File size: 106,261 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T01:56:10.812781Z"
    },
    "title": "LEAN-LIFE: A Label-Efficient Annotation Framework Towards Learning from Explanation",
    "authors": [
        {
            "first": "Dong-Ho",
            "middle": [],
            "last": "Lee",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Southern",
                "location": {
                    "country": "California"
                }
            },
            "email": "dongho.lee@usc.edu"
        },
        {
            "first": "Rahul",
            "middle": [],
            "last": "Khanna",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Southern",
                "location": {
                    "country": "California"
                }
            },
            "email": "rahulkha@usc.edu"
        },
        {
            "first": "Bill",
            "middle": [
                "Yuchen"
            ],
            "last": "Lin",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Southern",
                "location": {
                    "country": "California"
                }
            },
            "email": ""
        },
        {
            "first": "Seyeon",
            "middle": [],
            "last": "Lee",
            "suffix": "",
            "affiliation": {},
            "email": "seyeonle@usc.edu"
        },
        {
            "first": "Qinyuan",
            "middle": [],
            "last": "Ye",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Southern",
                "location": {
                    "country": "California"
                }
            },
            "email": "qinyuany@usc.edu"
        },
        {
            "first": "Elizabeth",
            "middle": [],
            "last": "Boschee",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Southern",
                "location": {
                    "country": "California"
                }
            },
            "email": "boschee@isi.edu"
        },
        {
            "first": "Leonardo",
            "middle": [],
            "last": "Neves",
            "suffix": "",
            "affiliation": {},
            "email": "lneves@snap.com"
        },
        {
            "first": "Xiang",
            "middle": [],
            "last": "Ren",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Southern",
                "location": {
                    "country": "California"
                }
            },
            "email": "xiangren@usc.edu"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Successfully training a deep neural network demands a huge corpus of labeled data. However, each label only provides limited information to learn from and collecting the requisite number of labels involves massive human effort. In this work, we introduce LEAN-LIFE 1 , a web-based, Label-Efficient AnnotatioN framework for sequence labeling and classification tasks, with an easy-to-use UI that not only allows an annotator to provide the needed labels for a task, but also enables LearnIng From Explanations for each labeling decision. Such explanations enable us to generate useful additional labeled data from unlabeled instances, bolstering the pool of available training data. On three popular NLP tasks (named entity recognition, relation extraction, sentiment analysis), we find that using this enhanced supervision allows our models to surpass competitive baseline F1 scores by more than 5-10 percentage points, while using 2X times fewer labeled instances. Our framework is the first to utilize this enhanced supervision technique and does so for three important tasks-thus providing improved annotation recommendations to users and an ability to build datasets of (data, label, explanation) triples instead of the regular (data, label) pair.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Successfully training a deep neural network demands a huge corpus of labeled data. However, each label only provides limited information to learn from and collecting the requisite number of labels involves massive human effort. In this work, we introduce LEAN-LIFE 1 , a web-based, Label-Efficient AnnotatioN framework for sequence labeling and classification tasks, with an easy-to-use UI that not only allows an annotator to provide the needed labels for a task, but also enables LearnIng From Explanations for each labeling decision. Such explanations enable us to generate useful additional labeled data from unlabeled instances, bolstering the pool of available training data. On three popular NLP tasks (named entity recognition, relation extraction, sentiment analysis), we find that using this enhanced supervision allows our models to surpass competitive baseline F1 scores by more than 5-10 percentage points, while using 2X times fewer labeled instances. Our framework is the first to utilize this enhanced supervision technique and does so for three important tasks-thus providing improved annotation recommendations to users and an ability to build datasets of (data, label, explanation) triples instead of the regular (data, label) pair.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Deep neural networks have achieved state-of-theart performance on a wide range of sequence labeling and classification tasks such as named entity recognition (NER) (Lample et al., 2016; Ma and Hovy, 2016) , relation extraction (RE) (Zeng et al., 2015; Zhang et al., 2017; Ye et al., 2019) , and sentiment analysis (SA) (Wang et al., 2016) . However, they only yield such performance levels * Both authors contributed equally.",
                "cite_spans": [
                    {
                        "start": 164,
                        "end": 185,
                        "text": "(Lample et al., 2016;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 186,
                        "end": 204,
                        "text": "Ma and Hovy, 2016)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 232,
                        "end": 251,
                        "text": "(Zeng et al., 2015;",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 252,
                        "end": 271,
                        "text": "Zhang et al., 2017;",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 272,
                        "end": 288,
                        "text": "Ye et al., 2019)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 319,
                        "end": 338,
                        "text": "(Wang et al., 2016)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "1 The source code is publicly available at http:// inklab.usc.edu/leanlife/.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Quality ingredients preparation all around, and a very fair price for NYC.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We had a fantastic lunch at Rumble Fish yesterday, where the food is my favorite. The increase is caused by the absorption of UV radiation by the oxygen and ozone.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Delicious food with a fair price",
                "sec_num": null
            },
            {
                "text": "Where",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "I-RESTAURANT B-RESTAURANT",
                "sec_num": null
            },
            {
                "text": "Cause-Effect Because the phrase \"caused by\" occurs between SUBJ and OBJ The burst has been caused by water hammer pressure UNLABELED SENTENCE",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "RE",
                "sec_num": null
            },
            {
                "text": "Figure 1: Leveraging Labeling Explanations: 1) RE: the explanation \"the phrase 'caused by' occurs between SUBJ and OBJ\" can aid in weakly labeling unlabeled instances like \"The burst has been caused by water hammer pressure\" with the label \"cause-effect\"; 2) NER: Trigger spans near the labeled restaurant such as \"had lunch at\" and \"where the food\" can aid in weakly labeling unlabeled instances like \"I had a dinner at Mc-Donalds, where the food is cheap\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "SUBJ OBJ SUBJ OBJ",
                "sec_num": null
            },
            {
                "text": "in supervised learning scenarios, and in particular when human-annotated data is abundant. As we seek to apply NLP models to larger variety of domains, such as product reviews (Luo et al., 2018) , social media messages (Lin et al., 2017) , while reducing human annotation efforts, better annotation frameworks with label-efficient learning techniques are crucial to our progress. Annotation frameworks have been explored by several previous works (Stenetorp et al., 2012; Bontcheva et al., 2014; Morton and LaCivita, 2003; de Castilho et al., 2016; Yang et al., 2018a) . These existing open-source sequence annotation tools mainly focus on optimizing user-friendly user interfaces, such as providing shortcut key functionality to allow for faster tagging. The frameworks also attempt to provide annotation recommendation to reduce human annotation ef-forts. However, these recommendations are provided by a pre-trained model or via dictionary look-ups. This methodology of providing recommendations often proves to be unhelpful when little annotated data exists for pre-training, as is usually the case for natural language tasks being applied to domain-specific or user-provided corpora.",
                "cite_spans": [
                    {
                        "start": 176,
                        "end": 194,
