File size: 109,105 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 |
{
"paper_id": "2020",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T01:16:49.513588Z"
},
"title": "NLP Scholar: An Interactive Visual Explorer for Natural Language Processing Literature",
"authors": [
{
"first": "Saif",
"middle": [
"M"
],
"last": "Mohammad",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National Research Council",
"location": {
"country": "Canada"
}
},
"email": "saif.mohammad@nrc-cnrc.gc.ca"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "As part of the NLP Scholar project, we created a single unified dataset of NLP papers and their meta-information (including citation numbers), by extracting and aligning information from the ACL Anthology and Google Scholar. In this paper, we describe several interconnected interactive visualizations (dashboards) that present various aspects of the data. Clicking on an item within a visualization or entering query terms in the search boxes filters the data in all visualizations in the dashboard. This allows users to search for papers in the area of their interest, published within specific time periods, published by specified authors, etc. The interactive visualizations presented here, and the associated dataset of papers mapped to citations, have additional uses as well including understanding how the field is growing (both overall and across sub-areas), as well as quantifying the impact of different types of papers on subsequent publications.",
"pdf_parse": {
"paper_id": "2020",
"_pdf_hash": "",
"abstract": [
{
"text": "As part of the NLP Scholar project, we created a single unified dataset of NLP papers and their meta-information (including citation numbers), by extracting and aligning information from the ACL Anthology and Google Scholar. In this paper, we describe several interconnected interactive visualizations (dashboards) that present various aspects of the data. Clicking on an item within a visualization or entering query terms in the search boxes filters the data in all visualizations in the dashboard. This allows users to search for papers in the area of their interest, published within specific time periods, published by specified authors, etc. The interactive visualizations presented here, and the associated dataset of papers mapped to citations, have additional uses as well including understanding how the field is growing (both overall and across sub-areas), as well as quantifying the impact of different types of papers on subsequent publications.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "NLP is a broad interdisciplinary field that draws knowledge from Computer Science, Linguistics, Information Science, Psychology, Social Sciences, and more. 1 Over the years, scientific publications in NLP have grown in number and diversity; we now see papers published on a vast array of research questions and applications in a growing list of venues-in journals such as CL and TACL, in large conferences such as ACL and EMNLP, as well as a number of small area-focused workshops.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "The ACL Anthology (AA) is a digital repository of public domain, free to access, articles on NLP. 2 It includes papers published in the family of ACL conferences as well as in other NLP conferences such as LREC and RANLP. As of June 2019, it provided access to the full text and metadata for close to 50K articles published since 1965. 3 It is the largest single source of scientific literature on NLP. However, the meta-data does not include citation statistics.",
"cite_spans": [
{
"start": 98,
"end": 99,
"text": "2",
"ref_id": null
},
{
"start": 336,
"end": 337,
"text": "3",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Citation statistics are the most commonly used metrics of research impact. They include: number of citations, average citations, h-index, relative citation ratio, and impact factor. Note, however, that the number of citations is not always a reflection of the quality or importance of a piece of work. Furthermore, the citation process can be abused, for example, by egregious self-citations (Ioannidis et al., 2019) . Nonetheless, given the immense volume of scientific literature, the relative ease with which one can track citations using services such as Google Scholar (GS), and given the lack of other easily applicable and effective metrics, citation analysis is an imperfect but useful window into research impact.",
"cite_spans": [
{
"start": 392,
"end": 416,
"text": "(Ioannidis et al., 2019)",
"ref_id": "BIBREF10"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Google Scholar is a free web search engine for academic literature. 4 Through it, users can access the metadata associated with an article such as the number of citations it has received. Google Scholar does not provide information on how many articles are included in its database. However, scientometric researchers estimated that it included about 389 million documents in January 2018 (Gusenbauer, 2019)-making it the world's largest source of academic information. Thus, it is not surprising that there is growing interest in the use of Google Scholar information to draw inferences about scholarly research in general Mingers and Leydesdorff, 2015; Ordu\u00f1a-Malea et al., 2014; Khabsa and Giles, 2014; Howland, 2010) and on scholarly impact in particular (Bos and Nitza, 2019; Ioannidis et al., 2019; Ravenscroft et al., 2017; Bulaitis, 2017; Yogatama et al., 2011; Priem and Hemminger, 2010) .",
"cite_spans": [
{
"start": 68,
"end": 69,
"text": "4",
"ref_id": null
},
{
"start": 624,
"end": 654,
"text": "Mingers and Leydesdorff, 2015;",
"ref_id": "BIBREF15"
},
{
"start": 655,
"end": 681,
"text": "Ordu\u00f1a-Malea et al., 2014;",
"ref_id": "BIBREF22"
},
{
"start": 682,
"end": 705,
"text": "Khabsa and Giles, 2014;",
"ref_id": "BIBREF11"
},
{
"start": 706,
"end": 720,
"text": "Howland, 2010)",
"ref_id": "BIBREF9"
},
{
"start": 759,
"end": 780,
"text": "(Bos and Nitza, 2019;",
"ref_id": "BIBREF3"
},
{
"start": 781,
"end": 804,
"text": "Ioannidis et al., 2019;",
"ref_id": "BIBREF10"
},
{
"start": 805,
"end": 830,
"text": "Ravenscroft et al., 2017;",
"ref_id": "BIBREF27"
},
{
"start": 831,
"end": 846,
"text": "Bulaitis, 2017;",
"ref_id": "BIBREF4"
},
{
"start": 847,
"end": 869,
"text": "Yogatama et al., 2011;",
"ref_id": "BIBREF31"
},
{
"start": 870,
"end": 896,
"text": "Priem and Hemminger, 2010)",
"ref_id": "BIBREF24"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Services such as Google Scholar and Semantic Scholar cover a wide variety of academic disciplines. Wile there are benefits to this, the lack of focus on NLP literature has some drawbacks as well: e.g, the potential for too many search results that include many irrelevant papers. For example, if one is interested in NLP papers on emotion and privacy, searching for them on Google Scholar is less efficient than searching for them on a platform dedicated to NLP papers. Further, services such as Google Scholar provide minimal interactive visualizations. NLP Scholar with its focus on AA data, is not meant to replace these tools, but act as a complementary tool for dedicated visual search of NLP literature.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "ACL 2020 has a special theme asking researchers to reflect on the state of NLP. In the spirit of that theme, and as part of a broader project on analyzing NLP Literature, we extracted and aligned information from the ACL Anthology (AA) and Google Scholar to create a dataset of tens of thousands of NLP papers and their citations (Mohammad, 2020c (Mohammad, , 2019 . In separate work, we have used the data to explores questions such as: how well cited are papers of different types (journal articles, conference papers, demo papers, etc.)? how well cited are papers published in different time spans? how well cited are papers from different areas of research within NLP? etc. (Mohammad, 2020a) . We also explored gender gaps in Natural Language Processing research, in terms of authorship and citations (Mohammad, 2020b) . In this paper we describe how we built an interactive visual explorer for this unified data, which we refer to as NLP Scholar. Some notable uses of NLP Scholar are listed below:",
