File size: 109,105 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T01:16:49.513588Z"
    },
    "title": "NLP Scholar: An Interactive Visual Explorer for Natural Language Processing Literature",
    "authors": [
        {
            "first": "Saif",
            "middle": [
                "M"
            ],
            "last": "Mohammad",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Research Council",
                "location": {
                    "country": "Canada"
                }
            },
            "email": "saif.mohammad@nrc-cnrc.gc.ca"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "As part of the NLP Scholar project, we created a single unified dataset of NLP papers and their meta-information (including citation numbers), by extracting and aligning information from the ACL Anthology and Google Scholar. In this paper, we describe several interconnected interactive visualizations (dashboards) that present various aspects of the data. Clicking on an item within a visualization or entering query terms in the search boxes filters the data in all visualizations in the dashboard. This allows users to search for papers in the area of their interest, published within specific time periods, published by specified authors, etc. The interactive visualizations presented here, and the associated dataset of papers mapped to citations, have additional uses as well including understanding how the field is growing (both overall and across sub-areas), as well as quantifying the impact of different types of papers on subsequent publications.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "As part of the NLP Scholar project, we created a single unified dataset of NLP papers and their meta-information (including citation numbers), by extracting and aligning information from the ACL Anthology and Google Scholar. In this paper, we describe several interconnected interactive visualizations (dashboards) that present various aspects of the data. Clicking on an item within a visualization or entering query terms in the search boxes filters the data in all visualizations in the dashboard. This allows users to search for papers in the area of their interest, published within specific time periods, published by specified authors, etc. The interactive visualizations presented here, and the associated dataset of papers mapped to citations, have additional uses as well including understanding how the field is growing (both overall and across sub-areas), as well as quantifying the impact of different types of papers on subsequent publications.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "NLP is a broad interdisciplinary field that draws knowledge from Computer Science, Linguistics, Information Science, Psychology, Social Sciences, and more. 1 Over the years, scientific publications in NLP have grown in number and diversity; we now see papers published on a vast array of research questions and applications in a growing list of venues-in journals such as CL and TACL, in large conferences such as ACL and EMNLP, as well as a number of small area-focused workshops.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The ACL Anthology (AA) is a digital repository of public domain, free to access, articles on NLP. 2 It includes papers published in the family of ACL conferences as well as in other NLP conferences such as LREC and RANLP. As of June 2019, it provided access to the full text and metadata for close to 50K articles published since 1965. 3 It is the largest single source of scientific literature on NLP. However, the meta-data does not include citation statistics.",
                "cite_spans": [
                    {
                        "start": 98,
                        "end": 99,
                        "text": "2",
                        "ref_id": null
                    },
                    {
                        "start": 336,
                        "end": 337,
                        "text": "3",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Citation statistics are the most commonly used metrics of research impact. They include: number of citations, average citations, h-index, relative citation ratio, and impact factor. Note, however, that the number of citations is not always a reflection of the quality or importance of a piece of work. Furthermore, the citation process can be abused, for example, by egregious self-citations (Ioannidis et al., 2019) . Nonetheless, given the immense volume of scientific literature, the relative ease with which one can track citations using services such as Google Scholar (GS), and given the lack of other easily applicable and effective metrics, citation analysis is an imperfect but useful window into research impact.",
                "cite_spans": [
                    {
                        "start": 392,
                        "end": 416,
                        "text": "(Ioannidis et al., 2019)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Google Scholar is a free web search engine for academic literature. 4 Through it, users can access the metadata associated with an article such as the number of citations it has received. Google Scholar does not provide information on how many articles are included in its database. However, scientometric researchers estimated that it included about 389 million documents in January 2018 (Gusenbauer, 2019)-making it the world's largest source of academic information. Thus, it is not surprising that there is growing interest in the use of Google Scholar information to draw inferences about scholarly research in general Mingers and Leydesdorff, 2015; Ordu\u00f1a-Malea et al., 2014; Khabsa and Giles, 2014; Howland, 2010) and on scholarly impact in particular (Bos and Nitza, 2019; Ioannidis et al., 2019; Ravenscroft et al., 2017; Bulaitis, 2017; Yogatama et al., 2011; Priem and Hemminger, 2010) .",
                "cite_spans": [
                    {
                        "start": 68,
                        "end": 69,
                        "text": "4",
                        "ref_id": null
                    },
                    {
                        "start": 624,
                        "end": 654,
                        "text": "Mingers and Leydesdorff, 2015;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 655,
                        "end": 681,
                        "text": "Ordu\u00f1a-Malea et al., 2014;",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 682,
                        "end": 705,
                        "text": "Khabsa and Giles, 2014;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 706,
                        "end": 720,
                        "text": "Howland, 2010)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 759,
                        "end": 780,
                        "text": "(Bos and Nitza, 2019;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 781,
                        "end": 804,
                        "text": "Ioannidis et al., 2019;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 805,
                        "end": 830,
                        "text": "Ravenscroft et al., 2017;",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 831,
                        "end": 846,
                        "text": "Bulaitis, 2017;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 847,
                        "end": 869,
                        "text": "Yogatama et al., 2011;",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 870,
                        "end": 896,
                        "text": "Priem and Hemminger, 2010)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Services such as Google Scholar and Semantic Scholar cover a wide variety of academic disciplines. Wile there are benefits to this, the lack of focus on NLP literature has some drawbacks as well: e.g, the potential for too many search results that include many irrelevant papers. For example, if one is interested in NLP papers on emotion and privacy, searching for them on Google Scholar is less efficient than searching for them on a platform dedicated to NLP papers. Further, services such as Google Scholar provide minimal interactive visualizations. NLP Scholar with its focus on AA data, is not meant to replace these tools, but act as a complementary tool for dedicated visual search of NLP literature.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "ACL 2020 has a special theme asking researchers to reflect on the state of NLP. In the spirit of that theme, and as part of a broader project on analyzing NLP Literature, we extracted and aligned information from the ACL Anthology (AA) and Google Scholar to create a dataset of tens of thousands of NLP papers and their citations (Mohammad, 2020c (Mohammad, , 2019 . In separate work, we have used the data to explores questions such as: how well cited are papers of different types (journal articles, conference papers, demo papers, etc.)? how well cited are papers published in different time spans? how well cited are papers from different areas of research within NLP? etc. (Mohammad, 2020a) . We also explored gender gaps in Natural Language Processing research, in terms of authorship and citations (Mohammad, 2020b) . In this paper we describe how we built an interactive visual explorer for this unified data, which we refer to as NLP Scholar. Some notable uses of NLP Scholar are listed below:",
                "cite_spans": [
                    {
                        "start": 330,
                        "end": 346,
                        "text": "(Mohammad, 2020c",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 347,
                        "end": 364,
                        "text": "(Mohammad, , 2019",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 678,
                        "end": 695,
                        "text": "(Mohammad, 2020a)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 805,
                        "end": 822,
