File size: 106,261 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 |
{
"paper_id": "2020",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T01:56:10.812781Z"
},
"title": "LEAN-LIFE: A Label-Efficient Annotation Framework Towards Learning from Explanation",
"authors": [
{
"first": "Dong-Ho",
"middle": [],
"last": "Lee",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of Southern",
"location": {
"country": "California"
}
},
"email": "dongho.lee@usc.edu"
},
{
"first": "Rahul",
"middle": [],
"last": "Khanna",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of Southern",
"location": {
"country": "California"
}
},
"email": "rahulkha@usc.edu"
},
{
"first": "Bill",
"middle": [
"Yuchen"
],
"last": "Lin",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of Southern",
"location": {
"country": "California"
}
},
"email": ""
},
{
"first": "Seyeon",
"middle": [],
"last": "Lee",
"suffix": "",
"affiliation": {},
"email": "seyeonle@usc.edu"
},
{
"first": "Qinyuan",
"middle": [],
"last": "Ye",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of Southern",
"location": {
"country": "California"
}
},
"email": "qinyuany@usc.edu"
},
{
"first": "Elizabeth",
"middle": [],
"last": "Boschee",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of Southern",
"location": {
"country": "California"
}
},
"email": "boschee@isi.edu"
},
{
"first": "Leonardo",
"middle": [],
"last": "Neves",
"suffix": "",
"affiliation": {},
"email": "lneves@snap.com"
},
{
"first": "Xiang",
"middle": [],
"last": "Ren",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of Southern",
"location": {
"country": "California"
}
},
"email": "xiangren@usc.edu"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "Successfully training a deep neural network demands a huge corpus of labeled data. However, each label only provides limited information to learn from and collecting the requisite number of labels involves massive human effort. In this work, we introduce LEAN-LIFE 1 , a web-based, Label-Efficient AnnotatioN framework for sequence labeling and classification tasks, with an easy-to-use UI that not only allows an annotator to provide the needed labels for a task, but also enables LearnIng From Explanations for each labeling decision. Such explanations enable us to generate useful additional labeled data from unlabeled instances, bolstering the pool of available training data. On three popular NLP tasks (named entity recognition, relation extraction, sentiment analysis), we find that using this enhanced supervision allows our models to surpass competitive baseline F1 scores by more than 5-10 percentage points, while using 2X times fewer labeled instances. Our framework is the first to utilize this enhanced supervision technique and does so for three important tasks-thus providing improved annotation recommendations to users and an ability to build datasets of (data, label, explanation) triples instead of the regular (data, label) pair.",
"pdf_parse": {
"paper_id": "2020",
"_pdf_hash": "",
"abstract": [
{
"text": "Successfully training a deep neural network demands a huge corpus of labeled data. However, each label only provides limited information to learn from and collecting the requisite number of labels involves massive human effort. In this work, we introduce LEAN-LIFE 1 , a web-based, Label-Efficient AnnotatioN framework for sequence labeling and classification tasks, with an easy-to-use UI that not only allows an annotator to provide the needed labels for a task, but also enables LearnIng From Explanations for each labeling decision. Such explanations enable us to generate useful additional labeled data from unlabeled instances, bolstering the pool of available training data. On three popular NLP tasks (named entity recognition, relation extraction, sentiment analysis), we find that using this enhanced supervision allows our models to surpass competitive baseline F1 scores by more than 5-10 percentage points, while using 2X times fewer labeled instances. Our framework is the first to utilize this enhanced supervision technique and does so for three important tasks-thus providing improved annotation recommendations to users and an ability to build datasets of (data, label, explanation) triples instead of the regular (data, label) pair.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "Deep neural networks have achieved state-of-theart performance on a wide range of sequence labeling and classification tasks such as named entity recognition (NER) (Lample et al., 2016; Ma and Hovy, 2016) , relation extraction (RE) (Zeng et al., 2015; Zhang et al., 2017; Ye et al., 2019) , and sentiment analysis (SA) (Wang et al., 2016) . However, they only yield such performance levels * Both authors contributed equally.",
"cite_spans": [
{
"start": 164,
"end": 185,
"text": "(Lample et al., 2016;",
"ref_id": "BIBREF6"
},
{
"start": 186,
"end": 204,
"text": "Ma and Hovy, 2016)",
"ref_id": "BIBREF14"
},
{
"start": 232,
"end": 251,
"text": "(Zeng et al., 2015;",
"ref_id": "BIBREF26"
},
{
"start": 252,
"end": 271,
"text": "Zhang et al., 2017;",
"ref_id": "BIBREF27"
},
{
"start": 272,
"end": 288,
"text": "Ye et al., 2019)",
"ref_id": "BIBREF25"
},
{
"start": 319,
"end": 338,
"text": "(Wang et al., 2016)",
"ref_id": "BIBREF21"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "1 The source code is publicly available at http:// inklab.usc.edu/leanlife/.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Quality ingredients preparation all around, and a very fair price for NYC.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "We had a fantastic lunch at Rumble Fish yesterday, where the food is my favorite. The increase is caused by the absorption of UV radiation by the oxygen and ozone.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Delicious food with a fair price",
"sec_num": null
},
{
"text": "Where",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "I-RESTAURANT B-RESTAURANT",
"sec_num": null
},
{
"text": "Cause-Effect Because the phrase \"caused by\" occurs between SUBJ and OBJ The burst has been caused by water hammer pressure UNLABELED SENTENCE",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "RE",
"sec_num": null
},
{
"text": "Figure 1: Leveraging Labeling Explanations: 1) RE: the explanation \"the phrase 'caused by' occurs between SUBJ and OBJ\" can aid in weakly labeling unlabeled instances like \"The burst has been caused by water hammer pressure\" with the label \"cause-effect\"; 2) NER: Trigger spans near the labeled restaurant such as \"had lunch at\" and \"where the food\" can aid in weakly labeling unlabeled instances like \"I had a dinner at Mc-Donalds, where the food is cheap\".",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "SUBJ OBJ SUBJ OBJ",
"sec_num": null
},
{
"text": "in supervised learning scenarios, and in particular when human-annotated data is abundant. As we seek to apply NLP models to larger variety of domains, such as product reviews (Luo et al., 2018) , social media messages (Lin et al., 2017) , while reducing human annotation efforts, better annotation frameworks with label-efficient learning techniques are crucial to our progress. Annotation frameworks have been explored by several previous works (Stenetorp et al., 2012; Bontcheva et al., 2014; Morton and LaCivita, 2003; de Castilho et al., 2016; Yang et al., 2018a) . These existing open-source sequence annotation tools mainly focus on optimizing user-friendly user interfaces, such as providing shortcut key functionality to allow for faster tagging. The frameworks also attempt to provide annotation recommendation to reduce human annotation ef-forts. However, these recommendations are provided by a pre-trained model or via dictionary look-ups. This methodology of providing recommendations often proves to be unhelpful when little annotated data exists for pre-training, as is usually the case for natural language tasks being applied to domain-specific or user-provided corpora.",
