "Brown",
                        "suffix": ""
                    },
                    {
                        "first": "Jennifer",
                        "middle": [],
                        "last": "Chu-Carroll",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Fan",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Gondek",
                        "suffix": ""
                    },
                    {
                        "first": "Aditya",
                        "middle": [
                            "A"
                        ],
                        "last": "Kalyanpur",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Lally",
                        "suffix": ""
                    },
                    {
                        "first": "William",
                        "middle": [],
                        "last": "Murdock",
                        "suffix": ""
                    },
                    {
                        "first": "Eric",
                        "middle": [],
                        "last": "Nyberg",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Prager",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "AI magazine",
                "volume": "31",
                "issue": "3",
                "pages": "59--79",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David Gondek, Aditya A Kalyanpur, Adam Lally, J William Murdock, Eric Nyberg, John Prager, et al. 2010. Building watson: An overview of the deepqa project. AI magazine, 31(3):59-79.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Elasticsearch: the definitive guide: a distributed real-time search and analytics engine",
                "authors": [
                    {
                        "first": "Clinton",
                        "middle": [],
                        "last": "Gormley",
                        "suffix": ""
                    },
                    {
                        "first": "Zachary",
                        "middle": [],
                        "last": "Tong",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Clinton Gormley and Zachary Tong. 2015. Elastic- search: the definitive guide: a distributed real-time search and analytics engine. \" O'Reilly Media, Inc.\".",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Triviaqa: A large scale distantly supervised challenge dataset for reading comprehension",
                "authors": [
                    {
                        "first": "Mandar",
                        "middle": [],
                        "last": "Joshi",
                        "suffix": ""
                    },
                    {
                        "first": "Eunsol",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Daniel",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Weld",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1705.03551"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. 2017. Triviaqa: A large scale distantly supervised challenge dataset for reading comprehen- sion. arXiv preprint arXiv:1705.03551.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Natural questions: a benchmark for question answering research",
                "authors": [
                    {
                        "first": "Tom",
                        "middle": [],
                        "last": "Kwiatkowski",
                        "suffix": ""
                    },
                    {
                        "first": "Jennimaria",
                        "middle": [],
                        "last": "Palomaki",
                        "suffix": ""
                    },
                    {
                        "first": "Olivia",
                        "middle": [],
                        "last": "Redfield",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    },
                    {
                        "first": "Ankur",
                        "middle": [],
                        "last": "Parikh",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Alberti",
                        "suffix": ""
                    },
                    {
                        "first": "Danielle",
                        "middle": [],
                        "last": "Epstein",
                        "suffix": ""
                    },
                    {
                        "first": "Illia",
                        "middle": [],
                        "last": "Polosukhin",
                        "suffix": ""
                    },
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Transactions of the Association for Computational Linguistics",
                "volume": "7",
                "issue": "",
                "pages": "453--466",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red- field, Michael Collins, Ankur Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. 2019. Natural questions: a bench- mark for question answering research. Transactions of the Association for Computational Linguistics, 7:453-466.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Ranking paragraphs for improving answer recall in open-domain question answering",
                "authors": [
                    {
                        "first": "Jinhyuk",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Seongjun",
                        "middle": [],
                        "last": "Yun",
                        "suffix": ""
                    },
                    {
                        "first": "Hyunjae",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "Miyoung",
                        "middle": [],
                        "last": "Ko",
                        "suffix": ""
                    },
                    {
                        "first": "Jaewoo",
                        "middle": [],
                        "last": "Kang",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1810.00494"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jinhyuk Lee, Seongjun Yun, Hyunjae Kim, Miyoung Ko, and Jaewoo Kang. 2018. Ranking paragraphs for improving answer recall in open-domain ques- tion answering. arXiv preprint arXiv:1810.00494.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Latent retrieval for weakly supervised open domain question answering",
                "authors": [
