File size: 98,680 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T01:49:54.426905Z"
    },
    "title": "NSTM: Real-Time Query-Driven News Overview Composition at Bloomberg",
    "authors": [
        {
            "first": "Joshua",
            "middle": [],
            "last": "Bambrick",
            "suffix": "",
            "affiliation": {},
            "email": "jbambrick7@bloomberg.net"
        },
        {
            "first": "Minjie",
            "middle": [],
            "last": "Xu",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Andy",
            "middle": [],
            "last": "Almonte",
            "suffix": "",
            "affiliation": {},
            "email": "aalmonte2@bloomberg.net"
        },
        {
            "first": "Igor",
            "middle": [],
            "last": "Malioutov",
            "suffix": "",
            "affiliation": {},
            "email": "imalioutov@bloomberg.net"
        },
        {
            "first": "Guim",
            "middle": [],
            "last": "Perarnau",
            "suffix": "",
            "affiliation": {},
            "email": "gperarnau@bloomberg.net"
        },
        {
            "first": "Vittorio",
            "middle": [],
            "last": "Selo",
            "suffix": "",
            "affiliation": {},
            "email": "vselo@bloomberg.net"
        },
        {
            "first": "Iat",
            "middle": [
                "Chong"
            ],
            "last": "Chan",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "OakNorth",
                "location": {
                    "settlement": "London",
                    "country": "United Kingdom"
                }
            },
            "email": "iat.chan@oaknorth.com"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Millions of news articles from hundreds of thousands of sources around the globe appear in news aggregators every day. Consuming such a volume of news presents an almost insurmountable challenge. For example, a reader searching on Bloomberg's system for news about the U.K. would find 10,000 articles on a typical day. Apple Inc., the world's most journalistically covered company, garners around 1,800 news articles a day. We realized that a new kind of summarization engine was needed, one that would condense large volumes of news into short, easy to absorb points. The system would filter out noise and duplicates to identify and summarize key news about companies, countries or markets. When given a user query, Bloomberg's solution, Key News Themes (or NSTM), leverages state-of-the-art semantic clustering techniques and novel summarization methods to produce comprehensive, yet concise, digests to dramatically simplify the news consumption process. NSTM is available to hundreds of thousands of readers around the world and serves thousands of requests daily with sub-second latency. At ACL 2020, we will present a demo of NSTM. * Order reflects writing contributions; M.X., I.C.C., and J.B. designed and developed a prototype of the system; All implemented the production system; A.A. managed the project. I.C.C. worked on the project while employed by Bloomberg.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Millions of news articles from hundreds of thousands of sources around the globe appear in news aggregators every day. Consuming such a volume of news presents an almost insurmountable challenge. For example, a reader searching on Bloomberg's system for news about the U.K. would find 10,000 articles on a typical day. Apple Inc., the world's most journalistically covered company, garners around 1,800 news articles a day. We realized that a new kind of summarization engine was needed, one that would condense large volumes of news into short, easy to absorb points. The system would filter out noise and duplicates to identify and summarize key news about companies, countries or markets. When given a user query, Bloomberg's solution, Key News Themes (or NSTM), leverages state-of-the-art semantic clustering techniques and novel summarization methods to produce comprehensive, yet concise, digests to dramatically simplify the news consumption process. NSTM is available to hundreds of thousands of readers around the world and serves thousands of requests daily with sub-second latency. At ACL 2020, we will present a demo of NSTM. * Order reflects writing contributions; M.X., I.C.C., and J.B. designed and developed a prototype of the system; All implemented the production system; A.A. managed the project. I.C.C. worked on the project while employed by Bloomberg.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "In many domains, finding contextually-important news as fast as possible is a key goal. With millions of articles published around the globe each day, quickly finding relevant and actionable news can mean the difference between success and failure.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "When provided with a search query, a traditional system returns links to articles sorted by relevance. However, users typically encounter (near) duplicate or overlapping articles, making it hard to quickly identify key events and easy to miss less-reported stories. Moreover, news headlines are frequently sensational, opaque, or verbose, forcing readers to open and read individual articles.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "For illustration, imagine an analyst sees the price of Amazon.com stock drop and wants to know why. With a traditional system, they would search for news on the company and wade through many stories (307 in this case 1 ), often with duplicate information or unhelpful headlines, to slowly build up a full picture of what the key events were.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "By contrast, using NSTM (Key News Themes), this same analyst can search for 'Amazon.com', over a given time horizon, and promptly receive a concise and comprehensive overview of the news, as shown in Fig. 1 . We tackle the challenges involved with consuming vast quantities of news by leveraging modern techniques to semantically cluster stories, as well as innovative summarization methods to extract succinct, informational summaries for each cluster. A handful of key stories are then selected from each cluster. We define a (story cluster, summary, key stories) triple as one theme and an ordered list of themes as an overview.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 200,
                        "end": 206,
                        "text": "Fig. 1",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "NSTM works at web scale but responds to arbitrary user queries with sub-second latency. It is deployed to hundreds of thousands of users around the globe and serves thousands of requests per day.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We focus on the scenario where a news search query can render many matching news articles, from tens up to hundreds of thousands. The task is to create a succinct overview of the results to help our users to easily grasp the gist of them without combing through the individual articles.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Design Goals",
                "sec_num": "2"
            },
            {
                "text": "Since the matching articles often cover various aspects and events, NSTM must first cluster related stories to form a clear separation among them. Furthermore, the system must extract a concise (up to 50 characters, or roughly 6 tokens) summary for each cluster. It needs to be short enough to be understandable to humans with a single glance, but also rich enough to retain critical details from a minimal 'who-does-what' stub, so the most popular noun phrase or entity alone will not suffice. Such conciseness also helps when screen space is limited (for context-driven applications or mobile devices). From each cluster, NSTM must surface a few key stories to provide a sample of its contents. The clusters themselves should also be ranked to highlight the most important few in limited screen space. Finally, the system must be fast. It may only take up to a few seconds for the slowest queries.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Design Goals",
                "sec_num": "2"
            },
            {
                "text": "Main technical challenges: 1) There is no public dataset corresponding to this overview composition problem with all the requirements set above, so we were required to either define new (sub-)tasks and collect new annotations, or select techniques by intuition, implement them, and iterate on feedback; 2) Generating summaries which are simultaneously accurate, informational, fluent, and highly concise necessitates careful and innovative choices of summarization techniques; 3) Supporting arbitrary user searches in real-time places significant performance requirements on the system whilst also setting a high bar for its robustness.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Design Goals",
                "sec_num": "2"
            },
            {
                "text": "A comparable system is Google News' 'Full Coverage' feature 2 , which groups stories from different sources, akin to our clustering approach. However, it doesn't offer summarization and its clustered view is unavailable for arbitrary search queries.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "3"
            },
            {