"cite_spans": [
{
"start": 176,
"end": 194,
"text": "(Luo et al., 2018)",
"ref_id": "BIBREF13"
},
{
"start": 219,
"end": 237,
"text": "(Lin et al., 2017)",
"ref_id": "BIBREF8"
},
{
"start": 447,
"end": 471,
"text": "(Stenetorp et al., 2012;",
"ref_id": "BIBREF20"
},
{
"start": 472,
"end": 495,
"text": "Bontcheva et al., 2014;",
"ref_id": "BIBREF2"
},
{
"start": 496,
"end": 522,
"text": "Morton and LaCivita, 2003;",
"ref_id": "BIBREF15"
},
{
"start": 523,
"end": 548,
"text": "de Castilho et al., 2016;",
"ref_id": "BIBREF4"
},
{
"start": 549,
"end": 568,
"text": "Yang et al., 2018a)",
"ref_id": "BIBREF23"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "SUBJ OBJ SUBJ OBJ",
"sec_num": null
},
{
"text": "To resolve this issue, AlpacaTag, an annotation framework for sequence labeling (Lin et al., 2019) attempts to provide annotation recommendations from a learned sequence labeling model that is incrementally updated by batches of incoming human annotations. Its model training follows an active learning strategy (Shen et al., 2017) , which is shown to be a label-efficient, thus it attempts to minimize human annotation efforts. AlpacaTag selects the most informative batches of documents for humans to annotate and thus achieves a more cost-effective way of using human efforts. While active learning allows the model to achieve higher performance earlier in the learning process, model performance could be improved if additional supervision existed. It is imperative that provided annotation recommendations be as accurate as possible, as inaccurate annotation recommendations from the framework can push users towards generating noisy data, hindering instead of aiding the model training process.",
"cite_spans": [
{
"start": 80,
"end": 98,
"text": "(Lin et al., 2019)",
"ref_id": "BIBREF10"
},
{
"start": 312,
"end": 331,
"text": "(Shen et al., 2017)",
"ref_id": "BIBREF18"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "SUBJ OBJ SUBJ OBJ",
"sec_num": null
},
{
"text": "Our effort to prevent this problem is centered around allowing annotators to provide additional supervision by capturing labeling explanations, while still taking advantage of the costeffectiveness of active learning. Specifically, as shown in Fig. 1 , we allow annotators to provide explanations for their decisions in natural language or by selecting triggers--nearby phrases that provide helpful context for their decisions. These enhanced annotations allow for model training over both user-provided labels, as well as weakly labeled data created by parsing explanations into high precision labeling rules. We therefore make attempts to ameliorate the erroneous recommendation problem by a performance-boosting training strategy that incorporates both labeled and unlabeled data.",
"cite_spans": [],
"ref_spans": [
{
"start": 244,
"end": 250,
"text": "Fig. 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "SUBJ OBJ SUBJ OBJ",
"sec_num": null
},
{
"text": "Our work is also similar to recent attempts that exploit explanations for an improved training process (Srivastava et al., 2017; Hancock et al., 2018; , but with two main differences. First, we embed this improved process in a practical application and sec- ond, we design task specific architectures to incorporate the now captured explanations into training.",
"cite_spans": [
{
"start": 103,
"end": 128,
"text": "(Srivastava et al., 2017;",
"ref_id": "BIBREF19"
},
{
"start": 129,
"end": 150,
"text": "Hancock et al., 2018;",
"ref_id": "BIBREF5"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "SUBJ OBJ SUBJ OBJ",
"sec_num": null
},
{
"text": "To the best of our knowledge, there is no existing open-source, easy-to-use, recommendationproviding, online-learning annotation framework that can also capture explanations. LEAN-LIFE is the first framework to capture and leverage explanations for improved model training and performance, while still inheriting the advantages of existing tools. We summarize our contributions as:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "SUBJ OBJ SUBJ OBJ",
"sec_num": null
},
{
"text": "\u2022 Improved Model Training: Our recommendation models use a performance improving training process that leverages explanations to weakly label unlabeled instances. Our models improve on competitive baseline F-1 scores by more than 5-10 percentage points, while using 2X less data.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "SUBJ OBJ SUBJ OBJ",
"sec_num": null
},
{
"text": "\u2022 Multiple Supported Tasks: Our framework supports both sequence labeling (as in NER) and sequence classification (as in RE, SA).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "SUBJ OBJ SUBJ OBJ",
"sec_num": null
},
{
"text": "\u2022 Explanation Dataset Creation: We make it easy to build a new type of dataset, one that consists of triples of: text, labels and labeling explanations. The exporting of this captured data is available in two common data formats, CSV and JSON.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "SUBJ OBJ SUBJ OBJ",
"sec_num": null
},
{
"text": "As shown in Fig. 2 , our framework consists of two main components, a user-friendly web-UI that can capture labels and explanations for labeling decisions, and a weak supervision framework that parses explanations for the creation of weakly labeled data. The framework then uses this weakly labeled data in conjunction with user-provided labels to train models for improved annotation recommendations. Our UI shows annotators unlabeled instances (can be sampled using active learning), along with annotation recommendations in an effort to reduce annotation costs. We use Py-Torch to build our models and implement an API for communication between the web-UI and our weak supervision framework. The learned parameters of our framework are updated in an online fashion, thus improving in near real time. We will first touch on the annotation UI ( \u00a73) and then go into our weak supervision framework ( \u00a74).",
"cite_spans": [],
"ref_spans": [
{
"start": 12,
"end": 18,
"text": "Fig. 2",
"ref_id": "FIGREF1"
}
],
"eq_spans": [],
"section": "System Overview",
"sec_num": "2"
},
{
"text": "The emphasis of our front-end design is to simplify the capture of both label and explanation for each labeling decision, while reducing annotation effort via accessible annotation recommendation. Our framework supports two forms of explanations, Triggers and Natural Language. A Trigger is a group of words in the sentence being annotated that aided the annotator's labeling decision, while Natural Language is a written explanation of the labeling decision. This section presents first the UI for capturing triggers ( \u00a73.1) and then the UI for capturing natural language explanations ( \u00a73.2). Fig. 3 illustrates how our framework can capture both a named entity (NE) label and triggers for the sentence \"We had a fantastic lunch at Rumble Fish yesterday where the food is my favorite\". The user is first presented with a piece of text to annotate (Annotating Section), the available labels that may be applied to sub-sequences (spans) of text (in the blue header) and recommendations of what spans of text should be considered as NE mentions (Named Entity Recommendation Section). The user may choose to select a span of text to label, or they may click on one of the recommended spans below ( Fig. 2a ). If the user clicks on a recommended span, a small pop-up displaying the available labels appear with the recommended label circled in red ( Fig. 2a ). Once the user selects a label for a span of text by either clicking on the desired label button or via a predefined shortcut key (ex: for Restaurant the shortcut key is r), a pop-up appears (Fig. 2b) , asking the user to select helpful spans (triggers) from the text that provide useful context in deciding the label for the NEM--multiple triggers may be selected. The user may cancel their decision to label a span of text with a label by clicking the x button in the pop-up, but if the user wants to proceed and has selected at least one trigger, they finish the labeling by hitting done. Then, their label is visualized in the Annotating Section by highlighting the NEM.",
