File size: 95,188 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T01:35:18.072608Z"
    },
    "title": "EXBERT: A Visual Analysis Tool to Explore Learned Representations in Transformer Models",
    "authors": [
        {
            "first": "Ben",
            "middle": [],
            "last": "Hoover",
            "suffix": "",
            "affiliation": {},
            "email": "benjamin.hoover@ibm.com"
        },
        {
            "first": "Hendrik",
            "middle": [],
            "last": "Strobelt",
            "suffix": "",
            "affiliation": {},
            "email": "hendrik.strobelt@ibm.com"
        },
        {
            "first": "Sebastian",
            "middle": [],
            "last": "Gehrmann",
            "suffix": "",
            "affiliation": {},
            "email": "gehrmann@seas.harvard.edu"
        },
        {
            "first": "Harvard",
            "middle": [],
            "last": "Seas",
            "suffix": "",
            "affiliation": {},
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Large Transformer-based language models can route and reshape complex information via their multi-headed attention mechanism. Although the attention never receives explicit supervision, it can exhibit recognizable patterns following linguistic or positional information. Analyzing the learned representations and attentions is paramount to furthering our understanding of the inner workings of these models. However, analyses have to catch up with the rapid release of new models and the growing diversity of investigation techniques. To support analysis for a wide variety of models, we introduce EXBERT, a tool to help humans conduct flexible, interactive investigations and formulate hypotheses for the model-internal reasoning process. EXBERT provides insights into the meaning of the contextual representations and attention by matching a humanspecified input to similar contexts in large annotated datasets. By aggregating the annotations of the matched contexts, EXBERT can quickly replicate findings from literature and extend them to previously not analyzed models.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Large Transformer-based language models can route and reshape complex information via their multi-headed attention mechanism. Although the attention never receives explicit supervision, it can exhibit recognizable patterns following linguistic or positional information. Analyzing the learned representations and attentions is paramount to furthering our understanding of the inner workings of these models. However, analyses have to catch up with the rapid release of new models and the growing diversity of investigation techniques. To support analysis for a wide variety of models, we introduce EXBERT, a tool to help humans conduct flexible, interactive investigations and formulate hypotheses for the model-internal reasoning process. EXBERT provides insights into the meaning of the contextual representations and attention by matching a humanspecified input to similar contexts in large annotated datasets. By aggregating the annotations of the matched contexts, EXBERT can quickly replicate findings from literature and extend them to previously not analyzed models.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Learned contextualized representations of a neural network can contain meaningful information. Uncovering this information plays a vital role in understanding and interpreting the learned structure of neural networks (Belinkov and Glass, 2019) . One way to identify information is to probe the representations by using them as features in classifiers for linguistic tasks, or by identifying contexts that lead to similar patterns (Tenney et al., 2019b; Conneau et al., 2018; Strobelt et al., 2017) .",
                "cite_spans": [
                    {
                        "start": 217,
                        "end": 243,
                        "text": "(Belinkov and Glass, 2019)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 430,
                        "end": 452,
                        "text": "(Tenney et al., 2019b;",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 453,
                        "end": 474,
                        "text": "Conneau et al., 2018;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 475,
                        "end": 497,
                        "text": "Strobelt et al., 2017)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "With Transformers (Vaswani et al., 2017) overtaking recurrent models as the primary architectures for many NLP tasks, analyzing attention has become another common strategy for interpretabil-ity (Raganato and Tiedemann, 2018a; Clark et al., 2019) . These efforts focus on selecting a model, such as BERT (Devlin et al., 2019) , and exploring the Transformer's contextual embeddings and attentions across layers to determine whether and where it learns to represent linguistic features. Previous studies have uncovered specific attention heads that learn particular dependencies (Vig and Belinkov, 2019; Clark et al., 2019) .",
                "cite_spans": [
                    {
                        "start": 18,
                        "end": 40,
                        "text": "(Vaswani et al., 2017)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 195,
                        "end": 226,
                        "text": "(Raganato and Tiedemann, 2018a;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 227,
                        "end": 246,
                        "text": "Clark et al., 2019)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 304,
                        "end": 325,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 578,
                        "end": 602,
                        "text": "(Vig and Belinkov, 2019;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 603,
                        "end": 622,