                        "text": "(Mohammad, 2020b)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Search for relevant related work in various areas within NLP.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Identify the highly cited articles on an interactive timeline.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Identify past papers published in a venue of interest (such as ACL or LREC).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Identify papers from the past (say ten years back) published in a venue of interest (say ACL or LREC) that have made substantial impact through citations.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Examine changes in number of articles and number of citations in a chosen area of interest over time.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Identify citation impact of different types of papers-e.g., short papers, shared task papers, demo papers, etc.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Even beyond the dedicated interactive visualizer described here, the underlying data with its alignment between AA and GS has potential uses in:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Creating a web browser extension that allows users of GS to look up the aligned AA information (the full ACL BibTeX, poster, slides, access to proceedings from the same venue, etc.).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Similarly, in the reverse direction, allowing access from AA to the GS information on the aligned paper. This could include number of citations, lists of papers citing the paper, etc.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Perhaps most importantly, though, NLP Scholar serves as a visual record of the state of NLP literature in terms of citations. We note again though, that even though this work seeks to make citation metrics more accessible for ACL Anthology papers, citation metrics are not always accurate reflections of the quality, importance, or impact of individual papers. All of the data and interactive visualizations associated with this work are freely available through the project homepage. 5",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Much of the work in visualizing scientific literature has focused on showing topics of research (Wu et al., 2019; Heimerl et al., 2012; Lee et al., 2005) . There is also notable work on visualizing communities through citation networks (Heimerl et al., 2015; Radev et al., 2016) .",
                "cite_spans": [
                    {
                        "start": 96,
                        "end": 113,
                        "text": "(Wu et al., 2019;",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 114,
                        "end": 135,
                        "text": "Heimerl et al., 2012;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 136,
                        "end": 153,
                        "text": "Lee et al., 2005)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 236,
                        "end": 258,
                        "text": "(Heimerl et al., 2015;",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 259,
                        "end": 278,
                        "text": "Radev et al., 2016)",
                        "ref_id": "BIBREF26"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background and Related Work",
                "sec_num": "2"
            },
            {
                "text": "Various subsets of AA have been used in the past for a number of tasks, including: to study citation patterns and intent (Radev et al., 2016; Zhu et al., 2015; Nanba et al., 2011; Mohammad et al., 2009; Teufel et al., 2006; Aya et al., 2005; Pham and Hoffmann, 2003) , to generate summaries of scientific articles (Qazvinian et al., 2013), to study gender disparities in NLP (Schluter, 2018) , to study subtopics within NLP (Anderson et al., 2012) , and to create corpora of scientific articles (Mariani et al., 2018; Bird et al., 2008) .",
                "cite_spans": [
                    {
                        "start": 121,
                        "end": 141,
                        "text": "(Radev et al., 2016;",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 142,
                        "end": 159,
                        "text": "Zhu et al., 2015;",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 160,
                        "end": 179,
                        "text": "Nanba et al., 2011;",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 180,
                        "end": 202,
                        "text": "Mohammad et al., 2009;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 203,
                        "end": 223,
                        "text": "Teufel et al., 2006;",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 224,
                        "end": 241,
                        "text": "Aya et al., 2005;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 242,
                        "end": 266,
                        "text": "Pham and Hoffmann, 2003)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 375,
                        "end": 391,
                        "text": "(Schluter, 2018)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 424,
                        "end": 447,
                        "text": "(Anderson et al., 2012)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 495,
                        "end": 517,
                        "text": "(Mariani et al., 2018;",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 518,
                        "end": 536,
                        "text": "Bird et al., 2008)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background and Related Work",
                "sec_num": "2"
            },
            {
                "text": "However, none of these works provide an interactive visualization for users to explore NLP literature and their citations.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background and Related Work",
                "sec_num": "2"
            },
            {
                "text": "We now briefly describe how we extracted information from the ACL Anthology and Google Scholar. (Further details about the dataset, as well as an analysis of the volume of research in NLP over the years, are available in Mohammad (2020c).)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data",
                "sec_num": "3"
            },
            {
                "text": "The ACL Anthology provides access to its data through its website and a github repository (Gildea et al., 2018) . 6 We extracted paper title, names of authors, year of publication, and venue of publication from the repository. 7 As of June 2019, AA had \u223c50K entries; however, this includes forewords, schedules, etc. that are not truly research publications. After discarding them we are left with a set of 44,895 papers.",
                "cite_spans": [
                    {
                        "start": 90,
                        "end": 111,
                        "text": "(Gildea et al., 2018)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 114,
                        "end": 115,
                        "text": "6",
                        "ref_id": null
                    },
                    {
                        "start": 227,
                        "end": 228,
                        "text": "7",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ACL Anthology Data",
                "sec_num": "3.1"
            },
            {
                "text": "Google Scholar does not provide an API to extract information about the papers. This is likely because of its agreement with publishing companies that have scientific literature behind paywalls . We extracted citation information from Google Scholar profiles of authors who published at least three papers in the ACL Anthology. (This is explicitly allowed by GS's robots exclusion standard. This is also how past work has studied Google Scholar (Khabsa and Giles, 2014; Ordu\u00f1a-Malea et al., 2014; .) This yielded citation information for 1.1 million papers in total. We will refer to this dataset as GS-NLP. Note that GS-NLP includes citation counts not just for NLP papers, but also for non-NLP papers published by the authors.",
                "cite_spans": [
                    {
                        "start": 445,
                        "end": 469,
                        "text": "(Khabsa and Giles, 2014;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 470,
                        "end": 496,
                        "text": "Ordu\u00f1a-Malea et al., 2014;",
                        "ref_id": "BIBREF22"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Google Scholar Data",
                "sec_num": "3.2"
            },
            {
                "text": "GS-NLP includes 32,985 of the 44,895 papers in AA (about 74%). We will refer to this subset of the 6 https://www.aclweb.org/anthology/ https://github.com/acl-org/acl-anthology 7 Multiple authors can have the same name and the same authors may use multiple variants of their names in papers. The AA volunteer team handles such ambiguities using both semi-automatic and manual approaches (fixing some instances on a case-by-case basis). Additionally, the AA repository includes a file that has canonical forms of author names. Authors can provide AA with their aliases, change-of-name information, and preferred canonical name, which is then eventually recorded in the canonical-name file.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Google Scholar Data",
                "sec_num": "3.2"
            },
            {
                "text": "ACL Anthology papers as AA . The citation analyses presented in this paper are on AA . (Future work will explore visualizations on GS-NLP.)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Google Scholar Data",
                "sec_num": "3.2"
            },
            {
                "text": "Entries across AA and GS are aligned by matching the paper title, year of publication, and first author last name. 8",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Google Scholar Data",