"cite_spans": [],
"ref_spans": [
{
"start": 595,
"end": 601,
"text": "Fig. 3",
"ref_id": "FIGREF2"
},
{
"start": 1196,
"end": 1203,
"text": "Fig. 2a",
"ref_id": "FIGREF1"
},
{
"start": 1347,
"end": 1354,
"text": "Fig. 2a",
"ref_id": "FIGREF1"
},
{
"start": 1548,
"end": 1557,
"text": "(Fig. 2b)",
"ref_id": "FIGREF1"
}
],
"eq_spans": [],
"section": "UI for Capturing Human Explanation",
"sec_num": "3"
},
{
"text": "(b) after clicking a label to assign to a text span, a pop up appears asking the user to explain their decision by selecting nearby \"trigger\" text spans.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Capturing Triggers",
"sec_num": "3.1"
},
{
"text": "(a) the labels appear in the header, followed by an annotating section; tagging suggestions are shown as underlined spans at the bottom of the page. A user may hover over a tagging suggestion or select a span in order to apply a label to a substring. Fig. 4 illustrates how for the sentence \"Tahawwur Hussain Rana who was born in Pakistan but is a Canadian citizen\" our framework can capture both a relation label between NEs and the subsequent natural language explanation. First, the user is tasked to find the NEs in the sentence. After labeling at least two non-consecutive spans of text as NEs, the user may check off the boxes that appear above the labeled NEs. Once two boxes have been checked off, the labels in the blue header are replaced with the labels for relations. The clickorder of the checked boxes is displayed and is considered the order of the relation. Also, we display a recommend label to the user in the header section with a circle (Fig. 2a) . After clicking on a label, a pop-up appears asking the user to indicate semantic and syntactic reasons as to why the labeling decision is true. Since the natural language explanations are assumed to be made up of predefined predicates, as the user types we incrementally provide predicates to aid the construction of an explanation (Fig. 2b) . In this way, we nudge users towards writing explanations the semantic parser is able to break down, allowing our framework to extract a useful logical form from the explanation.",
"cite_spans": [],
"ref_spans": [
{
"start": 251,
"end": 257,
"text": "Fig. 4",
"ref_id": null
},
{
"start": 957,
"end": 966,
"text": "(Fig. 2a)",
"ref_id": "FIGREF1"
},
{
"start": 1301,
"end": 1310,
"text": "(Fig. 2b)",
"ref_id": "FIGREF1"
}
],
"eq_spans": [],
"section": "Capturing Triggers",
"sec_num": "3.1"
},
{
"text": "(a) After two NEs have been checked off, the relation labels replace the entity labels in the header; a suggested relation label is again circled in red.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Capturing Natural Language",
"sec_num": "3.2"
},
{
"text": "(b) After selecting a label for a relation, a pop up will ask the user to explain their decision in natural language. As the reasons must be parsed for understanding, suggested parsable predicates are shown to lead users to parsable explanations. Figure 4 : The workflow to annotate a relation label and NL explanation. (\"per:nationality\" as a relation label between \"Tahawwur Hussain Rana\" and \"Canadian\").",
"cite_spans": [],
"ref_spans": [
{
"start": 247,
"end": 255,
"text": "Figure 4",
"ref_id": null
}
],
"eq_spans": [],
"section": "Capturing Natural Language",
"sec_num": "3.2"
},
{
"text": "Our Weak Supervision Framework is composed of two main components, a weak labeling module that parses explanations to create labeling rules and a downstream model. The framework parses user-provided explanations to generate weakly labeled data and then trains the appropriate downstream model with this augmented training data. Our weak labeling module supports both explanation formats provided to the annotator in the UI--triggers and natural language. This section first introduces how the module utilizes triggers ( \u00a74.1) and then presents how the module deals with natural language( \u00a74.2).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "LEAN-LIFE Framework",
"sec_num": "4"
},
{
"text": "When a trigger is inputted into the system, we generate weak labels for our training data via softmatching between trigger representations and unlabeled sentences . Each sentence may contain one or more triggers, but each trigger is associated with only one label. Our framework jointly learns a mapping between triggers and their label using a linear layer with a soft-max output and a log-likelihood loss, as well as the semantic similarity between the triggers and their associated sentences using contrastive loss--we weigh both objectives equally. Through this joint learning, our trigger representations can capture label knowledge as well as semantic information. We use these representations to improve model training by generating weakly labeled data via soft matching on the unlabeled sentences. More specifically, for each unlabeled sentence, we first calculate the semantic similarity between the sentence and all collected triggers and then filter out all triggers where the similarity distance is larger than our fixed threshold. We then generate a trigger-aware sentence encoding for each threshold-passing trigger and feed these encodings into a downstream classifier for label inference. Finally, we conduct majority vote over outputted label sequences to finalize our weak labels for the unlabeled sentence. In this manner we are able to train over more data, where a good portion of it is weakly labeled.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Input: Trigger",
"sec_num": "4.1"
},
{
"text": "When natural language is inputted into the system, our module grows training data via soft-matching between logical forms parsed from natural language explanations and unlabeled sentences. The module follows the Neural Execution Tree framework of when dealing with natural language. First, the explanation is parsed into a logical form by a semantic parser. Previous works have suggested using similar logical forms to improve model training by strict matching on the pool of unlabeled sentences to generate additional labeled data. However, proposes an improved model training paradigm, which relaxes this strict matching constraint, subsequently improving weak labeling coverage and allowing for a larger pool of unlabeled data to be used for model training. Our module does assume each NL explanation can be broken down into a logical form composed of clauses consisting of predicates from four categories--hence the autosuggest feature in the UI. At weak labeling, the module scores how likely a given unlabeled sentence fits each clause and then constructs an aggregate score representing the match between the logical form and the unlabeled sentence. If the final score is above configurable thresholds, we weakly label the sentence with the appropriate label.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Input: Natural Language",