"cite_spans": [
{
"start": 330,
"end": 346,
"text": "(Mohammad, 2020c",
"ref_id": "BIBREF20"
},
{
"start": 347,
"end": 364,
"text": "(Mohammad, , 2019",
"ref_id": "BIBREF17"
},
{
"start": 678,
"end": 695,
"text": "(Mohammad, 2020a)",
"ref_id": "BIBREF18"
},
{
"start": 805,
"end": 822,
"text": "(Mohammad, 2020b)",
"ref_id": "BIBREF19"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 Search for relevant related work in various areas within NLP.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 Identify the highly cited articles on an interactive timeline.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 Identify past papers published in a venue of interest (such as ACL or LREC).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 Identify papers from the past (say ten years back) published in a venue of interest (say ACL or LREC) that have made substantial impact through citations.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 Examine changes in number of articles and number of citations in a chosen area of interest over time.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 Identify citation impact of different types of papers-e.g., short papers, shared task papers, demo papers, etc.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Even beyond the dedicated interactive visualizer described here, the underlying data with its alignment between AA and GS has potential uses in:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 Creating a web browser extension that allows users of GS to look up the aligned AA information (the full ACL BibTeX, poster, slides, access to proceedings from the same venue, etc.).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 Similarly, in the reverse direction, allowing access from AA to the GS information on the aligned paper. This could include number of citations, lists of papers citing the paper, etc.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Perhaps most importantly, though, NLP Scholar serves as a visual record of the state of NLP literature in terms of citations. We note again though, that even though this work seeks to make citation metrics more accessible for ACL Anthology papers, citation metrics are not always accurate reflections of the quality, importance, or impact of individual papers. All of the data and interactive visualizations associated with this work are freely available through the project homepage. 5",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Much of the work in visualizing scientific literature has focused on showing topics of research (Wu et al., 2019; Heimerl et al., 2012; Lee et al., 2005) . There is also notable work on visualizing communities through citation networks (Heimerl et al., 2015; Radev et al., 2016) .",
"cite_spans": [
{
"start": 96,
"end": 113,
"text": "(Wu et al., 2019;",
"ref_id": "BIBREF30"
},
{
"start": 114,
"end": 135,
"text": "Heimerl et al., 2012;",
"ref_id": "BIBREF8"
},
{
"start": 136,
"end": 153,
"text": "Lee et al., 2005)",
"ref_id": "BIBREF12"
},
{
"start": 236,
"end": 258,
"text": "(Heimerl et al., 2015;",
"ref_id": "BIBREF7"
},
{
"start": 259,
"end": 278,
"text": "Radev et al., 2016)",
"ref_id": "BIBREF26"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Background and Related Work",
"sec_num": "2"
},
{
"text": "Various subsets of AA have been used in the past for a number of tasks, including: to study citation patterns and intent (Radev et al., 2016; Zhu et al., 2015; Nanba et al., 2011; Mohammad et al., 2009; Teufel et al., 2006; Aya et al., 2005; Pham and Hoffmann, 2003) , to generate summaries of scientific articles (Qazvinian et al., 2013), to study gender disparities in NLP (Schluter, 2018) , to study subtopics within NLP (Anderson et al., 2012) , and to create corpora of scientific articles (Mariani et al., 2018; Bird et al., 2008) .",
"cite_spans": [
{
"start": 121,
"end": 141,
"text": "(Radev et al., 2016;",
"ref_id": "BIBREF26"
},
{
"start": 142,
"end": 159,
"text": "Zhu et al., 2015;",
"ref_id": "BIBREF32"
},
{
"start": 160,
"end": 179,
"text": "Nanba et al., 2011;",
"ref_id": "BIBREF21"
},
{
"start": 180,
"end": 202,
"text": "Mohammad et al., 2009;",
"ref_id": "BIBREF16"
},
{
"start": 203,
"end": 223,
"text": "Teufel et al., 2006;",
"ref_id": "BIBREF29"
},
{
"start": 224,
"end": 241,
"text": "Aya et al., 2005;",
"ref_id": "BIBREF1"
},
{
"start": 242,
"end": 266,
"text": "Pham and Hoffmann, 2003)",
"ref_id": "BIBREF23"
},
{
"start": 375,
"end": 391,
"text": "(Schluter, 2018)",
"ref_id": "BIBREF28"
},
{
"start": 424,
"end": 447,
"text": "(Anderson et al., 2012)",
"ref_id": "BIBREF0"
},
{
"start": 495,
"end": 517,
"text": "(Mariani et al., 2018;",
"ref_id": "BIBREF13"
},
{
"start": 518,
"end": 536,
"text": "Bird et al., 2008)",
"ref_id": "BIBREF2"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Background and Related Work",
"sec_num": "2"
},
{
"text": "However, none of these works provide an interactive visualization for users to explore NLP literature and their citations.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Background and Related Work",
"sec_num": "2"
},
{
"text": "We now briefly describe how we extracted information from the ACL Anthology and Google Scholar. (Further details about the dataset, as well as an analysis of the volume of research in NLP over the years, are available in Mohammad (2020c).)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Data",
"sec_num": "3"
},
{
"text": "The ACL Anthology provides access to its data through its website and a github repository (Gildea et al., 2018) . 6 We extracted paper title, names of authors, year of publication, and venue of publication from the repository. 7 As of June 2019, AA had \u223c50K entries; however, this includes forewords, schedules, etc. that are not truly research publications. After discarding them we are left with a set of 44,895 papers.",
"cite_spans": [
{
"start": 90,
"end": 111,
"text": "(Gildea et al., 2018)",
"ref_id": "BIBREF5"
},
{
"start": 114,
"end": 115,
"text": "6",
"ref_id": null
},
{
"start": 227,
"end": 228,
"text": "7",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "ACL Anthology Data",
"sec_num": "3.1"
},
{
"text": "Google Scholar does not provide an API to extract information about the papers. This is likely because of its agreement with publishing companies that have scientific literature behind paywalls . We extracted citation information from Google Scholar profiles of authors who published at least three papers in the ACL Anthology. (This is explicitly allowed by GS's robots exclusion standard. This is also how past work has studied Google Scholar (Khabsa and Giles, 2014; Ordu\u00f1a-Malea et al., 2014; .) This yielded citation information for 1.1 million papers in total. We will refer to this dataset as GS-NLP. Note that GS-NLP includes citation counts not just for NLP papers, but also for non-NLP papers published by the authors.",
"cite_spans": [
{
"start": 445,
"end": 469,
"text": "(Khabsa and Giles, 2014;",
"ref_id": "BIBREF11"
},
{
"start": 470,
"end": 496,
"text": "Ordu\u00f1a-Malea et al., 2014;",
"ref_id": "BIBREF22"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Google Scholar Data",
"sec_num": "3.2"
},
{