                        "text": "(Luo et al., 2018)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 219,
                        "end": 237,
                        "text": "(Lin et al., 2017)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 447,
                        "end": 471,
                        "text": "(Stenetorp et al., 2012;",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 472,
                        "end": 495,
                        "text": "Bontcheva et al., 2014;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 496,
                        "end": 522,
                        "text": "Morton and LaCivita, 2003;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 523,
                        "end": 548,
                        "text": "de Castilho et al., 2016;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 549,
                        "end": 568,
                        "text": "Yang et al., 2018a)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "SUBJ OBJ SUBJ OBJ",
                "sec_num": null
            },
            {
                "text": "To resolve this issue, AlpacaTag, an annotation framework for sequence labeling (Lin et al., 2019) attempts to provide annotation recommendations from a learned sequence labeling model that is incrementally updated by batches of incoming human annotations. Its model training follows an active learning strategy (Shen et al., 2017) , which is shown to be a label-efficient, thus it attempts to minimize human annotation efforts. AlpacaTag selects the most informative batches of documents for humans to annotate and thus achieves a more cost-effective way of using human efforts. While active learning allows the model to achieve higher performance earlier in the learning process, model performance could be improved if additional supervision existed. It is imperative that provided annotation recommendations be as accurate as possible, as inaccurate annotation recommendations from the framework can push users towards generating noisy data, hindering instead of aiding the model training process.",
                "cite_spans": [
                    {
                        "start": 80,
                        "end": 98,
                        "text": "(Lin et al., 2019)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 312,
                        "end": 331,
                        "text": "(Shen et al., 2017)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "SUBJ OBJ SUBJ OBJ",
                "sec_num": null
            },
            {
                "text": "Our effort to prevent this problem is centered around allowing annotators to provide additional supervision by capturing labeling explanations, while still taking advantage of the costeffectiveness of active learning. Specifically, as shown in Fig. 1 , we allow annotators to provide explanations for their decisions in natural language or by selecting triggers--nearby phrases that provide helpful context for their decisions. These enhanced annotations allow for model training over both user-provided labels, as well as weakly labeled data created by parsing explanations into high precision labeling rules. We therefore make attempts to ameliorate the erroneous recommendation problem by a performance-boosting training strategy that incorporates both labeled and unlabeled data.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 244,
                        "end": 250,
                        "text": "Fig. 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "SUBJ OBJ SUBJ OBJ",
                "sec_num": null
            },
            {
                "text": "Our work is also similar to recent attempts that exploit explanations for an improved training process (Srivastava et al., 2017; Hancock et al., 2018; , but with two main differences. First, we embed this improved process in a practical application and sec- ond, we design task specific architectures to incorporate the now captured explanations into training.",
                "cite_spans": [
                    {
                        "start": 103,
                        "end": 128,
                        "text": "(Srivastava et al., 2017;",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 129,
                        "end": 150,
                        "text": "Hancock et al., 2018;",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "SUBJ OBJ SUBJ OBJ",
                "sec_num": null
            },
            {
                "text": "To the best of our knowledge, there is no existing open-source, easy-to-use, recommendationproviding, online-learning annotation framework that can also capture explanations. LEAN-LIFE is the first framework to capture and leverage explanations for improved model training and performance, while still inheriting the advantages of existing tools. We summarize our contributions as:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "SUBJ OBJ SUBJ OBJ",
                "sec_num": null
            },
            {
                "text": "\u2022 Improved Model Training: Our recommendation models use a performance improving training process that leverages explanations to weakly label unlabeled instances. Our models improve on competitive baseline F-1 scores by more than 5-10 percentage points, while using 2X less data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "SUBJ OBJ SUBJ OBJ",
                "sec_num": null
            },
            {
                "text": "\u2022 Multiple Supported Tasks: Our framework supports both sequence labeling (as in NER) and sequence classification (as in RE, SA).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "SUBJ OBJ SUBJ OBJ",
                "sec_num": null
            },
            {
                "text": "\u2022 Explanation Dataset Creation: We make it easy to build a new type of dataset, one that consists of triples of: text, labels and labeling explanations. The exporting of this captured data is available in two common data formats, CSV and JSON.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "SUBJ OBJ SUBJ OBJ",
                "sec_num": null
            },
            {
                "text": "As shown in Fig. 2 , our framework consists of two main components, a user-friendly web-UI that can capture labels and explanations for labeling decisions, and a weak supervision framework that parses explanations for the creation of weakly labeled data. The framework then uses this weakly labeled data in conjunction with user-provided labels to train models for improved annotation recommendations. Our UI shows annotators unlabeled instances (can be sampled using active learning), along with annotation recommendations in an effort to reduce annotation costs. We use Py-Torch to build our models and implement an API for communication between the web-UI and our weak supervision framework. The learned parameters of our framework are updated in an online fashion, thus improving in near real time. We will first touch on the annotation UI ( \u00a73) and then go into our weak supervision framework ( \u00a74).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 12,
                        "end": 18,
                        "text": "Fig. 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "System Overview",
                "sec_num": "2"
            },
            {
                "text": "The emphasis of our front-end design is to simplify the capture of both label and explanation for each labeling decision, while reducing annotation effort via accessible annotation recommendation. Our framework supports two forms of explanations, Triggers and Natural Language. A Trigger is a group of words in the sentence being annotated that aided the annotator's labeling decision, while Natural Language is a written explanation of the labeling decision. This section presents first the UI for capturing triggers ( \u00a73.1) and then the UI for capturing natural language explanations ( \u00a73.2). Fig. 3 illustrates how our framework can capture both a named entity (NE) label and triggers for the sentence \"We had a fantastic lunch at Rumble Fish yesterday where the food is my favorite\". The user is first presented with a piece of text to annotate (Annotating Section), the available labels that may be applied to sub-sequences (spans) of text (in the blue header) and recommendations of what spans of text should be considered as NE mentions (Named Entity Recommendation Section). The user may choose to select a span of text to label, or they may click on one of the recommended spans below ( Fig. 2a ). If the user clicks on a recommended span, a small pop-up displaying the available labels appear with the recommended label circled in red ( Fig. 2a ). Once the user selects a label for a span of text by either clicking on the desired label button or via a predefined shortcut key (ex: for Restaurant the shortcut key is r), a pop-up appears (Fig. 2b) , asking the user to select helpful spans (triggers) from the text that provide useful context in deciding the label for the NEM--multiple triggers may be selected. The user may cancel their decision to label a span of text with a label by clicking the x button in the pop-up, but if the user wants to proceed and has selected at least one trigger, they finish the labeling by hitting done. Then, their label is visualized in the Annotating Section by highlighting the NEM.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 595,
                        "end": 601,
                        "text": "Fig. 3",
                        "ref_id": "FIGREF2"