"sec_num": "4.2"
},
{
"text": "As shown in Fig. 5 , the scoring portion of our indicating the similarity between each token w i and the keyword q--\"happy\" in Fig. 5 . Our Distant Counting Module aims to relax the distance constraint stated in the explanation, ex: \"by no more than 5 words\". If the position of keyword q strictly satisfies the constraint, the score is set to 1, otherwise the score decreases as the constraint is less satisfied. Finally, the Deterministic Function Module deals with deterministic predicates like \"LEFT\", \"BETWEEN\", which can only be exactly matched in terms of the keyword q. Scores are the aggregated by the Logical Calculation Module to output a final relevancy score.",
"cite_spans": [],
"ref_spans": [
{
"start": 12,
"end": 18,
"text": "Fig. 5",
"ref_id": "FIGREF4"
},
{
"start": 127,
"end": 133,
"text": "Fig. 5",
"ref_id": "FIGREF4"
}
],
"eq_spans": [],
"section": "Input: Natural Language",
"sec_num": "4.2"
},
{
"text": "We conduct extensive experiments investigating label efficiency to prove the effectiveness of our annotation models. We found that using natural language explanations for RE and SA, and trigger explanations for NER provided the best results. For the downstream model portion of our weak supervision framework, we use common supervised method for each task: (1-RE) BLSTM+ATT (Bahdanau et al., 2015) adds an attention layer onto LSTM to encode an sequence.",
"cite_spans": [
{
"start": 374,
"end": 397,
"text": "(Bahdanau et al., 2015)",
"ref_id": "BIBREF1"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Experiments",
"sec_num": "5"
},
{
"text": "(2-SA) ATAE-LSTM (Wang et al., 2016) combines the aspect term information into both the embedding layer and attention layer to help the model concentrate on different parts of a sentence. (3-NER) BLSTM+CRF (Ma and Hovy, 2016) encodes character sequences into a vector and concatenates the vector with pre-trained word embeddings to feed into word-level BLSTM. Then, it applies a CRF layer to predict sequence labels. Then we compare these methods as baselines.",
"cite_spans": [
{
"start": 17,
"end": 36,
"text": "(Wang et al., 2016)",
"ref_id": "BIBREF21"
},
{
"start": 206,
"end": 225,
"text": "(Ma and Hovy, 2016)",
"ref_id": "BIBREF14"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Experiments",
"sec_num": "5"
},
{
"text": "We test our implementation on three tasks: RE, SA, NER. We use TA-CRED (Zhang et al., 2017) for RE, Restaurant review from SemEval 2014 Task 4 for SA, and Laptop reviews (Pontiki et al., 2016) for NER.",
"cite_spans": [
{
"start": 71,
"end": 91,
"text": "(Zhang et al., 2017)",
"ref_id": "BIBREF27"
},
{
"start": 170,
"end": 192,
"text": "(Pontiki et al., 2016)",
"ref_id": "BIBREF16"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Tasks and Datasets",
"sec_num": null
},
{
"text": "We claim that when starting with little to no labeled data, it is more effective to ask annotators to provide a label and an explanation for the label, than to just request a label. To support this claim, we conduct experiments to demonstrate the label efficiency of our explanation-leveraging-model. We found that the time for labeling one instance plus providing an explanation takes 2X times more time than just simply providing a label. Given this annotation time observation, we compare the performance between our improved training process and the traditional label-only training process by holding annotation time constant between the two trials. This means we expose the label-only supervised model to the appropriate multiple of labeled instances that the label-and-explanation supervised model is shown Fig. 6 . Each marker on the x-axis of the plots indicate a certain interval of annotation time, which is represented by the number of label+explanations our augmented model training paradigm is given vs. how many labels the traditional label-only model training is shown. We use the F-1 metric to compare the performances. As shown in Fig. 6 , we see that our model not only is more time and label efficient than the labelonly training process, but it also outperforms the label-only training process. Given these results, we believe it is worth to request a user to provide both a label and an explanation for the label. Not only does the improvement in performance justify the extra time required to provide the explanation, but we also can achieve higher performance with fewer datapoints / less annotation time.",
"cite_spans": [],
"ref_spans": [
{
"start": 813,
"end": 819,
"text": "Fig. 6",
"ref_id": "FIGREF5"
},
{
"start": 1148,
"end": 1154,
"text": "Fig. 6",
"ref_id": "FIGREF5"
}
],
"eq_spans": [],
"section": "Label Efficiency",
"sec_num": null
},
{
"text": "Leveraging natural language explanations for additional supervision has been explored by many works. (Srivastava et al., 2017) first demonstrated the idea of using natural language explanations for weak labeling by jointly training a task-specific semantic parser and label classifier to generate weak labels. This method is limited though, as the parser is too tightly coupled to the already labeled data, thus their weak learning framework is not able to build a much larger dataset than the one it already has. To address this issue, (Hancock et al., 2018) proposed a weak supervision framework that utilizes a more practical rule-based semantic parser. The parser constructs a logical form for an explanation that is then used as a labeling function--this resulted in a significant increase of the training set. Another effort can be found in (Camburu et al., 2018) work to extend the Stanford Natural Language Inference dataset with natural language explanations--this extension was done for the important textual entailment recognition task. They demonstrate the usefulness of explanations as an additional training signal for learning more comprehensive sentence representations. Even earlier (Andreas et al., 2016) explored breaking down natural language explanation into linguistic sub-structures for learning collections of neural modules which can be assembled into neural networks. Our framework is very related to the above weak supervision methods via explanation. Another approach to weak supervision is attempting to transfer knowledge from a related source to the target domain corpus (Lin and Lu, 2018; Lan et al., 2020) . Shang et al. (2018) and Yang et al. (2018) proposed using a domain-specific dictionary for matching on the unannotated target corpus. Both efforts employ Partial CRFs (Liu et al., 2014) which assign all possible labels to unlabeled words and maximize the total probability. This approach addresses the incomplete annotation problem, but heavily relies on a domain-specific seed dictionary.",
"cite_spans": [
{
"start": 101,
"end": 126,
"text": "(Srivastava et al., 2017)",
"ref_id": "BIBREF19"
},
{
"start": 537,
"end": 559,
"text": "(Hancock et al., 2018)",
"ref_id": "BIBREF5"
},
{
"start": 847,
"end": 869,
"text": "(Camburu et al., 2018)",
"ref_id": "BIBREF3"
},
{
"start": 1200,
"end": 1222,
"text": "(Andreas et al., 2016)",
"ref_id": "BIBREF0"
},
{
"start": 1602,
"end": 1620,
"text": "(Lin and Lu, 2018;",
"ref_id": "BIBREF11"
},
{
"start": 1621,