                        "text": "Clark et al., 2019)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "However, once the standard linguistic probing tasks are exhausted, it is challenging to develop new hypotheses to test. Toward that end, interactive visualizations provide a successful strategy to develop new insights and strategies. Visualization tools can offer concise summaries of useful information and allow interaction with large models. Attention visualizations have thus taken significant steps toward these goals of making explorations fast and interactive for the user (Vig, 2019) . However, interpreting attention patterns without understanding the attended-to embeddings, or relying on attention alone as a faithful explanation, can lead to faulty interpretations (Brunner et al., 2019; Jain and Wallace, 2019; Wiegreffe and Pinter, 2019; Li et al., 2019) .",
                "cite_spans": [
                    {
                        "start": 480,
                        "end": 491,
                        "text": "(Vig, 2019)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 677,
                        "end": 699,
                        "text": "(Brunner et al., 2019;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 700,
                        "end": 723,
                        "text": "Jain and Wallace, 2019;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 724,
                        "end": 751,
                        "text": "Wiegreffe and Pinter, 2019;",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 752,
                        "end": 768,
                        "text": "Li et al., 2019)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "To address this challenge, we developed EXBERT, a tool that combines the advantages of static analyses with a dynamic and intuitive view into both the attentions and internal representations of the underlying model. EXBERT provides these insights for any user-specified model and corpus by probing whether the representations capture meaningful information. We demonstrate that EXBERT can replicate insights from the analysis by Clark et al. (2019) and easily extend it to other models. It is open-source, extensible, and compatible with many current Transformer architectures, both autoregressive and masked language models. EXBERT is available at exbert.net. Figure 1 : An overview of the different components of the tool. Users can enter a sentence in (a) and modify the attention view through selections in (b). Self attention is displayed in (c), with attentions directed as coming from the left column and pointing to the right. The blue matrix on the left shows a head's attention (column) out of a token (row), whereas the right-hand matrix shows attention into each token by each head. The top-k predictions for each token are shown on hover in the gray box. The most similar tokens to the MASKed \"escape\" token in (c) are shown and summarized in (d-g), taken from an annotated corpus (shown: Wizard of Oz). Every token in (d) displays its linguistic metadata on hover. The metadata of the results in (d) are summarized in the histograms (f) and (g) for the matched token (green highlight) and the token of max attention. The colored bars on the histogram correspond to colors in the columns of (e), where the center column summarizes the metadata of the matched token, and the adjacent columns represent the metadata of the words to the left and right of the matched token.",
                "cite_spans": [
                    {
                        "start": 429,
                        "end": 448,
                        "text": "Clark et al. (2019)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 661,
                        "end": 669,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The Transformer architecture, as defined by Vaswani et al. (2017) , relies on multiple sequential applications of self attention layers. Self-attention is the process by which each token within an input sequence Y of length N computes attention weights over all tokens in the input. As part of this process, the inputs are projected into a key, query, and value representation with W k , W q , and W v . The Transformer applies I of these attention heads in parallel, using separate weights. We denote each head with the superscript (i) .",
                "cite_spans": [
                    {
                        "start": 44,
                        "end": 65,
                        "text": "Vaswani et al. (2017)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 533,
                        "end": 536,
                        "text": "(i)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer Models",
                "sec_num": "2.1"
            },
            {
                "text": "A (i) = softmax (Y W (i) q )(Y W (i) k ) .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer Models",
                "sec_num": "2.1"
            },
            {
                "text": "This computation yields a matrix in R N \u00d7N where the entry A ij represents the attention out of token",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer Models",
                "sec_num": "2.1"
            },
            {
                "text": "y i into token y j . 1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer Models",
                "sec_num": "2.1"
            },
            {
                "text": "The representation for each attention head h (i) is then multiplied by the value,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer Models",
                "sec_num": "2.1"
            },
            {
                "text": "h (i) = A (i) (Y W (i) v )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer Models",
                "sec_num": "2.1"
            },
            {
                "text": ". The representations h (1) , . . . , h (I) are concatenated and followed by a linear projection layer. The output of this projection we call the token embedding E (l) , which is used as input to layer l + 1.",