"text": "GS-NLP includes 32,985 of the 44,895 papers in AA (about 74%). We will refer to this subset of the 6 https://www.aclweb.org/anthology/ https://github.com/acl-org/acl-anthology 7 Multiple authors can have the same name and the same authors may use multiple variants of their names in papers. The AA volunteer team handles such ambiguities using both semi-automatic and manual approaches (fixing some instances on a case-by-case basis). Additionally, the AA repository includes a file that has canonical forms of author names. Authors can provide AA with their aliases, change-of-name information, and preferred canonical name, which is then eventually recorded in the canonical-name file.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Google Scholar Data",
"sec_num": "3.2"
},
{
"text": "ACL Anthology papers as AA . The citation analyses presented in this paper are on AA . (Future work will explore visualizations on GS-NLP.)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Google Scholar Data",
"sec_num": "3.2"
},
{
"text": "Entries across AA and GS are aligned by matching the paper title, year of publication, and first author last name. 8",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Google Scholar Data",
"sec_num": "3.2"
},
{
"text": "Explore Scientific Literature",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Building an Interactive Visualization to",
"sec_num": "4"
},
{
"text": "We now describe how we created an interactive visualization-NLP Scholar-that allows one to visually explore the data from the ACL Anthology along with citation information from Google Scholar. We first created a relational database (involving multiple tables) that stores the AA and GS data ( \u00a74.1). We then loaded the database in Tableau-an interactive data visualization software-to build the visualizations ( \u00a74.2). 9",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Building an Interactive Visualization to",
"sec_num": "4"
},
{
"text": "Data from AA and GS is stored in four tables (tsv files): papers, authors, title-unigrams, and titlebigrams. They contain the following information: papers: Each row corresponds to a unique paper. The columns include: paper title, year of publication, list of authors, venue of publication, number of citations at the time of data collection (June 2019), NLP Scholar paper id, ACL paper id, and some other meta-data associated with the paper. The NLP Scholar paper id is a concatenation of the paper title, year of publication, and first author last name. (This id was also used to align entries across AA and GS). authors: Each row corresponds to a paper-author combination. The columns include: NLP Scholar paper id, author first name, and author last name. A paper with three authors contributes three rows to the table (all three have the same paper id, but different author names). title-unigrams: Each row corresponds to a paper title and unigram combination. The columns include: NLP Scholar paper id and paper title unigram (a word that occurs in the title of the paper). A paper with five unique words in the title contributes five rows to the table (all five have the same paper id, but different words). title-bigrams: Each row corresponds to a paper title and bigram combination. The columns include: NLP Scholar paper id and paper title bigram (a two-word sequence that occurs in the title of the paper). A paper with four unique bigrams in the title contributes four rows to the table (all four have the same paper id, but different bigrams).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "NLP Scholar Relational Database",
"sec_num": "4.1"
},
{
"text": "Once the tables are loaded in Tableau, the following pairs of tables are each joined (inner join) using the NLP Scholar paper id: 10 papers-authors, papers-title-unigrams, and papers-title-bigrams.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "NLP Scholar Relational Database",
"sec_num": "4.1"
},
{
"text": "We developed multiple visualizations to explore various aspects of the data. We group and connect several individual visualizations in dashboards that allow one to explore several aspects of the data together. Clicking on data attributes such as year of publication or venue of publication in one visualization, filters the data in all visualizations within a dashboard to show only the relevant data. Figure 1 shows a screenshot of the main dashboard. At the top are the number of papers-total (A1) and by year of publication (A2). This allows one to see the growth/decline of the papers over the years.",
"cite_spans": [],
"ref_spans": [
{
"start": 402,
"end": 410,
"text": "Figure 1",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "NLP Scholar Interactive Visualization",
"sec_num": "4.2"
},
{
"text": "Below it, we see the number of citations-total (B1) and by year of publication (B2). For a given year, the bar is partitioned into segments corresponding to individual papers. Each segment (paper) has a height that is proportional to the number of citations it has received and assigned a colour at random. This allows one to quickly identify high-citation papers. 11 Hovering over individual papers in B2 pops open an information box showing the paper title, authors, year of publication, publication venue, and #citations. Figure 6 in the Appendix shows a blow up of B2 along with examples of the hover information box. Similarly, hovering over other parts of the dashboard shows corresponding information. (This is especially helpful, when parts of the text are truncated or otherwise not visible due to space constraints.)",
"cite_spans": [
{
"start": 365,
"end": 367,
"text": "11",
"ref_id": null
}
],
"ref_spans": [
{
"start": 525,
"end": 533,
"text": "Figure 6",
"ref_id": "FIGREF5"
}
],
"eq_spans": [],
"section": "NLP Scholar Interactive Visualization",
"sec_num": "4.2"
},
{
"text": "Further below, we see lists of papers (C) and authors (D)-both are ordered by number of citations. Search boxes in the bottom right (E) allow searching for papers that have particular terms in the title or searching for papers by author name. One can also restrict the search to a span of years using the slider.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "NLP Scholar Interactive Visualization",
"sec_num": "4.2"
},
{
"text": "Four other dashboards are also created that have the same five elements as the main dashboard (A through E), and additionally include a six element F to provide a focused search facility. This sixth element is a treemap that shows the most common: venues and paper types (F1), title unigrams (F2), title bigrams (F3), or language mentions in the title (F4). (We only show one of the four treemaps at a time to prevent overwhelming the user.) The treemaps are shown in Figures 2 to 5, respectively. Figure 1 A1 shows that the dataset includes 44,895 papers. A2 shows that the volume of papers published was considerably lower in the early years (1965 to 1989) ; there was a spurt in the 1990s; and substantial numbers since the year 2000. Also, note that the number of publications is considerably higher in alternate years. This is due to certain biennial conferences. Since 1998 the largest of such conferences has been LREC (In 2018 alone LREC had over 700 main conferences papers and additional papers from its 29 workshops). COLING, another biennial conference (also occurring in the even years) has about 45% of the number of main conference papers as LREC.",
"cite_spans": [
{
"start": 644,
"end": 658,
"text": "(1965 to 1989)",
"ref_id": null
}
],
"ref_spans": [
{
"start": 498,
"end": 509,
"text": "Figure 1 A1",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "NLP Scholar Interactive Visualization",
"sec_num": "4.2"
},
{