"end": 1638,
"text": "Lan et al., 2020)",
"ref_id": "BIBREF7"
},
{
"start": 1641,
"end": 1660,
"text": "Shang et al. (2018)",
"ref_id": "BIBREF17"
},
{
"start": 1665,
"end": 1683,
"text": "Yang et al. (2018)",
"ref_id": null
},
{
"start": 1808,
"end": 1826,
"text": "(Liu et al., 2014)",
"ref_id": "BIBREF12"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Works",
"sec_num": "6"
},
{
"text": "In this paper, we propose an open-source webbased annotation framework LEAN-LIFE that not only allows an annotator to provide the needed labels for a task, but can also capture explanation for each labeling decision. Such explanations enable a significant improvement in model training while only doubling per instance annotation time. This increase in per instance annotation time is greatly outweighed by the benefits in model training, especially in a low resource settings, as proven by our experiments. This is an important consideration for any annotation framework, as the quicker the framework is able to train annotation recommendation models to reach high performance, the sooner the user receives useful annotation recommendations, which in turn cut down on the annotation time required per instance.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "7"
},
{
"text": "Better training methods also allow us to fight the potential generation of noisy data due to inaccurate annotation recommendations. We hope that our work on LEAN-LIFE will allow for researches and practitioners alike to more easily obtain useful labeled datasets and models for the various NLP tasks they face.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "7"
}
],
"back_matter": [
{
"text": "This research is based upon work supported in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via Contract No. 2019-19051600007, NSF SMA 18-29268, and Snap research gift. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of ODNI, IARPA, or the U.S. Government. We would like to thank all the collaborators in USC INK research lab for their constructive feedback on the work.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgements",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Neural module networks",
"authors": [
{
"first": "Jacob",
"middle": [],
"last": "Andreas",
"suffix": ""
},
{
"first": "Marcus",
"middle": [],
"last": "Rohrbach",
"suffix": ""
},
{
"first": "Trevor",
"middle": [],
"last": "Darrell",
"suffix": ""
},
{
"first": "Dan",
"middle": [],
"last": "Klein",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition",
"volume": "",
"issue": "",
"pages": "39--48",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. 2016. Neural module networks. In Pro- ceedings of the IEEE Conference on Computer Vi- sion and Pattern Recognition, pages 39-48.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Neural machine translation by jointly learning to align and translate",
"authors": [
{
"first": "Dzmitry",
"middle": [],
"last": "Bahdanau",
"suffix": ""
},
{
"first": "Kyunghyun",
"middle": [],
"last": "Cho",
"suffix": ""
},
{
"first": "Yoshua",
"middle": [],
"last": "Bengio",
"suffix": ""
}
],
"year": 2015,
"venue": "3rd International Conference on Learning Representations",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben- gio. 2015. Neural machine translation by jointly learning to align and translate. In 3rd International Conference on Learning Representations.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "The gate crowdsourcing plugin: Crowdsourcing annotated corpora made easy",
"authors": [
{
"first": "Kalina",
"middle": [],
"last": "Bontcheva",
"suffix": ""
},
{
"first": "Ian",
"middle": [],
"last": "Roberts",
"suffix": ""
},
{
"first": "Leon",
"middle": [],
"last": "Derczynski",
"suffix": ""
},
{
"first": "Dominic",
"middle": [],
"last": "Rout",
"suffix": ""
}
],
"year": 2014,
"venue": "Proc. of EACL",
"volume": "",
"issue": "",
"pages": "97--100",
"other_ids": {
"DOI": [
"10.3115/v1/E14-2025"
]
},
"num": null,
"urls": [],
"raw_text": "Kalina Bontcheva, Ian Roberts, Leon Derczynski, and Dominic Rout. 2014. The gate crowdsourcing plu- gin: Crowdsourcing annotated corpora made easy. In Proc. of EACL, pages 97-100. Association for Computational Linguistics.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "e-snli: Natural language inference with natural language explanations",
"authors": [
{
"first": "Oana-Maria",
"middle": [],
"last": "Camburu",
"suffix": ""
},
{
"first": "Tim",
"middle": [],
"last": "Rockt\u00e4schel",
"suffix": ""
},
{
"first": "Thomas",
"middle": [],
"last": "Lukasiewicz",
"suffix": ""
},
{
"first": "Phil",
"middle": [],
"last": "Blunsom",
"suffix": ""
}
],
"year": 2018,
"venue": "Advances in Neural Information Processing Systems 31",
"volume": "",
"issue": "",
"pages": "9539--9549",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Oana-Maria Camburu, Tim Rockt\u00e4schel, Thomas Lukasiewicz, and Phil Blunsom. 2018. e-snli: Natu- ral language inference with natural language expla- nations. In Advances in Neural Information Pro- cessing Systems 31, pages 9539-9549. Curran As- sociates, Inc.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "A web-based tool for the integrated annotation of semantic and syntactic structures",
"authors": [
{
"first": "Richard",
"middle": [],
"last": "Eckart De Castilho",
"suffix": ""
},
{
"first": "Eva",
"middle": [],
"last": "Mujdricza-Maydt",
"suffix": ""
},
{
"first": "Silvana",
"middle": [],
"last": "Seid Muhie Yimam",
"suffix": ""
},
{
"first": "Iryna",
"middle": [],
"last": "Hartmann",
"suffix": ""
},
{
"first": "Anette",
"middle": [],
"last": "Gurevych",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Frank",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Biemann",
"suffix": ""
}
],
"year": 2016,
"venue": "The COLING 2016 Organizing Committee",
"volume": "",
"issue": "",
"pages": "76--84",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Richard Eckart de Castilho, Eva Mujdricza-Maydt, Seid Muhie Yimam, Silvana Hartmann, Iryna Gurevych, Anette Frank, and Chris Biemann. 2016. A web-based tool for the integrated an- notation of semantic and syntactic structures. In LT4DH@COLING, pages 76-84. The COLING 2016 Organizing Committee.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Training classifiers with natural language explanations",
"authors": [
{
"first": "Braden",
"middle": [],
"last": "Hancock",
"suffix": ""
},
{
"first": "Paroma",
"middle": [],
"last": "Varma",
"suffix": ""
},
{
"first": "Stephanie",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Martin",
"middle": [],
"last": "Bringmann",
"suffix": ""
},
{
"first": "Percy",
"middle": [],
"last": "Liang",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "R\u00e9",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
"volume": "1",
"issue": "",
"pages": "1884--1895",
"other_ids": {
"DOI": [
"10.18653/v1/P18-1175"
]
},
"num": null,
"urls": [],
"raw_text": "Braden Hancock, Paroma Varma, Stephanie Wang, Martin Bringmann, Percy Liang, and Christopher R\u00e9. 2018. Training classifiers with natural lan- guage explanations. In Proceedings of the 56th An- nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1884- 1895, Melbourne, Australia. Association for Com- putational Linguistics.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Neural architectures for named entity recognition",
"authors": [
{
"first": "Guillaume",
"middle": [],
"last": "Lample",
"suffix": ""
},
{
"first": "Miguel",
"middle": [],
"last": "Ballesteros",
"suffix": ""
},
{
"first": "Sandeep",
"middle": [],
"last": "Subramanian",
"suffix": ""
},
{
"first": "Kazuya",
