File size: 121,293 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T01:29:39.486880Z"
    },
    "title": "Embedding-based Scientific Literature Discovery in a Text Editor Application",
    "authors": [
        {
            "first": "Onur",
            "middle": [],
            "last": "G\u00f6k\u00e7e",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Zurich and ETH Zurich",
                "location": {
                    "country": "Switzerland"
                }
            },
            "email": ""
        },
        {
            "first": "Jonathan",
            "middle": [],
            "last": "Prada",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Zurich and ETH Zurich",
                "location": {
                    "country": "Switzerland"
                }
            },
            "email": ""
        },
        {
            "first": "Nikola",
            "middle": [
                "I"
            ],
            "last": "Nikolov",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Zurich and ETH Zurich",
                "location": {
                    "country": "Switzerland"
                }
            },
            "email": ""
        },
        {
            "first": "Nianlong",
            "middle": [],
            "last": "Gu",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Zurich and ETH Zurich",
                "location": {
                    "country": "Switzerland"
                }
            },
            "email": "nianlong@ini.ethz.ch"
        },
        {
            "first": "Richard",
            "middle": [
                "H R"
            ],
            "last": "Hahnloser",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Zurich and ETH Zurich",
                "location": {
                    "country": "Switzerland"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Each claim in a research paper requires all relevant prior knowledge to be discovered, assimilated, and appropriately cited. However, despite the availability of powerful search engines and sophisticated text editing software, discovering relevant papers and integrating the knowledge into a manuscript remain complex tasks associated with high cognitive load. To define comprehensive search queries requires strong motivation from authors, irrespective of their familiarity with the research field. Moreover, switching between independent applications for literature discovery, bibliography management, reading papers, and writing text burdens authors further and interrupts their creative process. Here, we present a web application that combines text editing and literature discovery in an interactive user interface. The application is equipped with a search engine that couples Boolean keyword filtering with nearest neighbor search over text embeddings, providing a discovery experience tuned to an author's manuscript and his interests. Our application aims to take a step towards more enjoyable and effortless academic writing. The demo of the application 1 and a short video tutorial 2 are available online.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Each claim in a research paper requires all relevant prior knowledge to be discovered, assimilated, and appropriately cited. However, despite the availability of powerful search engines and sophisticated text editing software, discovering relevant papers and integrating the knowledge into a manuscript remain complex tasks associated with high cognitive load. To define comprehensive search queries requires strong motivation from authors, irrespective of their familiarity with the research field. Moreover, switching between independent applications for literature discovery, bibliography management, reading papers, and writing text burdens authors further and interrupts their creative process. Here, we present a web application that combines text editing and literature discovery in an interactive user interface. The application is equipped with a search engine that couples Boolean keyword filtering with nearest neighbor search over text embeddings, providing a discovery experience tuned to an author's manuscript and his interests. Our application aims to take a step towards more enjoyable and effortless academic writing. The demo of the application 1 and a short video tutorial 2 are available online.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Writing is a complex problem-solving task that burdens authors with a high cognitive load (Hayes, 2012) , which especially applies to inexperienced researchers (Shah et al., 2009) . The typical workflow of composing an academic manuscript (be it a proposal, report, or paper) is an iterative process of conceptualizing ideas, formulating search queries, browsing search results, reading papers, eventu- Figure 1 : The typical workflow of scientific writing is largely based on independent software tools (text processor, reference manager, literature search engine, and paper viewer) that draw on diverse cognitive processes (recalling and citing articles, as well as searching, retrieving, and reading articles, black). Our web application focuses on assisting authors in literature discovery and in pinpointing relevant text passages in a paper (red).",
                "cite_spans": [
                    {
                        "start": 90,
                        "end": 103,
                        "text": "(Hayes, 2012)",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 160,
                        "end": 179,
                        "text": "(Shah et al., 2009)",
                        "ref_id": "BIBREF47"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 403,
                        "end": 411,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "ally followed by assimilating and integrating the discovered knowledge.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The current toolbox of scientific writing consists of text editors, search engines, reference managers, and paper viewers. These components are typically independent applications with limited interactivity. Consequently, authors are forced to navigate through diverse user interfaces repeatedly and need to link different parts of their workflow manually. We believe that there is a need for technology that makes literature discovery a seamless extension of the writing experience (Figure 1) . Implicitly, each scientific statement requires an in-depth search for supporting or conflicting findings in the literature. Accordingly, authors must retain a strong motivation to iterate through many combinations of search terms even when the apparent gain from the search becomes sub-optimal (Azzopardi et al., 2018) . In addition, the keywords intended for traditional search engines can be in-trinsically biased because authors seek confirmation (Nickerson, 1998) or because of gaps in their knowledge (Athukorala et al., 2013) . The use of synonymous terminology, such as with the names of species in botany (Rivera et al., 2014) or fieldspecific nomenclature (Hodges, 2008) , further complicates formulating comprehensive search queries. Last but not least, the exponential increase in the number of scientific publications (Larsen and von Ins, 2010) makes it increasingly difficult to keep track of the literature and to incorporate new findings into one's work.",
                "cite_spans": [
                    {
                        "start": 789,
                        "end": 813,
                        "text": "(Azzopardi et al., 2018)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 945,
                        "end": 962,
                        "text": "(Nickerson, 1998)",
                        "ref_id": "BIBREF40"
                    },
                    {
                        "start": 1001,
                        "end": 1026,
                        "text": "(Athukorala et al., 2013)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 1108,
                        "end": 1129,
                        "text": "(Rivera et al., 2014)",
                        "ref_id": "BIBREF44"
                    },
                    {
                        "start": 1160,
                        "end": 1174,
                        "text": "(Hodges, 2008)",
                        "ref_id": "BIBREF36"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 482,
                        "end": 492,
                        "text": "(Figure 1)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Such challenges call for novel tools to alleviate the obstacles faced by authors. We, therefore, set out to design a workflow that simplifies the exploration of the scientific literature by making use of advances in natural language processing (NLP). We introduce a web application for writing scientific text with integrated literature discovery, paper reading, and bibliography management capabilities.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Our application allows authors to retrieve papers that are similar to their manuscript (or to some of its parts) by utilizing text embeddings (Section 3.2). In addition, the authors can confine the scope of retrieved papers to specific interests by applying keyword-based Boolean filters (Section 3.1). Finally, to guide the authors in skim reading, similar sentences can be automatically highlighted in the retrieved papers. With these features, we aim to make the processes of literature discovery and scientific writing more efficient and enjoyable. Currently, there are many independent applications for searching for and sharing of publications (e.g., Google Scholar, Pubmed, Web of Science, Meta, ResearchGate, and Iris.AI), for managing bibliography (e.g., Mendeley, Readcube, Paperpile, End-Note, and F1000), and for processing text (e.g., Microsoft Word, Google Docs, Overleaf, Dropbox Paper, and Sciflow). However, end-to-end applications that combine text editing with NLP-powered interactive literature discovery are scarce. Traditionally, text processors can interact with external software to search for content, to manage references, or to improve writing style via plug-ins, but such interactions are typically limited. A recent application, Raxter.io, provides a single interface for document writing and literature searching. Although Raxter.io allows fine-tuning of document-based search queries, its methods are not fully disclosed, and it neither supports flexible keyword definitions nor the automatic highlighting of relevant passages. Raxter.io also does not display the full body of papers unless the users manually import them.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Traditional search engines use a bag-of-words model with a frequency-based ranking function such as BM25 (Robertson, 2009) to retrieve documents that match a query of one or more search terms. Obtaining useful search results requires well-formulated search queries (Aula, 2003) , which can be a challenging task during exploratory search (Belkin, 2000) and constitutes a cognitive load (Gwizdka, 2010 ) that our application aims to ease. Document similarity search methods (Wan et al., 2008) , by contrast, use entire documents as the search queries, circumventing the need to define keywords for the search. State-of-the-art methods for retrieving similar documents rely on text embeddings (Conneau et al., 2018; Adi et al., 2016; Le and Mikolov, 2014 ) and on efficient approximate nearest neighbor search algorithms (Johnson et al., 2017) . However, embedding-based search methods seem rather inflexible in refining searches, because it is unclear how to steer search results in a particular direction without painstakingly having to modify the query document.",