"text": "B1 shows that AA papers have received \u223c1.2 million citations (as of June 2019). The timeline graph in B2 shows that, with time, not only have the number of papers grown, but also the number of high-citation papers. We see a marked jump in the 1990s over the previous decades, but the 2000s are the most notable in terms of the high number of citations. The 2010s papers will likely surpass the 2000s papers in the years to come.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Data Explorations with NLP Scholar",
"sec_num": "5"
},
{
"text": "The most cited papers list (C) shows influential papers from machine translation, sentiment analysis, word embeddings, syntax, and semantics.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Data Explorations with NLP Scholar",
"sec_num": "5"
},
{
"text": "Among the authors (D), observe that Christopher Manning has not only received the most number of citations, he has also received almost three times as many citations as the next person in the list. Search: NLP Scholar allows for search in a number of ways. Suppose we are interested in the topic of sentiment analysis. Then we can enter the relevant keywords in the search box: sentiment, valence, emotion, emotions, affect, etc. Then the visualizations are filtered to present details of only those papers that have at least one of these keywords in the title. (Future work will allow for search in the abstract and the whole text.) Figure 7 in the Appendix shows the filtered result. The system identified 1,481 papers that each have at least one of the query terms in the title. They have received more than 85K citations. The citations timeline (B2 in Figure 7) shows that there were just a few scattered papers in early years (1987) (1988) (1989) (1990) (1991) (1992) (1993) (1994) (1995) (1996) (1997) (1998) (1999) (2000) that received a small number of citations. However, two papers in 2002 received a massive number of citations, and likely led to the substantially increased interest in the field. The number of papers has steadily increased since 2002, with close to 250 papers in 2018, showing that the area continues to enjoy considerable attention.",
"cite_spans": [
{
"start": 931,
"end": 937,
"text": "(1987)",
"ref_id": null
},
{
"start": 938,
"end": 944,
"text": "(1988)",
"ref_id": null
},
{
"start": 945,
"end": 951,
"text": "(1989)",
"ref_id": null
},
{
"start": 952,
"end": 958,
"text": "(1990)",
"ref_id": null
},
{
"start": 959,
"end": 965,
"text": "(1991)",
"ref_id": null
},
{
"start": 966,
"end": 972,
"text": "(1992)",
"ref_id": null
},
{
"start": 973,
"end": 979,
"text": "(1993)",
"ref_id": null
},
{
"start": 980,
"end": 986,
"text": "(1994)",
"ref_id": null
},
{
"start": 987,
"end": 993,
"text": "(1995)",
"ref_id": null
},
{
"start": 994,
"end": 1000,
"text": "(1996)",
"ref_id": null
},
{
"start": 1001,
"end": 1007,
"text": "(1997)",
"ref_id": null
},
{
"start": 1008,
"end": 1014,
"text": "(1998)",
"ref_id": null
},
{
"start": 1015,
"end": 1021,
"text": "(1999)",
"ref_id": null
},
{
"start": 1022,
"end": 1028,
"text": "(2000)",
"ref_id": null
}
],
"ref_spans": [
{
"start": 634,
"end": 642,
"text": "Figure 7",
"ref_id": "FIGREF6"
},
{
"start": 856,
"end": 865,
"text": "Figure 7)",
"ref_id": "FIGREF6"
}
],
"eq_spans": [],
"section": "Data Explorations with NLP Scholar",
"sec_num": "5"
},
{
"text": "One can also fine tune the search as desired. Say we are interested not in the broad area of sentiment analysis, but specifically in the work on emotions and affect. Then they can enter only emotion-and affect-related keywords. A disadvantage of using terms for search is that some terms are ambiguous and they can pull in irrelevant articles; also if a paper is about the topic of interest but its title does not have one of the standard keywords associated with the topic, then it might be left out. That said, if one does come across a paper that has the query term but is not in the topic of interest, they can right click and exclude that paper from the visualization; and as mentioned before, future work will allow for searches in the abstract and full text as well. We are also currently working on clustering papers using the words in the articles as features. 12 Below are some more examples of interactions with NLP Scholar (Figures are in the Appendix after references):",
"cite_spans": [
{
"start": 870,
"end": 872,
"text": "12",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Data Explorations with NLP Scholar",
"sec_num": "5"
},
{
"text": "\u2022 Figure 8 shows the state of the visualization when one clicks the year 2016 in A1.",
"cite_spans": [],
"ref_spans": [
{
"start": 2,
"end": 10,
"text": "Figure 8",
"ref_id": "FIGREF7"
}
],
"eq_spans": [],
"section": "Data Explorations with NLP Scholar",
"sec_num": "5"
},
{
"text": "\u2022 Figures 9 and 10 show examples of author search by clicking on the authors list (D) (Christopher Manning and Lillian Lee).",
"cite_spans": [],
"ref_spans": [
{
"start": 2,
"end": 18,
"text": "Figures 9 and 10",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Data Explorations with NLP Scholar",
"sec_num": "5"
},
{
"text": "\u2022 Figures 11 and 12 show the dashboard when one clicks on the Venue and Paper Type treemap (F1): ACL main conference papers and Workshop papers, respectively.",
"cite_spans": [],
"ref_spans": [
{
"start": 2,
"end": 19,
"text": "Figures 11 and 12",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Data Explorations with NLP Scholar",
"sec_num": "5"
},
{
"text": "\u2022 Figures 13, 14 and 15 in the Appendix also show examples of search for the terms parsing, statistical and neural, respectively (accessed by clicking on the title unigrams treemap (F2)).",
"cite_spans": [],
"ref_spans": [
{
"start": 2,
"end": 16,
"text": "Figures 13, 14",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Data Explorations with NLP Scholar",
"sec_num": "5"
},
{
"text": "\u2022 Figures 16, 17, and 18 show the dashboard when one clicks on the Title Bigrams treemap (F3): machine translation, question answering, and word embeddings, respectively.",
"cite_spans": [],
"ref_spans": [
{
"start": 2,
"end": 24,
"text": "Figures 16, 17, and 18",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Data Explorations with NLP Scholar",
"sec_num": "5"
},
{
"text": "\u2022 Figures 19 and 20 show the dashboard when one clicks on the Languages treemap (F4): Chinese and Swahili, respectively.",
"cite_spans": [],
"ref_spans": [
{
"start": 2,
"end": 19,
"text": "Figures 19 and 20",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Data Explorations with NLP Scholar",
"sec_num": "5"
},
{
"text": "Once the system goes live, we hope to collect further usage scenarios from the users at large. For this work, we chose not to stem the terms in the titles before applying the search. This is because in some search scenarios, it is beneficial to distinguish the different morphological forms of a word. For example, papers with emotions in the titles are more likely to be dealing with multiple emotions than papers with the term emotion. When such distinctions do not need to be made, it is easy for users to include morphological variants as additional query terms.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Data Explorations with NLP Scholar",
"sec_num": "5"
},
{
"text": "We presented NLP Scholar-an interactive visual explorer for the ACL Anthology. Notably, the tool also has access to citation information from Google Scholar. It includes several interconnected interactive visualizations (dashboards) that allow users to quickly and efficiently search for relevant related work by clicking on items within a visualization or through search boxes. All of the data and interactive visualizations associated with this work are freely available through the project homepage. 13 Future work will provide additional functionalities such as search within abstracts and whole texts, document clustering, and automatically identifying related papers. We see NLP Scholar, with its dedicated visual search capabilities for NLP papers, as a useful complementary tool to existing resources such as Google Scholar. We also note that the approach presented here is not required to be applied only to the ACL Anthology or NLP papers; it can be used to display papers from other sources too such as pre-print archives and anthologies of papers from other fields of study. ",