                "cite_spans": [
                    {
                        "start": 164,
                        "end": 167,
                        "text": "(l)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer Models",
                "sec_num": "2.1"
            },
            {
                "text": "The analysis of learned contextual representation in neural networks has been a widely investigated topic in NLP (Belinkov and Glass, 2019) . Before the advent of large pretrained models, analyses focused on models trained for specific tasks like machine translation. Some showed that Transformer models, similar to recurrent models, can effectively encode syntactic properties in their representations (Raganato and Tiedemann, 2018b; Mare\u010dek and Rosa, 2018) . Researchers have developed suites of probing techniques, agnostic to the underlying model, that can capture these properties across many different linguistic tasks (Tenney et al., 2019b; Conneau et al., 2018) . Over the past year, similar tests have primarily been applied to BERT (Devlin et al., 2019) and its derivatives (e.g., . Similar to taskspecific models, Goldberg (2019) found that BERT clearly encodes syntax within some of its attentions. Moreover, Tenney et al. (2019a) demonstrated that linguistic information is very localized within the representations in different layers.",
                "cite_spans": [
                    {
                        "start": 113,
                        "end": 139,
                        "text": "(Belinkov and Glass, 2019)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 403,
                        "end": 434,
                        "text": "(Raganato and Tiedemann, 2018b;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 435,
                        "end": 458,
                        "text": "Mare\u010dek and Rosa, 2018)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 625,
                        "end": 647,
                        "text": "(Tenney et al., 2019b;",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 648,
                        "end": 669,
                        "text": "Conneau et al., 2018)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 742,
                        "end": 763,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 825,
                        "end": 840,
                        "text": "Goldberg (2019)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 921,
                        "end": 942,
                        "text": "Tenney et al. (2019a)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer Analysis",
                "sec_num": "2.2"
            },
            {
                "text": "In parallel, individual attention heads of Transformer models have also received much focus. Clark et al. (2019) showed that individual heads recognize standard Part of Speech (POS) and Dependency (DEP) relationships (e.g., Objects of the Preposition (POBJ) and Determinants (DET)) with high fidelity. Vig and Belinkov (2019) also explored the dependency relations across heads and discovered that initial layers typically encode positional relations, middle layers capture the most dependency relations, and later layers look for unique patterns and structures. These insights are exposed interactively through EXBERT.",
                "cite_spans": [
                    {
                        "start": 93,
                        "end": 112,
                        "text": "Clark et al. (2019)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 302,
                        "end": 325,
                        "text": "Vig and Belinkov (2019)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer Analysis",
                "sec_num": "2.2"
            },
            {
                "text": "EXBERT focuses on displaying a succinct view of both the attention and the internal representations of each token. Figure 1 shows an overview of the tool's two main components. The Attention View provides an interactive view of the self-attention of the model, where users can change layers, select heads, and view the aggregated attention. The Corpus View presents a user with aggregate statistics that aim to describe and summarize the hidden representations of a currently selected token or set of attention heads. For simplicity, the tool defaults to focus on single-sentence examples.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 115,
                        "end": 123,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Overview",
                "sec_num": "3"
            },
            {
                "text": "The attention A can be understood as an adjacency matrix, which is conducive to a representation of curves pointing from each token to every other token. However, since A is not symmetric, a visualization has to separate the outgoing and incoming attention of a token. We achieve this by duplicating the tokens of input Y and presenting it in two vertical sections, connected through the attention.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Attention View",
                "sec_num": "3.1"
            },
            {
                "text": "Hovering over a token will reduce the displayed attention graph to the incoming/outgoing attention of that token. We display the top predictions of the model at that position. Clicking on a token freezes the filtered attention view.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Attention View",
                "sec_num": "3.1"
            },
            {
                "text": "Many models introduce special tokens (e.g., \"[CLS]\", \"<|endoftext|>\") for downstream classification or generation tasks. These tokens often receive very high attention and act as a null operation (Clark et al., 2019) . We provide a switch to hide the special tokens of the model and renormalize based on the other attentions to provide easier visualization of subtle attention patterns.",
                "cite_spans": [