                "text": "SUMMA (Liepins et al., 2017) is another comparable system which integrates a variety of NLP components and provides support for numerous media and languages, to simultaneously monitor several media broadcasts. SUMMA applies the online clustering algorithm by Aggarwal and Yu (2006) and the extractive summarization algorithm by Almeida and Martins (2013) . In contrast to NSTM, SUMMA focuses on scenarios with continuous multimedia and multilingual data streams and produces much longer summaries.",
                "cite_spans": [
                    {
                        "start": 6,
                        "end": 28,
                        "text": "(Liepins et al., 2017)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 259,
                        "end": 281,
                        "text": "Aggarwal and Yu (2006)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 328,
                        "end": 354,
                        "text": "Almeida and Martins (2013)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "3"
            },
            {
                "text": "The functionality of NSTM can be formulated as: given a search query, generate a ranked list (overview) of the key themes, or (news cluster, summary, key stories) triples, that concisely represent the most important matching news events. Fig. 2 depicts the system's architecture. The story ingestion service processes millions of published news stories each day, stores them in a search index, and applies online clustering to them. When a search query is submitted via a user interface ( 1 in the diagram), the overview composition service retrieves matching stories and their associated online cluster IDs from the search index ( 2 ). The system then further clusters the retrieved online clusters into the final clusters, each corresponding to one theme ( 3 ). For each such cluster, the system extracts a concise summary and a handful of key stories to reflect the cluster's contents ( 4 ). This creates a set of themes, which NSTM ranks to create the final overview. Lastly, the system caches the overview for a limited time to support future reuse ( 5 ) before returning it to the UI ( 6 ).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 238,
                        "end": 244,
                        "text": "Fig. 2",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Architecture",
                "sec_num": "4.1"
            },
            {
                "text": "The first step in the NSTM pipeline is to retrieve relevant news stories ( 1 in Fig. 2 ), for which we leverage a customized in-house news search engine based on Apache Solr. 3 and time of ingestion), and tags generated during ingestion (such as topics, regions, securities, and people). For example, TOPIC:ECOM AND NOT COMPANY:AMZN 4 will retrieve all news about 'Ecommerce' but exclude Amazon.com. NSTM uses Solr's facet functionality to surface the largest k online clusters (detailed in Sec. 4.3.2) in the search results, before returning n stories from each. This tiered approach offers better coverage and scalability than direct story retrieval.",
                "cite_spans": [
                    {
                        "start": 175,
                        "end": 176,
                        "text": "3",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 80,
                        "end": 86,
                        "text": "Fig. 2",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "News Search",
                "sec_num": "4.2"
            },
            {
                "text": "At the core of any clustering system is a similarity metric. In NSTM, we define the similarity between two articles as the cosine similarity between their embeddings as computed by NVDM (Miao et al., 2016) , i.e., \u03c4",
                "cite_spans": [
                    {
                        "start": 186,
                        "end": 205,
                        "text": "(Miao et al., 2016)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "News Embedding and Similarity",
                "sec_num": "4.3.1"
            },
            {
                "text": "(d 1 , d 2 ) = 0.5(cos(z 1 , z 2 ) + 1),",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "News Embedding and Similarity",
                "sec_num": "4.3.1"
            },
            {
                "text": "where z \u2208 R n denotes the NVDM embedding.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "News Embedding and Similarity",
                "sec_num": "4.3.1"
            },
            {
                "text": "Our choice is motivated by two observations: 1) The generative model of NVDM is based on bagof-words (BoW) and P (w|z) = \u03c3(W z) where \u03c3 is the softmax function, W \u2208 R n\u00d7V is the word embedding matrix in the decoder and V is the size of the vocabulary. This resembles the latent topic structure popularized by LDA (Blei et al., 2003) which has proven effective in capturing textual semantics. Additionally, the use of cosine similarities is naturally motivated by the fact that the generative model is directly defined by the dot-product between the story embedding (z) and a shared vocabulary embedding (W ). 2) NVDM's Variational Autoencoder (VAE) (Kingma and Welling, 2014; Rezende et al., 2014) framework makes the inference procedure much simpler than LDA and it also supports decoder customizations. For example, it allows us to easily integrate the idea of introducing a learnable common background word distribution into the generative model (Arora et al., 2017) . We trained the model on an internal corpus of 1.85M news articles, using a vocabulary of size about 200k and a latent dimension n of 128.",
                "cite_spans": [
                    {
                        "start": 313,
                        "end": 332,
                        "text": "(Blei et al., 2003)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 949,
                        "end": 969,
                        "text": "(Arora et al., 2017)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "News Embedding and Similarity",
                "sec_num": "4.3.1"
            },
            {
                "text": "We divide clustering into two stages in the pipeline, 1) online incremental clustering at story ingestion time, and 2) hierarchical agglomerative clustering (HAC) at query time ( 3 in Fig. 2 ). The former is used to produce query-agnostic online clusters at a relatively low cost to handle the daily influx of millions of news stories. These clusters reduce the computational cost at query time. However, due to its online nature, over-fragmentation, among other quality issues, occurs in the resulting clusters. This necessitates further refinement at query time when an offline HAC step is performed on top of the retrieved online clusters. A similar, but more complicated, design was adopted in Vadrevu et al. (2011) for clustering real-time news search results.",
                "cite_spans": [
                    {
                        "start": 698,
                        "end": 719,
                        "text": "Vadrevu et al. (2011)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 184,
                        "end": 190,
                        "text": "Fig. 2",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Clustering Stages",
                "sec_num": "4.3.2"
            },
            {
                "text": "At both stages, we compute the cluster embedding z c \u2208 R n as the mean of all the story embeddings therein, and evaluate similarities between clusters (individual stories are taken as singleton clusters) using the metric \u03c4 defined in Sec. 4.3.1.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Clustering Stages",
                "sec_num": "4.3.2"
            },
            {
                "text": "For online clustering, we apply an in-house implementation which uses a distributed pool of workers to reduce latency and increase throughput. It merges each incoming story with the closest cluster if the similarity is within a parameterized threshold and otherwise creates a new singleton cluster.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Clustering Stages",
                "sec_num": "4.3.2"
            },
            {
                "text": "For HAC, we apply fastcluster 5 (M\u00fcllner, 2013) to construct the dendrogram. We use complete linkage to encourage more congruent clusters and then form flat clusters by cutting the dendrogram at the same (height) threshold. To further reduce fragmentation where similar clusters are left un-clustered, we apply HAC twice recursively.",
                "cite_spans": [
                    {
                        "start": 32,
                        "end": 47,
                        "text": "(M\u00fcllner, 2013)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Clustering Stages",
                "sec_num": "4.3.2"
            },
            {
                "text": "To find a reasonable similarity threshold, we manually annotated just over 1k pairs of news articles. Each annotator indicated whether they would expect to see the articles grouped together or not in an overview. We then selected the threshold which achieved the highest F 1 score on this binary classification task, which was 0.86.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Clustering Stages",
                "sec_num": "4.3.2"
            },
            {