                "cite_spans": [
                    {
                        "start": 105,
                        "end": 122,
                        "text": "(Robertson, 2009)",
                        "ref_id": "BIBREF45"
                    },
                    {
                        "start": 265,
                        "end": 277,
                        "text": "(Aula, 2003)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 338,
                        "end": 352,
                        "text": "(Belkin, 2000)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 386,
                        "end": 400,
                        "text": "(Gwizdka, 2010",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 473,
                        "end": 491,
                        "text": "(Wan et al., 2008)",
                        "ref_id": "BIBREF48"
                    },
                    {
                        "start": 691,
                        "end": 713,
                        "text": "(Conneau et al., 2018;",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 714,
                        "end": 731,
                        "text": "Adi et al., 2016;",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 732,
                        "end": 752,
                        "text": "Le and Mikolov, 2014",
                        "ref_id": "BIBREF39"
                    },
                    {
                        "start": 819,
                        "end": 841,
                        "text": "(Johnson et al., 2017)",
                        "ref_id": "BIBREF37"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methods for Literature Discovery",
                "sec_num": "2.2"
            },
            {
                "text": "Both keyword-and embedding-based search methods provide unique advantages, but there have not been many attempts at combining these methods to overcome their respective limitations.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methods for Literature Discovery",
                "sec_num": "2.2"
            },
            {
                "text": "The pipeline for literature discovery in our application consists of two steps ( Figure 2 ). First, the search engine retrieves a subset of the papers from our database that match a user-defined keywordbased filter. Second, the search engine ranks the filtered papers according to their similarity to the manuscript using document embeddings. We describe each of the two steps in detail below. Our database contains 2.7M papers from the Pubmed Central Open-Access subset (PMC-OA) 3 . User-de ned lter Figure 2 : Overview of the literature discovery pipeline in our application. The search engine first filters our database for papers that match a set of user-defined keywords, and then ranks the filtered results according to their embedding-based proximity to a ranking source, such as an entire user manuscript. The top-ranked papers are presented to the user who can then save, cite, or read them, with the possibility of highlighting the most relevant sentences.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 81,
                        "end": 89,
                        "text": "Figure 2",
                        "ref_id": null
                    },
                    {
                        "start": 501,
                        "end": 509,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Literature Discovery",
                "sec_num": "3"
            },
            {
                "text": "An embedding-based search might return many papers that are similar to the manuscript but are of limited interest to the author. For example, authors of a medical manuscript on lung cancer may seek similar treatments in the literature for another organ, but embedding-based ranking might retrieve papers only on lung cancer. The keyword-based filter can, in such cases, be used to restrict the ranking operation either to the papers mentioning that other organ or to papers that do not mention lung. Thus, filtering allows an author to focus the nearest neighbor search on the target keywords or on their absence. The filtering operation uses an inverted index of all unigrams in the database after the removal of stop words and word stemming (snowball) using the NLTK library 4 . The resulting index has a dictionary size of 9.61M unigrams and requires \u223c4 4 https://www.nltk.org/ GB of memory.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Keyword-based Filtering",
                "sec_num": "3.1"
            },
            {
                "text": "The ranking operation uses the document embeddings of the papers in our database. Given a ranking source such as a paragraph or the entire manuscript, \"embedding-based ranking\" sorts the papers returned by the keyword-based filter according to their cosine distance to the embedding of the ranking source. In other words, embedding-based ranking performs a brute-force nearest neighbor search on a subset of papers. The embedding of the ranking source is computed on demand whenever a search is performed.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Embedding-based Ranking",
                "sec_num": "3.2"
            },
            {
                "text": "As the document embedding model, we use Sent2Vec (Pagliardini et al., 2018) because of its simplicity, speed, and good performance on various benchmark datasets (Pagliardini et al., 2018; Nikolov and Hahnloser, 2019) . The model has 400 dimensions and is trained on the PMC-OA corpus using a unigram vocabulary of \u223c0.75M terms. After the training, we pre-compute the embeddings of all papers in our database and keep them in memory, which requires \u223c4 GB.",
                "cite_spans": [
                    {
                        "start": 49,
                        "end": 75,
                        "text": "(Pagliardini et al., 2018)",
                        "ref_id": "BIBREF43"
                    },
                    {
                        "start": 161,
                        "end": 187,
                        "text": "(Pagliardini et al., 2018;",
                        "ref_id": "BIBREF43"
                    },
                    {
                        "start": 188,
                        "end": 216,
                        "text": "Nikolov and Hahnloser, 2019)",
                        "ref_id": "BIBREF41"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Embedding-based Ranking",
                "sec_num": "3.2"
            },
            {
                "text": "To test the performance of our model, we performed experiments on a simple text retrieval task. The goal of this task was to retrieve the full body of a parent paper given its abstract as the search query. We randomly sampled 10000 abstracts from the database and retrieved the 20 most similar papers for each abstract. As an evaluation metric, we counted the fraction of retrievals in which the parent paper appeared on top or among the top 20 results. Our model retrieved the correct parent paper as the top search result in 83.1% of the trials, compared to 71.0% when using a Sent2Vec model trained on Wikipedia (Pagliardini et al., 2018) . Furthermore, the parent paper was among the top 20 retrievals in 95.1% of cases when using our model, compared to 87.0% for the Wikipedia Sent2Vec model. The higher retrieval performance of our model in this task likely arises from its training on a domain-specific corpus that contains rare words and terminologies (Roy et al., 2017; Blagec et al., 2019) . This suggests that the model would need to be retrained at regular intervals, particularly when papers from other domains are added to the database.",
                "cite_spans": [
                    {
                        "start": 615,
                        "end": 641,
                        "text": "(Pagliardini et al., 2018)",
                        "ref_id": "BIBREF43"
                    },
                    {
                        "start": 960,
                        "end": 978,
                        "text": "(Roy et al., 2017;",
                        "ref_id": "BIBREF46"
                    },
                    {
                        "start": 979,
                        "end": 999,
                        "text": "Blagec et al., 2019)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Embedding-based Ranking",
                "sec_num": "3.2"
            },
            {
                "text": "We have not systematically analyzed the retrieval performance when the query is formed by merely a part of the manuscript such as a block of a few sentences (Gong et al., 2018; De Boom et al., 2015) . We leave a detailed exploration of the effects of the query length on performance to future work.",
                "cite_spans": [
                    {
                        "start": 157,
                        "end": 176,
                        "text": "(Gong et al., 2018;",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 177,
                        "end": 198,
                        "text": "De Boom et al., 2015)",
                        "ref_id": "BIBREF31"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Embedding-based Ranking",
                "sec_num": "3.2"
            },
            {
                "text": "Although fast and efficient approximate nearest neighbor methods exist for retrieving the K nearest neighbors of a query vector, such schemes apply to ranking only, but not to the joint filtering and ranking steps (when nearest neighbors are sought among a subset of embeddings from the database). For this reason, in our search engine, there is no simple alternative to brute force search. Nevertheless, we find that retrieval is sufficiently fast, largely because the filtering step reduces the number of neighbors that need to be ranked. In future work, we will explore optimizations of the search engine, such as using approximate hashing techniques (Datar et al., 2004; Norouzi et al., 2012) .",
                "cite_spans": [
                    {
                        "start": 654,
                        "end": 674,
                        "text": "(Datar et al., 2004;",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 675,
                        "end": 696,
                        "text": "Norouzi et al., 2012)",
                        "ref_id": "BIBREF42"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Scalability of Literature Discovery",
                "sec_num": "3.3"
            },
            {
                "text": "The user interface (UI) consists of (1) a text editor that provides basic functionality for drafting a manuscript, such as loading saving documents, formatting text, and inserting L A T E X equations, code snippets, or bullet points (Figure 3a, left) , and (2) a literature explorer encompassing multiple components, which can be accessed on their respective tabs (Figure 3a, right) :",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 233,
                        "end": 250,
                        "text": "(Figure 3a, left)",