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1906.00300"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. 2019a. Latent retrieval for weakly supervised open domain question answering. arXiv preprint arXiv:1906.00300.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Learning autocomplete systems as a communication game",
                "authors": [
                    {
                        "first": "Mina",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Tatsunori",
                        "suffix": ""
                    },
                    {
                        "first": "Percy",
                        "middle": [],
                        "last": "Hashimoto",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Liang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1911.06964"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Mina Lee, Tatsunori B Hashimoto, and Percy Liang. 2019b. Learning autocomplete systems as a commu- nication game. arXiv preprint arXiv:1911.06964.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Ms marco: a human-generated machine reading comprehension dataset",
                "authors": [
                    {
                        "first": "Tri",
                        "middle": [],
                        "last": "Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "Mir",
                        "middle": [],
                        "last": "Rosenberg",
                        "suffix": ""
                    },
                    {
                        "first": "Xia",
                        "middle": [],
                        "last": "Song",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Saurabh",
                        "middle": [],
                        "last": "Tiwary",
                        "suffix": ""
                    },
                    {
                        "first": "Rangan",
                        "middle": [],
                        "last": "Majumder",
                        "suffix": ""
                    },
                    {
                        "first": "Li",
                        "middle": [],
                        "last": "Deng",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder, and Li Deng. 2016. Ms marco: a human-generated machine read- ing comprehension dataset.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Language models are unsupervised multitask learners",
                "authors": [
                    {
                        "first": "Alec",
                        "middle": [],
                        "last": "Radford",
                        "suffix": ""
                    },
                    {
                        "first": "Jeff",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Rewon",
                        "middle": [],
                        "last": "Child",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Luan",
                        "suffix": ""
                    },
                    {
                        "first": "Dario",
                        "middle": [],
                        "last": "Amodei",
                        "suffix": ""
                    },
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Sutskever",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Squad: 100,000+ questions for machine comprehension of text",
                "authors": [
                    {
                        "first": "Pranav",
                        "middle": [],
                        "last": "Rajpurkar",
                        "suffix": ""
                    },
                    {
                        "first": "Jian",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Konstantin",
                        "middle": [],
                        "last": "Lopyrev",
                        "suffix": ""
                    },
                    {
                        "first": "Percy",
                        "middle": [],
                        "last": "Liang",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1606.05250"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. Squad: 100,000+ questions for machine comprehension of text. arXiv preprint arXiv:1606.05250.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "The probabilistic relevance framework: Bm25 and beyond",
                "authors": [
                    {
                        "first": "Stephen",
                        "middle": [],
                        "last": "Robertson",
                        "suffix": ""
                    },
                    {
                        "first": "Hugo",
                        "middle": [],
                        "last": "Zaragoza",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Foundations and Trends R in Information Retrieval",
                "volume": "3",
                "issue": "4",
                "pages": "333--389",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance framework: Bm25 and be- yond. Foundations and Trends R in Information Re- trieval, 3(4):333-389.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Real-time open-domain question answering with dense-sparse phrase index",
                "authors": [
                    {
                        "first": "Minjoon",
                        "middle": [],
                        "last": "Seo",
                        "suffix": ""
                    },
                    {
                        "first": "Jinhyuk",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Tom",
                        "middle": [],
                        "last": "Kwiatkowski",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Ankur",
                        "suffix": ""
                    },
                    {
                        "first": "Ali",
                        "middle": [],
                        "last": "Parikh",
                        "suffix": ""
                    },
                    {
                        "first": "Hannaneh",
                        "middle": [],
                        "last": "Farhadi",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Hajishirzi",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1906.05807"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Minjoon Seo, Jinhyuk Lee, Tom Kwiatkowski, Ankur P Parikh, Ali Farhadi, and Hannaneh Ha- jishirzi. 2019. Real-time open-domain question answering with dense-sparse phrase index. arXiv preprint arXiv:1906.05807.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Localitysensitive hashing for finding nearest neighbors",