                "text": "Clustering search results (Vadrevu et al., 2011 ) is a meaningful step towards creating a useful overview. With NSTM, we push this one step further by additionally generating a concise, yet still humanreadable, summary for each cluster ( 4 in Fig. 2) .",
                "cite_spans": [
                    {
                        "start": 26,
                        "end": 47,
                        "text": "(Vadrevu et al., 2011",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 243,
                        "end": 250,
                        "text": "Fig. 2)",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Summary Extraction",
                "sec_num": "4.4"
            },
            {
                "text": "Due to the unique style of the summary explained in Sec. 2, the scarcity of training data makes it hard to train an end-to-end seq2seq (Sutskever et al., 2014) model, as is typical for abstractive summarization. Also, this technique would only offer limited control over the output. Hence, we opt for an extractive method, leveraging OpenIE (Banko et al., 2007) and a BERT-based (Devlin et al., 2019) sentence compressor (both illustrated in Fig. 3) to surface a pool of sub-sentence-level candidate summaries from the headline and the body, which are then scored by a ranker.",
                "cite_spans": [
                    {
                        "start": 135,
                        "end": 159,
                        "text": "(Sutskever et al., 2014)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 341,
                        "end": 361,
                        "text": "(Banko et al., 2007)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 379,
                        "end": 400,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 442,
                        "end": 449,
                        "text": "Fig. 3)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Summary Extraction",
                "sec_num": "4.4"
            },
            {
                "text": "Open Domain Information Extraction (OpenIE) presents an unsupervised approach to extract summary candidates from an input sentence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OpenIE-based Tuple Extraction",
                "sec_num": "4.4.1"
            },
            {
                "text": "First, we construct a dependency parse tree of the sentence, using a model based on Kiperwasser and Goldberg (2016) ( 1 in Fig. 3) .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 123,
                        "end": 130,
                        "text": "Fig. 3)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "OpenIE-based Tuple Extraction",
                "sec_num": "4.4.1"
            },
            {
                "text": "From this tree, we extract predicate-argument ntuples using an adapted reimplementation of Pred-Patt (White et al., 2016) ( 2 ). The tuples represent nested proto-semantic parses of the sentence, and typically correspond to well-formed phrases. This method applies rules cast over Universal Dependencies (Nivre et al., 2016) so syntactic patterns are unlexicalized and language-neutral.",
                "cite_spans": [
                    {
                        "start": 304,
                        "end": 324,
                        "text": "(Nivre et al., 2016)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OpenIE-based Tuple Extraction",
                "sec_num": "4.4.1"
            },
            {
                "text": "We then prune these tuples ( 3 ), applying rules which reduce the arguments to their syntactic heads, while heuristics keep named entities and multiword expressions intact. We recursively intersect the resulting tuples to create more tuples.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OpenIE-based Tuple Extraction",
                "sec_num": "4.4.1"
            },
            {
                "text": "Finally, to render summary candidates, we create a titlecased surface form of each tuple ( 4 ).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OpenIE-based Tuple Extraction",
                "sec_num": "4.4.1"
            },
            {
                "text": "In addition to the rule-based OpenIE system, we apply a Transfer Learning-based solution, using a novel in-house dataset specific to our sub-task. In particular, we model candidate summary extraction as a 'sentence compression' task (Filippova et al., 2015) , where each story is split into sentences and tokens are classified as keep or delete to make each sentence shorter, while retaining the key message.",
                "cite_spans": [
                    {
                        "start": 233,
                        "end": 257,
                        "text": "(Filippova et al., 2015)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "BERT-based Sentence Compression",
                "sec_num": "4.4.2"
            },
            {
                "text": "We oversaw the manual annotation of a dataset which maps sentences to compressed equivalents that correspond to summaries. When presented with a news story, annotators selected one sentence and deleted words to create a high quality summary. This rendered 10k annotations which we randomly partitioned into train (80%) and test (20%) sets.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "BERT-based Sentence Compression",
                "sec_num": "4.4.2"
            },
            {
                "text": "The task is formulated as sequence tagging, whereby each sub-token ( 1 in Fig. 3) , defined using the BERT vocabulary, is classified as keep or delete ( 2 ). We implement this using a feedforward layer on top of a Bloomberg-internal pre-trained neural network, akin to the uncased English BERT-Base model, applying an adapted implementation.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 74,
                        "end": 81,
                        "text": "Fig. 3)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "BERT-based Sentence Compression",
                "sec_num": "4.4.2"
            },
            {
                "text": "To create a compression, we stitch sub-tokens labelled keep together ( 3 ). Lastly, we use postprocessing rules to improve formatting ( 4 ), such as titlecasing and fixing partial-entity deletion (where only some sub-tokens of a token/entity are deleted).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "BERT-based Sentence Compression",
                "sec_num": "4.4.2"
            },
            {
                "text": "Tuple generation and sentence compression provide a pool of summary candidates for individual news stories. These are further aggregated across stories within a cluster to form the final pool. To identify the best summary for the cluster, we trained a sequence-pair model s \u03b8 (a, c) to score each candidate c given an article a. Such articlelevel scores for a candidate are computed against all the stories in a cluster and then aggregated (e.g., averaged) to produce the final cluster-level scores, which we use for ranking.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Summary Candidate Ranking",
                "sec_num": "4.4.3"
            },
            {
                "text": "For this purpose, we collected an in-house annotated dataset. We sampled a few thousand news articles and generated 33k summary candidates from them using OpenIE, 6 . Then we asked internal annotators to label each as Great, Acceptable or Terrible were it to be used as a summary for the article, considering both readability and informativeness.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Summary Candidate Ranking",
                "sec_num": "4.4.3"
            },
            {
                "text": "From this dataset, we constructed about ['automaker', 'ST', 'is', 'investing', '$', '2', '##B', \u2026] ST [ 0.3, 0.8, 0.2, 0.8, 0.4, 0.6, 0.8, \u2026] Figure 3: Illustrations of the symbolic OpenIE (left) and neural sentence compression (right) candidate extraction pipelines. We apply both, to render a diverse pool of candidate summaries, and use a ranker to select the best.",
                "cite_spans": [
                    {
                        "start": 40,
                        "end": 53,
                        "text": "['automaker',",
                        "ref_id": null
                    },
                    {
                        "start": 54,
                        "end": 59,
                        "text": "'ST',",
                        "ref_id": null
                    },
                    {
                        "start": 60,
                        "end": 65,
                        "text": "'is',",
                        "ref_id": null
                    },
                    {
                        "start": 66,
                        "end": 78,
                        "text": "'investing',",
                        "ref_id": null
                    },
                    {
                        "start": 79,
                        "end": 83,
                        "text": "'$',",
                        "ref_id": null
                    },
                    {
                        "start": 84,
                        "end": 88,
                        "text": "'2',",
                        "ref_id": null
                    },
                    {
                        "start": 89,
                        "end": 95,
                        "text": "'##B',",
                        "ref_id": null