                    },
                    {
                        "start": 1196,
                        "end": 1203,
                        "text": "Fig. 2a",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 1347,
                        "end": 1354,
                        "text": "Fig. 2a",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 1548,
                        "end": 1557,
                        "text": "(Fig. 2b)",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "UI for Capturing Human Explanation",
                "sec_num": "3"
            },
            {
                "text": "(b) after clicking a label to assign to a text span, a pop up appears asking the user to explain their decision by selecting nearby \"trigger\" text spans.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Capturing Triggers",
                "sec_num": "3.1"
            },
            {
                "text": "(a) the labels appear in the header, followed by an annotating section; tagging suggestions are shown as underlined spans at the bottom of the page. A user may hover over a tagging suggestion or select a span in order to apply a label to a substring. Fig. 4 illustrates how for the sentence \"Tahawwur Hussain Rana who was born in Pakistan but is a Canadian citizen\" our framework can capture both a relation label between NEs and the subsequent natural language explanation. First, the user is tasked to find the NEs in the sentence. After labeling at least two non-consecutive spans of text as NEs, the user may check off the boxes that appear above the labeled NEs. Once two boxes have been checked off, the labels in the blue header are replaced with the labels for relations. The clickorder of the checked boxes is displayed and is considered the order of the relation. Also, we display a recommend label to the user in the header section with a circle (Fig. 2a) . After clicking on a label, a pop-up appears asking the user to indicate semantic and syntactic reasons as to why the labeling decision is true. Since the natural language explanations are assumed to be made up of predefined predicates, as the user types we incrementally provide predicates to aid the construction of an explanation (Fig. 2b) . In this way, we nudge users towards writing explanations the semantic parser is able to break down, allowing our framework to extract a useful logical form from the explanation.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 251,
                        "end": 257,
                        "text": "Fig. 4",
                        "ref_id": null
                    },
                    {
                        "start": 957,
                        "end": 966,
                        "text": "(Fig. 2a)",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 1301,
                        "end": 1310,
                        "text": "(Fig. 2b)",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Capturing Triggers",
                "sec_num": "3.1"
            },
            {
                "text": "(a) After two NEs have been checked off, the relation labels replace the entity labels in the header; a suggested relation label is again circled in red.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Capturing Natural Language",
                "sec_num": "3.2"
            },
            {
                "text": "(b) After selecting a label for a relation, a pop up will ask the user to explain their decision in natural language. As the reasons must be parsed for understanding, suggested parsable predicates are shown to lead users to parsable explanations. Figure 4 : The workflow to annotate a relation label and NL explanation. (\"per:nationality\" as a relation label between \"Tahawwur Hussain Rana\" and \"Canadian\").",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 247,
                        "end": 255,
                        "text": "Figure 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Capturing Natural Language",
                "sec_num": "3.2"
            },
            {
                "text": "Our Weak Supervision Framework is composed of two main components, a weak labeling module that parses explanations to create labeling rules and a downstream model. The framework parses user-provided explanations to generate weakly labeled data and then trains the appropriate downstream model with this augmented training data. Our weak labeling module supports both explanation formats provided to the annotator in the UI--triggers and natural language. This section first introduces how the module utilizes triggers ( \u00a74.1) and then presents how the module deals with natural language( \u00a74.2).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "LEAN-LIFE Framework",
                "sec_num": "4"
            },
            {
                "text": "When a trigger is inputted into the system, we generate weak labels for our training data via softmatching between trigger representations and unlabeled sentences . Each sentence may contain one or more triggers, but each trigger is associated with only one label. Our framework jointly learns a mapping between triggers and their label using a linear layer with a soft-max output and a log-likelihood loss, as well as the semantic similarity between the triggers and their associated sentences using contrastive loss--we weigh both objectives equally. Through this joint learning, our trigger representations can capture label knowledge as well as semantic information. We use these representations to improve model training by generating weakly labeled data via soft matching on the unlabeled sentences. More specifically, for each unlabeled sentence, we first calculate the semantic similarity between the sentence and all collected triggers and then filter out all triggers where the similarity distance is larger than our fixed threshold. We then generate a trigger-aware sentence encoding for each threshold-passing trigger and feed these encodings into a downstream classifier for label inference. Finally, we conduct majority vote over outputted label sequences to finalize our weak labels for the unlabeled sentence. In this manner we are able to train over more data, where a good portion of it is weakly labeled.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Input: Trigger",
                "sec_num": "4.1"
            },
            {
                "text": "When natural language is inputted into the system, our module grows training data via soft-matching between logical forms parsed from natural language explanations and unlabeled sentences. The module follows the Neural Execution Tree framework of when dealing with natural language. First, the explanation is parsed into a logical form by a semantic parser. Previous works have suggested using similar logical forms to improve model training by strict matching on the pool of unlabeled sentences to generate additional labeled data. However, proposes an improved model training paradigm, which relaxes this strict matching constraint, subsequently improving weak labeling coverage and allowing for a larger pool of unlabeled data to be used for model training. Our module does assume each NL explanation can be broken down into a logical form composed of clauses consisting of predicates from four categories--hence the autosuggest feature in the UI. At weak labeling, the module scores how likely a given unlabeled sentence fits each clause and then constructs an aggregate score representing the match between the logical form and the unlabeled sentence. If the final score is above configurable thresholds, we weakly label the sentence with the appropriate label.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Input: Natural Language",
                "sec_num": "4.2"
            },
            {
                "text": "As shown in Fig. 5 , the scoring portion of our indicating the similarity between each token w i and the keyword q--\"happy\" in Fig. 5 . Our Distant Counting Module aims to relax the distance constraint stated in the explanation, ex: \"by no more than 5 words\". If the position of keyword q strictly satisfies the constraint, the score is set to 1, otherwise the score decreases as the constraint is less satisfied. Finally, the Deterministic Function Module deals with deterministic predicates like \"LEFT\", \"BETWEEN\", which can only be exactly matched in terms of the keyword q. Scores are the aggregated by the Logical Calculation Module to output a final relevancy score.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 12,
                        "end": 18,
                        "text": "Fig. 5",
                        "ref_id": "FIGREF4"
                    },
                    {
                        "start": 127,
                        "end": 133,
                        "text": "Fig. 5",
                        "ref_id": "FIGREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Input: Natural Language",
                "sec_num": "4.2"
            },
            {
                "text": "We conduct extensive experiments investigating label efficiency to prove the effectiveness of our annotation models. We found that using natural language explanations for RE and SA, and trigger explanations for NER provided the best results. For the downstream model portion of our weak supervision framework, we use common supervised method for each task: (1-RE) BLSTM+ATT (Bahdanau et al., 2015) adds an attention layer onto LSTM to encode an sequence.",
                "cite_spans": [