                    {
                        "start": 196,
                        "end": 216,
                        "text": "(Clark et al., 2019)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Attention View",
                "sec_num": "3.1"
            },
            {
                "text": "Representations, on the other hand, cannot be easily visualized footnoteSee Strobelt et al. 2017for a discussion why heat-maps are not an appropriate visualization of hidden states. but they can be understood by searching for similar representations in an annotated corpus. The results of this search are presented in the Corpus View with the highestsimilarity matches shown first. The histograms display the accumulated features of the matched representations and the token that receives the most attention.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus View",
                "sec_num": "3.2"
            },
            {
                "text": "Searching Inspired by Strobelt et al. (2017 Strobelt et al. ( , 2018 , EXBERT performs a nearest neighbor search of embeddings on a reference corpus as follows. A corpus is first split by sentence and its tokens labeled for desired metadata (e.g., POS, DEP, NER). The model then processes this corpus, and its embeddings E (l) are stored at every layer l and indexed for a Cosine Similarity (CS) search using faiss (Johnson et al., 2019) . The top 50 most similar tokens matching a query embedding are displayed and summarized for the user in the context of their use in the annotated corpus.",
                "cite_spans": [
                    {
                        "start": 22,
                        "end": 43,
                        "text": "Strobelt et al. (2017",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 44,
                        "end": 68,
                        "text": "Strobelt et al. ( , 2018",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 415,
                        "end": 437,
                        "text": "(Johnson et al., 2019)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus View",
                "sec_num": "3.2"
            },
            {
                "text": "To supplement the layer embeddings E (l) and enable exploration of the attention heads, we derive a Context Embedding C (l) , which we define as the concatenation of heads before the linear projection at the layer's output. Formally, this is defined as:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus View",
                "sec_num": "3.2"
            },
            {
                "text": "C (l) = Concat( h (l,1) , . . . , h (l,n) ), where h (l,i)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus View",
                "sec_num": "3.2"
            },
            {
                "text": "is defined as the L2 normalized representation of head i at layer l to enable CS searching by head. To search the corpus for any subset of heads H s \u2286 {1, . . . , n}, we set all values of h (l,i) to 0 in C l , where i / \u2208 H s .",
                "cite_spans": [
                    {
                        "start": 190,
                        "end": 195,
                        "text": "(l,i)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus View",
                "sec_num": "3.2"
            },
            {
                "text": "Bidirectional vs. Autoregressive Behavior EXBERT is flexible to accommodate both bidirectional and autoregressive Transformer architectures, but the tool behaves slightly differently for each. Bidirectional models have histogram summaries for the nearest neighbor matches across the corpus and allow interactive MASKing of tokens. When hovering over any token, the interface will show what the language model would predict at that token.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus View",
                "sec_num": "3.2"
            },
            {
                "text": "Autoregressive models will also search for the nearest neighbors to a selected token's embedding, but the interface will instead summarize the metadata of the following token (indicated in red font). Hovering over any token in the Attention View will display what the model would predict next.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus View",
                "sec_num": "3.2"
            },
            {
                "text": "EXBERT runs Huggingface's unified API for Transformer models which allows any Transformer model from that API to take full advantage of the Attention View.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Extending EXBERT",
                "sec_num": "3.3"
            },
            {
                "text": "Similarity searching requires the user to first annotate a corpus with the desired model. Scripts to aid annotation of a corpus from a custom model is provided in the code repository. 2 To display metadata from a corpus in a custom domain, users will need to align the transformer model's tokenization scheme to extracted metadata (e.g., DNA Sequences and their properties). EXBERT accomplishes this by first tokenizing, normalizing, and labeling the sentence with spaCy (Honnibal and Montani, 2017) . If these tokens are split further by the Transformer's tokenization scheme, each word-piece receives the metadata of its parent token. Note that special tokens like \"[CLS]\" and \"<|endoftext|>\" have no linguistic features assigned to them. Clark et al. (2019) performed an extensive analysis to determine which heads in a base sized BERT Transformer model learned which dependencies. We show here how some of their insights are easily accessible through the EXBERT interface (Devlin et al., 2019) for the case-sensitive BERT-base model, which has 12 layers and 12 heads per layer. We use the notation <layer>-<head> to refer to a single head at a single layer, and <layer>-[<heads>] to describe the cumulative attention of heads at a layer (e.g., 4-[1,3,9] to describe the aggregated attention of