                "sec_num": "3.2"
            },
            {
                "text": "Explore Scientific Literature",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Building an Interactive Visualization to",
                "sec_num": "4"
            },
            {
                "text": "We now describe how we created an interactive visualization-NLP Scholar-that allows one to visually explore the data from the ACL Anthology along with citation information from Google Scholar. We first created a relational database (involving multiple tables) that stores the AA and GS data ( \u00a74.1). We then loaded the database in Tableau-an interactive data visualization software-to build the visualizations ( \u00a74.2). 9",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Building an Interactive Visualization to",
                "sec_num": "4"
            },
            {
                "text": "Data from AA and GS is stored in four tables (tsv files): papers, authors, title-unigrams, and titlebigrams. They contain the following information: papers: Each row corresponds to a unique paper. The columns include: paper title, year of publication, list of authors, venue of publication, number of citations at the time of data collection (June 2019), NLP Scholar paper id, ACL paper id, and some other meta-data associated with the paper. The NLP Scholar paper id is a concatenation of the paper title, year of publication, and first author last name. (This id was also used to align entries across AA and GS). authors: Each row corresponds to a paper-author combination. The columns include: NLP Scholar paper id, author first name, and author last name. A paper with three authors contributes three rows to the table (all three have the same paper id, but different author names). title-unigrams: Each row corresponds to a paper title and unigram combination. The columns include: NLP Scholar paper id and paper title unigram (a word that occurs in the title of the paper). A paper with five unique words in the title contributes five rows to the table (all five have the same paper id, but different words). title-bigrams: Each row corresponds to a paper title and bigram combination. The columns include: NLP Scholar paper id and paper title bigram (a two-word sequence that occurs in the title of the paper). A paper with four unique bigrams in the title contributes four rows to the table (all four have the same paper id, but different bigrams).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "NLP Scholar Relational Database",
                "sec_num": "4.1"
            },
            {
                "text": "Once the tables are loaded in Tableau, the following pairs of tables are each joined (inner join) using the NLP Scholar paper id: 10 papers-authors, papers-title-unigrams, and papers-title-bigrams.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "NLP Scholar Relational Database",
                "sec_num": "4.1"
            },
            {
                "text": "We developed multiple visualizations to explore various aspects of the data. We group and connect several individual visualizations in dashboards that allow one to explore several aspects of the data together. Clicking on data attributes such as year of publication or venue of publication in one visualization, filters the data in all visualizations within a dashboard to show only the relevant data. Figure 1 shows a screenshot of the main dashboard. At the top are the number of papers-total (A1) and by year of publication (A2). This allows one to see the growth/decline of the papers over the years.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 402,
                        "end": 410,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "NLP Scholar Interactive Visualization",
                "sec_num": "4.2"
            },
            {
                "text": "Below it, we see the number of citations-total (B1) and by year of publication (B2). For a given year, the bar is partitioned into segments corresponding to individual papers. Each segment (paper) has a height that is proportional to the number of citations it has received and assigned a colour at random. This allows one to quickly identify high-citation papers. 11 Hovering over individual papers in B2 pops open an information box showing the paper title, authors, year of publication, publication venue, and #citations. Figure 6 in the Appendix shows a blow up of B2 along with examples of the hover information box. Similarly, hovering over other parts of the dashboard shows corresponding information. (This is especially helpful, when parts of the text are truncated or otherwise not visible due to space constraints.)",
                "cite_spans": [
                    {
                        "start": 365,
                        "end": 367,
                        "text": "11",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 525,
                        "end": 533,
                        "text": "Figure 6",
                        "ref_id": "FIGREF5"
                    }
                ],
                "eq_spans": [],
                "section": "NLP Scholar Interactive Visualization",
                "sec_num": "4.2"
            },
            {
                "text": "Further below, we see lists of papers (C) and authors (D)-both are ordered by number of citations. Search boxes in the bottom right (E) allow searching for papers that have particular terms in the title or searching for papers by author name. One can also restrict the search to a span of years using the slider.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "NLP Scholar Interactive Visualization",
                "sec_num": "4.2"
            },
            {
                "text": "Four other dashboards are also created that have the same five elements as the main dashboard (A through E), and additionally include a six element F to provide a focused search facility. This sixth element is a treemap that shows the most common: venues and paper types (F1), title unigrams (F2), title bigrams (F3), or language mentions in the title (F4). (We only show one of the four treemaps at a time to prevent overwhelming the user.) The treemaps are shown in Figures 2 to 5, respectively. Figure 1 A1 shows that the dataset includes 44,895 papers. A2 shows that the volume of papers published was considerably lower in the early years (1965 to 1989) ; there was a spurt in the 1990s; and substantial numbers since the year 2000. Also, note that the number of publications is considerably higher in alternate years. This is due to certain biennial conferences. Since 1998 the largest of such conferences has been LREC (In 2018 alone LREC had over 700 main conferences papers and additional papers from its 29 workshops). COLING, another biennial conference (also occurring in the even years) has about 45% of the number of main conference papers as LREC.",
                "cite_spans": [
                    {
                        "start": 644,
                        "end": 658,
                        "text": "(1965 to 1989)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 498,
                        "end": 509,
                        "text": "Figure 1 A1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "NLP Scholar Interactive Visualization",
                "sec_num": "4.2"
            },
            {
                "text": "B1 shows that AA papers have received \u223c1.2 million citations (as of June 2019). The timeline graph in B2 shows that, with time, not only have the number of papers grown, but also the number of high-citation papers. We see a marked jump in the 1990s over the previous decades, but the 2000s are the most notable in terms of the high number of citations. The 2010s papers will likely surpass the 2000s papers in the years to come.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Explorations with NLP Scholar",
                "sec_num": "5"
            },
            {
                "text": "The most cited papers list (C) shows influential papers from machine translation, sentiment analysis, word embeddings, syntax, and semantics.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Explorations with NLP Scholar",
                "sec_num": "5"
            },
            {
                "text": "Among the authors (D), observe that Christopher Manning has not only received the most number of citations, he has also received almost three times as many citations as the next person in the list. Search: NLP Scholar allows for search in a number of ways. Suppose we are interested in the topic of sentiment analysis. Then we can enter the relevant keywords in the search box: sentiment, valence, emotion, emotions, affect, etc. Then the visualizations are filtered to present details of only those papers that have at least one of these keywords in the title. (Future work will allow for search in the abstract and the whole text.) Figure 7 in the Appendix shows the filtered result. The system identified 1,481 papers that each have at least one of the query terms in the title. They have received more than 85K citations. The citations timeline (B2 in Figure 7) shows that there were just a few scattered papers in early years (1987) (1988) (1989) (1990) (1991) (1992) (1993) (1994) (1995) (1996) (1997) (1998) (1999) (2000) that received a small number of citations. However, two papers in 2002 received a massive number of citations, and likely led to the substantially increased interest in the field. The number of papers has steadily increased since 2002, with close to 250 papers in 2018, showing that the area continues to enjoy considerable attention.",
                "cite_spans": [
                    {
                        "start": 931,
                        "end": 937,
                        "text": "(1987)",
                        "ref_id": null
                    },
                    {
                        "start": 938,
                        "end": 944,
                        "text": "(1988)",
                        "ref_id": null