                        "ref_id": null
                    },
                    {
                        "start": 364,
                        "end": 382,
                        "text": "(Figure 3a, right)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "User Interface and Workflow",
                "sec_num": "4"
            },
            {
                "text": "\u2022 Discover for performing searches and browsing the search results to discover relevant literature",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "User Interface and Workflow",
                "sec_num": "4"
            },
            {
                "text": "\u2022 My Library for managing the user bibliography and for citing papers in the manuscript",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "User Interface and Workflow",
                "sec_num": "4"
            },
            {
                "text": "\u2022 Read for paper viewing and for actions that facilitate literature exploration, such as discovering similar papers to the one being viewed and highlighting the sentences in the paper that are similar to the selected text in the manuscript (Figure 3b, right) A search can be initiated without keyword filters by clicking the \"Similar papers to the manuscript\" button located above the text editor. As a result, the 1000 most similar papers are listed in the Discover tab with their metadata (title, authors, journal, publication year, and abstract).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 240,
                        "end": 258,
                        "text": "(Figure 3b, right)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "User Interface and Workflow",
                "sec_num": "4"
            },
            {
                "text": "A more granular search can be performed by selecting a section (e.g., sentences, paragraphs) from the manuscript, which reveals a hovering menu over the selected text (visible in Figure 3b ). Clicking on the magnifying glass icon on this menu performs a search using the selected text as the ranking source and consequently returns the papers similar to the selected text.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 179,
                        "end": 188,
                        "text": "Figure 3b",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "User Interface and Workflow",
                "sec_num": "4"
            },
            {
                "text": "To steer discovery towards a particular set of terms, the user can define a keywordbased Boolean filter using the format term1 term2|term3 !term4 to confine the results to those papers that contain term1 and (term2 or term3), but not term4.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "User Interface and Workflow",
                "sec_num": "4"
            },
            {
                "text": "Clicking on a search result displays the content of the paper in the Read tab. In this tab, the user finds additional actions above the viewed paper to interact with it.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "User Interface and Workflow",
                "sec_num": "4"
            },
            {
                "text": "If, after viewing the paper, the user finds it interesting, then pressing the \"Add to Library\" button saves the paper in the user bibliography, which can be viewed under the My Library tab. Alternatively, the \"Cite\" button places a reference to the paper at the current cursor position in the text editor and adds the paper to the user bibliography. Inserted references in the manuscript are links, and clicking on them conveniently opens the respective paper in the Read tab. Deleting the link removes the reference from the manuscript.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "User Interface and Workflow",
                "sec_num": "4"
            },
            {
                "text": "To facilitate the exploration of the literature further, the Read tab contains additional functions: \"Discover similar papers\" performs a search using the viewed paper as the ranking source. If a filter is already present in the Discover tab, then the search results are filtered accordingly. The \"Highlight\" button highlights the 20 sentences in the viewed paper that are most similar to the ranking source, i.e., similar to the query of the last search performed on the application. Alternatively, the user can select a part of the manuscript and press the marker icon on the revealed hovering menu (Figure 3b ) to highlight the sentences that are most similar to the selection. The highlighting feature computes the embedding of each sentence in the viewed paper to assess similarity. The \"Find Text\" field uses the web-browser's built-in find functionality to match the value of the field with the viewed paper.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 601,
                        "end": 611,
                        "text": "(Figure 3b",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "User Interface and Workflow",
                "sec_num": "4"
            },
            {
                "text": "The My Library tab lists all the papers in the user bibliography. Ticking the \"Cited content only\" box filters this list to show only the papers cited in the manuscript. The user can press the \"Cite\" button next to a paper to insert a reference to the paper at the cursor position in the text editor. The user can also add papers to the library manually by entering a b Figure 3 : The user interface of the application. a) the Discover tab lists the retrieved papers that are similar to the manuscript. b) the Read tab allows users to view papers and to highlight the sentences that are similar to the selected text in the manuscript. the digital object identifier of the paper in the form that appears upon pressing the \"Manual entry\" button. Items under My Library can be removed by clicking on the \"Remove\" button next to the item.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 370,
                        "end": 378,
                        "text": "Figure 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "User Interface and Workflow",
                "sec_num": "4"
            },
            {
                "text": "We have described an application that aims to reduce the manual workload involved in exploring the scientific literature. Our application combines the processes of reading papers and of writing scientific manuscripts into a single user interface and links them using NLP algorithms.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            },
            {
                "text": "In future work, we will focus on expanding the database to include additional domains and article sources. We will work on augmenting the workflow with automated tasks, such as suggesting ref-erences as the author writes a manuscript, or notifying users about the latest publications relevant to their work. We will also seek to improve discovery performance by testing more recent text embedding methods (e.g., BERT (Devlin et al., 2018) ) and by optimizing the search for different input text lengths, such as a whole document, a paragraph, or even a single sentence.",
                "cite_spans": [
                    {
                        "start": 417,
                        "end": 438,
                        "text": "(Devlin et al., 2018)",
                        "ref_id": "BIBREF32"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            },
            {
                "text": "Finally, we are aware that keyword-based Boolean filtering might be prone to the same biases and challenges inherent in the traditional search queries, as discussed above. We will investigate whether query expansion techniques (Azad and Deepak, 2019) could mitigate this issue by suggesting or automatically appending semantically related keywords to the Boolean filters.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            },
            {
                "text": "https://SciEditorDemo2020.herokuapp. com/ 2 https://youtu.be/pkdVU60IcRc",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://www.ncbi.nlm.nih.gov/pmc/ tools/openftlist/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "We acknowledge support from the Swiss National Science Foundation (grant 31003A 156976). We also thank the anonymous reviewers for their useful comments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo. Nullam dictum felis eu pede mollis pretium. Integer tincidunt. Cras dapibus. Vivamus elementum semper nisi",
                "authors": [],
                "year": null,
                "venue": "Lorem ipsum dolor sit amet, consectetuer adipiscing elit",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo. Nullam dictum felis eu pede mollis pretium. Integer tincidunt. Cras dapibus. Vivamus elementum semper nisi. Aenean vulputate eleifend tellus.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Curabitur ullamcorper ultricies nisi. Nam eget dui. Etiam rhoncus. Maecenas tempus, tellus eget condimentum rhoncus, sem quam semper libero, sit amet adipiscing sem neque sed ipsum. Nam quam nunc, blandit vel, luctus pulvinar, hendrerit id, lorem. Maecenas nec odio et ante tincidunt tempus. Donec vitae sapien ut libero venenatis faucibus. Nullam quis ante. Etiam sit amet orci eget eros faucibus tincidunt. Duis leo. Sed fringilla mauris sit amet nibh. Donec sodales sagittis magna. Sed consequat, leo eget bibendum sodales, augue velit cursus nunc, quis gravida magna mi a libero. Fusce vulputate eleifend sapien. Vestibulum purus quam, scelerisque ut, mollis sed, nonummy id, metus. Nullam accumsan lorem in dui. Cras ultricies mi eu turpis hendrerit fringilla",
                "authors": [
                    {
                        "first": "Aenean",
                        "middle": [],
                        "last": "Leo Ligula",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "dapibus in, viverra quis, feugiat a, tellus. Phasellus viverra nulla ut metus varius laoreet. Quisque rutrum. Aenean imperdiet",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Aenean leo ligula, porttitor eu, consequat vitae, eleifend ac, enim. Aliquam lorem ante, dapibus in, viverra quis, feugiat a, tellus. Phasellus viverra nulla ut metus varius laoreet. Quisque rutrum. Aenean imperdiet. Etiam ultricies nisi vel augue. Curabitur ullamcorper ultricies nisi. Nam eget dui. Etiam rhoncus. Maecenas tempus, tellus eget condimentum rhoncus, sem quam semper libero, sit amet adipiscing sem neque sed ipsum. Nam quam nunc, blandit vel, luctus pulvinar, hendrerit id, lorem. Maecenas nec odio et ante tincidunt tempus. Donec vitae sapien ut libero venenatis faucibus. Nullam quis ante. Etiam sit amet orci eget eros faucibus tincidunt. Duis leo. Sed fringilla mauris sit amet nibh. Donec sodales sagittis magna. Sed consequat, leo eget bibendum sodales, augue velit cursus nunc, quis gravida magna mi a libero. Fusce vulputate eleifend sapien. Vestibulum purus quam, scelerisque ut, mollis sed, nonummy id, metus. Nullam accumsan lorem in dui. Cras ultricies mi eu turpis hendrerit fringilla. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae;",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Sed aliquam ultrices mauris. Integer ante arcu, accumsan a, consectetuer eget, posuere ut, mauris. Praesent adipiscing. Phasellus ullamcorper ipsum rutrum nunc. Nunc nonummy metus. Vestibulum volutpat pretium libero. Cras id dui. Aenean ut eros et nisl sagittis vestibulum. Nullam nulla eros, ultricies sit amet",