"cite_spans": [
{
"start": 503,
"end": 505,
"text": "13",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusions and Future Work",
"sec_num": "6"
},
{
"text": "One can make a distinction between NLP and Computational Linguistics; however, for this work we will consider them to be synonymous.2 https://www.aclweb.org/anthology/",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "ACL licenses its papers with a Creative Commons Attribution 4.0 International License.4 https://scholar.google.com",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "http://saifmohammad.com/WebPages/nlpscholar.html",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "There were marked variations in how the same venue was described in the meta-information across AA and GS; thus, venue information was not used for alignment.9 Tableau: https://www.tableau.com Even though there are paid versions of Tableau, the visualizations built with Tableau can be freely shared with others on the world wide web. Users do not require any special software to interact with these visualization on the web.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "An inner join selects all rows from both participating tables whose join column values match across the two tables.11 Note that since the number of colours is smaller than the number of papers, multiple papers may have the same color; however, the probability of adjacent papers receiving the same colour is small-even then, the system will provide visual clues distinguishing each segment when hovering over the area.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "Note that clustering approaches also have limitations, such as differing results depending on the parameters used.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "http://saifmohammad.com/WebPages/nlpscholar.html",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "This work was possible due to the helpful discussion and encouragement from a number of awesome people including: Dan Jurafsky, Tara Small, Michael Strube, Cyril Goutte, Eric Joanis, Matt Post, Torsten Zesch, Ellen Riloff, Iryna Gurevych, Rebecca Knowles, Isar Nejadgholi, and Peter Turney. Also, a big thanks to the ACL Anthology and Google Scholar Teams for creating and maintaining wonderful resources.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgments",
"sec_num": null
},
{
"text": "Figures 6 through 20 (in the pages ahead) show example interactions with NLP Scholar that were discussed in Section 5.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "A Appendix",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Towards a computational history of the acl",
"authors": [
{
"first": "Ashton",
"middle": [],
"last": "Anderson",
"suffix": ""
},
{
"first": "Dan",
"middle": [],
"last": "Mcfarland",
"suffix": ""
},
{
"first": "Dan",
"middle": [],
"last": "Jurafsky",
"suffix": ""
}
],
"year": 1980,
"venue": "Proceedings of the ACL-2012 Special Workshop on Rediscovering 50 Years of Discoveries",
"volume": "",
"issue": "",
"pages": "13--21",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ashton Anderson, Dan McFarland, and Dan Jurafsky. 2012. Towards a computational history of the acl: 1980-2008. In Proceedings of the ACL-2012 Spe- cial Workshop on Rediscovering 50 Years of Discov- eries, pages 13-21. Association for Computational Linguistics.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Citation classification and its applications",
"authors": [
{
"first": "Selcuk",
"middle": [],
"last": "Aya",
"suffix": ""
},
{
"first": "Carl",
"middle": [],
"last": "Lagoze",
"suffix": ""
},
{
"first": "Thorsten",
"middle": [],
"last": "Joachims",
"suffix": ""
}
],
"year": 2005,
"venue": "Knowledge Management: Nurturing Culture, Innovation, and Technology",
"volume": "",
"issue": "",
"pages": "287--298",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Selcuk Aya, Carl Lagoze, and Thorsten Joachims. 2005. Citation classification and its applications. In Knowledge Management: Nurturing Culture, Inno- vation, and Technology, pages 287-298. World Sci- entific.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "The acl anthology reference corpus: A reference dataset for bibliographic research in computational linguistics",
"authors": [
{
"first": "Steven",
"middle": [],
"last": "Bird",
"suffix": ""
},
{
"first": "Robert",
"middle": [],
"last": "Dale",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Bonnie",
"suffix": ""
},
{
"first": "Bryan",
"middle": [],
"last": "Dorr",
"suffix": ""
},
{
"first": "Mark",
"middle": [
"Thomas"
],
"last": "Gibson",
"suffix": ""
},
{
"first": "Min-Yen",
"middle": [],
"last": "Joseph",
"suffix": ""
},
{
"first": "Dongwon",
"middle": [],
"last": "Kan",
"suffix": ""
},
{
"first": "Brett",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Powley",
"suffix": ""
},
{
"first": "Yee",
"middle": [
"Fan"
],
"last": "Dragomir R Radev",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Tan",
"suffix": ""
}
],
"year": 2008,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Steven Bird, Robert Dale, Bonnie J Dorr, Bryan Gib- son, Mark Thomas Joseph, Min-Yen Kan, Dongwon Lee, Brett Powley, Dragomir R Radev, and Yee Fan Tan. 2008. The acl anthology reference corpus: A reference dataset for bibliographic research in com- putational linguistics.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Interdisciplinary comparison of scientific impact of publications using the citation-ratio",
"authors": [
{
"first": "R",
"middle": [],
"last": "Arthur",
"suffix": ""
},
{
"first": "Sandrine",
"middle": [],
"last": "Bos",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Nitza",
"suffix": ""
}
],
"year": 2019,
"venue": "Data Science Journal",
"volume": "18",
"issue": "1",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Arthur R Bos and Sandrine Nitza. 2019. Interdisci- plinary comparison of scientific impact of publica- tions using the citation-ratio. Data Science Journal, 18(1).",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Measuring impact in the humanities: Learning from accountability and economics in a contemporary history of cultural value",
"authors": [
{
"first": "Zoe",
"middle": [],
"last": "Bulaitis",
"suffix": ""
}
],
"year": 2017,
"venue": "",
"volume": "3",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zoe Bulaitis. 2017. Measuring impact in the humani- ties: Learning from accountability and economics in a contemporary history of cultural value. Palgrave Communications, 3(1):7.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "The ACL anthology: Current state and future directions",
"authors": [
{
"first": "Daniel",
"middle": [],
"last": "Gildea",
"suffix": ""
},
{
"first": "Min-Yen",
"middle": [],
"last": "Kan",
"suffix": ""
},
{
"first": "Nitin",
"middle": [],
"last": "Madnani",
"suffix": ""
},
{
"first": "Christoph",
"middle": [],
"last": "Teichmann",
"suffix": ""
},
{
"first": "Mart\u00edn",
"middle": [],
"last": "Villalba",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of Workshop for NLP Open Source Software (NLP-OSS)",
"volume": "",
"issue": "",
"pages": "23--28",
"other_ids": {
"DOI": [
"10.18653/v1/W18-2504"
]
},
"num": null,
"urls": [],