                    },
                    {
                        "start": 945,
                        "end": 951,
                        "text": "(1989)",
                        "ref_id": null
                    },
                    {
                        "start": 952,
                        "end": 958,
                        "text": "(1990)",
                        "ref_id": null
                    },
                    {
                        "start": 959,
                        "end": 965,
                        "text": "(1991)",
                        "ref_id": null
                    },
                    {
                        "start": 966,
                        "end": 972,
                        "text": "(1992)",
                        "ref_id": null
                    },
                    {
                        "start": 973,
                        "end": 979,
                        "text": "(1993)",
                        "ref_id": null
                    },
                    {
                        "start": 980,
                        "end": 986,
                        "text": "(1994)",
                        "ref_id": null
                    },
                    {
                        "start": 987,
                        "end": 993,
                        "text": "(1995)",
                        "ref_id": null
                    },
                    {
                        "start": 994,
                        "end": 1000,
                        "text": "(1996)",
                        "ref_id": null
                    },
                    {
                        "start": 1001,
                        "end": 1007,
                        "text": "(1997)",
                        "ref_id": null
                    },
                    {
                        "start": 1008,
                        "end": 1014,
                        "text": "(1998)",
                        "ref_id": null
                    },
                    {
                        "start": 1015,
                        "end": 1021,
                        "text": "(1999)",
                        "ref_id": null
                    },
                    {
                        "start": 1022,
                        "end": 1028,
                        "text": "(2000)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 634,
                        "end": 642,
                        "text": "Figure 7",
                        "ref_id": "FIGREF6"
                    },
                    {
                        "start": 856,
                        "end": 865,
                        "text": "Figure 7)",
                        "ref_id": "FIGREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Data Explorations with NLP Scholar",
                "sec_num": "5"
            },
            {
                "text": "One can also fine tune the search as desired. Say we are interested not in the broad area of sentiment analysis, but specifically in the work on emotions and affect. Then they can enter only emotion-and affect-related keywords. A disadvantage of using terms for search is that some terms are ambiguous and they can pull in irrelevant articles; also if a paper is about the topic of interest but its title does not have one of the standard keywords associated with the topic, then it might be left out. That said, if one does come across a paper that has the query term but is not in the topic of interest, they can right click and exclude that paper from the visualization; and as mentioned before, future work will allow for searches in the abstract and full text as well. We are also currently working on clustering papers using the words in the articles as features. 12 Below are some more examples of interactions with NLP Scholar (Figures are in the Appendix after references):",
                "cite_spans": [
                    {
                        "start": 870,
                        "end": 872,
                        "text": "12",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Explorations with NLP Scholar",
                "sec_num": "5"
            },
            {
                "text": "\u2022 Figure 8 shows the state of the visualization when one clicks the year 2016 in A1.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 2,
                        "end": 10,
                        "text": "Figure 8",
                        "ref_id": "FIGREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Data Explorations with NLP Scholar",
                "sec_num": "5"
            },
            {
                "text": "\u2022 Figures 9 and 10 show examples of author search by clicking on the authors list (D) (Christopher Manning and Lillian Lee).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 2,
                        "end": 18,
                        "text": "Figures 9 and 10",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Data Explorations with NLP Scholar",
                "sec_num": "5"
            },
            {
                "text": "\u2022 Figures 11 and 12 show the dashboard when one clicks on the Venue and Paper Type treemap (F1): ACL main conference papers and Workshop papers, respectively.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 2,
                        "end": 19,
                        "text": "Figures 11 and 12",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Data Explorations with NLP Scholar",
                "sec_num": "5"
            },
            {
                "text": "\u2022 Figures 13, 14 and 15 in the Appendix also show examples of search for the terms parsing, statistical and neural, respectively (accessed by clicking on the title unigrams treemap (F2)).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 2,
                        "end": 16,
                        "text": "Figures 13, 14",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Data Explorations with NLP Scholar",
                "sec_num": "5"
            },
            {
                "text": "\u2022 Figures 16, 17, and 18 show the dashboard when one clicks on the Title Bigrams treemap (F3): machine translation, question answering, and word embeddings, respectively.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 2,
                        "end": 24,
                        "text": "Figures 16, 17, and 18",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Data Explorations with NLP Scholar",
                "sec_num": "5"
            },
            {
                "text": "\u2022 Figures 19 and 20 show the dashboard when one clicks on the Languages treemap (F4): Chinese and Swahili, respectively.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 2,
                        "end": 19,
                        "text": "Figures 19 and 20",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Data Explorations with NLP Scholar",
                "sec_num": "5"
            },
            {
                "text": "Once the system goes live, we hope to collect further usage scenarios from the users at large. For this work, we chose not to stem the terms in the titles before applying the search. This is because in some search scenarios, it is beneficial to distinguish the different morphological forms of a word. For example, papers with emotions in the titles are more likely to be dealing with multiple emotions than papers with the term emotion. When such distinctions do not need to be made, it is easy for users to include morphological variants as additional query terms.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Explorations with NLP Scholar",
                "sec_num": "5"
            },
            {
                "text": "We presented NLP Scholar-an interactive visual explorer for the ACL Anthology. Notably, the tool also has access to citation information from Google Scholar. It includes several interconnected interactive visualizations (dashboards) that allow users to quickly and efficiently search for relevant related work by clicking on items within a visualization or through search boxes. All of the data and interactive visualizations associated with this work are freely available through the project homepage. 13 Future work will provide additional functionalities such as search within abstracts and whole texts, document clustering, and automatically identifying related papers. We see NLP Scholar, with its dedicated visual search capabilities for NLP papers, as a useful complementary tool to existing resources such as Google Scholar. We also note that the approach presented here is not required to be applied only to the ACL Anthology or NLP papers; it can be used to display papers from other sources too such as pre-print archives and anthologies of papers from other fields of study. ",
                "cite_spans": [
                    {
                        "start": 503,
                        "end": 505,
                        "text": "13",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Future Work",
                "sec_num": "6"
            },
            {