                    {
                        "start": 374,
                        "end": 397,
                        "text": "(Bahdanau et al., 2015)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "5"
            },
            {
                "text": "(2-SA) ATAE-LSTM (Wang et al., 2016) combines the aspect term information into both the embedding layer and attention layer to help the model concentrate on different parts of a sentence. (3-NER) BLSTM+CRF (Ma and Hovy, 2016) encodes character sequences into a vector and concatenates the vector with pre-trained word embeddings to feed into word-level BLSTM. Then, it applies a CRF layer to predict sequence labels. Then we compare these methods as baselines.",
                "cite_spans": [
                    {
                        "start": 17,
                        "end": 36,
                        "text": "(Wang et al., 2016)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 206,
                        "end": 225,
                        "text": "(Ma and Hovy, 2016)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "5"
            },
            {
                "text": "We test our implementation on three tasks: RE, SA, NER. We use TA-CRED (Zhang et al., 2017) for RE, Restaurant review from SemEval 2014 Task 4 for SA, and Laptop reviews (Pontiki et al., 2016) for NER.",
                "cite_spans": [
                    {
                        "start": 71,
                        "end": 91,
                        "text": "(Zhang et al., 2017)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 170,
                        "end": 192,
                        "text": "(Pontiki et al., 2016)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tasks and Datasets",
                "sec_num": null
            },
            {
                "text": "We claim that when starting with little to no labeled data, it is more effective to ask annotators to provide a label and an explanation for the label, than to just request a label. To support this claim, we conduct experiments to demonstrate the label efficiency of our explanation-leveraging-model. We found that the time for labeling one instance plus providing an explanation takes 2X times more time than just simply providing a label. Given this annotation time observation, we compare the performance between our improved training process and the traditional label-only training process by holding annotation time constant between the two trials. This means we expose the label-only supervised model to the appropriate multiple of labeled instances that the label-and-explanation supervised model is shown Fig. 6 . Each marker on the x-axis of the plots indicate a certain interval of annotation time, which is represented by the number of label+explanations our augmented model training paradigm is given vs. how many labels the traditional label-only model training is shown. We use the F-1 metric to compare the performances. As shown in Fig. 6 , we see that our model not only is more time and label efficient than the labelonly training process, but it also outperforms the label-only training process. Given these results, we believe it is worth to request a user to provide both a label and an explanation for the label. Not only does the improvement in performance justify the extra time required to provide the explanation, but we also can achieve higher performance with fewer datapoints / less annotation time.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 813,
                        "end": 819,
                        "text": "Fig. 6",
                        "ref_id": "FIGREF5"
                    },
                    {
                        "start": 1148,
                        "end": 1154,
                        "text": "Fig. 6",
                        "ref_id": "FIGREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Label Efficiency",
                "sec_num": null
            },
            {
                "text": "Leveraging natural language explanations for additional supervision has been explored by many works. (Srivastava et al., 2017) first demonstrated the idea of using natural language explanations for weak labeling by jointly training a task-specific semantic parser and label classifier to generate weak labels. This method is limited though, as the parser is too tightly coupled to the already labeled data, thus their weak learning framework is not able to build a much larger dataset than the one it already has. To address this issue, (Hancock et al., 2018) proposed a weak supervision framework that utilizes a more practical rule-based semantic parser. The parser constructs a logical form for an explanation that is then used as a labeling function--this resulted in a significant increase of the training set. Another effort can be found in (Camburu et al., 2018) work to extend the Stanford Natural Language Inference dataset with natural language explanations--this extension was done for the important textual entailment recognition task. They demonstrate the usefulness of explanations as an additional training signal for learning more comprehensive sentence representations. Even earlier (Andreas et al., 2016) explored breaking down natural language explanation into linguistic sub-structures for learning collections of neural modules which can be assembled into neural networks. Our framework is very related to the above weak supervision methods via explanation. Another approach to weak supervision is attempting to transfer knowledge from a related source to the target domain corpus (Lin and Lu, 2018; Lan et al., 2020) . Shang et al. (2018) and Yang et al. (2018) proposed using a domain-specific dictionary for matching on the unannotated target corpus. Both efforts employ Partial CRFs (Liu et al., 2014) which assign all possible labels to unlabeled words and maximize the total probability. This approach addresses the incomplete annotation problem, but heavily relies on a domain-specific seed dictionary.",
                "cite_spans": [
                    {
                        "start": 101,
                        "end": 126,
                        "text": "(Srivastava et al., 2017)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 537,
                        "end": 559,
                        "text": "(Hancock et al., 2018)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 847,
                        "end": 869,
                        "text": "(Camburu et al., 2018)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 1200,
                        "end": 1222,
                        "text": "(Andreas et al., 2016)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 1602,
                        "end": 1620,
                        "text": "(Lin and Lu, 2018;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 1621,
                        "end": 1638,
                        "text": "Lan et al., 2020)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 1641,
                        "end": 1660,
                        "text": "Shang et al. (2018)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 1665,
                        "end": 1683,
                        "text": "Yang et al. (2018)",
                        "ref_id": null
                    },
                    {
                        "start": 1808,
                        "end": 1826,
                        "text": "(Liu et al., 2014)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Works",
                "sec_num": "6"
            },
            {
                "text": "In this paper, we propose an open-source webbased annotation framework LEAN-LIFE that not only allows an annotator to provide the needed labels for a task, but can also capture explanation for each labeling decision. Such explanations enable a significant improvement in model training while only doubling per instance annotation time. This increase in per instance annotation time is greatly outweighed by the benefits in model training, especially in a low resource settings, as proven by our experiments. This is an important consideration for any annotation framework, as the quicker the framework is able to train annotation recommendation models to reach high performance, the sooner the user receives useful annotation recommendations, which in turn cut down on the annotation time required per instance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "7"
            },
            {
                "text": "Better training methods also allow us to fight the potential generation of noisy data due to inaccurate annotation recommendations. We hope that our work on LEAN-LIFE will allow for researches and practitioners alike to more easily obtain useful labeled datasets and models for the various NLP tasks they face.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "7"
            }
        ],
        "back_matter": [
            {
                "text": "This research is based upon work supported in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via Contract No. 2019-19051600007, NSF SMA 18-29268, and Snap research gift. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of ODNI, IARPA, or the U.S. Government. We would like to thank all the collaborators in USC INK research lab for their constructive feedback on the work.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Neural module networks",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Andreas",
                        "suffix": ""
                    },
                    {