                "authors": [
                    {
                        "first": "Malcolm",
                        "middle": [],
                        "last": "Slaney",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Casey",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Malcolm Slaney and Michael Casey. 2008. Locality- sensitive hashing for finding nearest neighbors [lec- ture notes].",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "The trec-8 question answering track evaluation",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Ellen",
                        "suffix": ""
                    },
                    {
                        "first": "Dawn",
                        "middle": [
                            "M"
                        ],
                        "last": "Voorhees",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Tice",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "TREC",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ellen M Voorhees and Dawn M Tice. 1999. The trec-8 question answering track evaluation. In TREC, vol- ume 1999, page 82. Citeseer.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "End-to-end open-domain question answering with bertserini",
                "authors": [
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Yuqing",
                        "middle": [],
                        "last": "Xie",
                        "suffix": ""
                    },
                    {
                        "first": "Aileen",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Xingyu",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Luchen",
                        "middle": [],
                        "last": "Tan",
                        "suffix": ""
                    },
                    {
                        "first": "Kun",
                        "middle": [],
                        "last": "Xiong",
                        "suffix": ""
                    },
                    {
                        "first": "Ming",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Jimmy",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1902.01718"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019. End-to-end open-domain question answering with bertserini. arXiv preprint arXiv:1902.01718.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Towards end-to-end learning for dialog state tracking and management using deep reinforcement learning",
                "authors": [
                    {
                        "first": "Tiancheng",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Maxine",
                        "middle": [],
                        "last": "Eskenazi",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue",
                "volume": "",
                "issue": "",
                "pages": "1--10",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tiancheng Zhao and Maxine Eskenazi. 2016. To- wards end-to-end learning for dialog state tracking and management using deep reinforcement learning. In Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 1-10.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "num": null,
                "text": "Overall workflow of the proposed SOCO framework. The machine reading step in the dashed box is optional.",
                "type_str": "figure"
            },
            "FIGREF1": {
                "uris": null,
                "num": null,
                "text": "In-paper Search Page of Talk to Paper.",
                "type_str": "figure"
            },
            "FIGREF2": {
                "uris": null,
                "num": null,
                "text": "Main search page of Talk to Paper.",
                "type_str": "figure"
            },
            "FIGREF3": {
                "uris": null,
                "num": null,
                "text": "Annotation page of Talk to Paper.",
                "type_str": "figure"
            },
            "FIGREF4": {
                "uris": null,
                "num": null,
                "text": "1. A user asks a question or click one of FAQsin the main search page. The N-best results will be presented with the highlighted answer Examples Paragraphs Q: what are pretraining objectives? A: that pretraining will improve downstream tasks with fine-tuning on the entire available data Title: Pretraining Methods for Dialog Context Representation Learning ... The pretraining objectives are assessed under four different hypotheses: (1) that pretraining will improve downstream tasks with finetuning on the entire available data, (2) that pretraining will result in better convergence, ...Q: what is LSTM?A: Long Short-Term Memory Network Title: Reasoning with Sarcasm by Reading In-between ... The filter width is 3 and number of filters f = 100. LSTM is a vanilla Long Short-Term Memory Network. The size of the LSTM cell is set to d = 100. ATT-LSTM (Attention-based LSTM) is a LSTM model with a neural attention mechanism applied to all the...",
                "type_str": "figure"
            },
            "TABREF0": {
                "html": null,
                "text": "Example results from real user queries",
                "num": null,
                "content": "<table/>",
                "type_str": "table"
            },
            "TABREF2": {
                "html": null,
                "text": "Statistics on the evaluation datasets.",
                "num": null,
                "content": "<table><tr><td/><td>BM25</td><td>SOCO</td><td/></tr><tr><td/><td colspan=\"2\">MRR R@5 MRR</td><td>R@5</td></tr><tr><td>SQuAD</td><td>58.0</td><td>69.0 60.9</td><td>73.2</td></tr><tr><td>Trivia</td><td>29.0</td><td>38.7 34.0</td><td>59.2</td></tr><tr><td>NQ</td><td>19.7</td><td>25.1 69.3</td><td>87.3</td></tr><tr><td colspan=\"2\">MARCO 20.7</td><td>27.0 73.2</td><td>92.8</td></tr></table>",
                "type_str": "table"
            },
            "TABREF3": {
                "html": null,
                "text": "Main evaluation results.",
                "num": null,
                "content": "<table/>",
                "type_str": "table"
            }
        }
    }
}