                "text": "One can make a distinction between NLP and Computational Linguistics; however, for this work we will consider them to be synonymous.2 https://www.aclweb.org/anthology/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "ACL licenses its papers with a Creative Commons Attribution 4.0 International License.4 https://scholar.google.com",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://saifmohammad.com/WebPages/nlpscholar.html",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "There were marked variations in how the same venue was described in the meta-information across AA and GS; thus, venue information was not used for alignment.9 Tableau: https://www.tableau.com Even though there are paid versions of Tableau, the visualizations built with Tableau can be freely shared with others on the world wide web. Users do not require any special software to interact with these visualization on the web.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "An inner join selects all rows from both participating tables whose join column values match across the two tables.11 Note that since the number of colours is smaller than the number of papers, multiple papers may have the same color; however, the probability of adjacent papers receiving the same colour is small-even then, the system will provide visual clues distinguishing each segment when hovering over the area.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Note that clustering approaches also have limitations, such as differing results depending on the parameters used.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://saifmohammad.com/WebPages/nlpscholar.html",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This work was possible due to the helpful discussion and encouragement from a number of awesome people including: Dan Jurafsky, Tara Small, Michael Strube, Cyril Goutte, Eric Joanis, Matt Post, Torsten Zesch, Ellen Riloff, Iryna Gurevych, Rebecca Knowles, Isar Nejadgholi, and Peter Turney. Also, a big thanks to the ACL Anthology and Google Scholar Teams for creating and maintaining wonderful resources.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            },
            {
                "text": "Figures 6 through 20 (in the pages ahead) show example interactions with NLP Scholar that were discussed in Section 5.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A Appendix",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Towards a computational history of the acl",
                "authors": [
                    {
                        "first": "Ashton",
                        "middle": [],
                        "last": "Anderson",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Mcfarland",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Jurafsky",
                        "suffix": ""
                    }
                ],
                "year": 1980,
                "venue": "Proceedings of the ACL-2012 Special Workshop on Rediscovering 50 Years of Discoveries",
                "volume": "",
                "issue": "",
                "pages": "13--21",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ashton Anderson, Dan McFarland, and Dan Jurafsky. 2012. Towards a computational history of the acl: 1980-2008. In Proceedings of the ACL-2012 Spe- cial Workshop on Rediscovering 50 Years of Discov- eries, pages 13-21. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Citation classification and its applications",
                "authors": [
                    {
                        "first": "Selcuk",
                        "middle": [],
                        "last": "Aya",
                        "suffix": ""
                    },
                    {
                        "first": "Carl",
                        "middle": [],
                        "last": "Lagoze",
                        "suffix": ""
                    },
                    {
                        "first": "Thorsten",
                        "middle": [],
                        "last": "Joachims",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Knowledge Management: Nurturing Culture, Innovation, and Technology",
                "volume": "",
                "issue": "",
                "pages": "287--298",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Selcuk Aya, Carl Lagoze, and Thorsten Joachims. 2005. Citation classification and its applications. In Knowledge Management: Nurturing Culture, Inno- vation, and Technology, pages 287-298. World Sci- entific.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "The acl anthology reference corpus: A reference dataset for bibliographic research in computational linguistics",
                "authors": [
                    {
                        "first": "Steven",
                        "middle": [],
                        "last": "Bird",
                        "suffix": ""
                    },
                    {
                        "first": "Robert",
                        "middle": [],
                        "last": "Dale",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Bonnie",
                        "suffix": ""
                    },
                    {
                        "first": "Bryan",
                        "middle": [],
                        "last": "Dorr",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [
                            "Thomas"
                        ],
                        "last": "Gibson",
                        "suffix": ""
                    },
                    {
                        "first": "Min-Yen",
                        "middle": [],
                        "last": "Joseph",
                        "suffix": ""
                    },
                    {
                        "first": "Dongwon",
                        "middle": [],
                        "last": "Kan",
                        "suffix": ""
                    },
                    {
                        "first": "Brett",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Powley",
                        "suffix": ""
                    },
                    {
                        "first": "Yee",
                        "middle": [
                            "Fan"
                        ],
                        "last": "Dragomir R Radev",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Tan",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Steven Bird, Robert Dale, Bonnie J Dorr, Bryan Gib- son, Mark Thomas Joseph, Min-Yen Kan, Dongwon Lee, Brett Powley, Dragomir R Radev, and Yee Fan Tan. 2008. The acl anthology reference corpus: A reference dataset for bibliographic research in com- putational linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Interdisciplinary comparison of scientific impact of publications using the citation-ratio",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Arthur",
                        "suffix": ""
                    },
                    {
                        "first": "Sandrine",
                        "middle": [],
                        "last": "Bos",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Nitza",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Data Science Journal",
                "volume": "18",
                "issue": "1",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Arthur R Bos and Sandrine Nitza. 2019. Interdisci- plinary comparison of scientific impact of publica- tions using the citation-ratio. Data Science Journal, 18(1).",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Measuring impact in the humanities: Learning from accountability and economics in a contemporary history of cultural value",
                "authors": [
                    {
                        "first": "Zoe",
                        "middle": [],
                        "last": "Bulaitis",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "3",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zoe Bulaitis. 2017. Measuring impact in the humani- ties: Learning from accountability and economics in a contemporary history of cultural value. Palgrave Communications, 3(1):7.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "The ACL anthology: Current state and future directions",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Gildea",
                        "suffix": ""
                    },
                    {
                        "first": "Min-Yen",
                        "middle": [],
                        "last": "Kan",
                        "suffix": ""
                    },
                    {
                        "first": "Nitin",
                        "middle": [],
                        "last": "Madnani",
                        "suffix": ""
                    },
                    {
                        "first": "Christoph",
                        "middle": [],
                        "last": "Teichmann",
                        "suffix": ""
                    },
                    {
                        "first": "Mart\u00edn",
                        "middle": [],
                        "last": "Villalba",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of Workshop for NLP Open Source Software (NLP-OSS)",
                "volume": "",
                "issue": "",
                "pages": "23--28",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W18-2504"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Daniel Gildea, Min-Yen Kan, Nitin Madnani, Christoph Teichmann, and Mart\u00edn Villalba. 2018. The ACL anthology: Current state and future direc- tions. In Proceedings of Workshop for NLP Open Source Software (NLP-OSS), pages 23-28, Mel- bourne, Australia. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Google scholar to overshadow them all? comparing the sizes of 12 academic search engines and bibliographic databases",
                "authors": [
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Gusenbauer",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Scientometrics",
                "volume": "118",
                "issue": "1",
                "pages": "177--214",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Michael Gusenbauer. 2019. Google scholar to over- shadow them all? comparing the sizes of 12 aca- demic search engines and bibliographic databases. Scientometrics, 118(1):177-214.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Citerivers: Visual analytics of citation patterns. IEEE transactions on visualization and computer graphics",
                "authors": [
                    {
                        "first": "Florian",
                        "middle": [],
                        "last": "Heimerl",
                        "suffix": ""
                    },
                    {
                        "first": "Qi",
                        "middle": [],
                        "last": "Han",
                        "suffix": ""
                    },
                    {