                    },
                    {
                        "start": 96,
                        "end": 98,
                        "text": "\u2026]",
                        "ref_id": null
                    },
                    {
                        "start": 102,
                        "end": 141,
                        "text": "[ 0.3, 0.8, 0.2, 0.8, 0.4, 0.6, 0.8, \u2026]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Summary Candidate Ranking",
                "sec_num": "4.4.3"
            },
            {
                "text": "favorably than c for a given common article a, and the model s \u03b8 (a, c) was then trained to match such preferences using pairwise margin loss, i.e., max(0, 1 \u2212 s \u03b8 (a, c) + s \u03b8 (a, c )).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Summary Candidate Ranking",
                "sec_num": "4.4.3"
            },
            {
                "text": "We considered a few models, including a parameter-free baseline which scores candidatearticle pairs as the dot-product of their NVDM (Sec. 4.3.1) embeddings, i.e., s = z a z c . We also considered this model's bilinear extension s = z a W z c where W is the learnable weight matrix. Lastly, we tried neural network models, such as DecAtt (Parikh et al., 2016) . We evaluated these models on a held-out test set with metrics such as pairwise ranking accuracy and NDCG. We opted to productionize the baseline model, since it was the simplest and performed on par with the others. 7 Because NVDM uses a bag-of-words model, this ranker ignores syntax entirely. We believe that its empirical success owes to both the well-formedness of the majority of the candidates and the averaging effect that amplifies the 'signal-noise ratio' when the scores are averaged over the cluster.",
                "cite_spans": [
                    {
                        "start": 338,
                        "end": 359,
                        "text": "(Parikh et al., 2016)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 578,
                        "end": 579,
                        "text": "7",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Summary Candidate Ranking",
                "sec_num": "4.4.3"
            },
            {
                "text": "Empirically, this approach tends to surface 'informational' summaries, in contrast to headlines which are often 'sensational'. We posit that this is because high-ranked summaries must also be representative of story bodies, not just headlines.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Summary Candidate Ranking",
                "sec_num": "4.4.3"
            },
            {
                "text": "OpenIE and sentence compression offer distinct ways to extract candidates, and we experimented with each as the sole source of summary candidates in our pipeline. On the basis of ROUGE scores (Lin and Hovy, 2003; Lin, 2004 ) (details in Appendix B), the latter provides superior results.",
                "cite_spans": [
                    {
                        "start": 192,
                        "end": 212,
                        "text": "(Lin and Hovy, 2003;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 213,
                        "end": 222,
                        "text": "Lin, 2004",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Combining Summary Candidates",
                "sec_num": "4.4.4"
            },
            {
                "text": "However, in a production system which informs business decisions, we must consider factors which aren't readily captured by metrics which compare generated and 'gold' outputs. For example, changing a single word can reverse the meaning of a summary, with only a small change in such scores. Hence, we consider a range of pros and cons.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Combining Summary Candidates",
                "sec_num": "4.4.4"
            },
            {
                "text": "The sentence compression method is supervised and is trained to produce summaries which can take advantage of news-specific grammatical styles. However, the OpenIE system is much faster and offers greater interpretability and controllability.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Combining Summary Candidates",
                "sec_num": "4.4.4"
            },
            {
                "text": "Since the neural and symbolic systems provide different advantages, we apply both. This renders a diverse pool of candidate summaries from which the ranker's task is to select the best. At the pooling stage we also impose a length constraint of 50 characters and exclude any longer candidates.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Combining Summary Candidates",
                "sec_num": "4.4.4"
            },
            {
                "text": "As a sample from the full story cluster, NSTM selects an ordered list of key stories which are deemed to be representative. We select these using a heuristic based on intuition and client feedback.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Key Story Selection",
                "sec_num": "4.5"
            },
            {
                "text": "Our approach is to re-cluster all stories in the cluster using HAC (see Sec. 4.3.2), to create a parameterized number of sub-clusters. For each sub-cluster, we select the story that has maximum average similarity \u03c4 (as per Sec. 4.3.1) to the other sub-cluster stories. This strategy is intended to select stories which represent each cluster's diversity.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Key Story Selection",
                "sec_num": "4.5"
            },
            {
                "text": "We sort the key stories by sub-cluster size and time of ingestion, in that order of precedence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Key Story Selection",
                "sec_num": "4.5"
            },
            {
                "text": "We have described how (story cluster, summary, key stories) triples, or themes, are created. However, some themes are considered to be more important than others since they are more useful to readers. It is tricky to define this concept concretely but we apply proxy metrics in order to estimate an importance score for each theme. We rank themes by this score and, in order to save screen space, return only the top few ('key') themes as an overview.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Theme Ranking",
                "sec_num": "4.6"
            },
            {
                "text": "The main factor considered in the importance score is the size of the story cluster -the larger the cluster, the larger the score. This heuristic corresponds to the observation that more important themes tend to be reported on more frequently. Additionally, we consider the entropy of the news sources in the cluster, which corresponds to the observation that more important themes are reported on by a larger number of publishers and reduces the impact of a source publishing duplicate stories.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Theme Ranking",
                "sec_num": "4.6"
            },
            {
                "text": "Since many user requests are the same or use similar data, caching is useful to minimize response times. When NSTM receives a request, it checks whether there is a corresponding overview in the cache, and immediately returns it if so. 99.6% of requests hit the cache and 99% of requests are handled within 215ms. 8 In the event of a cache miss, NSTM responds in a median time of 723ms. 9 We apply two mechanisms to ensure cache freshness. Firstly, we preemptively invoke NSTM using requests that are likely to be queried by users (e.g., most read topics) and re-compose them from scratch at fixed intervals (e.g., every 30 min). Once computed, they are cached. The second mechanism is user-driven: every time a user requests an overview which is not cached, it will be created and added to the cache. The system will subsequently preemptively invoke NSTM using this request for a fixed period of time (e.g., 24 hours).",
                "cite_spans": [
                    {
                        "start": 386,
                        "end": 387,
                        "text": "9",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Caching",
                "sec_num": "4.7"
            },
            {
                "text": "NSTM was deployed to our clients in 2019. Using the UI depicted in Fig. 1 , users can find overviews for customized queries to help support their work. From this screen, the user can enter a search query using any combination of Boolean logic with tagor keyword-based terms. They may also alter the period that the overview is calculated over (this UI offers 1 hour, 8 hour, 1 day, and 2 day options). This interface also allows users to provide feedback via the 'thumb' icons or plain-text comments. Of several hundred per-overview feedback submissions, over three quarters have been positive. Tables 1 and 2 show example theme summaries generated for the queries 'Facebook' and 'U.K.'. Note that the summaries are quite different from what has previously been studied by the NLP community (in terms of brevity and grammatical style) and that they accurately represent distinct events.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 67,
                        "end": 73,
                        "text": "Fig. 1",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 595,