                "authors": [],
                "year": null,
                "venue": "ac dui quis mi consectetuer lacinia. Nam pretium turpis et arcu. Duis arcu tortor, suscipit eget, imperdiet nec, imperdiet iaculis, ipsum",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "In ac dui quis mi consectetuer lacinia. Nam pretium turpis et arcu. Duis arcu tortor, suscipit eget, imperdiet nec, imperdiet iaculis, ipsum. Sed aliquam ultrices mauris. Integer ante arcu, accumsan a, consectetuer eget, posuere ut, mauris. Praesent adipiscing. Phasellus ullamcorper ipsum rutrum nunc. Nunc nonummy metus. Vestibulum volutpat pretium libero. Cras id dui. Aenean ut eros et nisl sagittis vestibulum. Nullam nulla eros, ultricies sit amet, nonummy id, imperdiet feugiat, pede. Sed lectus.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Lorem ipsum dolor sit amet, consectetuer adipiscing elit",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lorem ipsum dolor sit amet, consectetuer adipiscing elit.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo. Nullam dictum felis eu pede mollis pretium. Integer tincidunt. Cras dapibus. Vivamus elementum semper nisi",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Aenean Commodo Ligula Eget Dolor. Aenean",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Massa",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo. Nullam dictum felis eu pede mollis pretium. Integer tincidunt. Cras dapibus. Vivamus elementum semper nisi. Aenean vulputate eleifend tellus.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Curabitur ullamcorper ultricies nisi. Nam eget dui. Etiam rhoncus. Maecenas tempus, tellus eget condimentum rhoncus, sem quam semper libero, sit amet adipiscing sem neque sed ipsum. Nam quam nunc, blandit vel, luctus pulvinar, hendrerit id, lorem. Maecenas nec odio et ante tincidunt tempus. Donec vitae sapien ut libero venenatis faucibus. Nullam quis ante. Etiam sit amet orci eget eros faucibus tincidunt. Duis leo. Sed fringilla mauris sit amet nibh. Donec sodales sagittis magna. Sed consequat, leo eget bibendum sodales, augue velit cursus nunc, quis gravida magna mi a libero. Fusce vulputate eleifend sapien. Vestibulum purus quam, scelerisque ut, mollis sed, nonummy id, metus. Nullam accumsan lorem in dui. Cras ultricies mi eu turpis hendrerit fringilla",
                "authors": [
                    {
                        "first": "Aenean",
                        "middle": [],
                        "last": "Leo Ligula",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "dapibus in, viverra quis, feugiat a, tellus. Phasellus viverra nulla ut metus varius laoreet. Quisque rutrum. Aenean imperdiet",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Aenean leo ligula, porttitor eu, consequat vitae, eleifend ac, enim. Aliquam lorem ante, dapibus in, viverra quis, feugiat a, tellus. Phasellus viverra nulla ut metus varius laoreet. Quisque rutrum. Aenean imperdiet. Etiam ultricies nisi vel augue. Curabitur ullamcorper ultricies nisi. Nam eget dui. Etiam rhoncus. Maecenas tempus, tellus eget condimentum rhoncus, sem quam semper libero, sit amet adipiscing sem neque sed ipsum. Nam quam nunc, blandit vel, luctus pulvinar, hendrerit id, lorem. Maecenas nec odio et ante tincidunt tempus. Donec vitae sapien ut libero venenatis faucibus. Nullam quis ante. Etiam sit amet orci eget eros faucibus tincidunt. Duis leo. Sed fringilla mauris sit amet nibh. Donec sodales sagittis magna. Sed consequat, leo eget bibendum sodales, augue velit cursus nunc, quis gravida magna mi a libero. Fusce vulputate eleifend sapien. Vestibulum purus quam, scelerisque ut, mollis sed, nonummy id, metus. Nullam accumsan lorem in dui. Cras ultricies mi eu turpis hendrerit fringilla. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae;",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Sed aliquam ultrices mauris. Integer ante arcu, accumsan a, consectetuer eget, posuere ut, mauris. Praesent adipiscing. Phasellus ullamcorper ipsum rutrum nunc. Nunc nonummy metus. Vestibulum volutpat pretium libero. Cras id dui. Aenean ut eros et nisl sagittis vestibulum. Nullam nulla eros, ultricies sit amet",
                "authors": [],
                "year": null,
                "venue": "ac dui quis mi consectetuer lacinia. Nam pretium turpis et arcu. Duis arcu tortor, suscipit eget, imperdiet nec, imperdiet iaculis, ipsum",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "In ac dui quis mi consectetuer lacinia. Nam pretium turpis et arcu. Duis arcu tortor, suscipit eget, imperdiet nec, imperdiet iaculis, ipsum. Sed aliquam ultrices mauris. Integer ante arcu, accumsan a, consectetuer eget, posuere ut, mauris. Praesent adipiscing. Phasellus ullamcorper ipsum rutrum nunc. Nunc nonummy metus. Vestibulum volutpat pretium libero. Cras id dui. Aenean ut eros et nisl sagittis vestibulum. Nullam nulla eros, ultricies sit amet, nonummy id, imperdiet feugiat, pede. Sed lectus.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Lorem ipsum dolor sit amet, consectetuer adipiscing elit",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lorem ipsum dolor sit amet, consectetuer adipiscing elit.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo. Nullam dictum felis eu pede mollis pretium. Integer tincidunt. Cras dapibus. Vivamus elementum semper nisi",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Aenean Commodo Ligula Eget Dolor. Aenean",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Massa",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo. Nullam dictum felis eu pede mollis pretium. Integer tincidunt. Cras dapibus. Vivamus elementum semper nisi. Aenean vulputate eleifend tellus.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Curabitur ullamcorper ultricies nisi. Nam eget dui. Etiam rhoncus. Maecenas tempus, tellus eget condimentum rhoncus, sem quam semper libero, sit amet adipiscing sem neque sed ipsum. Nam quam nunc, blandit vel, luctus pulvinar, hendrerit id, lorem. Maecenas nec odio et ante tincidunt tempus. Donec vitae sapien ut libero venenatis faucibus. Nullam quis ante. Etiam sit amet orci eget eros faucibus tincidunt. Duis leo. Sed fringilla mauris sit amet nibh. Donec sodales sagittis magna. Sed consequat, leo eget bibendum sodales, augue velit cursus nunc, quis gravida magna mi a libero. Fusce vulputate eleifend sapien. Vestibulum purus quam, scelerisque ut, mollis sed, nonummy id, metus. Nullam accumsan lorem in dui. Cras ultricies mi eu turpis hendrerit fringilla",
                "authors": [
                    {
                        "first": "Aenean",
                        "middle": [],
                        "last": "Leo Ligula",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "dapibus in, viverra quis, feugiat a, tellus. Phasellus viverra nulla ut metus varius laoreet. Quisque rutrum. Aenean imperdiet",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Aenean leo ligula, porttitor eu, consequat vitae, eleifend ac, enim. Aliquam lorem ante, dapibus in, viverra quis, feugiat a, tellus. Phasellus viverra nulla ut metus varius laoreet. Quisque rutrum. Aenean imperdiet. Etiam ultricies nisi vel augue. Curabitur ullamcorper ultricies nisi. Nam eget dui. Etiam rhoncus. Maecenas tempus, tellus eget condimentum rhoncus, sem quam semper libero, sit amet adipiscing sem neque sed ipsum. Nam quam nunc, blandit vel, luctus pulvinar, hendrerit id, lorem. Maecenas nec odio et ante tincidunt tempus. Donec vitae sapien ut libero venenatis faucibus. Nullam quis ante. Etiam sit amet orci eget eros faucibus tincidunt. Duis leo. Sed fringilla mauris sit amet nibh. Donec sodales sagittis magna. Sed consequat, leo eget bibendum sodales, augue velit cursus nunc, quis gravida magna mi a libero. Fusce vulputate eleifend sapien. Vestibulum purus quam, scelerisque ut, mollis sed, nonummy id, metus. Nullam accumsan lorem in dui. Cras ultricies mi eu turpis hendrerit fringilla. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae;",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Sed aliquam ultrices mauris. Integer ante arcu, accumsan a, consectetuer eget, posuere ut, mauris. Praesent adipiscing. Phasellus ullamcorper ipsum rutrum nunc. Nunc nonummy metus. Vestibulum volutpat pretium libero. Cras id dui. Aenean ut eros et nisl sagittis vestibulum. Nullam nulla eros, ultricies sit amet",
                "authors": [],
                "year": null,
                "venue": "ac dui quis mi consectetuer lacinia. Nam pretium turpis et arcu. Duis arcu tortor, suscipit eget, imperdiet nec, imperdiet iaculis, ipsum",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "In ac dui quis mi consectetuer lacinia. Nam pretium turpis et arcu. Duis arcu tortor, suscipit eget, imperdiet nec, imperdiet iaculis, ipsum. Sed aliquam ultrices mauris. Integer ante arcu, accumsan a, consectetuer eget, posuere ut, mauris. Praesent adipiscing. Phasellus ullamcorper ipsum rutrum nunc. Nunc nonummy metus. Vestibulum volutpat pretium libero. Cras id dui. Aenean ut eros et nisl sagittis vestibulum. Nullam nulla eros, ultricies sit amet, nonummy id, imperdiet feugiat, pede. Sed lectus.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo. Nullam dictum felis eu pede mollis pretium. Integer tincidunt. Cras dapibus. Vivamus elementum semper nisi",
                "authors": [],
                "year": null,
                "venue": "Lorem ipsum dolor sit amet, consectetuer adipiscing elit",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo. Nullam dictum felis eu pede mollis pretium. Integer tincidunt. Cras dapibus. Vivamus elementum semper nisi. Aenean vulputate eleifend tellus.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Curabitur ullamcorper ultricies nisi. Nam eget dui. Etiam rhoncus. Maecenas tempus, tellus eget condimentum rhoncus, sem quam semper libero, sit amet adipiscing sem neque sed ipsum. Nam quam nunc, blandit vel, luctus pulvinar, hendrerit id, lorem. Maecenas nec odio et ante tincidunt tempus. Donec vitae sapien ut libero venenatis faucibus. Nullam quis ante. Etiam sit amet orci eget eros faucibus tincidunt. Duis leo. Sed fringilla mauris sit amet nibh. Donec sodales sagittis magna. Sed consequat, leo eget bibendum sodales, augue velit cursus nunc, quis gravida magna mi a libero. Fusce vulputate eleifend sapien. Vestibulum purus quam, scelerisque ut, mollis sed, nonummy id, metus. Nullam accumsan lorem in dui. Cras ultricies mi eu turpis hendrerit fringilla",
                "authors": [
                    {
                        "first": "Aenean",
                        "middle": [],