                        "first": "Steffen",
                        "middle": [],
                        "last": "Koch",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Ertl",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "22",
                "issue": "",
                "pages": "190--199",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Florian Heimerl, Qi Han, Steffen Koch, and Thomas Ertl. 2015. Citerivers: Visual analytics of citation patterns. IEEE transactions on visualization and computer graphics, 22(1):190-199.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Visual classifier training for text document retrieval",
                "authors": [
                    {
                        "first": "Florian",
                        "middle": [],
                        "last": "Heimerl",
                        "suffix": ""
                    },
                    {
                        "first": "Steffen",
                        "middle": [],
                        "last": "Koch",
                        "suffix": ""
                    },
                    {
                        "first": "Harald",
                        "middle": [],
                        "last": "Bosch",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Ertl",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "IEEE Transactions on Visualization and Computer Graphics",
                "volume": "18",
                "issue": "12",
                "pages": "2839--2848",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Florian Heimerl, Steffen Koch, Harald Bosch, and Thomas Ertl. 2012. Visual classifier training for text document retrieval. IEEE Transactions on Visualiza- tion and Computer Graphics, 18(12):2839-2848.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "How scholarly is google scholar? a comparison to library databases",
                "authors": [
                    {
                        "first": "Jared",
                        "middle": [
                            "L"
                        ],
                        "last": "Howland",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jared L Howland. 2010. How scholarly is google scholar? a comparison to library databases.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "A standardized citation metrics author database annotated for scientific field",
                "authors": [
                    {
                        "first": "P",
                        "middle": [
                            "A"
                        ],
                        "last": "John",
                        "suffix": ""
                    },
                    {
                        "first": "Jeroen",
                        "middle": [],
                        "last": "Ioannidis",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Baas",
                        "suffix": ""
                    },
                    {
                        "first": "Kevin",
                        "middle": [
                            "W"
                        ],
                        "last": "Klavans",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Boyack",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "PLoS biology",
                "volume": "17",
                "issue": "8",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "John PA Ioannidis, Jeroen Baas, Richard Klavans, and Kevin W Boyack. 2019. A standardized citation metrics author database annotated for scientific field. PLoS biology, 17(8):e3000384.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "The number of scholarly documents on the public web",
                "authors": [
                    {
                        "first": "Madian",
                        "middle": [],
                        "last": "Khabsa",
                        "suffix": ""
                    },
                    {
                        "first": "C Lee",
                        "middle": [],
                        "last": "Giles",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "PloS one",
                "volume": "9",
                "issue": "5",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Madian Khabsa and C Lee Giles. 2014. The number of scholarly documents on the public web. PloS one, 9(5):e93949.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Understanding research trends in conferences using paperlens",
                "authors": [
                    {
                        "first": "Bongshin",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Mary",
                        "middle": [],
                        "last": "Czerwinski",
                        "suffix": ""
                    },
                    {
                        "first": "George",
                        "middle": [],
                        "last": "Robertson",
                        "suffix": ""
                    },
                    {
                        "first": "Benjamin",
                        "middle": [
                            "B"
                        ],
                        "last": "Bederson",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "CHI'05 extended abstracts on Human factors in computing systems",
                "volume": "",
                "issue": "",
                "pages": "1969--1972",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bongshin Lee, Mary Czerwinski, George Robertson, and Benjamin B Bederson. 2005. Understanding research trends in conferences using paperlens. In CHI'05 extended abstracts on Human factors in computing systems, pages 1969-1972.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "The nlp4nlp corpus (i): 50 years of publication, collaboration and citation in speech and language processing",
                "authors": [
                    {
                        "first": "Joseph",
                        "middle": [],
                        "last": "Mariani",
                        "suffix": ""
                    },
                    {
                        "first": "Gil",
                        "middle": [],
                        "last": "Francopoulo",
                        "suffix": ""
                    },
                    {
                        "first": "Patrick",
                        "middle": [],
                        "last": "Paroubek",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Frontiers in Research Metrics and Analytics",
                "volume": "3",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joseph Mariani, Gil Francopoulo, and Patrick Paroubek. 2018. The nlp4nlp corpus (i): 50 years of publication, collaboration and citation in speech and language processing. Frontiers in Research Metrics and Analytics, 3:36.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Google scholar, web of science, and scopus: A systematic comparison of citations in 252 subject categories",
                "authors": [
                    {
                        "first": "Alberto",
                        "middle": [],
                        "last": "Mart\u00edn-Mart\u00edn",
                        "suffix": ""
                    },
                    {
                        "first": "Enrique",
                        "middle": [],
                        "last": "Orduna-Malea",
                        "suffix": ""
                    },
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Thelwall",
                        "suffix": ""
                    },
                    {
                        "first": "Emilio",
                        "middle": [
                            "Delgado"
                        ],
                        "last": "L\u00f3pez-C\u00f3zar",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Journal of Informetrics",
                "volume": "12",
                "issue": "4",
                "pages": "1160--1177",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alberto Mart\u00edn-Mart\u00edn, Enrique Orduna-Malea, Mike Thelwall, and Emilio Delgado L\u00f3pez-C\u00f3zar. 2018. Google scholar, web of science, and scopus: A sys- tematic comparison of citations in 252 subject cate- gories. Journal of Informetrics, 12(4):1160-1177.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "A review of theory and practice in scientometrics",
                "authors": [
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Mingers",
                        "suffix": ""
                    },
                    {
                        "first": "Loet",
                        "middle": [],
                        "last": "Leydesdorff",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "European journal of operational research",
                "volume": "246",
                "issue": "1",
                "pages": "1--19",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "John Mingers and Loet Leydesdorff. 2015. A review of theory and practice in scientometrics. European journal of operational research, 246(1):1-19.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Using citations to generate surveys of scientific paradigms",
                "authors": [
                    {
                        "first": "Saif",
                        "middle": [],
                        "last": "Mohammad",
                        "suffix": ""
                    },
                    {
                        "first": "Bonnie",
                        "middle": [],
                        "last": "Dorr",
                        "suffix": ""
                    },
                    {
                        "first": "Melissa",
                        "middle": [],
                        "last": "Egan",
                        "suffix": ""
                    },
                    {
                        "first": "Ahmed",
                        "middle": [],
                        "last": "Hassan",
                        "suffix": ""
                    },
                    {
                        "first": "Pradeep",