"raw_text": "Daniel Gildea, Min-Yen Kan, Nitin Madnani, Christoph Teichmann, and Mart\u00edn Villalba. 2018. The ACL anthology: Current state and future direc- tions. In Proceedings of Workshop for NLP Open Source Software (NLP-OSS), pages 23-28, Mel- bourne, Australia. Association for Computational Linguistics.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Google scholar to overshadow them all? comparing the sizes of 12 academic search engines and bibliographic databases",
"authors": [
{
"first": "Michael",
"middle": [],
"last": "Gusenbauer",
"suffix": ""
}
],
"year": 2019,
"venue": "Scientometrics",
"volume": "118",
"issue": "1",
"pages": "177--214",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Michael Gusenbauer. 2019. Google scholar to over- shadow them all? comparing the sizes of 12 aca- demic search engines and bibliographic databases. Scientometrics, 118(1):177-214.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Citerivers: Visual analytics of citation patterns. IEEE transactions on visualization and computer graphics",
"authors": [
{
"first": "Florian",
"middle": [],
"last": "Heimerl",
"suffix": ""
},
{
"first": "Qi",
"middle": [],
"last": "Han",
"suffix": ""
},
{
"first": "Steffen",
"middle": [],
"last": "Koch",
"suffix": ""
},
{
"first": "Thomas",
"middle": [],
"last": "Ertl",
"suffix": ""
}
],
"year": 2015,
"venue": "",
"volume": "22",
"issue": "",
"pages": "190--199",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Florian Heimerl, Qi Han, Steffen Koch, and Thomas Ertl. 2015. Citerivers: Visual analytics of citation patterns. IEEE transactions on visualization and computer graphics, 22(1):190-199.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Visual classifier training for text document retrieval",
"authors": [
{
"first": "Florian",
"middle": [],
"last": "Heimerl",
"suffix": ""
},
{
"first": "Steffen",
"middle": [],
"last": "Koch",
"suffix": ""
},
{
"first": "Harald",
"middle": [],
"last": "Bosch",
"suffix": ""
},
{
"first": "Thomas",
"middle": [],
"last": "Ertl",
"suffix": ""
}
],
"year": 2012,
"venue": "IEEE Transactions on Visualization and Computer Graphics",
"volume": "18",
"issue": "12",
"pages": "2839--2848",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Florian Heimerl, Steffen Koch, Harald Bosch, and Thomas Ertl. 2012. Visual classifier training for text document retrieval. IEEE Transactions on Visualiza- tion and Computer Graphics, 18(12):2839-2848.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "How scholarly is google scholar? a comparison to library databases",
"authors": [
{
"first": "Jared",
"middle": [
"L"
],
"last": "Howland",
"suffix": ""
}
],
"year": 2010,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jared L Howland. 2010. How scholarly is google scholar? a comparison to library databases.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "A standardized citation metrics author database annotated for scientific field",
"authors": [
{
"first": "P",
"middle": [
"A"
],
"last": "John",
"suffix": ""
},
{
"first": "Jeroen",
"middle": [],
"last": "Ioannidis",
"suffix": ""
},
{
"first": "Richard",
"middle": [],
"last": "Baas",
"suffix": ""
},
{
"first": "Kevin",
"middle": [
"W"
],
"last": "Klavans",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Boyack",
"suffix": ""
}
],
"year": 2019,
"venue": "PLoS biology",
"volume": "17",
"issue": "8",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "John PA Ioannidis, Jeroen Baas, Richard Klavans, and Kevin W Boyack. 2019. A standardized citation metrics author database annotated for scientific field. PLoS biology, 17(8):e3000384.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "The number of scholarly documents on the public web",
"authors": [
{
"first": "Madian",
"middle": [],
"last": "Khabsa",
"suffix": ""
},
{
"first": "C Lee",
"middle": [],
"last": "Giles",
"suffix": ""
}
],
"year": 2014,
"venue": "PloS one",
"volume": "9",
"issue": "5",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Madian Khabsa and C Lee Giles. 2014. The number of scholarly documents on the public web. PloS one, 9(5):e93949.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Understanding research trends in conferences using paperlens",
"authors": [
{
"first": "Bongshin",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Mary",
"middle": [],
"last": "Czerwinski",
"suffix": ""
},
{
"first": "George",
"middle": [],
"last": "Robertson",
"suffix": ""
},
{
"first": "Benjamin",
"middle": [
"B"
],
"last": "Bederson",
"suffix": ""
}
],
"year": 2005,
"venue": "CHI'05 extended abstracts on Human factors in computing systems",
"volume": "",
"issue": "",
"pages": "1969--1972",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Bongshin Lee, Mary Czerwinski, George Robertson, and Benjamin B Bederson. 2005. Understanding research trends in conferences using paperlens. In CHI'05 extended abstracts on Human factors in computing systems, pages 1969-1972.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "The nlp4nlp corpus (i): 50 years of publication, collaboration and citation in speech and language processing",
"authors": [
{
"first": "Joseph",
"middle": [],
"last": "Mariani",
"suffix": ""
},
{
"first": "Gil",
"middle": [],
"last": "Francopoulo",
"suffix": ""
},
{
"first": "Patrick",
"middle": [],
"last": "Paroubek",
"suffix": ""
}
],
"year": 2018,
"venue": "Frontiers in Research Metrics and Analytics",
"volume": "3",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Joseph Mariani, Gil Francopoulo, and Patrick Paroubek. 2018. The nlp4nlp corpus (i): 50 years of publication, collaboration and citation in speech and language processing. Frontiers in Research Metrics and Analytics, 3:36.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Google scholar, web of science, and scopus: A systematic comparison of citations in 252 subject categories",
"authors": [
{
"first": "Alberto",
"middle": [],
"last": "Mart\u00edn-Mart\u00edn",
"suffix": ""
},
{
"first": "Enrique",
"middle": [],
"last": "Orduna-Malea",
"suffix": ""
},
{
"first": "Mike",
"middle": [],
"last": "Thelwall",
"suffix": ""
},
{
"first": "Emilio",
"middle": [
"Delgado"
],
"last": "L\u00f3pez-C\u00f3zar",
"suffix": ""
}
],
"year": 2018,
"venue": "Journal of Informetrics",
"volume": "12",
"issue": "4",
"pages": "1160--1177",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Alberto Mart\u00edn-Mart\u00edn, Enrique Orduna-Malea, Mike Thelwall, and Emilio Delgado L\u00f3pez-C\u00f3zar. 2018. Google scholar, web of science, and scopus: A sys- tematic comparison of citations in 252 subject cate- gories. Journal of Informetrics, 12(4):1160-1177.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "A review of theory and practice in scientometrics",
"authors": [
{
"first": "John",
"middle": [],
"last": "Mingers",
"suffix": ""
},
{
"first": "Loet",
"middle": [],
"last": "Leydesdorff",
"suffix": ""
}
],
"year": 2015,
"venue": "European journal of operational research",
"volume": "246",
"issue": "1",
"pages": "1--19",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "John Mingers and Loet Leydesdorff. 2015. A review of theory and practice in scientometrics. European journal of operational research, 246(1):1-19.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Using citations to generate surveys of scientific paradigms",
"authors": [
{
"first": "Saif",
"middle": [],
"last": "Mohammad",
"suffix": ""
},
{
"first": "Bonnie",
"middle": [],
"last": "Dorr",
"suffix": ""
},
{
"first": "Melissa",
"middle": [],
"last": "Egan",
"suffix": ""
},
{
"first": "Ahmed",
"middle": [],
"last": "Hassan",
"suffix": ""
},
{
"first": "Pradeep",
"middle": [],
"last": "Muthukrishan",
"suffix": ""
},
{
"first": "Vahed",
"middle": [],
"last": "Qazvinian",
"suffix": ""
},
{
"first": "Dragomir",
"middle": [],
"last": "Radev",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Zajic",
"suffix": ""
}
],
"year": 2009,