                        "last": "Leo Ligula",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "dapibus in, viverra quis, feugiat a, tellus. Phasellus viverra nulla ut metus varius laoreet. Quisque rutrum. Aenean imperdiet",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Aenean leo ligula, porttitor eu, consequat vitae, eleifend ac, enim. Aliquam lorem ante, dapibus in, viverra quis, feugiat a, tellus. Phasellus viverra nulla ut metus varius laoreet. Quisque rutrum. Aenean imperdiet. Etiam ultricies nisi vel augue. Curabitur ullamcorper ultricies nisi. Nam eget dui. Etiam rhoncus. Maecenas tempus, tellus eget condimentum rhoncus, sem quam semper libero, sit amet adipiscing sem neque sed ipsum. Nam quam nunc, blandit vel, luctus pulvinar, hendrerit id, lorem. Maecenas nec odio et ante tincidunt tempus. Donec vitae sapien ut libero venenatis faucibus. Nullam quis ante. Etiam sit amet orci eget eros faucibus tincidunt. Duis leo. Sed fringilla mauris sit amet nibh. Donec sodales sagittis magna. Sed consequat, leo eget bibendum sodales, augue velit cursus nunc, quis gravida magna mi a libero. Fusce vulputate eleifend sapien. Vestibulum purus quam, scelerisque ut, mollis sed, nonummy id, metus. Nullam accumsan lorem in dui. Cras ultricies mi eu turpis hendrerit fringilla. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae;",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Sed aliquam ultrices mauris. Integer ante arcu, accumsan a, consectetuer eget, posuere ut, mauris. Praesent adipiscing. Phasellus ullamcorper ipsum rutrum nunc. Nunc nonummy metus. Vestibulum volutpat pretium libero. Cras id dui. Aenean ut eros et nisl sagittis vestibulum. Nullam nulla eros, ultricies sit amet",
                "authors": [],
                "year": null,
                "venue": "ac dui quis mi consectetuer lacinia. Nam pretium turpis et arcu. Duis arcu tortor, suscipit eget, imperdiet nec, imperdiet iaculis, ipsum",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "In ac dui quis mi consectetuer lacinia. Nam pretium turpis et arcu. Duis arcu tortor, suscipit eget, imperdiet nec, imperdiet iaculis, ipsum. Sed aliquam ultrices mauris. Integer ante arcu, accumsan a, consectetuer eget, posuere ut, mauris. Praesent adipiscing. Phasellus ullamcorper ipsum rutrum nunc. Nunc nonummy metus. Vestibulum volutpat pretium libero. Cras id dui. Aenean ut eros et nisl sagittis vestibulum. Nullam nulla eros, ultricies sit amet, nonummy id, imperdiet feugiat, pede. Sed lectus.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Lorem ipsum dolor sit amet, consectetuer adipiscing elit",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lorem ipsum dolor sit amet, consectetuer adipiscing elit.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo. Nullam dictum felis eu pede mollis pretium. Integer tincidunt. Cras dapibus. Vivamus elementum semper nisi",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Aenean Commodo Ligula Eget Dolor. Aenean",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Massa",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo. Nullam dictum felis eu pede mollis pretium. Integer tincidunt. Cras dapibus. Vivamus elementum semper nisi. Aenean vulputate eleifend tellus.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Curabitur ullamcorper ultricies nisi. Nam eget dui. Etiam rhoncus. Maecenas tempus, tellus eget condimentum rhoncus, sem quam semper libero, sit amet adipiscing sem neque sed ipsum. Nam quam nunc, blandit vel, luctus pulvinar, hendrerit id, lorem. Maecenas nec odio et ante tincidunt tempus. Donec vitae sapien ut libero venenatis faucibus. Nullam quis ante. Etiam sit amet orci eget eros faucibus tincidunt. Duis leo. Sed fringilla mauris sit amet nibh. Donec sodales sagittis magna. Sed consequat, leo eget bibendum sodales, augue velit cursus nunc, quis gravida magna mi a libero. Fusce vulputate eleifend sapien. Vestibulum purus quam, scelerisque ut, mollis sed, nonummy id, metus. Nullam accumsan lorem in dui. Cras ultricies mi eu turpis hendrerit fringilla",
                "authors": [
                    {
                        "first": "Aenean",
                        "middle": [],
                        "last": "Leo Ligula",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "dapibus in, viverra quis, feugiat a, tellus. Phasellus viverra nulla ut metus varius laoreet. Quisque rutrum. Aenean imperdiet",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Aenean leo ligula, porttitor eu, consequat vitae, eleifend ac, enim. Aliquam lorem ante, dapibus in, viverra quis, feugiat a, tellus. Phasellus viverra nulla ut metus varius laoreet. Quisque rutrum. Aenean imperdiet. Etiam ultricies nisi vel augue. Curabitur ullamcorper ultricies nisi. Nam eget dui. Etiam rhoncus. Maecenas tempus, tellus eget condimentum rhoncus, sem quam semper libero, sit amet adipiscing sem neque sed ipsum. Nam quam nunc, blandit vel, luctus pulvinar, hendrerit id, lorem. Maecenas nec odio et ante tincidunt tempus. Donec vitae sapien ut libero venenatis faucibus. Nullam quis ante. Etiam sit amet orci eget eros faucibus tincidunt. Duis leo. Sed fringilla mauris sit amet nibh. Donec sodales sagittis magna. Sed consequat, leo eget bibendum sodales, augue velit cursus nunc, quis gravida magna mi a libero. Fusce vulputate eleifend sapien. Vestibulum purus quam, scelerisque ut, mollis sed, nonummy id, metus. Nullam accumsan lorem in dui. Cras ultricies mi eu turpis hendrerit fringilla. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae;",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Sed aliquam ultrices mauris. Integer ante arcu, accumsan a, consectetuer eget, posuere ut, mauris. Praesent adipiscing. Phasellus ullamcorper ipsum rutrum nunc. Nunc nonummy metus. Vestibulum volutpat pretium libero. Cras id dui. Aenean ut eros et nisl sagittis vestibulum. Nullam nulla eros, ultricies sit amet",
                "authors": [],
                "year": null,
                "venue": "ac dui quis mi consectetuer lacinia. Nam pretium turpis et arcu. Duis arcu tortor, suscipit eget, imperdiet nec, imperdiet iaculis, ipsum",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "In ac dui quis mi consectetuer lacinia. Nam pretium turpis et arcu. Duis arcu tortor, suscipit eget, imperdiet nec, imperdiet iaculis, ipsum. Sed aliquam ultrices mauris. Integer ante arcu, accumsan a, consectetuer eget, posuere ut, mauris. Praesent adipiscing. Phasellus ullamcorper ipsum rutrum nunc. Nunc nonummy metus. Vestibulum volutpat pretium libero. Cras id dui. Aenean ut eros et nisl sagittis vestibulum. Nullam nulla eros, ultricies sit amet, nonummy id, imperdiet feugiat, pede. Sed lectus.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Lorem ipsum dolor sit amet, consectetuer adipiscing elit",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lorem ipsum dolor sit amet, consectetuer adipiscing elit.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo. Nullam dictum felis eu pede mollis pretium. Integer tincidunt. Cras dapibus. Vivamus elementum semper nisi",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Aenean Commodo Ligula Eget Dolor. Aenean",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Massa",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo. Nullam dictum felis eu pede mollis pretium. Integer tincidunt. Cras dapibus. Vivamus elementum semper nisi. Aenean vulputate eleifend tellus.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Curabitur ullamcorper ultricies nisi. Nam eget dui. Etiam rhoncus. Maecenas tempus, tellus eget condimentum rhoncus, sem quam semper libero, sit amet adipiscing sem neque sed ipsum. Nam quam nunc, blandit vel, luctus pulvinar, hendrerit id, lorem. Maecenas nec odio et ante tincidunt tempus. Donec vitae sapien ut libero venenatis faucibus. Nullam quis ante. Etiam sit amet orci eget eros faucibus tincidunt. Duis leo. Sed fringilla mauris sit amet nibh. Donec sodales sagittis magna. Sed consequat, leo eget bibendum sodales, augue velit cursus nunc, quis gravida magna mi a libero. Fusce vulputate eleifend sapien. Vestibulum purus quam, scelerisque ut, mollis sed, nonummy id, metus. Nullam accumsan lorem in dui. Cras ultricies mi eu turpis hendrerit fringilla",
                "authors": [
                    {
                        "first": "Aenean",
                        "middle": [],
                        "last": "Leo Ligula",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "dapibus in, viverra quis, feugiat a, tellus. Phasellus viverra nulla ut metus varius laoreet. Quisque rutrum. Aenean imperdiet",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Aenean leo ligula, porttitor eu, consequat vitae, eleifend ac, enim. Aliquam lorem ante, dapibus in, viverra quis, feugiat a, tellus. Phasellus viverra nulla ut metus varius laoreet. Quisque rutrum. Aenean imperdiet. Etiam ultricies nisi vel augue. Curabitur ullamcorper ultricies nisi. Nam eget dui. Etiam rhoncus. Maecenas tempus, tellus eget condimentum rhoncus, sem quam semper libero, sit amet adipiscing sem neque sed ipsum. Nam quam nunc, blandit vel, luctus pulvinar, hendrerit id, lorem. Maecenas nec odio et ante tincidunt tempus. Donec vitae sapien ut libero venenatis faucibus. Nullam quis ante. Etiam sit amet orci eget eros faucibus tincidunt. Duis leo. Sed fringilla mauris sit amet nibh. Donec sodales sagittis magna. Sed consequat, leo eget bibendum sodales, augue velit cursus nunc, quis gravida magna mi a libero. Fusce vulputate eleifend sapien. Vestibulum purus quam, scelerisque ut, mollis sed, nonummy id, metus. Nullam accumsan lorem in dui. Cras ultricies mi eu turpis hendrerit fringilla. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae;",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Sed aliquam ultrices mauris. Integer ante arcu, accumsan a, consectetuer eget, posuere ut, mauris. Praesent adipiscing. Phasellus ullamcorper ipsum rutrum nunc. Nunc nonummy metus. Vestibulum volutpat pretium libero. Cras id dui. Aenean ut eros et nisl sagittis vestibulum. Nullam nulla eros, ultricies sit amet",
                "authors": [],
                "year": null,
                "venue": "ac dui quis mi consectetuer lacinia. Nam pretium turpis et arcu. Duis arcu tortor, suscipit eget, imperdiet nec, imperdiet iaculis, ipsum",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "In ac dui quis mi consectetuer lacinia. Nam pretium turpis et arcu. Duis arcu tortor, suscipit eget, imperdiet nec, imperdiet iaculis, ipsum. Sed aliquam ultrices mauris. Integer ante arcu, accumsan a, consectetuer eget, posuere ut, mauris. Praesent adipiscing. Phasellus ullamcorper ipsum rutrum nunc. Nunc nonummy metus. Vestibulum volutpat pretium libero. Cras id dui. Aenean ut eros et nisl sagittis vestibulum. Nullam nulla eros, ultricies sit amet, nonummy id, imperdiet feugiat, pede. Sed lectus.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Fine-grained analysis of sentence embeddings using auxiliary prediction tasks",
                "authors": [
                    {
                        "first": "Einat",
                        "middle": [],
                        "last": "References Yossi Adi",
                        "suffix": ""
                    },
                    {
                        "first": "Yonatan",
                        "middle": [],
                        "last": "Kermany",
                        "suffix": ""
                    },
                    {
                        "first": "Ofer",
                        "middle": [],
                        "last": "Belinkov",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Lavi",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1608.04207"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "References Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, and Yoav Goldberg. 2016. Fine-grained anal- ysis of sentence embeddings using auxiliary predic- tion tasks. arXiv:1608.04207. Version 3.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Information-seeking behaviors of computer scientists: Challenges for electronic literature search tools",