                        "end": 609,
                        "text": "Tables 1 and 2",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Demonstration",
                "sec_num": "5"
            },
            {
                "text": "In addition to user-driven settings, NSTM can be used to supplement context-driven applications. One example, demonstrated in Appendix D, uses themes provided by NSTM to help explain why companies or topics are 'trending'.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Demonstration",
                "sec_num": "5"
            },
            {
                "text": "We presented NSTM, a novel and production-ready system that composes concise and human-readable news overviews given arbitrary user search queries.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "NSTM is the first of its kind; it is query-driven, it offers unique news overviews which leverage clustering and succinct summarization, and it has been released to hundreds of thousands of users.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "We also demonstrated effective adoption of modern NLP techniques and advances in the design and implementation of the system, which we believe will be of interest to the community.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "There are many open questions which we intend to research, such as whether autoregressivity in neural sentence compression can be exploited and how to compose themes over longer time periods.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "C Screenshots of A Query-Driven User Interface Figure 4 : Screenshot (taken on 29 January 2020) of a query-driven interface for NSTM showing the overview for the company 'Amazon.com'. D Screenshots of A Context-Driven User Interface Figure 8 : Screenshot (taken on 29 January 2020) of a context-driven application of NSTM. In the 'Security' column are the companies that have seen the largest increase in news readership over the last day. Each entry in the 'News Summary' column is the summary of the top theme provided by NSTM for the adjacent company. Figure 9 : Screenshot (taken on 29 January 2020) of a context-driven application of NSTM. In the 'News Topic' column are the topics that have seen the largest volume of news readership over the past 8 hours. Each entry in the 'News Summary' column is the summary of the top theme provided by NSTM for the adjacent topic.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 47,
                        "end": 55,
                        "text": "Figure 4",
                        "ref_id": null
                    },
                    {
                        "start": 233,
                        "end": 241,
                        "text": "Figure 8",
                        "ref_id": null
                    },
                    {
                        "start": 555,
                        "end": 563,
                        "text": "Figure 9",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "The corresponding overview can be found in Appendix C.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://www.blog.google/products/news/new-googlenews-ai-meets-human-intelligence/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://lucene.apache.org/solr/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "This is Bloomberg's internal news search query syntax, which maps closely to the final query submitted to Solr.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://www.jstatsoft.org/article/view/v053i09",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "At this time, we hadn't considered sentence compression.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "E.g., with NDCG5, the (untrained) NVDM dot-product yields 0.61, while the bilinear model and DecAtt yield 0.64.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Computed for all requests over a 90-day period. 9 Computed for the top 50 searches over a 7-day period.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://github.com/google/seq2seq/blob/master/seq2seq/metrics/rouge.py",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This has been a multi-year project, involving contributions from many people at different stages.In particular, we thank Miles Osborne, Marco Ponza, Amanda Stent, Mohamed Yahya, Christoph Teichmann, Prabhanjan Kambadur, Umut Topkara, Ted Merz, Sam Brody, and Adrian Benton for reviewing and commenting on the manuscript; We further thank Adela Quinones, Shaun Waters, Mark Dimont, Ted Merz and other colleagues from the News Product group for helping to shape the vision of the system; We also thank Jos\u00e9 Abarca and his team for developing the user interface; We thank Hady Elsahar for helping to improve summary ranking during his internship; Finally, we thank all colleagues (especially those in the Global Data department) who helped to produce high quality in-house annotations and all others who contributed valuable thoughts and time into this work.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A Acknowledgements",
                "sec_num": null
            },
            {
                "text": "We evaluate the end-to-end NSTM system when using the OpenIE (Sec. 4.4.1) and the BERT-based sentence compression (Sec. 4.4.2) algorithms as the sole source of candidate summaries. We also conducted one experiment where both were used to create a shared pool of candidates (as per Sec. 4.4.4).We test the system end-to-end using the manually-annotated Single Document Summarization (SDS) test set described in Sec. 4.4.2. To implement SDS, our experimental setup assumes that only one story was returned by a search request (as per Sec. 4.2). We evaluate the output from each system with ROUGE (Lin and Hovy, 2003; Lin, 2004) 10 . The results are presented in Table 3 .",
                "cite_spans": [
                    {
                        "start": 594,
                        "end": 614,
                        "text": "(Lin and Hovy, 2003;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 615,
                        "end": 625,
                        "text": "Lin, 2004)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 660,
                        "end": 667,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "B End-To-End Evaluation",
                "sec_num": null
            },
            {
                "text": "OpenIE BSC Both ROUGE-1 F 1 0.831 0.863 0.851 ROUGE-2 F 1 0.609 0.701 0.667 ROUGE-3 F 1 0.530 0.640 0.599 ROUGE-4 F 1 0.492 0.603 0.562 ROUGE-L F 1 0.621 0.706 0.670 Table 3 : ROUGE scores for the Single-Document Summarization task in the end-to-end system, when using OpenIE, BERT-based sentence compression (BSC) and both to construct the pool of candidate summaries.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 166,
                        "end": 173,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Metric",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "A framework for clustering massive text and categorical data streams",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Charu",
                        "suffix": ""
                    },
                    {
                        "first": "Philip S",
                        "middle": [],
                        "last": "Aggarwal",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of the 2006 SIAM International Conference on Data Mining",
                "volume": "",
                "issue": "",
                "pages": "479--483",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Charu C Aggarwal and Philip S Yu. 2006. A frame- work for clustering massive text and categorical data streams. In Proceedings of the 2006 SIAM Interna- tional Conference on Data Mining, pages 479-483. SIAM.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Fast and robust compressive summarization with dual decomposition and multi-task learning",
                "authors": [
                    {
                        "first": "Miguel",
                        "middle": [],
                        "last": "Almeida",
                        "suffix": ""
                    },
                    {
                        "first": "Andr\u00e9",
                        "middle": [],
                        "last": "Martins",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "196--206",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Miguel Almeida and Andr\u00e9 Martins. 2013. Fast and ro- bust compressive summarization with dual decom- position and multi-task learning. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa- pers), pages 196-206, Sofia, Bulgaria. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "A simple but tough-to-beat baseline for sentence embeddings",
                "authors": [
                    {
                        "first": "Sanjeev",
                        "middle": [],
                        "last": "Arora",
                        "suffix": ""
                    },
                    {
                        "first": "Yingyu",
                        "middle": [],
                        "last": "Liang",
                        "suffix": ""
                    },
                    {
                        "first": "Tengyu",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 5th International Conference on Learning Representations, ICLR'17. OpenReview.net",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017. A simple but tough-to-beat baseline for sentence em- beddings. In Proceedings of the 5th International Conference on Learning Representations, ICLR'17. OpenReview.net.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Open information extraction from the web",