                        "first": "Marcus",
                        "middle": [],
                        "last": "Rohrbach",
                        "suffix": ""
                    },
                    {
                        "first": "Trevor",
                        "middle": [],
                        "last": "Darrell",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Klein",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition",
                "volume": "",
                "issue": "",
                "pages": "39--48",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. 2016. Neural module networks. In Pro- ceedings of the IEEE Conference on Computer Vi- sion and Pattern Recognition, pages 39-48.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Neural machine translation by jointly learning to align and translate",
                "authors": [
                    {
                        "first": "Dzmitry",
                        "middle": [],
                        "last": "Bahdanau",
                        "suffix": ""
                    },
                    {
                        "first": "Kyunghyun",
                        "middle": [],
                        "last": "Cho",
                        "suffix": ""
                    },
                    {
                        "first": "Yoshua",
                        "middle": [],
                        "last": "Bengio",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "3rd International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben- gio. 2015. Neural machine translation by jointly learning to align and translate. In 3rd International Conference on Learning Representations.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "The gate crowdsourcing plugin: Crowdsourcing annotated corpora made easy",
                "authors": [
                    {
                        "first": "Kalina",
                        "middle": [],
                        "last": "Bontcheva",
                        "suffix": ""
                    },
                    {
                        "first": "Ian",
                        "middle": [],
                        "last": "Roberts",
                        "suffix": ""
                    },
                    {
                        "first": "Leon",
                        "middle": [],
                        "last": "Derczynski",
                        "suffix": ""
                    },
                    {
                        "first": "Dominic",
                        "middle": [],
                        "last": "Rout",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proc. of EACL",
                "volume": "",
                "issue": "",
                "pages": "97--100",
                "other_ids": {
                    "DOI": [
                        "10.3115/v1/E14-2025"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kalina Bontcheva, Ian Roberts, Leon Derczynski, and Dominic Rout. 2014. The gate crowdsourcing plu- gin: Crowdsourcing annotated corpora made easy. In Proc. of EACL, pages 97-100. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "e-snli: Natural language inference with natural language explanations",
                "authors": [
                    {
                        "first": "Oana-Maria",
                        "middle": [],
                        "last": "Camburu",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Rockt\u00e4schel",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Lukasiewicz",
                        "suffix": ""
                    },
                    {
                        "first": "Phil",
                        "middle": [],
                        "last": "Blunsom",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Advances in Neural Information Processing Systems 31",
                "volume": "",
                "issue": "",
                "pages": "9539--9549",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Oana-Maria Camburu, Tim Rockt\u00e4schel, Thomas Lukasiewicz, and Phil Blunsom. 2018. e-snli: Natu- ral language inference with natural language expla- nations. In Advances in Neural Information Pro- cessing Systems 31, pages 9539-9549. Curran As- sociates, Inc.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "A web-based tool for the integrated annotation of semantic and syntactic structures",
                "authors": [
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Eckart De Castilho",
                        "suffix": ""
                    },
                    {
                        "first": "Eva",
                        "middle": [],
                        "last": "Mujdricza-Maydt",
                        "suffix": ""
                    },
                    {
                        "first": "Silvana",
                        "middle": [],
                        "last": "Seid Muhie Yimam",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Hartmann",
                        "suffix": ""
                    },
                    {
                        "first": "Anette",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Frank",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Biemann",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "The COLING 2016 Organizing Committee",
                "volume": "",
                "issue": "",
                "pages": "76--84",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Richard Eckart de Castilho, Eva Mujdricza-Maydt, Seid Muhie Yimam, Silvana Hartmann, Iryna Gurevych, Anette Frank, and Chris Biemann. 2016. A web-based tool for the integrated an- notation of semantic and syntactic structures. In LT4DH@COLING, pages 76-84. The COLING 2016 Organizing Committee.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Training classifiers with natural language explanations",
                "authors": [
                    {
                        "first": "Braden",
                        "middle": [],
                        "last": "Hancock",
                        "suffix": ""
                    },
                    {
                        "first": "Paroma",
                        "middle": [],
                        "last": "Varma",
                        "suffix": ""
                    },
                    {
                        "first": "Stephanie",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Bringmann",
                        "suffix": ""
                    },
                    {
                        "first": "Percy",
                        "middle": [],
                        "last": "Liang",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "R\u00e9",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "1884--1895",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P18-1175"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Braden Hancock, Paroma Varma, Stephanie Wang, Martin Bringmann, Percy Liang, and Christopher R\u00e9. 2018. Training classifiers with natural lan- guage explanations. In Proceedings of the 56th An- nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1884- 1895, Melbourne, Australia. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Neural architectures for named entity recognition",
                "authors": [
                    {
                        "first": "Guillaume",
                        "middle": [],
                        "last": "Lample",
                        "suffix": ""
                    },
                    {
                        "first": "Miguel",
                        "middle": [],
                        "last": "Ballesteros",
                        "suffix": ""
                    },
                    {
                        "first": "Sandeep",
                        "middle": [],
                        "last": "Subramanian",
                        "suffix": ""
                    },
                    {
                        "first": "Kazuya",
                        "middle": [],
                        "last": "Kawakami",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Dyer",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "260--270",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N16-1030"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Guillaume Lample, Miguel Ballesteros, Sandeep Sub- ramanian, Kazuya Kawakami, and Chris Dyer. 2016. Neural architectures for named entity recognition. In Proc. of NAACL-HLT, pages 260-270. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Learning to contextually aggregate multi-source supervision for sequence labeling",
                "authors": [
                    {
                        "first": "Ouyu",
                        "middle": [],
                        "last": "Lan",
                        "suffix": ""
                    },
                    {
                        "first": "Xiao",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "He",
                        "middle": [],
                        "last": "Bill Yuchen Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Liyuan",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "Xiang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ren",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ouyu Lan, Xiao Huang, Bill Yuchen Lin, He Jiang, Liyuan Liu, and Xiang Ren. 2020. Learning to con- textually aggregate multi-source supervision for se- quence labeling. In Proceedings of Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Multi-channel BiLSTM-CRF model for emerging named entity recognition in social media",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Bill",