                "authors": [
                    {
                        "first": "Kumaripaba",
                        "middle": [],
                        "last": "Athukorala",
                        "suffix": ""
                    },
                    {
                        "first": "Eve",
                        "middle": [],
                        "last": "Hoggan",
                        "suffix": ""
                    },
                    {
                        "first": "Anu",
                        "middle": [],
                        "last": "Lehti\u00f6",
                        "suffix": ""
                    },
                    {
                        "first": "Tuukka",
                        "middle": [],
                        "last": "Ruotsalo",
                        "suffix": ""
                    },
                    {
                        "first": "Giulio",
                        "middle": [],
                        "last": "Jacucci",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the American Society for Information Science and Technology",
                "volume": "",
                "issue": "",
                "pages": "1--11",
                "other_ids": {
                    "DOI": [
                        "10.1002/meet.14505001041"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kumaripaba Athukorala, Eve Hoggan, Anu Lehti\u00f6, Tuukka Ruotsalo, and Giulio Jacucci. 2013. Information-seeking behaviors of computer scien- tists: Challenges for electronic literature search tools. In Proceedings of the American Society for Information Science and Technology, pages 1-11.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Query formulation in web information search",
                "authors": [
                    {
                        "first": "Anne",
                        "middle": [],
                        "last": "Aula",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the IADIS International Conference on WWW/Internet (ICWI 2003)",
                "volume": "",
                "issue": "",
                "pages": "403--410",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Anne Aula. 2003. Query formulation in web informa- tion search. In Proceedings of the IADIS Interna- tional Conference on WWW/Internet (ICWI 2003), pages 403-410.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Query expansion techniques for information retrieval: A survey. Information Processing & Management",
                "authors": [
                    {
                        "first": "Akshay",
                        "middle": [],
                        "last": "Hiteshwar Kumar Azad",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Deepak",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "56",
                "issue": "",
                "pages": "1698--1735",
                "other_ids": {
                    "DOI": [
                        "10.1016/j.ipm.2019.05.009"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Hiteshwar Kumar Azad and Akshay Deepak. 2019. Query expansion techniques for information re- trieval: A survey. Information Processing & Man- agement, 56(5):1698-1735.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Measuring the utility of search engine result pages",
                "authors": [
                    {
                        "first": "Leif",
                        "middle": [],
                        "last": "Azzopardi",
                        "suffix": ""
                    },
                    {
                        "first": "Paul",
                        "middle": [],
                        "last": "Thomas",
                        "suffix": ""
                    },
                    {
                        "first": "Nick",
                        "middle": [],
                        "last": "Craswell",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval -SIGIR '18",
                "volume": "",
                "issue": "",
                "pages": "605--614",
                "other_ids": {
                    "DOI": [
                        "10.1145/3209978.3210027"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Leif Azzopardi, Paul Thomas, and Nick Craswell. 2018. Measuring the utility of search engine result pages. In The 41st International ACM SIGIR Con- ference on Research & Development in Information Retrieval -SIGIR '18, pages 605-614.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Helping people find what they don't know",
                "authors": [
                    {
                        "first": "Nicolas",
                        "middle": [
                            "J"
                        ],
                        "last": "Belkin",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Communications of the ACM",
                "volume": "43",
                "issue": "8",
                "pages": "58--61",
                "other_ids": {
                    "DOI": [
                        "10.1145/345124.345143"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Nicolas J. Belkin. 2000. Helping people find what they don't know. Communications of the ACM, 43(8):58- 61.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Neural sentence embedding models for semantic similarity estimation in the biomedical domain",
                "authors": [
                    {
                        "first": "Kathrin",
                        "middle": [],
                        "last": "Blagec",
                        "suffix": ""
                    },
                    {
                        "first": "Hong",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Asan",
                        "middle": [],
                        "last": "Agibetov",
                        "suffix": ""
                    },
                    {
                        "first": "Matthias",
                        "middle": [],
                        "last": "Samwald",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "BMC bioinformatics",
                "volume": "20",
                "issue": "1",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1186/s12859-019-2789-2"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kathrin Blagec, Hong Xu, Asan Agibetov, and Matthias Samwald. 2019. Neural sentence em- bedding models for semantic similarity estimation in the biomedical domain. BMC bioinformatics, 20(1):178.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "What you can cram into a single vector: Probing sentence embeddings for linguistic properties",
                "authors": [
                    {
                        "first": "Alexis",
                        "middle": [],
                        "last": "Conneau",
                        "suffix": ""
                    },
                    {
                        "first": "German",
                        "middle": [],
                        "last": "Kruszewski",
                        "suffix": ""
                    },
                    {
                        "first": "Guillaume",
                        "middle": [],
                        "last": "Lample",
                        "suffix": ""
                    },
                    {
                        "first": "Lo\u00efc",
                        "middle": [],
                        "last": "Barrault",
                        "suffix": ""
                    },
                    {
                        "first": "Marco",
                        "middle": [],
                        "last": "Baroni",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1805.01070"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Alexis Conneau, German Kruszewski, Guillaume Lample, Lo\u00efc Barrault, and Marco Baroni. 2018. What you can cram into a single vector: Prob- ing sentence embeddings for linguistic properties. arXiv:1805.01070. Version 2.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Locality-sensitive hashing scheme based on p-stable distributions",
                "authors": [
                    {
                        "first": "Mayur",
                        "middle": [],
                        "last": "Datar",
                        "suffix": ""
                    },
                    {
                        "first": "Nicole",
                        "middle": [],
                        "last": "Immorlica",
                        "suffix": ""
                    },
                    {
                        "first": "Piotr",
                        "middle": [],
                        "last": "Indyk",
                        "suffix": ""
                    },
                    {
                        "first": "Vahab",
                        "middle": [
                            "S"
                        ],
                        "last": "Mirrokni",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1145/997817.997857"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Mayur Datar, Nicole Immorlica, Piotr Indyk, and Va- hab S. Mirrokni. 2004. Locality-sensitive hashing scheme based on p-stable distributions. page 253.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Learning semantic similarity for very short texts",
                "authors": [
                    {
                        "first": "Cedric",
                        "middle": [
                            "De"
                        ],
                        "last": "Boom",
                        "suffix": ""
                    },
                    {
                        "first": "Steven",
                        "middle": [],
                        "last": "Van Canneyt",
                        "suffix": ""
                    },
                    {
                        "first": "Steven",
                        "middle": [],
                        "last": "Bohez",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Demeester",
                        "suffix": ""
                    },
                    {
                        "first": "Bart",
                        "middle": [],
                        "last": "Dhoedt",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "2015 IEEE International Conference on Data Mining Workshop (ICDMW)",
                "volume": "",
                "issue": "",
                "pages": "1229--1234",
                "other_ids": {
                    "DOI": [
                        "10.1109/ICDMW.2015.86"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Cedric De Boom, Steven Van Canneyt, Steven Bohez, Thomas Demeester, and Bart Dhoedt. 2015. Learn- ing semantic similarity for very short texts. In 2015 IEEE International Conference on Data Min- ing Workshop (ICDMW), pages 1229-1234.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Version 2",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "BERT: Pre-training of deep bidirectional transformers for language understanding",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1810.04805"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: Pre-training of deep bidirectional transformers for language under- standing. arXiv:1810.04805. Version 2.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Document similarity for texts of varying lengths via hidden topics",
                "authors": [
                    {