                        "middle": [],
                        "last": "Muthukrishan",
                        "suffix": ""
                    },
                    {
                        "first": "Vahed",
                        "middle": [],
                        "last": "Qazvinian",
                        "suffix": ""
                    },
                    {
                        "first": "Dragomir",
                        "middle": [],
                        "last": "Radev",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Zajic",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of human language technologies: The 2009 annual conference of the North American chapter of the association for computational linguistics",
                "volume": "",
                "issue": "",
                "pages": "584--592",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Saif Mohammad, Bonnie Dorr, Melissa Egan, Ahmed Hassan, Pradeep Muthukrishan, Vahed Qazvinian, Dragomir Radev, and David Zajic. 2009. Using cita- tions to generate surveys of scientific paradigms. In Proceedings of human language technologies: The 2009 annual conference of the North American chap- ter of the association for computational linguistics, pages 584-592.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "The state of nlp literature: A diachronic analysis of the acl anthology",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Saif",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Mohammad",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1911.03562"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Saif M. Mohammad. 2019. The state of nlp literature: A diachronic analysis of the acl anthology. arXiv preprint arXiv:1911.03562.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Examining citations of natural language processing literature",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Saif",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Mohammad",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Annual Conference of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Saif M. Mohammad. 2020a. Examining citations of natural language processing literature. In Proceed- ings of the 2020 Annual Conference of the Associa- tion for Computational Linguistics, Seattle, USA.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Gender gap in natural language processing research: Disparities in authorship and citations",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Saif",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Mohammad",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Annual Conference of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Saif M. Mohammad. 2020b. Gender gap in natural language processing research: Disparities in author- ship and citations. In Proceedings of the 2020 An- nual Conference of the Association for Computa- tional Linguistics, Seattle, USA.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Nlp scholar: A dataset for examining the state of nlp research",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Saif",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Mohammad",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 12th Language Resources and Evaluation Conference (LREC-2020)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Saif M. Mohammad. 2020c. Nlp scholar: A dataset for examining the state of nlp research. In Proceed- ings of the 12th Language Resources and Evaluation Conference (LREC-2020), Marseille, France.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Classification of research papers using citation links and citation types: Towards automatic review article generation",
                "authors": [
                    {
                        "first": "Hidetsugu",
                        "middle": [],
                        "last": "Nanba",
                        "suffix": ""
                    },
                    {
                        "first": "Noriko",
                        "middle": [],
                        "last": "Kando",
                        "suffix": ""
                    },
                    {
                        "first": "Manabu",
                        "middle": [],
                        "last": "Okumura",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Advances in Classification Research Online",
                "volume": "11",
                "issue": "",
                "pages": "117--134",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hidetsugu Nanba, Noriko Kando, and Manabu Oku- mura. 2011. Classification of research papers using citation links and citation types: Towards automatic review article generation. Advances in Classifica- tion Research Online, 11(1):117-134.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "About the size of google scholar: playing the numbers",
                "authors": [
                    {
                        "first": "Enrique",
                        "middle": [],
                        "last": "Ordu\u00f1a-Malea",
                        "suffix": ""
                    },
                    {
                        "first": "Juan",
                        "middle": [],
                        "last": "Manuel Ayll\u00f3n",
                        "suffix": ""
                    },
                    {
                        "first": "Alberto",
                        "middle": [],
                        "last": "Mart\u00edn-Mart\u00edn",
                        "suffix": ""
                    },
                    {
                        "first": "Emilio",
                        "middle": [
                            "Delgado"
                        ],
                        "last": "L\u00f3pez-C\u00f3zar",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1407.6239"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Enrique Ordu\u00f1a-Malea, Juan Manuel Ayll\u00f3n, Alberto Mart\u00edn-Mart\u00edn, and Emilio Delgado L\u00f3pez-C\u00f3zar. 2014. About the size of google scholar: playing the numbers. arXiv preprint arXiv:1407.6239.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "A new approach for scientific citation classification using cue phrases",
                "authors": [
                    {
                        "first": "Bao",
                        "middle": [],
                        "last": "Son",
                        "suffix": ""
                    },
                    {
                        "first": "Achim",
                        "middle": [],
                        "last": "Pham",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Hoffmann",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Australasian Joint Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "759--771",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Son Bao Pham and Achim Hoffmann. 2003. A new approach for scientific citation classification using cue phrases. In Australasian Joint Conference on Artificial Intelligence, pages 759-771. Springer.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Scientometrics 2.0: New metrics of scholarly impact on the social web",
                "authors": [
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Priem",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Bradely",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Hemminger",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "First monday",
                "volume": "",
                "issue": "7",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jason Priem and Bradely H Hemminger. 2010. Scien- tometrics 2.0: New metrics of scholarly impact on the social web. First monday, 15(7).",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Generating extractive summaries of scientific paradigms",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Vahed Qazvinian",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Dragomir R Radev",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Saif",
                        "suffix": ""
                    },
                    {
                        "first": "Bonnie",
                        "middle": [],
                        "last": "Mohammad",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Dorr",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Zajic",
                        "suffix": ""
                    },
                    {
                        "first": "Taesun",
                        "middle": [],
                        "last": "Whidby",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Moon",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Journal of Artificial Intelligence Research",
                "volume": "46",
                "issue": "",
                "pages": "165--201",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Vahed Qazvinian, Dragomir R Radev, Saif M Moham- mad, Bonnie Dorr, David Zajic, Michael Whidby, and Taesun Moon. 2013. Generating extractive sum- maries of scientific paradigms. Journal of Artificial Intelligence Research, 46:165-201.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "A bibliometric and network analysis of the field of computational linguistics",
                "authors": [
                    {
                        "first": "Mark",
                        "middle": [
                            "Thomas"
                        ],
                        "last": "Dragomir R Radev",
                        "suffix": ""
                    },
                    {
                        "first": "Bryan",
                        "middle": [],
                        "last": "Joseph",
                        "suffix": ""
                    },
                    {
                        "first": "Pradeep",
                        "middle": [],
                        "last": "Gibson",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Muthukrishnan",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Journal of the Association for Information Science and Technology",
                "volume": "67",
                "issue": "3",