"venue": "Proceedings of human language technologies: The 2009 annual conference of the North American chapter of the association for computational linguistics",
"volume": "",
"issue": "",
"pages": "584--592",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Saif Mohammad, Bonnie Dorr, Melissa Egan, Ahmed Hassan, Pradeep Muthukrishan, Vahed Qazvinian, Dragomir Radev, and David Zajic. 2009. Using cita- tions to generate surveys of scientific paradigms. In Proceedings of human language technologies: The 2009 annual conference of the North American chap- ter of the association for computational linguistics, pages 584-592.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "The state of nlp literature: A diachronic analysis of the acl anthology",
"authors": [
{
"first": "M",
"middle": [],
"last": "Saif",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Mohammad",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1911.03562"
]
},
"num": null,
"urls": [],
"raw_text": "Saif M. Mohammad. 2019. The state of nlp literature: A diachronic analysis of the acl anthology. arXiv preprint arXiv:1911.03562.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Examining citations of natural language processing literature",
"authors": [
{
"first": "M",
"middle": [],
"last": "Saif",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Mohammad",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 2020 Annual Conference of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Saif M. Mohammad. 2020a. Examining citations of natural language processing literature. In Proceed- ings of the 2020 Annual Conference of the Associa- tion for Computational Linguistics, Seattle, USA.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Gender gap in natural language processing research: Disparities in authorship and citations",
"authors": [
{
"first": "M",
"middle": [],
"last": "Saif",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Mohammad",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 2020 Annual Conference of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Saif M. Mohammad. 2020b. Gender gap in natural language processing research: Disparities in author- ship and citations. In Proceedings of the 2020 An- nual Conference of the Association for Computa- tional Linguistics, Seattle, USA.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Nlp scholar: A dataset for examining the state of nlp research",
"authors": [
{
"first": "M",
"middle": [],
"last": "Saif",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Mohammad",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 12th Language Resources and Evaluation Conference (LREC-2020)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Saif M. Mohammad. 2020c. Nlp scholar: A dataset for examining the state of nlp research. In Proceed- ings of the 12th Language Resources and Evaluation Conference (LREC-2020), Marseille, France.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Classification of research papers using citation links and citation types: Towards automatic review article generation",
"authors": [
{
"first": "Hidetsugu",
"middle": [],
"last": "Nanba",
"suffix": ""
},
{
"first": "Noriko",
"middle": [],
"last": "Kando",
"suffix": ""
},
{
"first": "Manabu",
"middle": [],
"last": "Okumura",
"suffix": ""
}
],
"year": 2011,
"venue": "Advances in Classification Research Online",
"volume": "11",
"issue": "",
"pages": "117--134",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hidetsugu Nanba, Noriko Kando, and Manabu Oku- mura. 2011. Classification of research papers using citation links and citation types: Towards automatic review article generation. Advances in Classifica- tion Research Online, 11(1):117-134.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "About the size of google scholar: playing the numbers",
"authors": [
{
"first": "Enrique",
"middle": [],
"last": "Ordu\u00f1a-Malea",
"suffix": ""
},
{
"first": "Juan",
"middle": [],
"last": "Manuel Ayll\u00f3n",
"suffix": ""
},
{
"first": "Alberto",
"middle": [],
"last": "Mart\u00edn-Mart\u00edn",
"suffix": ""
},
{
"first": "Emilio",
"middle": [
"Delgado"
],
"last": "L\u00f3pez-C\u00f3zar",
"suffix": ""
}
],
"year": 2014,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1407.6239"
]
},
"num": null,
"urls": [],
"raw_text": "Enrique Ordu\u00f1a-Malea, Juan Manuel Ayll\u00f3n, Alberto Mart\u00edn-Mart\u00edn, and Emilio Delgado L\u00f3pez-C\u00f3zar. 2014. About the size of google scholar: playing the numbers. arXiv preprint arXiv:1407.6239.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "A new approach for scientific citation classification using cue phrases",
"authors": [
{
"first": "Bao",
"middle": [],
"last": "Son",
"suffix": ""
},
{
"first": "Achim",
"middle": [],
"last": "Pham",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Hoffmann",
"suffix": ""
}
],
"year": 2003,
"venue": "Australasian Joint Conference on Artificial Intelligence",
"volume": "",
"issue": "",
"pages": "759--771",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Son Bao Pham and Achim Hoffmann. 2003. A new approach for scientific citation classification using cue phrases. In Australasian Joint Conference on Artificial Intelligence, pages 759-771. Springer.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Scientometrics 2.0: New metrics of scholarly impact on the social web",
"authors": [
{
"first": "Jason",
"middle": [],
"last": "Priem",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Bradely",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Hemminger",
"suffix": ""
}
],
"year": 2010,
"venue": "First monday",
"volume": "",
"issue": "7",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jason Priem and Bradely H Hemminger. 2010. Scien- tometrics 2.0: New metrics of scholarly impact on the social web. First monday, 15(7).",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Generating extractive summaries of scientific paradigms",
"authors": [
{
"first": "",
"middle": [],
"last": "Vahed Qazvinian",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Dragomir R Radev",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Saif",
"suffix": ""
},
{
"first": "Bonnie",
"middle": [],
"last": "Mohammad",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Dorr",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Zajic",
"suffix": ""
},
{
"first": "Taesun",
"middle": [],
"last": "Whidby",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Moon",
"suffix": ""
}
],
"year": 2013,
"venue": "Journal of Artificial Intelligence Research",
"volume": "46",
"issue": "",
"pages": "165--201",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Vahed Qazvinian, Dragomir R Radev, Saif M Moham- mad, Bonnie Dorr, David Zajic, Michael Whidby, and Taesun Moon. 2013. Generating extractive sum- maries of scientific paradigms. Journal of Artificial Intelligence Research, 46:165-201.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "A bibliometric and network analysis of the field of computational linguistics",
"authors": [
{
"first": "Mark",
"middle": [
"Thomas"
],
"last": "Dragomir R Radev",
"suffix": ""
},
{
"first": "Bryan",
"middle": [],
"last": "Joseph",
"suffix": ""
},
{
"first": "Pradeep",
"middle": [],
"last": "Gibson",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Muthukrishnan",
"suffix": ""
}
],
"year": 2016,
"venue": "Journal of the Association for Information Science and Technology",
"volume": "67",
"issue": "3",
"pages": "683--706",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Dragomir R Radev, Mark Thomas Joseph, Bryan Gib- son, and Pradeep Muthukrishnan. 2016. A biblio- metric and network analysis of the field of computa- tional linguistics. Journal of the Association for In- formation Science and Technology, 67(3):683-706.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Measuring scientific impact beyond academia: An assessment of existing impact metrics and proposed improvements",