                        "suffix": ""
                    },
                    {
                        "first": "Frank",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Zhiyi",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Kenny",
                        "middle": [],
                        "last": "Luo",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 3rd Workshop on Noisy Usergenerated Text",
                "volume": "",
                "issue": "",
                "pages": "160--165",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W17-4421"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Bill Y. Lin, Frank Xu, Zhiyi Luo, and Kenny Zhu. 2017. Multi-channel BiLSTM-CRF model for emerging named entity recognition in social media. In Proceedings of the 3rd Workshop on Noisy User- generated Text, pages 160-165, Copenhagen, Den- mark. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Triggerner: Learning with entity triggers as explanations for named entity recognition",
                "authors": [
                    {
                        "first": "Dong-Ho",
                        "middle": [],
                        "last": "Bill Yuchen Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Ryan",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    },
                    {
                        "first": "Xiao",
                        "middle": [],
                        "last": "Moreno",
                        "suffix": ""
                    },
                    {
                        "first": "Prashant",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Xiang",
                        "middle": [],
                        "last": "Shiralkar",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ren",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bill Yuchen Lin, Dong-Ho Lee, Ming Shen, Ryan Moreno, Xiao Huang, Prashant Shiralkar, and Xiang Ren. 2020. Triggerner: Learning with entity trig- gers as explanations for named entity recognition. In Proceedings of Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "AlpacaTag: An active learning-based crowd annotation framework for sequence tagging",
                "authors": [
                    {
                        "first": "Dong-Ho",
                        "middle": [],
                        "last": "Bill Yuchen Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Frank",
                        "middle": [
                            "F"
                        ],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Ouyu",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Xiang",
                        "middle": [],
                        "last": "Lan",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ren",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations",
                "volume": "",
                "issue": "",
                "pages": "58--63",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-3010"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Bill Yuchen Lin, Dong-Ho Lee, Frank F. Xu, Ouyu Lan, and Xiang Ren. 2019. AlpacaTag: An active learning-based crowd annotation framework for se- quence tagging. In Proceedings of the 57th Annual Meeting of the Association for Computational Lin- guistics: System Demonstrations, pages 58-63, Flo- rence, Italy. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Neural adaptation layers for cross-domain named entity recognition",
                "authors": [
                    {
                        "first": "Yuchen",
                        "middle": [],
                        "last": "Bill",
                        "suffix": ""
                    },
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "2012--2022",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D18-1226"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Bill Yuchen Lin and Wei Lu. 2018. Neural adapta- tion layers for cross-domain named entity recogni- tion. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Process- ing, pages 2012-2022, Brussels, Belgium. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Domain adaptation for CRF-based Chinese word segmentation using free annotations",
                "authors": [
                    {
                        "first": "Yijia",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Yue",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Wanxiang",
                        "middle": [],
                        "last": "Che",
                        "suffix": ""
                    },
                    {
                        "first": "Ting",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Fan",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "864--874",
                "other_ids": {
                    "DOI": [
                        "10.3115/v1/D14-1093"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yijia Liu, Yue Zhang, Wanxiang Che, Ting Liu, and Fan Wu. 2014. Domain adaptation for CRF-based Chinese word segmentation using free annotations. In Proceedings of the 2014 Conference on Em- pirical Methods in Natural Language Processing (EMNLP), pages 864-874, Doha, Qatar. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "ExtRA: Extracting prominent review aspects from customer feedback",
                "authors": [
                    {
                        "first": "Zhiyi",
                        "middle": [],
                        "last": "Luo",
                        "suffix": ""
                    },
                    {
                        "first": "Shanshan",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Frank",
                        "middle": [
                            "F"
                        ],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Bill",
                        "middle": [
                            "Yuchen"
                        ],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Hanyuan",
                        "middle": [],
                        "last": "Shi",
                        "suffix": ""
                    },
                    {
                        "first": "Kenny",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "3477--3486",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D18-1384"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Zhiyi Luo, Shanshan Huang, Frank F. Xu, Bill Yuchen Lin, Hanyuan Shi, and Kenny Zhu. 2018. ExtRA: Extracting prominent review aspects from customer feedback. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Process- ing, pages 3477-3486, Brussels, Belgium. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF",
                "authors": [
                    {
                        "first": "Xuezhe",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Eduard",
                        "middle": [],
                        "last": "Hovy",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "1064--1074",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P16-1101"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Xuezhe Ma and Eduard Hovy. 2016. End-to-end sequence labeling via bi-directional LSTM-CNNs- CRF. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Vol- ume 1: Long Papers), pages 1064-1074, Berlin, Germany. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Word-Freak: An open tool for linguistic annotation",
                "authors": [
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Morton",
                        "suffix": ""
                    },
                    {
                        "first": "Jeremy",
                        "middle": [],
                        "last": "Lacivita",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Companion Volume of the Proceedings of HLT-NAACL 2003 -Demonstrations",
                "volume": "",
                "issue": "",
                "pages": "17--18",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thomas Morton and Jeremy LaCivita. 2003. Word- Freak: An open tool for linguistic annotation. In Companion Volume of the Proceedings of HLT- NAACL 2003 -Demonstrations, pages 17-18.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "SemEval-2016 task 5: Aspect based sentiment analysis",
                "authors": [
                    {
                        "first": "Maria",
                        "middle": [],
                        "last": "Pontiki",
                        "suffix": ""
                    },
                    {
                        "first": "Dimitris",
                        "middle": [],
                        "last": "Galanis",
                        "suffix": ""
                    },
                    {
                        "first": "Haris",
                        "middle": [],
                        "last": "Papageorgiou",
                        "suffix": ""
                    },
                    {
                        "first": "Ion",
                        "middle": [],
                        "last": "Androutsopoulos",
                        "suffix": ""
                    },
                    {
                        "first": "Suresh",
                        "middle": [],
                        "last": "Manandhar",
                        "suffix": ""
                    },
                    {
                        "first": "Al-",
                        "middle": [],
                        "last": "Mohammad",