heads 1, 3, and 9 at layer 4). Figure 2 shows examples where distinct heads learn evident linguistic features. Figure 2a shows that the MASKed verb \"escape\" points to the auxiliary verb (AUX) \"to\". If we search over the annotated Wizard of Oz 3 , we see that the tokens matching the MASK's most similar contexts at Head 5-3 are verbs and that the attention out of these matched words goes primarily to an AUX dependency. Figure 2b shows that Head 7-5 finds relationships between prepositions (PREP) and their objects (POBJ) in the input sentence. By searching for the token \"in\" across a subset of the \"Wikipedia\" corpus (Merity et al., 2016) , we confirm that many Figure 3 : A progression of the information encoded by a nearest neighbor embedding (left) and context (right) searches for the MASKed token \"escape\" in Figure 2a and the sentence, \"The girl ran to a local pub to escape the din of her city.\" Note that heads encode verb information (dark green) significantly earlier than the embeddings.",
                "cite_spans": [
                    {
                        "start": 184,
                        "end": 185,
                        "text": "2",
                        "ref_id": null
                    },
                    {
                        "start": 471,
                        "end": 499,
                        "text": "(Honnibal and Montani, 2017)",
                        "ref_id": null
                    },
                    {
                        "start": 741,
                        "end": 760,
                        "text": "Clark et al. (2019)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 976,
                        "end": 997,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 1919,
                        "end": 1940,
                        "text": "(Merity et al., 2016)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 1329,
                        "end": 1337,
                        "text": "Figure 2",
                        "ref_id": "FIGREF0"
                    },
                    {
                        "start": 1409,
                        "end": 1418,
                        "text": "Figure 2a",
                        "ref_id": "FIGREF0"
                    },
                    {
                        "start": 1719,
                        "end": 1728,
                        "text": "Figure 2b",
                        "ref_id": "FIGREF0"
                    },
                    {
                        "start": 1964,
                        "end": 1972,
                        "text": "Figure 3",
                        "ref_id": null
                    },
                    {
                        "start": 2117,
                        "end": 2126,
                        "text": "Figure 2a",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Extending EXBERT",
                "sec_num": "3.3"
            },
            {
                "text": "other annotated sentences exhibit this pattern. Figure 2c seemingly finds a head that determines co-reference to entity relationships, as both \"she\" and \"her\" are pointing strongly at \"Kim\" and little to everything else. Because the parse tree is absent in the annotated corpus, we are unable to search for co-reference patterns. However, the corpus search does reveal that this head learns to match pronouns to Entities rather than common gendered words such as \"woman\" or \"mother\".",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 48,
                        "end": 57,
                        "text": "Figure 2c",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Behind the Heads",
                "sec_num": "4.1"
            },
            {
                "text": "Earlier layers of a BERT model can capture particular linguistic information (Clark et al., 2019; Vig and Belinkov, 2019) . We now explore this behavior for a MASKed token across layers. We look at the following sentence, also shown in Figure 2a :",
                "cite_spans": [
                    {
                        "start": 77,
                        "end": 97,
                        "text": "(Clark et al., 2019;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 98,
                        "end": 121,
                        "text": "Vig and Belinkov, 2019)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 236,
                        "end": 245,
                        "text": "Figure 2a",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Behind the Mask",
                "sec_num": "4.2"
            },
            {
                "text": "The girl ran to a local pub to escape the din of her city.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Behind the Mask",
                "sec_num": "4.2"
            },
            {
                "text": "We begin by masking the \"escape\" token in the example sentence at layer 1 and search what information is behind the \"[MASK]\" token's embedding (Figure 1 ). Note that at this early layer, there is no meaningful linguistic information encoded in a MASK token's embedding, and the matching embeddings are most similar to punctuation (PUNCT) and determinants (DET), which are the most common tokens in English (Figure 1f) . Additionally, the maximum attention out of the MASKed token points to itself (Figure 1c) .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 143,
                        "end": 152,
                        "text": "(Figure 1",
                        "ref_id": null
                    },
                    {
                        "start": 406,
                        "end": 417,
                        "text": "(Figure 1f)",
                        "ref_id": null
                    },
                    {
                        "start": 497,
                        "end": 508,
                        "text": "(Figure 1c)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Behind the Mask",