"middle": [],
"last": "Kawakami",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Dyer",
"suffix": ""
}
],
"year": 2016,
"venue": "Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "260--270",
"other_ids": {
"DOI": [
"10.18653/v1/N16-1030"
]
},
"num": null,
"urls": [],
"raw_text": "Guillaume Lample, Miguel Ballesteros, Sandeep Sub- ramanian, Kazuya Kawakami, and Chris Dyer. 2016. Neural architectures for named entity recognition. In Proc. of NAACL-HLT, pages 260-270. Associa- tion for Computational Linguistics.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Learning to contextually aggregate multi-source supervision for sequence labeling",
"authors": [
{
"first": "Ouyu",
"middle": [],
"last": "Lan",
"suffix": ""
},
{
"first": "Xiao",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "He",
"middle": [],
"last": "Bill Yuchen Lin",
"suffix": ""
},
{
"first": "Liyuan",
"middle": [],
"last": "Jiang",
"suffix": ""
},
{
"first": "Xiang",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Ren",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ouyu Lan, Xiao Huang, Bill Yuchen Lin, He Jiang, Liyuan Liu, and Xiang Ren. 2020. Learning to con- textually aggregate multi-source supervision for se- quence labeling. In Proceedings of Association for Computational Linguistics.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Multi-channel BiLSTM-CRF model for emerging named entity recognition in social media",
"authors": [
{
"first": "Y",
"middle": [],
"last": "Bill",
"suffix": ""
},
{
"first": "Frank",
"middle": [],
"last": "Lin",
"suffix": ""
},
{
"first": "Zhiyi",
"middle": [],
"last": "Xu",
"suffix": ""
},
{
"first": "Kenny",
"middle": [],
"last": "Luo",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Zhu",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 3rd Workshop on Noisy Usergenerated Text",
"volume": "",
"issue": "",
"pages": "160--165",
"other_ids": {
"DOI": [
"10.18653/v1/W17-4421"
]
},
"num": null,
"urls": [],
"raw_text": "Bill Y. Lin, Frank Xu, Zhiyi Luo, and Kenny Zhu. 2017. Multi-channel BiLSTM-CRF model for emerging named entity recognition in social media. In Proceedings of the 3rd Workshop on Noisy User- generated Text, pages 160-165, Copenhagen, Den- mark. Association for Computational Linguistics.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Triggerner: Learning with entity triggers as explanations for named entity recognition",
"authors": [
{
"first": "Dong-Ho",
"middle": [],
"last": "Bill Yuchen Lin",
"suffix": ""
},
{
"first": "Ming",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Ryan",
"middle": [],
"last": "Shen",
"suffix": ""
},
{
"first": "Xiao",
"middle": [],
"last": "Moreno",
"suffix": ""
},
{
"first": "Prashant",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "Xiang",
"middle": [],
"last": "Shiralkar",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Ren",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Bill Yuchen Lin, Dong-Ho Lee, Ming Shen, Ryan Moreno, Xiao Huang, Prashant Shiralkar, and Xiang Ren. 2020. Triggerner: Learning with entity trig- gers as explanations for named entity recognition. In Proceedings of Association for Computational Lin- guistics.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "AlpacaTag: An active learning-based crowd annotation framework for sequence tagging",
"authors": [
{
"first": "Dong-Ho",
"middle": [],
"last": "Bill Yuchen Lin",
"suffix": ""
},
{
"first": "Frank",
"middle": [
"F"
],
"last": "Lee",
"suffix": ""
},
{
"first": "Ouyu",
"middle": [],
"last": "Xu",
"suffix": ""
},
{
"first": "Xiang",
"middle": [],
"last": "Lan",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Ren",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations",
"volume": "",
"issue": "",
"pages": "58--63",
"other_ids": {
"DOI": [
"10.18653/v1/P19-3010"
]
},
"num": null,
"urls": [],
"raw_text": "Bill Yuchen Lin, Dong-Ho Lee, Frank F. Xu, Ouyu Lan, and Xiang Ren. 2019. AlpacaTag: An active learning-based crowd annotation framework for se- quence tagging. In Proceedings of the 57th Annual Meeting of the Association for Computational Lin- guistics: System Demonstrations, pages 58-63, Flo- rence, Italy. Association for Computational Linguis- tics.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Neural adaptation layers for cross-domain named entity recognition",
"authors": [
{
"first": "Yuchen",
"middle": [],
"last": "Bill",
"suffix": ""
},
{
"first": "Wei",
"middle": [],
"last": "Lin",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Lu",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "2012--2022",
"other_ids": {
"DOI": [
"10.18653/v1/D18-1226"
]
},
"num": null,
"urls": [],
"raw_text": "Bill Yuchen Lin and Wei Lu. 2018. Neural adapta- tion layers for cross-domain named entity recogni- tion. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Process- ing, pages 2012-2022, Brussels, Belgium. Associ- ation for Computational Linguistics.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Domain adaptation for CRF-based Chinese word segmentation using free annotations",
"authors": [
{
"first": "Yijia",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Yue",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Wanxiang",
"middle": [],
"last": "Che",
"suffix": ""
},
{
"first": "Ting",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Fan",
"middle": [],
"last": "Wu",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "864--874",
"other_ids": {
"DOI": [
"10.3115/v1/D14-1093"
]
},
"num": null,
"urls": [],
"raw_text": "Yijia Liu, Yue Zhang, Wanxiang Che, Ting Liu, and Fan Wu. 2014. Domain adaptation for CRF-based Chinese word segmentation using free annotations. In Proceedings of the 2014 Conference on Em- pirical Methods in Natural Language Processing (EMNLP), pages 864-874, Doha, Qatar. Association for Computational Linguistics.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "ExtRA: Extracting prominent review aspects from customer feedback",
"authors": [
{
"first": "Zhiyi",
"middle": [],
"last": "Luo",
"suffix": ""
},
{
"first": "Shanshan",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "Frank",
"middle": [
"F"
],
"last": "Xu",
"suffix": ""
},
{
"first": "Bill",
"middle": [
"Yuchen"
],
"last": "Lin",
"suffix": ""
},
{
"first": "Hanyuan",
"middle": [],
"last": "Shi",
"suffix": ""
},
{
"first": "Kenny",
"middle": [],
"last": "Zhu",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "3477--3486",
"other_ids": {
"DOI": [
"10.18653/v1/D18-1384"
]
},
"num": null,
"urls": [],
"raw_text": "Zhiyi Luo, Shanshan Huang, Frank F. Xu, Bill Yuchen Lin, Hanyuan Shi, and Kenny Zhu. 2018. ExtRA: Extracting prominent review aspects from customer feedback. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Process- ing, pages 3477-3486, Brussels, Belgium. Associ- ation for Computational Linguistics.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF",
"authors": [
{
"first": "Xuezhe",
"middle": [],
"last": "Ma",
"suffix": ""
},
{
"first": "Eduard",
"middle": [],
"last": "Hovy",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "1064--1074",
"other_ids": {
"DOI": [
"10.18653/v1/P16-1101"
]
},
"num": null,
"urls": [],
"raw_text": "Xuezhe Ma and Eduard Hovy. 2016. End-to-end sequence labeling via bi-directional LSTM-CNNs- CRF. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Vol- ume 1: Long Papers), pages 1064-1074, Berlin, Germany. Association for Computational Linguis- tics.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Word-Freak: An open tool for linguistic annotation",
"authors": [
{
"first": "Thomas",
"middle": [],
"last": "Morton",
"suffix": ""