"authors": [
{
"first": "James",
"middle": [],
"last": "Ravenscroft",
"suffix": ""
},
{
"first": "Maria",
"middle": [],
"last": "Liakata",
"suffix": ""
},
{
"first": "Amanda",
"middle": [],
"last": "Clare",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "Duma",
"suffix": ""
}
],
"year": 2017,
"venue": "PloS one",
"volume": "12",
"issue": "3",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "James Ravenscroft, Maria Liakata, Amanda Clare, and Daniel Duma. 2017. Measuring scientific impact beyond academia: An assessment of existing im- pact metrics and proposed improvements. PloS one, 12(3):e0173152.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "The glass ceiling in NLP",
"authors": [
{
"first": "Natalie",
"middle": [],
"last": "Schluter",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "2793--2798",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Natalie Schluter. 2018. The glass ceiling in NLP. In Proceedings of the 2018 Conference on Empiri- cal Methods in Natural Language Processing, pages 2793-2798.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Automatic classification of citation function",
"authors": [
{
"first": "Simone",
"middle": [],
"last": "Teufel",
"suffix": ""
},
{
"first": "Advaith",
"middle": [],
"last": "Siddharthan",
"suffix": ""
},
{
"first": "Dan",
"middle": [],
"last": "Tidhar",
"suffix": ""
}
],
"year": 2006,
"venue": "Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "103--110",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Simone Teufel, Advaith Siddharthan, and Dan Tidhar. 2006. Automatic classification of citation function. In Proceedings of the 2006 Conference on Empiri- cal Methods in Natural Language Processing, pages 103-110.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Literature explorer: effective retrieval of scientific documents through nonparametric thematic topic detection. The Visual Computer",
"authors": [
{
"first": "Shaopeng",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Youbing",
"middle": [],
"last": "Zhao",
"suffix": ""
},
{
"first": "Farzad",
"middle": [],
"last": "Parvinzamir",
"suffix": ""
},
{
"first": "Nikolaos",
"middle": [],
"last": "Th Ersotelos",
"suffix": ""
},
{
"first": "Hui",
"middle": [],
"last": "Wei",
"suffix": ""
},
{
"first": "Feng",
"middle": [],
"last": "Dong",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "1--18",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Shaopeng Wu, Youbing Zhao, Farzad Parvinzamir, Nikolaos Th Ersotelos, Hui Wei, and Feng Dong. 2019. Literature explorer: effective retrieval of sci- entific documents through nonparametric thematic topic detection. The Visual Computer, pages 1-18.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "Predicting a scientific community's response to an article",
"authors": [
{
"first": "Dani",
"middle": [],
"last": "Yogatama",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Heilman",
"suffix": ""
},
{
"first": "O'",
"middle": [],
"last": "Brendan",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Connor",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Dyer",
"suffix": ""
},
{
"first": "Noah A",
"middle": [],
"last": "Bryan R Routledge",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Smith",
"suffix": ""
}
],
"year": 2011,
"venue": "Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "594--604",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Dani Yogatama, Michael Heilman, Brendan O'Connor, Chris Dyer, Bryan R Routledge, and Noah A Smith. 2011. Predicting a scientific community's response to an article. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Process- ing, pages 594-604.",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "Measuring academic influence: Not all citations are equal",
"authors": [
{
"first": "Xiaodan",
"middle": [],
"last": "Zhu",
"suffix": ""
},
{
"first": "Peter",
"middle": [],
"last": "Turney",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "Lemire",
"suffix": ""
},
{
"first": "Andr\u00e9",
"middle": [],
"last": "Vellino",
"suffix": ""
}
],
"year": 2015,
"venue": "Journal of the Association for Information Science and Technology",
"volume": "66",
"issue": "2",
"pages": "408--427",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xiaodan Zhu, Peter Turney, Daniel Lemire, and Andr\u00e9 Vellino. 2015. Measuring academic influence: Not all citations are equal. Journal of the Association for Information Science and Technology, 66(2):408- 427.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"text": "A screenshot of NLP Scholar's principle dashboard.",
"uris": null,
"num": null,
"type_str": "figure"
},
"FIGREF1": {
"text": "A treemap of popular NLP venues and paper types. Darker shades of green: higher volumes of papers.",
"uris": null,
"num": null,
"type_str": "figure"
},
"FIGREF2": {
"text": "A treemap of the most common unigrams in paper titles. Darker shades of green: higher frequencies.",
"uris": null,
"num": null,
"type_str": "figure"
},
"FIGREF3": {
"text": "A treemap of the most common bigrams in paper titles. Darker shades of green: higher frequencies.",
"uris": null,
"num": null,
"type_str": "figure"
},
"FIGREF4": {
"text": "A treemap of the most common language terms in titles. Darker shades of green: higher frequencies.",
"uris": null,
"num": null,
"type_str": "figure"
},
"FIGREF5": {
"text": "NLP Scholar: Hovering over individual papers in B2 pops open an information box showing the paper title, authors, year of publication, publication venue, and #citations.",
"uris": null,
"num": null,
"type_str": "figure"
},
"FIGREF6": {
"text": "NLP Scholar: After entering terms associated with sentiment analysis in the search box.",
"uris": null,
"num": null,
"type_str": "figure"
},
"FIGREF7": {
"text": "NLP Scholar: After clicking on the 2016 bar in the #papers by year viz (A2).",
"uris": null,
"num": null,
"type_str": "figure"
},
"FIGREF8": {
"text": "NLP Scholar: After clicking on 'Manning, Christopher' in the Authors list (D).",
"uris": null,
"num": null,
"type_str": "figure"
},
"FIGREF9": {
"text": "NLP Scholar: After clicking on 'Lee, Lillian' in the Authors list (D).",
"uris": null,
"num": null,
"type_str": "figure"
},
"FIGREF10": {
"text": "NLP Scholar: After clicking on 'ACL' in the venue and paper type treemap (F1).",
"uris": null,
"num": null,
"type_str": "figure"
},
"FIGREF11": {
"text": "NLP Scholar: After clicking on 'Workshops' in the venue and paper type treemap (F1).",
"uris": null,
"num": null,
"type_str": "figure"
},
"FIGREF12": {
"text": "NLP Scholar: After clicking on 'parsing' in the unigrams treemap (F2).",
"uris": null,
"num": null,
"type_str": "figure"
},
"FIGREF13": {
"text": "NLP Scholar: After clicking on 'statistical' in the unigrams treemap (F2).",
"uris": null,
"num": null,
"type_str": "figure"
},
"FIGREF14": {
"text": "NLP Scholar: After clicking on 'neural' in the unigrams treemap (F2).",
"uris": null,
"num": null,
"type_str": "figure"
},
"FIGREF15": {
"text": "NLP Scholar: After clicking on 'machine translation' in the bigrams treemap (F3).",
"uris": null,
"num": null,
"type_str": "figure"
},
"FIGREF16": {
"text": "NLP Scholar: After clicking on 'question answering' in the bigrams treemap (F3).",
"uris": null,
"num": null,
"type_str": "figure"
},
"FIGREF17": {
"text": "NLP Scholar: After clicking on 'word embeddings' in the bigrams treemap (F3).",
"uris": null,
"num": null,
"type_str": "figure"
},
"FIGREF18": {
"text": "NLP Scholar: After clicking on 'Chinese' in the languages treemap (F4).",
"uris": null,
"num": null,
"type_str": "figure"
},
"FIGREF19": {
"text": "NLP Scholar: After clicking on 'Swahili' in the languages treemap (F4).",
"uris": null,
"num": null,
"type_str": "figure"
}
}
}
} |