                "authors": [
                    {
                        "first": "Michele",
                        "middle": [],
                        "last": "Banko",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [
                            "J"
                        ],
                        "last": "Cafarella",
                        "suffix": ""
                    },
                    {
                        "first": "Stephen",
                        "middle": [],
                        "last": "Soderland",
                        "suffix": ""
                    },
                    {
                        "first": "Matt",
                        "middle": [],
                        "last": "Broadhead",
                        "suffix": ""
                    },
                    {
                        "first": "Oren",
                        "middle": [],
                        "last": "Etzioni",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the 20th International Joint Conference on Artifical Intelligence, IJCAI'07",
                "volume": "",
                "issue": "",
                "pages": "2670--2676",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Michele Banko, Michael J. Cafarella, Stephen Soder- land, Matt Broadhead, and Oren Etzioni. 2007. Open information extraction from the web. In Pro- ceedings of the 20th International Joint Conference on Artifical Intelligence, IJCAI'07, page 2670-2676, San Francisco, CA, USA. Morgan Kaufmann Pub- lishers Inc.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Latent dirichlet allocation",
                "authors": [
                    {
                        "first": "David",
                        "middle": [
                            "M"
                        ],
                        "last": "Blei",
                        "suffix": ""
                    },
                    {
                        "first": "Andrew",
                        "middle": [
                            "Y"
                        ],
                        "last": "Ng",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [
                            "I"
                        ],
                        "last": "Jordan",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "J. Mach. Learn. Res",
                "volume": "3",
                "issue": "",
                "pages": "993--1022",
                "other_ids": {
                    "DOI": [
                        "10.1162/jmlr.2003.3.4-5.993"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent dirichlet allocation. J. Mach. Learn. Res., 3:993-1022.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "4171--4186",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1423"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Sentence compression by deletion with LSTMs",
                "authors": [
                    {
                        "first": "Katja",
                        "middle": [],
                        "last": "Filippova",
                        "suffix": ""
                    },
                    {
                        "first": "Enrique",
                        "middle": [],
                        "last": "Alfonseca",
                        "suffix": ""
                    },
                    {
                        "first": "Carlos",
                        "middle": [
                            "A"
                        ],
                        "last": "Colmenares",
                        "suffix": ""
                    },
                    {
                        "first": "Lukasz",
                        "middle": [],
                        "last": "Kaiser",
                        "suffix": ""
                    },
                    {
                        "first": "Oriol",
                        "middle": [],
                        "last": "Vinyals",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "360--368",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D15-1042"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Katja Filippova, Enrique Alfonseca, Carlos A. Col- menares, Lukasz Kaiser, and Oriol Vinyals. 2015. Sentence compression by deletion with LSTMs. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 360-368, Lisbon, Portugal. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Autoencoding variational bayes",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Diederik",
                        "suffix": ""
                    },
                    {
                        "first": "Max",
                        "middle": [],
                        "last": "Kingma",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Welling",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "2nd International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Diederik P. Kingma and Max Welling. 2014. Auto- encoding variational bayes. In 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Con- ference Track Proceedings.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Simple and accurate dependency parsing using bidirectional LSTM feature representations",
                "authors": [
                    {
                        "first": "Eliyahu",
                        "middle": [],
                        "last": "Kiperwasser",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Transactions of the Association for Computational Linguistics",
                "volume": "4",
                "issue": "",
                "pages": "313--327",
                "other_ids": {
                    "DOI": [
                        "10.1162/tacl_a_00101"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim- ple and accurate dependency parsing using bidirec- tional LSTM feature representations. Transactions of the Association for Computational Linguistics, 4:313-327.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "The SUMMA platform prototype",
                "authors": [
                    {
                        "first": "Renars",
                        "middle": [],
                        "last": "Liepins",
                        "suffix": ""
                    },
                    {
                        "first": "Ulrich",
                        "middle": [],
                        "last": "Germann",
                        "suffix": ""
                    },
                    {
                        "first": "Guntis",
                        "middle": [],
                        "last": "Barzdins",
                        "suffix": ""
                    },
                    {
                        "first": "Alexandra",
                        "middle": [],
                        "last": "Birch",
                        "suffix": ""
                    },
                    {
                        "first": "Steve",
                        "middle": [],
                        "last": "Renals",
                        "suffix": ""
                    },
                    {
                        "first": "Susanne",
                        "middle": [],
                        "last": "Weber",
                        "suffix": ""
                    },
                    {
                        "first": "Peggy",
                        "middle": [],
                        "last": "Van Der Kreeft",
                        "suffix": ""
                    },
                    {
                        "first": "Herv\u00e9",
                        "middle": [],
                        "last": "Bourlard",
                        "suffix": ""
                    },
                    {
                        "first": "Jo\u00e3o",
                        "middle": [],
                        "last": "Prieto",
                        "suffix": ""
                    },
                    {
                        "first": "Ond\u0159ej",
                        "middle": [],
                        "last": "Klejch",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Bell",
                        "suffix": ""
                    },
                    {
                        "first": "Alexandros",
                        "middle": [],
                        "last": "Lazaridis",
                        "suffix": ""
                    },
                    {
                        "first": "Alfonso",
                        "middle": [],
                        "last": "Mendes",
                        "suffix": ""
                    },
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "Riedel",
                        "suffix": ""
                    },
                    {
                        "first": "Mariana",
                        "middle": [
                            "S C"
                        ],
                        "last": "Almeida",
                        "suffix": ""
                    },
                    {
                        "first": "Pedro",
                        "middle": [],
                        "last": "Balage",
                        "suffix": ""
                    },
                    {
                        "first": "Shay",
                        "middle": [
                            "B"
                        ],