},
{
"first": "Jeremy",
"middle": [],
"last": "Lacivita",
"suffix": ""
}
],
"year": 2003,
"venue": "Companion Volume of the Proceedings of HLT-NAACL 2003 -Demonstrations",
"volume": "",
"issue": "",
"pages": "17--18",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Thomas Morton and Jeremy LaCivita. 2003. Word- Freak: An open tool for linguistic annotation. In Companion Volume of the Proceedings of HLT- NAACL 2003 -Demonstrations, pages 17-18.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "SemEval-2016 task 5: Aspect based sentiment analysis",
"authors": [
{
"first": "Maria",
"middle": [],
"last": "Pontiki",
"suffix": ""
},
{
"first": "Dimitris",
"middle": [],
"last": "Galanis",
"suffix": ""
},
{
"first": "Haris",
"middle": [],
"last": "Papageorgiou",
"suffix": ""
},
{
"first": "Ion",
"middle": [],
"last": "Androutsopoulos",
"suffix": ""
},
{
"first": "Suresh",
"middle": [],
"last": "Manandhar",
"suffix": ""
},
{
"first": "Al-",
"middle": [],
"last": "Mohammad",
"suffix": ""
},
{
"first": "Mahmoud",
"middle": [],
"last": "Smadi",
"suffix": ""
},
{
"first": "Yanyan",
"middle": [],
"last": "Al-Ayyoub",
"suffix": ""
},
{
"first": "Bing",
"middle": [],
"last": "Zhao",
"suffix": ""
},
{
"first": "Orph\u00e9e",
"middle": [],
"last": "Qin",
"suffix": ""
},
{
"first": "V\u00e9ronique",
"middle": [],
"last": "De Clercq",
"suffix": ""
},
{
"first": "Marianna",
"middle": [],
"last": "Hoste",
"suffix": ""
},
{
"first": "Xavier",
"middle": [],
"last": "Apidianaki",
"suffix": ""
},
{
"first": "Natalia",
"middle": [],
"last": "Tannier",
"suffix": ""
},
{
"first": "Evgeniy",
"middle": [],
"last": "Loukachevitch",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Kotelnikov",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)",
"volume": "",
"issue": "",
"pages": "19--30",
"other_ids": {
"DOI": [
"10.18653/v1/S16-1002"
]
},
"num": null,
"urls": [],
"raw_text": "Maria Pontiki, Dimitris Galanis, Haris Papageorgiou, Ion Androutsopoulos, Suresh Manandhar, Moham- mad AL-Smadi, Mahmoud Al-Ayyoub, Yanyan Zhao, Bing Qin, Orph\u00e9e De Clercq, V\u00e9ronique Hoste, Marianna Apidianaki, Xavier Tannier, Na- talia Loukachevitch, Evgeniy Kotelnikov, Nuria Bel, Salud Mar\u00eda Jim\u00e9nez-Zafra, and G\u00fcl\u015fen Eryigit. 2016. SemEval-2016 task 5: Aspect based senti- ment analysis. In Proceedings of the 10th Interna- tional Workshop on Semantic Evaluation (SemEval- 2016), pages 19-30, San Diego, California. Associ- ation for Computational Linguistics.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Learning named entity tagger using domain-specific dictionary",
"authors": [
{
"first": "Jingbo",
"middle": [],
"last": "Shang",
"suffix": ""
},
{
"first": "Liyuan",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Xiaotao",
"middle": [],
"last": "Gu",
"suffix": ""
},
{
"first": "Xiang",
"middle": [],
"last": "Ren",
"suffix": ""
},
{
"first": "Teng",
"middle": [],
"last": "Ren",
"suffix": ""
},
{
"first": "Jiawei",
"middle": [],
"last": "Han",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "2054--2064",
"other_ids": {
"DOI": [
"10.18653/v1/D18-1230"
]
},
"num": null,
"urls": [],
"raw_text": "Jingbo Shang, Liyuan Liu, Xiaotao Gu, Xiang Ren, Teng Ren, and Jiawei Han. 2018. Learning named entity tagger using domain-specific dictionary. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2054-2064, Brussels, Belgium. Association for Computational Linguistics.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Deep active learning for named entity recognition",
"authors": [
{
"first": "Yanyao",
"middle": [],
"last": "Shen",
"suffix": ""
},
{
"first": "Hyokun",
"middle": [],
"last": "Yun",
"suffix": ""
},
{
"first": "Zachary",
"middle": [],
"last": "Lipton",
"suffix": ""
},
{
"first": "Yakov",
"middle": [],
"last": "Kronrod",
"suffix": ""
},
{
"first": "Animashree",
"middle": [],
"last": "Anandkumar",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 2nd Workshop on Representation Learning for NLP",
"volume": "",
"issue": "",
"pages": "252--256",
"other_ids": {
"DOI": [
"10.18653/v1/W17-2630"
]
},
"num": null,
"urls": [],
"raw_text": "Yanyao Shen, Hyokun Yun, Zachary Lipton, Yakov Kronrod, and Animashree Anandkumar. 2017. Deep active learning for named entity recognition. In Proceedings of the 2nd Workshop on Representa- tion Learning for NLP, pages 252-256, Vancouver, Canada. Association for Computational Linguistics.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Joint concept learning and semantic parsing from natural language explanations",
"authors": [
{
"first": "Shashank",
"middle": [],
"last": "Srivastava",
"suffix": ""
},
{
"first": "Igor",
"middle": [],
"last": "Labutov",
"suffix": ""
},
{
"first": "Tom",
"middle": [],
"last": "Mitchell",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "1527--1536",
"other_ids": {
"DOI": [
"10.18653/v1/D17-1161"
]
},
"num": null,
"urls": [],
"raw_text": "Shashank Srivastava, Igor Labutov, and Tom Mitchell. 2017. Joint concept learning and semantic parsing from natural language explanations. In Proceed- ings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1527-1536, Copenhagen, Denmark. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "brat: a web-based tool for NLP-assisted text annotation",
"authors": [
{
"first": "Pontus",
"middle": [],
"last": "Stenetorp",
"suffix": ""
},
{
"first": "Sampo",
"middle": [],
"last": "Pyysalo",
"suffix": ""
},
{
"first": "Goran",
"middle": [],
"last": "Topi\u0107",
"suffix": ""
},
{
"first": "Tomoko",
"middle": [],
"last": "Ohta",
"suffix": ""
},
{
"first": "Sophia",
"middle": [],
"last": "Ananiadou",
"suffix": ""
},
{
"first": "Jun'ichi",
"middle": [],
"last": "Tsujii",
"suffix": ""
}
],
"year": 2012,
"venue": "Proceedings of the Demonstrations at the 13th Conference of the European Chapter of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "102--107",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Pontus Stenetorp, Sampo Pyysalo, Goran Topi\u0107, Tomoko Ohta, Sophia Ananiadou, and Jun'ichi Tsu- jii. 2012. brat: a web-based tool for NLP-assisted text annotation. In Proceedings of the Demonstra- tions at the 13th Conference of the European Chap- ter of the Association for Computational Linguis- tics, pages 102-107, Avignon, France. Association for Computational Linguistics.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Attention-based LSTM for aspectlevel sentiment classification",
"authors": [
{
"first": "Yequan",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Minlie",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "Xiaoyan",
"middle": [],
"last": "Zhu",
"suffix": ""
},
{
"first": "Li",
"middle": [],
"last": "Zhao",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "606--615",
"other_ids": {
"DOI": [
"10.18653/v1/D16-1058"
]
},
"num": null,
"urls": [],
"raw_text": "Yequan Wang, Minlie Huang, Xiaoyan Zhu, and Li Zhao. 2016. Attention-based LSTM for aspect- level sentiment classification. In Proceedings of the 2016 Conference on Empirical Methods in Natu- ral Language Processing, pages 606-615, Austin, Texas. Association for Computational Linguistics.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Learning from explanations with neural execution tree",
"authors": [
{
"first": "Ziqi",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "*",
"middle": [],
"last": "",
"suffix": ""
},
{
"first": "Yujia",
"middle": [],
"last": "Qin",
"suffix": ""
},
{
"first": "*",
"middle": [],
"last": "",
"suffix": ""
},
{
"first": "Wenxuan",
"middle": [],
"last": "Zhou",
"suffix": ""
},
{
"first": "Jun",
"middle": [],
"last": "Yan",
"suffix": ""