                        "first": "Hongyu",
                        "middle": [],
                        "last": "Gong",
                        "suffix": ""
                    },
                    {
                        "first": "Tarek",
                        "middle": [],
                        "last": "Sakakini",
                        "suffix": ""
                    },
                    {
                        "first": "Suma",
                        "middle": [],
                        "last": "Bhat",
                        "suffix": ""
                    },
                    {
                        "first": "Jinjun",
                        "middle": [],
                        "last": "Xiong",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "2341--2351",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P18-1218"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Hongyu Gong, Tarek Sakakini, Suma Bhat, and JinJun Xiong. 2018. Document similarity for texts of vary- ing lengths via hidden topics. In Proceedings of the 56th Annual Meeting of the Association for Compu- tational Linguistics (Volume 1: Long Papers), pages 2341-2351.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "Distribution of cognitive load in web search",
                "authors": [
                    {
                        "first": "Jacek",
                        "middle": [],
                        "last": "Gwizdka",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Journal of the American Society for Information Science and Technology",
                "volume": "61",
                "issue": "11",
                "pages": "2167--2187",
                "other_ids": {
                    "DOI": [
                        "10.1002/asi.21385"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacek Gwizdka. 2010. Distribution of cognitive load in web search. Journal of the American Society for Information Science and Technology, 61(11):2167- 2187.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "Modeling and remodeling writing",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "John",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Hayes",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Written Communication",
                "volume": "29",
                "issue": "3",
                "pages": "369--388",
                "other_ids": {
                    "DOI": [
                        "10.1177/0741088312451260"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "John R. Hayes. 2012. Modeling and remodeling writ- ing. Written Communication, 29(3):369-388.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "Defining the problem: terminology and progress in ecology",
                "authors": [
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Karen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Hodges",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Frontiers in Ecology and the Environment",
                "volume": "6",
                "issue": "1",
                "pages": "35--42",
                "other_ids": {
                    "DOI": [
                        "10.1890/060108"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Karen E Hodges. 2008. Defining the problem: termi- nology and progress in ecology. Frontiers in Ecol- ogy and the Environment, 6(1):35-42.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "Billion-scale similarity search with GPUs",
                "authors": [
                    {
                        "first": "Jeff",
                        "middle": [],
                        "last": "Johnson",
                        "suffix": ""
                    },
                    {
                        "first": "Matthijs",
                        "middle": [],
                        "last": "Douze",
                        "suffix": ""
                    },
                    {
                        "first": "Herv\u00e9",
                        "middle": [],
                        "last": "J\u00e9gou",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "1",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1702.08734"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jeff Johnson, Matthijs Douze, and Herv\u00e9 J\u00e9gou. 2017. Billion-scale similarity search with GPUs. arXiv:1702.08734. Version 1.",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "The rate of growth in scientific publication and the decline in coverage provided by science citation index",
                "authors": [
                    {
                        "first": "Markus",
                        "middle": [],
                        "last": "Peder Olesen Larsen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Von Ins",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Scientometrics",
                "volume": "84",
                "issue": "3",
                "pages": "575--603",
                "other_ids": {
                    "DOI": [
                        "10.1007/s11192-010-0202-z"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Peder Olesen Larsen and Markus von Ins. 2010. The rate of growth in scientific publication and the de- cline in coverage provided by science citation index. Scientometrics, 84(3):575-603.",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "Distributed representations of sentences and documents",
                "authors": [
                    {
                        "first": "Quoc",
                        "middle": [],
                        "last": "Le",
                        "suffix": ""
                    },
                    {
                        "first": "Tomas",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "International conference on machine learning",
                "volume": "",
                "issue": "",
                "pages": "1188--1196",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Quoc Le and Tomas Mikolov. 2014. Distributed repre- sentations of sentences and documents. In Interna- tional conference on machine learning, pages 1188- 1196.",
                "links": null
            },
            "BIBREF40": {
                "ref_id": "b40",
                "title": "Confirmation bias: A ubiquitous phenomenon in many guises",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Raymond",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Nickerson",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "Review of General Psychology",
                "volume": "2",
                "issue": "2",
                "pages": "175--220",
                "other_ids": {
                    "DOI": [
                        "10.1037/1089-2680.2.2.175"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Raymond S. Nickerson. 1998. Confirmation bias: A ubiquitous phenomenon in many guises. Review of General Psychology, 2(2):175-220.",
                "links": null
            },
            "BIBREF41": {
                "ref_id": "b41",
                "title": "Large-scale hierarchical alignment for data-driven text rewriting",
                "authors": [
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Nikola",
                        "suffix": ""
                    },
                    {
                        "first": "Richard H R",
                        "middle": [],
                        "last": "Nikolov",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Hahnloser",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of Recent Advances in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "844--853",
                "other_ids": {
                    "DOI": [
                        "10.26615/978-954-452-056-4_098"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Nikola I Nikolov and Richard H R Hahnloser. 2019. Large-scale hierarchical alignment for data-driven text rewriting. In Proceedings of Recent Advances in Natural Language Processing, pages 844-853.",
                "links": null
            },
            "BIBREF42": {
                "ref_id": "b42",
                "title": "Fast search in hamming space with multi-index hashing",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Norouzi",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Punjani",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [
                            "J"
                        ],
                        "last": "Fleet",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "3108--3115",
                "other_ids": {
                    "DOI": [
                        "10.1109/CVPR.2012.6248043"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "M. Norouzi, A. Punjani, and D. J. Fleet. 2012. Fast search in hamming space with multi-index hashing. pages 3108-3115.",
                "links": null
            },
            "BIBREF43": {
                "ref_id": "b43",
                "title": "Unsupervised learning of sentence embeddings using compositional n-gram features",
                "authors": [
                    {
                        "first": "Matteo",
                        "middle": [],
                        "last": "Pagliardini",
                        "suffix": ""
                    },
                    {
                        "first": "Prakhar",
                        "middle": [],
                        "last": "Gupta",
                        "suffix": ""
                    },
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Jaggi",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "528--540",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N18-1049"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi. 2018. Unsupervised learning of sentence embed- dings using compositional n-gram features. In Pro- ceedings of the 2018 Conference of the North Amer- ican Chapter of the Association for Computational Linguistics: Human Language Technologies (Vol- ume 1: Long Papers, pages 528-540.",
                "links": null
            },
            "BIBREF44": {
                "ref_id": "b44",
                "title": "What is in a name? the need for accurate scientific nomenclature for plants",
                "authors": [
                    {
                        "first": "Diego",
                        "middle": [],
                        "last": "Rivera",
                        "suffix": ""
                    },
                    {
                        "first": "Robert",
                        "middle": [],
                        "last": "Allkin",
                        "suffix": ""
                    },
                    {
                        "first": "Concepci\u00f3n",
                        "middle": [],
                        "last": "Ob\u00f3n",
                        "suffix": ""
                    },
                    {
                        "first": "Francisco",
                        "middle": [],
                        "last": "Alcaraz",
                        "suffix": ""
                    },
                    {
                        "first": "Rob",
                        "middle": [],
                        "last": "Verpoorte",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Heinrich",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Journal of Ethnopharmacology",
                "volume": "152",
                "issue": "3",
                "pages": "393--402",
                "other_ids": {