                        "suffix": ""
                    },
                    {
                        "first": "Mahmoud",
                        "middle": [],
                        "last": "Smadi",
                        "suffix": ""
                    },
                    {
                        "first": "Yanyan",
                        "middle": [],
                        "last": "Al-Ayyoub",
                        "suffix": ""
                    },
                    {
                        "first": "Bing",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Orph\u00e9e",
                        "middle": [],
                        "last": "Qin",
                        "suffix": ""
                    },
                    {
                        "first": "V\u00e9ronique",
                        "middle": [],
                        "last": "De Clercq",
                        "suffix": ""
                    },
                    {
                        "first": "Marianna",
                        "middle": [],
                        "last": "Hoste",
                        "suffix": ""
                    },
                    {
                        "first": "Xavier",
                        "middle": [],
                        "last": "Apidianaki",
                        "suffix": ""
                    },
                    {
                        "first": "Natalia",
                        "middle": [],
                        "last": "Tannier",
                        "suffix": ""
                    },
                    {
                        "first": "Evgeniy",
                        "middle": [],
                        "last": "Loukachevitch",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Kotelnikov",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016)",
                "volume": "",
                "issue": "",
                "pages": "19--30",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/S16-1002"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Maria Pontiki, Dimitris Galanis, Haris Papageorgiou, Ion Androutsopoulos, Suresh Manandhar, Moham- mad AL-Smadi, Mahmoud Al-Ayyoub, Yanyan Zhao, Bing Qin, Orph\u00e9e De Clercq, V\u00e9ronique Hoste, Marianna Apidianaki, Xavier Tannier, Na- talia Loukachevitch, Evgeniy Kotelnikov, Nuria Bel, Salud Mar\u00eda Jim\u00e9nez-Zafra, and G\u00fcl\u015fen Eryigit. 2016. SemEval-2016 task 5: Aspect based senti- ment analysis. In Proceedings of the 10th Interna- tional Workshop on Semantic Evaluation (SemEval- 2016), pages 19-30, San Diego, California. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Learning named entity tagger using domain-specific dictionary",
                "authors": [
                    {
                        "first": "Jingbo",
                        "middle": [],
                        "last": "Shang",
                        "suffix": ""
                    },
                    {
                        "first": "Liyuan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaotao",
                        "middle": [],
                        "last": "Gu",
                        "suffix": ""
                    },
                    {
                        "first": "Xiang",
                        "middle": [],
                        "last": "Ren",
                        "suffix": ""
                    },
                    {
                        "first": "Teng",
                        "middle": [],
                        "last": "Ren",
                        "suffix": ""
                    },
                    {
                        "first": "Jiawei",
                        "middle": [],
                        "last": "Han",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "2054--2064",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D18-1230"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jingbo Shang, Liyuan Liu, Xiaotao Gu, Xiang Ren, Teng Ren, and Jiawei Han. 2018. Learning named entity tagger using domain-specific dictionary. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2054-2064, Brussels, Belgium. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Deep active learning for named entity recognition",
                "authors": [
                    {
                        "first": "Yanyao",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    },
                    {
                        "first": "Hyokun",
                        "middle": [],
                        "last": "Yun",
                        "suffix": ""
                    },
                    {
                        "first": "Zachary",
                        "middle": [],
                        "last": "Lipton",
                        "suffix": ""
                    },
                    {
                        "first": "Yakov",
                        "middle": [],
                        "last": "Kronrod",
                        "suffix": ""
                    },
                    {
                        "first": "Animashree",
                        "middle": [],
                        "last": "Anandkumar",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 2nd Workshop on Representation Learning for NLP",
                "volume": "",
                "issue": "",
                "pages": "252--256",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W17-2630"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yanyao Shen, Hyokun Yun, Zachary Lipton, Yakov Kronrod, and Animashree Anandkumar. 2017. Deep active learning for named entity recognition. In Proceedings of the 2nd Workshop on Representa- tion Learning for NLP, pages 252-256, Vancouver, Canada. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Joint concept learning and semantic parsing from natural language explanations",
                "authors": [
                    {
                        "first": "Shashank",
                        "middle": [],
                        "last": "Srivastava",
                        "suffix": ""
                    },
                    {
                        "first": "Igor",
                        "middle": [],
                        "last": "Labutov",
                        "suffix": ""
                    },
                    {
                        "first": "Tom",
                        "middle": [],
                        "last": "Mitchell",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1527--1536",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D17-1161"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Shashank Srivastava, Igor Labutov, and Tom Mitchell. 2017. Joint concept learning and semantic parsing from natural language explanations. In Proceed- ings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1527-1536, Copenhagen, Denmark. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "brat: a web-based tool for NLP-assisted text annotation",
                "authors": [
                    {
                        "first": "Pontus",
                        "middle": [],
                        "last": "Stenetorp",
                        "suffix": ""
                    },
                    {
                        "first": "Sampo",
                        "middle": [],
                        "last": "Pyysalo",
                        "suffix": ""
                    },
                    {
                        "first": "Goran",
                        "middle": [],
                        "last": "Topi\u0107",
                        "suffix": ""
                    },
                    {
                        "first": "Tomoko",
                        "middle": [],
                        "last": "Ohta",
                        "suffix": ""
                    },
                    {
                        "first": "Sophia",
                        "middle": [],
                        "last": "Ananiadou",
                        "suffix": ""
                    },
                    {
                        "first": "Jun'ichi",
                        "middle": [],
                        "last": "Tsujii",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the Demonstrations at the 13th Conference of the European Chapter of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "102--107",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Pontus Stenetorp, Sampo Pyysalo, Goran Topi\u0107, Tomoko Ohta, Sophia Ananiadou, and Jun'ichi Tsu- jii. 2012. brat: a web-based tool for NLP-assisted text annotation. In Proceedings of the Demonstra- tions at the 13th Conference of the European Chap- ter of the Association for Computational Linguis- tics, pages 102-107, Avignon, France. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Attention-based LSTM for aspectlevel sentiment classification",
                "authors": [
                    {
                        "first": "Yequan",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Minlie",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaoyan",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    },
                    {
                        "first": "Li",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "606--615",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D16-1058"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yequan Wang, Minlie Huang, Xiaoyan Zhu, and Li Zhao. 2016. Attention-based LSTM for aspect- level sentiment classification. In Proceedings of the 2016 Conference on Empirical Methods in Natu- ral Language Processing, pages 606-615, Austin, Texas. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Learning from explanations with neural execution tree",