                        "last": "Cohen",
                        "suffix": ""
                    },
                    {
                        "first": "Tomasz",
                        "middle": [],
                        "last": "Dwojak",
                        "suffix": ""
                    },
                    {
                        "first": "Philip",
                        "middle": [
                            "N"
                        ],
                        "last": "Garner",
                        "suffix": ""
                    },
                    {
                        "first": "Andreas",
                        "middle": [],
                        "last": "Giefer",
                        "suffix": ""
                    },
                    {
                        "first": "Marcin",
                        "middle": [],
                        "last": "Junczys-Dowmunt",
                        "suffix": ""
                    },
                    {
                        "first": "Hina",
                        "middle": [],
                        "last": "Imran",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Nogueira",
                        "suffix": ""
                    },
                    {
                        "first": "Ahmed",
                        "middle": [],
                        "last": "Ali",
                        "suffix": ""
                    },
                    {
                        "first": "Sebasti\u00e3o",
                        "middle": [],
                        "last": "Miranda",
                        "suffix": ""
                    },
                    {
                        "first": "Andrei",
                        "middle": [],
                        "last": "Popescu-Belis",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the Software Demonstrations of the 15th Conference of the European Chapter of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "116--119",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Renars Liepins, Ulrich Germann, Guntis Barzdins, Alexandra Birch, Steve Renals, Susanne Weber, Peggy van der Kreeft, Herv\u00e9 Bourlard, Jo\u00e3o Pri- eto, Ond\u0159ej Klejch, Peter Bell, Alexandros Lazaridis, Alfonso Mendes, Sebastian Riedel, Mariana S. C. Almeida, Pedro Balage, Shay B. Cohen, Tomasz Dwojak, Philip N. Garner, Andreas Giefer, Marcin Junczys-Dowmunt, Hina Imran, David Nogueira, Ahmed Ali, Sebasti\u00e3o Miranda, Andrei Popescu- Belis, Lesly Miculicich Werlen, Nikos Papasaran- topoulos, Abiola Obamuyide, Clive Jones, Fahim Dalvi, Andreas Vlachos, Yang Wang, Sibo Tong, Rico Sennrich, Nikolaos Pappas, Shashi Narayan, Marco Damonte, Nadir Durrani, Sameer Khurana, Ahmed Abdelali, Hassan Sajjad, Stephan Vogel, David Sheppey, Chris Hernon, and Jeff Mitchell. 2017. The SUMMA platform prototype. In Pro- ceedings of the Software Demonstrations of the 15th Conference of the European Chapter of the Associa- tion for Computational Linguistics, pages 116-119, Valencia, Spain. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "ROUGE: A package for automatic evaluation of summaries",
                "authors": [
                    {
                        "first": "Chin-Yew",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Text Summarization Branches Out",
                "volume": "",
                "issue": "",
                "pages": "74--81",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chin-Yew Lin. 2004. ROUGE: A package for auto- matic evaluation of summaries. In Text Summariza- tion Branches Out, pages 74-81, Barcelona, Spain. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Automatic evaluation of summaries using n-gram cooccurrence statistics",
                "authors": [
                    {
                        "first": "Chin-Yew",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Eduard",
                        "middle": [],
                        "last": "Hovy",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the 2003 Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "150--157",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chin-Yew Lin and Eduard Hovy. 2003. Auto- matic evaluation of summaries using n-gram co- occurrence statistics. In Proceedings of the 2003 Hu- man Language Technology Conference of the North American Chapter of the Association for Computa- tional Linguistics, pages 150-157.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Neural variational inference for text processing",
                "authors": [
                    {
                        "first": "Yishu",
                        "middle": [],
                        "last": "Miao",
                        "suffix": ""
                    },
                    {
                        "first": "Lei",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "Phil",
                        "middle": [],
                        "last": "Blunsom",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 33rd International Conference on International Conference on Machine Learning",
                "volume": "48",
                "issue": "",
                "pages": "1727--1736",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yishu Miao, Lei Yu, and Phil Blunsom. 2016. Neural variational inference for text processing. In Proceed- ings of the 33rd International Conference on Inter- national Conference on Machine Learning -Volume 48, ICML'16, pages 1727-1736. JMLR.org.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "fastcluster: Fast hierarchical, agglomerative clustering routines for R and Python",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "M\u00fcllner",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Journal of Statistical Software",
                "volume": "53",
                "issue": "9",
                "pages": "1--18",
                "other_ids": {
                    "DOI": [
                        "10.18637/jss.v053.i09"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Daniel M\u00fcllner. 2013. fastcluster: Fast hierarchical, agglomerative clustering routines for R and Python. Journal of Statistical Software, Articles, 53(9):1-18.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Universal dependencies v1: A multilingual treebank collection",
                "authors": [
                    {
                        "first": "Joakim",
                        "middle": [],
                        "last": "Nivre",
                        "suffix": ""
                    },
                    {
                        "first": "Marie-Catherine",
                        "middle": [],
                        "last": "De Marneffe",
                        "suffix": ""
                    },
                    {
                        "first": "Filip",
                        "middle": [],
                        "last": "Ginter",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    },
                    {
                        "first": "Jan",
                        "middle": [],
                        "last": "Hajic",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Christopher",
                        "suffix": ""
                    },
                    {
                        "first": "Ryan",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    },
                    {
                        "first": "Slav",
                        "middle": [],
                        "last": "Mcdonald",
                        "suffix": ""
                    },
                    {
                        "first": "Sampo",
                        "middle": [],
                        "last": "Petrov",
                        "suffix": ""
                    },
                    {
                        "first": "Natalia",
                        "middle": [],
                        "last": "Pyysalo",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Silveira",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)",
                "volume": "",
                "issue": "",
                "pages": "1659--1666",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joakim Nivre, Marie-Catherine De Marneffe, Filip Gin- ter, Yoav Goldberg, Jan Hajic, Christopher D Man- ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira, et al. 2016. Universal dependencies v1: A multilingual treebank collection. In Proceed- ings of the Tenth International Conference on Lan- guage Resources and Evaluation (LREC'16), pages 1659-1666.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "A decomposable attention model for natural language inference",
                "authors": [
                    {
                        "first": "Ankur",
                        "middle": [],
                        "last": "Parikh",
                        "suffix": ""
                    },
                    {
                        "first": "Oscar",
                        "middle": [],
                        "last": "T\u00e4ckstr\u00f6m",
                        "suffix": ""
                    },
                    {
                        "first": "Dipanjan",
                        "middle": [],
                        "last": "Das",
                        "suffix": ""
                    },
                    {
                        "first": "Jakob",
                        "middle": [],