                "pages": "683--706",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dragomir R Radev, Mark Thomas Joseph, Bryan Gib- son, and Pradeep Muthukrishnan. 2016. A biblio- metric and network analysis of the field of computa- tional linguistics. Journal of the Association for In- formation Science and Technology, 67(3):683-706.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Measuring scientific impact beyond academia: An assessment of existing impact metrics and proposed improvements",
                "authors": [
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Ravenscroft",
                        "suffix": ""
                    },
                    {
                        "first": "Maria",
                        "middle": [],
                        "last": "Liakata",
                        "suffix": ""
                    },
                    {
                        "first": "Amanda",
                        "middle": [],
                        "last": "Clare",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Duma",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "PloS one",
                "volume": "12",
                "issue": "3",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "James Ravenscroft, Maria Liakata, Amanda Clare, and Daniel Duma. 2017. Measuring scientific impact beyond academia: An assessment of existing im- pact metrics and proposed improvements. PloS one, 12(3):e0173152.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "The glass ceiling in NLP",
                "authors": [
                    {
                        "first": "Natalie",
                        "middle": [],
                        "last": "Schluter",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "2793--2798",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Natalie Schluter. 2018. The glass ceiling in NLP. In Proceedings of the 2018 Conference on Empiri- cal Methods in Natural Language Processing, pages 2793-2798.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Automatic classification of citation function",
                "authors": [
                    {
                        "first": "Simone",
                        "middle": [],
                        "last": "Teufel",
                        "suffix": ""
                    },
                    {
                        "first": "Advaith",
                        "middle": [],
                        "last": "Siddharthan",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Tidhar",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "103--110",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Simone Teufel, Advaith Siddharthan, and Dan Tidhar. 2006. Automatic classification of citation function. In Proceedings of the 2006 Conference on Empiri- cal Methods in Natural Language Processing, pages 103-110.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Literature explorer: effective retrieval of scientific documents through nonparametric thematic topic detection. The Visual Computer",
                "authors": [
                    {
                        "first": "Shaopeng",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Youbing",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Farzad",
                        "middle": [],
                        "last": "Parvinzamir",
                        "suffix": ""
                    },
                    {
                        "first": "Nikolaos",
                        "middle": [],
                        "last": "Th Ersotelos",
                        "suffix": ""
                    },
                    {
                        "first": "Hui",
                        "middle": [],
                        "last": "Wei",
                        "suffix": ""
                    },
                    {
                        "first": "Feng",
                        "middle": [],
                        "last": "Dong",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "1--18",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shaopeng Wu, Youbing Zhao, Farzad Parvinzamir, Nikolaos Th Ersotelos, Hui Wei, and Feng Dong. 2019. Literature explorer: effective retrieval of sci- entific documents through nonparametric thematic topic detection. The Visual Computer, pages 1-18.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Predicting a scientific community's response to an article",
                "authors": [
                    {
                        "first": "Dani",
                        "middle": [],
                        "last": "Yogatama",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Heilman",
                        "suffix": ""
                    },
                    {
                        "first": "O'",
                        "middle": [],
                        "last": "Brendan",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Connor",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Dyer",
                        "suffix": ""
                    },
                    {
                        "first": "Noah A",
                        "middle": [],
                        "last": "Bryan R Routledge",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "594--604",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dani Yogatama, Michael Heilman, Brendan O'Connor, Chris Dyer, Bryan R Routledge, and Noah A Smith. 2011. Predicting a scientific community's response to an article. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Process- ing, pages 594-604.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Measuring academic influence: Not all citations are equal",
                "authors": [
                    {
                        "first": "Xiaodan",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Turney",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Lemire",
                        "suffix": ""
                    },
                    {
                        "first": "Andr\u00e9",
                        "middle": [],
                        "last": "Vellino",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Journal of the Association for Information Science and Technology",
                "volume": "66",
                "issue": "2",
                "pages": "408--427",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xiaodan Zhu, Peter Turney, Daniel Lemire, and Andr\u00e9 Vellino. 2015. Measuring academic influence: Not all citations are equal. Journal of the Association for Information Science and Technology, 66(2):408- 427.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "A screenshot of NLP Scholar's principle dashboard.",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF1": {
                "text": "A treemap of popular NLP venues and paper types. Darker shades of green: higher volumes of papers.",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF2": {
                "text": "A treemap of the most common unigrams in paper titles. Darker shades of green: higher frequencies.",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF3": {
                "text": "A treemap of the most common bigrams in paper titles. Darker shades of green: higher frequencies.",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF4": {
                "text": "A treemap of the most common language terms in titles. Darker shades of green: higher frequencies.",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF5": {
                "text": "NLP Scholar: Hovering over individual papers in B2 pops open an information box showing the paper title, authors, year of publication, publication venue, and #citations.",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF6": {
                "text": "NLP Scholar: After entering terms associated with sentiment analysis in the search box.",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF7": {
                "text": "NLP Scholar: After clicking on the 2016 bar in the #papers by year viz (A2).",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF8": {
                "text": "NLP Scholar: After clicking on 'Manning, Christopher' in the Authors list (D).",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF9": {
                "text": "NLP Scholar: After clicking on 'Lee, Lillian' in the Authors list (D).",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF10": {
                "text": "NLP Scholar: After clicking on 'ACL' in the venue and paper type treemap (F1).",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF11": {
                "text": "NLP Scholar: After clicking on 'Workshops' in the venue and paper type treemap (F1).",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF12": {
                "text": "NLP Scholar: After clicking on 'parsing' in the unigrams treemap (F2).",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF13": {
                "text": "NLP Scholar: After clicking on 'statistical' in the unigrams treemap (F2).",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF14": {
                "text": "NLP Scholar: After clicking on 'neural' in the unigrams treemap (F2).",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF15": {
                "text": "NLP Scholar: After clicking on 'machine translation' in the bigrams treemap (F3).",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF16": {
                "text": "NLP Scholar: After clicking on 'question answering' in the bigrams treemap (F3).",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF17": {
                "text": "NLP Scholar: After clicking on 'word embeddings' in the bigrams treemap (F3).",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF18": {
                "text": "NLP Scholar: After clicking on 'Chinese' in the languages treemap (F4).",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF19": {
                "text": "NLP Scholar: After clicking on 'Swahili' in the languages treemap (F4).",
                "uris": null,
                "num": null,
                "type_str": "figure"
            }
        }
    }
}