                "authors": [
                    {
                        "first": "Ziqi",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "*",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Yujia",
                        "middle": [],
                        "last": "Qin",
                        "suffix": ""
                    },
                    {
                        "first": "*",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Wenxuan",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Jun",
                        "middle": [],
                        "last": "Yan",
                        "suffix": ""
                    },
                    {
                        "first": "Qinyuan",
                        "middle": [],
                        "last": "Ye",
                        "suffix": ""
                    },
                    {
                        "first": "Leonardo",
                        "middle": [],
                        "last": "Neves",
                        "suffix": ""
                    },
                    {
                        "first": "Zhiyuan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Xiang",
                        "middle": [],
                        "last": "Ren",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ziqi Wang*, Yujia Qin*, Wenxuan Zhou, Jun Yan, Qinyuan Ye, Leonardo Neves, Zhiyuan Liu, and Xi- ang Ren. 2020. Learning from explanations with neural execution tree. In International Conference on Learning Representations.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "YEDDA: A lightweight collaborative text span annotation tool",
                "authors": [
                    {
                        "first": "Jie",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Yue",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Linwei",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Xingxuan",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of ACL 2018, System Demonstrations",
                "volume": "",
                "issue": "",
                "pages": "31--36",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P18-4006"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jie Yang, Yue Zhang, Linwei Li, and Xingxuan Li. 2018a. YEDDA: A lightweight collaborative text span annotation tool. In Proceedings of ACL 2018, System Demonstrations, pages 31-36, Melbourne, Australia. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Distantly supervised NER with partial annotation learning and reinforcement learning",
                "authors": [
                    {
                        "first": "Yaosheng",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Wenliang",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Zhenghua",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Zhengqiu",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Min",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 27th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "2159--2169",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yaosheng Yang, Wenliang Chen, Zhenghua Li, Zhengqiu He, and Min Zhang. 2018b. Distantly su- pervised NER with partial annotation learning and reinforcement learning. In Proceedings of the 27th International Conference on Computational Lin- guistics, pages 2159-2169, Santa Fe, New Mexico, USA. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Looking beyond label noise: Shifted label distribution matters in distantly supervised relation extraction",
                "authors": [
                    {
                        "first": "Qinyuan",
                        "middle": [],
                        "last": "Ye",
                        "suffix": ""
                    },
                    {
                        "first": "Liyuan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Maosen",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Xiang",
                        "middle": [],
                        "last": "Ren",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "3841--3850",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1397"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Qinyuan Ye, Liyuan Liu, Maosen Zhang, and Xiang Ren. 2019. Looking beyond label noise: Shifted la- bel distribution matters in distantly supervised rela- tion extraction. In Proceedings of the 2019 Con- ference on Empirical Methods in Natural Language Processing and the 9th International Joint Confer- ence on Natural Language Processing (EMNLP- IJCNLP), pages 3841-3850, Hong Kong, China. As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Distant supervision for relation extraction via piecewise convolutional neural networks",
                "authors": [
                    {
                        "first": "Daojian",
                        "middle": [],
                        "last": "Zeng",
                        "suffix": ""
                    },
                    {
                        "first": "Kang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Yubo",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Jun",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1753--1762",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D15-1203"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao. 2015. Distant supervision for relation extraction via piecewise convolutional neural networks. In Pro- ceedings of the 2015 Conference on Empirical Meth- ods in Natural Language Processing, pages 1753- 1762, Lisbon, Portugal. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Positionaware attention and supervised data improve slot filling",
                "authors": [
                    {
                        "first": "Yuhao",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Victor",
                        "middle": [],
                        "last": "Zhong",
                        "suffix": ""
                    },
                    {
                        "first": "Danqi",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Gabor",
                        "middle": [],
                        "last": "Angeli",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "35--45",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D17-1004"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor An- geli, and Christopher D. Manning. 2017. Position- aware attention and supervised data improve slot fill- ing. In Proceedings of the 2017 Conference on Em- pirical Methods in Natural Language Processing, pages 35-45, Copenhagen, Denmark. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Nero: A neural rule grounding framework for label-efficient relation extraction. The Web Conference",
                "authors": [
                    {
                        "first": "Wenxuan",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Hongtao",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Ziqi",
                        "middle": [],
                        "last": "Bill Yuchen Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Junyi",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Du",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wenxuan Zhou, Hongtao Lin, Bill Yuchen Lin, Ziqi Wang, Junyi Du, Leonardo Neves, and Xiang Ren. 2020. Nero: A neural rule grounding framework for label-efficient relation extraction. The Web Confer- ence.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "type_str": "figure",
                "text": "the food NER I had a dinner at McDonalds, where the food is cheap because the word price is directly preceded by fair",
                "num": null
            },
            "FIGREF1": {
                "uris": null,
                "type_str": "figure",
                "text": "System Architecture.",
                "num": null
            },
            "FIGREF2": {
                "uris": null,
                "type_str": "figure",
                "text": "The workflow to annotate a NE label and trigger span. (\"Rumble Fish\" as Restaurant).",
                "num": null
            },
            "FIGREF3": {
                "uris": null,
                "type_str": "figure",
                "text": "The word \"citizen\" appearsThe word ''citizen'' appears right The word ''citizen'' appears left The word ''citizen'' appears between The word ''citizen'' appears within The word ''citizen'' appears (numberOf)",
                "num": null
            },
            "FIGREF4": {
                "uris": null,
                "type_str": "figure",
                "text": "Weakly labeling module for exploiting natural language explanation. the keyword is 'happy' module has four parts: String Matching Module, Distant Counting Module, Deterministic Function Module, and the Logical Calculation Module. The first three modules are responsible for evaluating if different clauses in the logical form are applicable for the given unlabeled sentence, while the Logical Calculation Module's job is to aggregate scores between the various clauses. The String Matching Module returns a sequence of scores [s 1 , s 2 , ..., s n ]",
                "num": null
            },
            "FIGREF5": {
                "uris": null,
                "type_str": "figure",
                "text": "Label Efficiency. We choose commonlyused supervised baselines for comparison.",
                "num": null
            }
        }
    }
}