                    "DOI": [
                        "10.1016/j.jep.2013.12.022"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Diego Rivera, Robert Allkin, Concepci\u00f3n Ob\u00f3n, Fran- cisco Alcaraz, Rob Verpoorte, and Michael Hein- rich. 2014. What is in a name? the need for accu- rate scientific nomenclature for plants. Journal of Ethnopharmacology, 152(3):393-402.",
                "links": null
            },
            "BIBREF45": {
                "ref_id": "b45",
                "title": "The probabilistic relevance framework: BM25 and beyond",
                "authors": [
                    {
                        "first": "Stephen",
                        "middle": [],
                        "last": "Robertson",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Foundations and Trends in Information Retrieval",
                "volume": "3",
                "issue": "4",
                "pages": "333--389",
                "other_ids": {
                    "DOI": [
                        "10.1561/1500000019"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Stephen Robertson. 2009. The probabilistic relevance framework: BM25 and beyond. Foundations and Trends in Information Retrieval, 3(4):333-389.",
                "links": null
            },
            "BIBREF46": {
                "ref_id": "b46",
                "title": "Learning domain-specific word embeddings from sparse cybersecurity texts",
                "authors": [
                    {
                        "first": "Arpita",
                        "middle": [],
                        "last": "Roy",
                        "suffix": ""
                    },
                    {
                        "first": "Youngja",
                        "middle": [],
                        "last": "Park",
                        "suffix": ""
                    },
                    {
                        "first": "Shimei",
                        "middle": [],
                        "last": "Pan",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1709.07470.Ver-sion1"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Arpita Roy, Youngja Park, and Shimei Pan. 2017. Learning domain-specific word embeddings from sparse cybersecurity texts. arXiv:1709.07470. Ver- sion 1.",
                "links": null
            },
            "BIBREF47": {
                "ref_id": "b47",
                "title": "Scientific writing of novice researchers: what difficulties and encouragements do they encounter?",
                "authors": [
                    {
                        "first": "Jatin",
                        "middle": [],
                        "last": "Shah",
                        "suffix": ""
                    },
                    {
                        "first": "Anand",
                        "middle": [],
                        "last": "Shah",
                        "suffix": ""
                    },
                    {
                        "first": "Ricardo",
                        "middle": [],
                        "last": "Pietrobon",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Academic Medicine",
                "volume": "84",
                "issue": "4",
                "pages": "511--517",
                "other_ids": {
                    "DOI": [
                        "10.1097/ACM.0b013e31819a8c3c"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jatin Shah, Anand Shah, and Ricardo Pietrobon. 2009. Scientific writing of novice researchers: what diffi- culties and encouragements do they encounter? Aca- demic Medicine, 84(4):511-6.",
                "links": null
            },
            "BIBREF48": {
                "ref_id": "b48",
                "title": "Towards a unified approach to document similarity search using manifold-ranking of blocks",
                "authors": [
                    {
                        "first": "Xiaojun",
                        "middle": [],
                        "last": "Wan",
                        "suffix": ""
                    },
                    {
                        "first": "Jianwu",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Jianguo",
                        "middle": [],
                        "last": "Xiao",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Information Processing & Management",
                "volume": "44",
                "issue": "3",
                "pages": "1032--1048",
                "other_ids": {
                    "DOI": [
                        "10.1016/j.ipm.2007.07.012"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Xiaojun Wan, Jianwu Yang, and Jianguo Xiao. 2008. Towards a unified approach to document similarity search using manifold-ranking of blocks. Informa- tion Processing & Management, 44(3):1032-1048.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "text": "p o i n t r e c a l l",
                "uris": null,
                "num": null
            },
            "TABREF1": {
                "text": "Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim.Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo. Nullam dictum felis eu pede mollis pretium. Integer tincidunt. Cras dapibus. Vivamus elementum semper nisi. Aenean vulputate eleifend tellus.Aenean leo ligula, porttitor eu, consequat vitae, eleifend ac, enim. Aliquam lorem ante, dapibus in, viverra quis, feugiat a, tellus. Phasellus viverra nulla ut metus varius laoreet. Quisque rutrum. Aenean imperdiet. Etiam ultricies nisi vel augue.Curabitur ullamcorper ultricies nisi. Nam eget dui. Etiam rhoncus. Maecenas tempus, tellus eget condimentum rhoncus, sem quam semper libero, sit amet adipiscing sem neque sed ipsum. Nam quam nunc, blandit vel, luctus pulvinar, hendrerit id, lorem. Maecenas nec odio et ante tincidunt tempus. Donec vitae sapien ut libero venenatis faucibus. Nullam quis ante. Etiam sit amet orci eget eros faucibus tincidunt. Duis leo. Sed fringilla mauris sit amet nibh. Donec sodales sagittis magna. Sed consequat, leo eget bibendum sodales, augue velit cursus nunc, quis gravida magna mi a libero. Fusce vulputate eleifend sapien. Vestibulum purus quam, scelerisque ut, mollis sed, nonummy id, metus. Nullam accumsan lorem in dui. Cras ultricies mi eu turpis hendrerit fringilla. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; In ac dui quis mi consectetuer lacinia. Nam pretium turpis et arcu. Duis arcu tortor, suscipit eget, imperdiet nec, imperdiet iaculis, ipsum. Sed aliquam ultrices mauris. Integer ante arcu, accumsan a, consectetuer eget, posuere ut, mauris. Praesent adipiscing. Phasellus ullamcorper ipsum rutrum nunc. Nunc nonummy metus. Vestibulum volutpat pretium libero. Cras id dui. Aenean ut eros et nisl sagittis vestibulum. Nullam nulla eros, ultricies sit amet, nonummy id, imperdiet feugiat, pede. Sed lectus. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo. Nullam dictum felis eu pede mollis pretium. Integer tincidunt. Cras dapibus. Vivamus elementum semper nisi. Aenean vulputate eleifend tellus. Aenean leo ligula, porttitor eu, consequat vitae, eleifend ac, enim. Aliquam lorem ante, dapibus in, viverra quis, feugiat a, tellus. Phasellus viverra nulla ut metus varius laoreet. Quisque rutrum. Aenean imperdiet. Etiam ultricies nisi vel augue. Curabitur ullamcorper ultricies nisi. Nam eget dui. Etiam rhoncus. Maecenas tempus, tellus eget condimentum rhoncus, sem quam semper libero, sit amet adipiscing sem neque sed ipsum. Nam quam nunc, blandit vel, luctus pulvinar, hendrerit id, lorem. Maecenas nec odio et ante tincidunt tempus. Donec vitae sapien ut libero venenatis faucibus. Nullam quis ante. Etiam sit amet orci eget eros faucibus tincidunt. Duis leo. Sed fringilla mauris sit amet nibh. Donec sodales sagittis magna. Sed consequat, leo eget bibendum sodales, augue velit cursus nunc, quis gravida magna mi a libero. Fusce vulputate eleifend sapien. Vestibulum purus quam, scelerisque ut, mollis sed, nonummy id, metus. Nullam accumsan lorem in dui. Cras ultricies mi eu turpis hendrerit fringilla. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; In ac dui quis mi consectetuer lacinia. Nam pretium turpis et arcu. Duis arcu tortor, suscipit eget, imperdiet nec, imperdiet iaculis, ipsum. Sed aliquam ultrices mauris. Integer ante arcu, accumsan a, consectetuer eget, posuere ut, mauris. Praesent adipiscing. Phasellus ullamcorper ipsum rutrum nunc. Nunc nonummy metus. Vestibulum volutpat pretium libero. Cras id dui. Aenean ut eros et nisl sagittis vestibulum. Nullam nulla eros, ultricies sit amet, nonummy id, imperdiet feugiat, pede. Sed lectus. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo. Nullam dictum felis eu pede mollis pretium. Integer tincidunt. Cras dapibus. Vivamus elementum semper nisi. Aenean vulputate eleifend tellus.Aenean leo ligula, porttitor eu, consequat vitae, eleifend ac, enim. Aliquam lorem ante, dapibus in, viverra quis, feugiat a, tellus. Phasellus viverra nulla ut metus varius laoreet. Quisque rutrum. Aenean imperdiet. Etiam ultricies nisi vel augue. Curabitur ullamcorper ultricies nisi. Nam eget dui. Etiam rhoncus. Maecenas tempus, tellus eget condimentum rhoncus, sem quam semper libero, sit amet adipiscing sem neque sed ipsum. Nam quam nunc, blandit vel, luctus pulvinar, hendrerit id, lorem. Maecenas nec odio et ante tincidunt tempus. Donec vitae sapien ut libero venenatis faucibus. Nullam quis ante.",
                "type_str": "table",
                "html": null,
                "content": "<table><tr><td/><td>Publication</td></tr><tr><td/><td>database</td></tr><tr><td/><td>Keyword</td></tr><tr><td/><td>based</td></tr><tr><td/><td>ltering</td></tr><tr><td/><td>subset of</td></tr><tr><td/><td>publications</td></tr><tr><td>Ranking source</td><td>Embedding</td></tr><tr><td>Manuscript or a part of it or other text</td><td>based ranking</td></tr><tr><td colspan=\"2\">Ranked results</td></tr><tr><td/><td>Etiam sit amet orci eget eros faucibus tincidunt. Duis leo.</td></tr><tr><td/><td>Sed fringilla mauris sit amet nibh. Donec sodales sagittis</td></tr><tr><td/><td>magna. Sed consequat, leo eget bibendum sodales, augue velit</td></tr><tr><td/><td>cursus nunc, quis gravida magna mi a libero. Fusce vulputate</td></tr><tr><td/><td>eleifend sapien. Vestibulum purus quam, scelerisque ut, mollis</td></tr><tr><td/><td>sed, nonummy id, metus. Nullam accumsan lorem in dui. Cras</td></tr><tr><td/><td>ultricies mi eu turpis hendrerit fringilla. Vestibulum ante ipsum</td></tr><tr><td/><td>primis in faucibus orci luctus et ultrices posuere cubilia Curae;</td></tr><tr><td/><td>In ac dui quis mi consectetuer lacinia. Nam pretium turpis et</td></tr><tr><td/><td>arcu. Duis arcu tortor, suscipit eget, imperdiet nec, imperdiet</td></tr><tr><td/><td>iaculis, ipsum. Sed aliquam ultrices mauris.</td></tr><tr><td/><td>Integer ante arcu, accumsan a, consectetuer eget, posuere ut,</td></tr><tr><td/><td>mauris. Praesent adipiscing. Phasellus ullamcorper ipsum</td></tr><tr><td/><td>rutrum nunc. Nunc nonummy metus. Vestibulum volutpat</td></tr><tr><td/><td>pretium libero. Cras id dui. Aenean ut eros et nisl sagittis</td></tr><tr><td/><td>vestibulum. Nullam nulla eros, ultricies sit amet, nonummy id,</td></tr><tr><td/><td>imperdiet feugiat, pede. Sed lectus.</td></tr><tr><td colspan=\"2\">Read or add to library or cite</td></tr></table>",
                "num": null
            }
        }
    }
}