                        "last": "Uszkoreit",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "2249--2255",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D16-1244"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ankur Parikh, Oscar T\u00e4ckstr\u00f6m, Dipanjan Das, and Jakob Uszkoreit. 2016. A decomposable attention model for natural language inference. In Proceed- ings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2249-2255, Austin, Texas. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Stochastic backpropagation and approximate inference in deep generative models",
                "authors": [
                    {
                        "first": "Danilo",
                        "middle": [],
                        "last": "Jimenez Rezende",
                        "suffix": ""
                    },
                    {
                        "first": "Shakir",
                        "middle": [],
                        "last": "Mohamed",
                        "suffix": ""
                    },
                    {
                        "first": "Daan",
                        "middle": [],
                        "last": "Wierstra",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 31th International Conference on Machine Learning",
                "volume": "",
                "issue": "",
                "pages": "1278--1286",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. 2014. Stochastic backpropagation and ap- proximate inference in deep generative models. In Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21- 26 June 2014, pages 1278-1286.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Sequence to sequence learning with neural networks",
                "authors": [
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Sutskever",
                        "suffix": ""
                    },
                    {
                        "first": "Oriol",
                        "middle": [],
                        "last": "Vinyals",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Quoc",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Le",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems",
                "volume": "",
                "issue": "",
                "pages": "3104--3112",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with neural networks. In Advances in Neural Information Processing Sys- tems 27: Annual Conference on Neural Informa- tion Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages 3104-3112.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Scalable clustering of news search results",
                "authors": [
                    {
                        "first": "Srinivas",
                        "middle": [],
                        "last": "Vadrevu",
                        "suffix": ""
                    },
                    {
                        "first": "Choon",
                        "middle": [
                            "Hui"
                        ],
                        "last": "Teo",
                        "suffix": ""
                    },
                    {
                        "first": "Suju",
                        "middle": [],
                        "last": "Rajan",
                        "suffix": ""
                    },
                    {
                        "first": "Kunal",
                        "middle": [],
                        "last": "Punera",
                        "suffix": ""
                    },
                    {
                        "first": "Byron",
                        "middle": [],
                        "last": "Dom",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [
                            "J"
                        ],
                        "last": "Smola",
                        "suffix": ""
                    },
                    {
                        "first": "Yi",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Zhaohui",
                        "middle": [],
                        "last": "Zheng",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, WSDM'11",
                "volume": "",
                "issue": "",
                "pages": "675--684",
                "other_ids": {
                    "DOI": [
                        "10.1145/1935826.1935918"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Srinivas Vadrevu, Choon Hui Teo, Suju Rajan, Kunal Punera, Byron Dom, Alexander J. Smola, Yi Chang, and Zhaohui Zheng. 2011. Scalable clustering of news search results. In Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, WSDM'11, pages 675-684, New York, NY, USA. ACM.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Universal Decompositional Semantics on Universal Dependencies",
                "authors": [
                    {
                        "first": "Aaron",
                        "middle": [],
                        "last": "Steven White",
                        "suffix": ""
                    },
                    {
                        "first": "Drew",
                        "middle": [],
                        "last": "Reisinger",
                        "suffix": ""
                    },
                    {
                        "first": "Keisuke",
                        "middle": [],
                        "last": "Sakaguchi",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Vieira",
                        "suffix": ""
                    },
                    {
                        "first": "Sheng",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Rachel",
                        "middle": [],
                        "last": "Rudinger",
                        "suffix": ""
                    },
                    {
                        "first": "Kyle",
                        "middle": [],
                        "last": "Rawlins",
                        "suffix": ""
                    },
                    {
                        "first": "Benjamin",
                        "middle": [],
                        "last": "Van Durme",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1713--1723",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Aaron Steven White, Drew Reisinger, Keisuke Sak- aguchi, Tim Vieira, Sheng Zhang, Rachel Rudinger, Kyle Rawlins, and Benjamin Van Durme. 2016. Uni- versal Decompositional Semantics on Universal De- pendencies. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Process- ing, pages 1713-1723, Austin, Texas. Association for Computational Linguistics.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF1": {
                "type_str": "figure",
                "text": "A query-based UI for NSTM showing two themes. The un-cropped screenshot is in Appendix C.",
                "uris": null,
                "num": null
            },
            "FIGREF2": {
                "type_str": "figure",
                "text": "The architecture of NSTM. The digits indicate the order of execution whenever a new request is made.",
                "uris": null,
                "num": null
            },
            "FIGREF3": {
                "type_str": "figure",
                "text": "48k pairwise samples (c, c )|a where c is labelled more Automaker ST is investing $2B in electric vehicles (EVs), atoning for the 2018 scandal \u2460 Parse dependencies (shown cropped) \u2461 Extract pred-arg n-tuples (1 output shown) \u2462 Prune tuples (1 output shown) \u2463 Create surface form \u2460 Create sub-tokens \u2461 Classify sub-tokens \u2462 Stitch sub-tokens (with score greater than 0.5)",
                "uris": null,
                "num": null
            },
            "FIGREF4": {
                "type_str": "figure",
                "text": "Screenshot (taken on 29 January 2020) of a query-driven interface for NSTM showing the overview for the topic 'Electric Vehicles'.",
                "uris": null,
                "num": null
            },
            "FIGREF5": {
                "type_str": "figure",
                "text": "Screenshot (taken on 29 January 2020) of a query-driven interface for NSTM showing the overview for the region 'Canada'.",
                "uris": null,
                "num": null
            },
            "FIGREF6": {
                "type_str": "figure",
                "text": "Screenshot (taken on 29 January 2020) of a query-driven interface for NSTM showing the overview for a complex query, including a keyword.",
                "uris": null,
                "num": null
            },
            "TABREF3": {
                "content": "<table><tr><td>Summary</td><td>Size</td></tr><tr><td>1 Britain to Leave the EU</td><td>459</td></tr><tr><td colspan=\"2\">2 Bank of England Would Keep Interest Rate Unchanged 141</td></tr><tr><td>3 Sturgeon Demands Scottish Independence Vote</td><td>71</td></tr><tr><td>4 Pompeo in UK for Trade Talks</td><td>45</td></tr><tr><td>5 Boris Johnson Hails 'Beginning' on Brexit Day</td><td>63</td></tr></table>",
                "text": "Ranked theme summaries and cluster sizes for 'Facebook' (1,176 matching stories) from 31 Jan. 2020.",
                "num": null,
                "html": null,
                "type_str": "table"
            },
            "TABREF4": {
                "content": "<table/>",
                "text": "Ranked theme summaries and cluster sizes for 'U.K.' (13,858 matching stories) from 31 Jan. 2020.",
                "num": null,
                "html": null,
                "type_str": "table"
            }
        }
    }
}