},
{
"first": "Qinyuan",
"middle": [],
"last": "Ye",
"suffix": ""
},
{
"first": "Leonardo",
"middle": [],
"last": "Neves",
"suffix": ""
},
{
"first": "Zhiyuan",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Xiang",
"middle": [],
"last": "Ren",
"suffix": ""
}
],
"year": 2020,
"venue": "International Conference on Learning Representations",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ziqi Wang*, Yujia Qin*, Wenxuan Zhou, Jun Yan, Qinyuan Ye, Leonardo Neves, Zhiyuan Liu, and Xi- ang Ren. 2020. Learning from explanations with neural execution tree. In International Conference on Learning Representations.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "YEDDA: A lightweight collaborative text span annotation tool",
"authors": [
{
"first": "Jie",
"middle": [],
"last": "Yang",
"suffix": ""
},
{
"first": "Yue",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Linwei",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Xingxuan",
"middle": [],
"last": "Li",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of ACL 2018, System Demonstrations",
"volume": "",
"issue": "",
"pages": "31--36",
"other_ids": {
"DOI": [
"10.18653/v1/P18-4006"
]
},
"num": null,
"urls": [],
"raw_text": "Jie Yang, Yue Zhang, Linwei Li, and Xingxuan Li. 2018a. YEDDA: A lightweight collaborative text span annotation tool. In Proceedings of ACL 2018, System Demonstrations, pages 31-36, Melbourne, Australia. Association for Computational Linguis- tics.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Distantly supervised NER with partial annotation learning and reinforcement learning",
"authors": [
{
"first": "Yaosheng",
"middle": [],
"last": "Yang",
"suffix": ""
},
{
"first": "Wenliang",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Zhenghua",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Zhengqiu",
"middle": [],
"last": "He",
"suffix": ""
},
{
"first": "Min",
"middle": [],
"last": "Zhang",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 27th International Conference on Computational Linguistics",
"volume": "",
"issue": "",
"pages": "2159--2169",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yaosheng Yang, Wenliang Chen, Zhenghua Li, Zhengqiu He, and Min Zhang. 2018b. Distantly su- pervised NER with partial annotation learning and reinforcement learning. In Proceedings of the 27th International Conference on Computational Lin- guistics, pages 2159-2169, Santa Fe, New Mexico, USA. Association for Computational Linguistics.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Looking beyond label noise: Shifted label distribution matters in distantly supervised relation extraction",
"authors": [
{
"first": "Qinyuan",
"middle": [],
"last": "Ye",
"suffix": ""
},
{
"first": "Liyuan",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Maosen",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Xiang",
"middle": [],
"last": "Ren",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
"volume": "",
"issue": "",
"pages": "3841--3850",
"other_ids": {
"DOI": [
"10.18653/v1/D19-1397"
]
},
"num": null,
"urls": [],
"raw_text": "Qinyuan Ye, Liyuan Liu, Maosen Zhang, and Xiang Ren. 2019. Looking beyond label noise: Shifted la- bel distribution matters in distantly supervised rela- tion extraction. In Proceedings of the 2019 Con- ference on Empirical Methods in Natural Language Processing and the 9th International Joint Confer- ence on Natural Language Processing (EMNLP- IJCNLP), pages 3841-3850, Hong Kong, China. As- sociation for Computational Linguistics.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Distant supervision for relation extraction via piecewise convolutional neural networks",
"authors": [
{
"first": "Daojian",
"middle": [],
"last": "Zeng",
"suffix": ""
},
{
"first": "Kang",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Yubo",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Jun",
"middle": [],
"last": "Zhao",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "1753--1762",
"other_ids": {
"DOI": [
"10.18653/v1/D15-1203"
]
},
"num": null,
"urls": [],
"raw_text": "Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao. 2015. Distant supervision for relation extraction via piecewise convolutional neural networks. In Pro- ceedings of the 2015 Conference on Empirical Meth- ods in Natural Language Processing, pages 1753- 1762, Lisbon, Portugal. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Positionaware attention and supervised data improve slot filling",
"authors": [
{
"first": "Yuhao",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Victor",
"middle": [],
"last": "Zhong",
"suffix": ""
},
{
"first": "Danqi",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Gabor",
"middle": [],
"last": "Angeli",
"suffix": ""
},
{
"first": "Christopher",
"middle": [
"D"
],
"last": "Manning",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "35--45",
"other_ids": {
"DOI": [
"10.18653/v1/D17-1004"
]
},
"num": null,
"urls": [],
"raw_text": "Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor An- geli, and Christopher D. Manning. 2017. Position- aware attention and supervised data improve slot fill- ing. In Proceedings of the 2017 Conference on Em- pirical Methods in Natural Language Processing, pages 35-45, Copenhagen, Denmark. Association for Computational Linguistics.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "Nero: A neural rule grounding framework for label-efficient relation extraction. The Web Conference",
"authors": [
{
"first": "Wenxuan",
"middle": [],
"last": "Zhou",
"suffix": ""
},
{
"first": "Hongtao",
"middle": [],
"last": "Lin",
"suffix": ""
},
{
"first": "Ziqi",
"middle": [],
"last": "Bill Yuchen Lin",
"suffix": ""
},
{
"first": "Junyi",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Du",
"suffix": ""
}
],
"year": 2020,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Wenxuan Zhou, Hongtao Lin, Bill Yuchen Lin, Ziqi Wang, Junyi Du, Leonardo Neves, and Xiang Ren. 2020. Nero: A neural rule grounding framework for label-efficient relation extraction. The Web Confer- ence.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"uris": null,
"type_str": "figure",
"text": "the food NER I had a dinner at McDonalds, where the food is cheap because the word price is directly preceded by fair",
"num": null
},
"FIGREF1": {
"uris": null,
"type_str": "figure",
"text": "System Architecture.",
"num": null
},
"FIGREF2": {
"uris": null,
"type_str": "figure",
"text": "The workflow to annotate a NE label and trigger span. (\"Rumble Fish\" as Restaurant).",
"num": null
},
"FIGREF3": {
"uris": null,
"type_str": "figure",
"text": "The word \"citizen\" appearsThe word ''citizen'' appears right The word ''citizen'' appears left The word ''citizen'' appears between The word ''citizen'' appears within The word ''citizen'' appears (numberOf)",
"num": null
},
"FIGREF4": {
"uris": null,
"type_str": "figure",
"text": "Weakly labeling module for exploiting natural language explanation. the keyword is 'happy' module has four parts: String Matching Module, Distant Counting Module, Deterministic Function Module, and the Logical Calculation Module. The first three modules are responsible for evaluating if different clauses in the logical form are applicable for the given unlabeled sentence, while the Logical Calculation Module's job is to aggregate scores between the various clauses. The String Matching Module returns a sequence of scores [s 1 , s 2 , ..., s n ]",
"num": null
},
"FIGREF5": {
"uris": null,
"type_str": "figure",
"text": "Label Efficiency. We choose commonlyused supervised baselines for comparison.",
"num": null
}
}
}
} |