                "sec_num": "4.2"
            },
            {
                "text": "As layers progress, more VERB information is encoded in the token's embedding, as shown in Figure 3 . At layer 6, the model does not relate the MASKed word to verbs, but by layer 9 it is convinced that the MASK should be a verb. Note that accumulated head information confidently captured a \"verb\" pattern in a significantly earlier layer.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 91,
                        "end": 99,
                        "text": "Figure 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Behind the Mask",
                "sec_num": "4.2"
            },
            {
                "text": "5 Case Study: GPT-2",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Behind the Mask",
                "sec_num": "4.2"
            },
            {
                "text": "We now use EXBERT to explore the problem of gender bias and co-reference in autoregressive Transformers (Zhao et al., 2018) , a problem inherent in the training data that infects the model's understanding of language (Font and Costa-juss\u00e0, 2019) . Take the following sentence:",
                "cite_spans": [
                    {
                        "start": 104,
                        "end": 123,
                        "text": "(Zhao et al., 2018)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 217,
                        "end": 245,
                        "text": "(Font and Costa-juss\u00e0, 2019)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Gender Bias",
                "sec_num": "5.1"
            },
            {
                "text": "The man visited the nurse and told him to attend to his patients.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Gender Bias",
                "sec_num": "5.1"
            },
            {
                "text": "We aim to detect whether the model thinks \"nurse\" is male or female before it sees the masculine pronoun \"him\" referring to \"nurse\". Because GPT-2 is trained to predict the next word, we can do this by selecting the token \"told\" and hovering over it to see the prediction of that pronoun. These results are shown in Figure 4a , and from the probabilities, we can see that GPT-2 predicts \"her\" with 90% probability. The next closest token \"him\" is only 6%. Figure 4b shows that replacing \"nurse\" with \"doctor\" alters the prediction to be strongly in favor of predicting \"him\" at 68% probability, while \"her\" falls to 18%. The attention patterns in the final three layers remain ostensibly the same for both sentences.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 316,
                        "end": 325,
                        "text": "Figure 4a",
                        "ref_id": null
                    },
                    {
                        "start": 456,
                        "end": 465,
                        "text": "Figure 4b",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Gender Bias",
                "sec_num": "5.1"
            },
            {
                "text": "In contrast to BERT, GPT-2 is an autoregressive language model. This makes it more difficult to detect some dependencies by looking at attention patterns (e.g., PREP looking for its POBJ in the future). However, EXBERT can offer similar insights as above using slightly altered methods. The following experiments use the smaller configuration of GPT-2 with 12 layers and 12 heads (Radford et al., 2019) .",
                "cite_spans": [
                    {
                        "start": 380,
                        "end": 402,
                        "text": "(Radford et al., 2019)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Heads up",
                "sec_num": "5.2"
            },
            {
                "text": "Exploring the heads in GPT-2 reveals that GPT- Figure 4 : Highlights the bias of the GPT-2 model for generation. (a) \"nurse\" prompts the model to predict \"her\". (b) shows \"doctor\" causing the model to predict \"him\" 2's heads also learn distinct syntactic structure. Figure 5a shows a few heads at different layers that seemingly learn the AUX dependency. Heads at earlier layers show an affinity for the AUX pattern, but also confuse \"to\" with a preposition even though a verb directly follows. This behavior hints that these heads look primarily to match the word \"to\" rather than its contextual meaning.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 47,
                        "end": 55,
                        "text": "Figure 4",
                        "ref_id": null
                    },
                    {
                        "start": 266,
                        "end": 275,
                        "text": "Figure 5a",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Heads up",
                "sec_num": "5.2"
            },
            {
                "text": "Similarly, Figure 5b shows a head that attends predominantly to a preceding verb and matches contexts in which the following word is a DOBJ. Interestingly, the more complex DOBJ dependency is picked up by a head as early as layer 5-12, whereas a simpler dependency like the AUX pattern is only clearly detected later in Layer 8.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 11,
                        "end": 20,
                        "text": "Figure 5b",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Heads up",
                "sec_num": "5.2"
            },
            {
                "text": "In this paper, we introduced an interactive visualization tool, EXBERT, that can reveal an intelligible structure in the learned representations of Transformer models. We demonstrated, through an attention visualization and nearest neighbor searching techniques, that EXBERT can replicate research that explores what attentions and representations learn and detect biases in text inputs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "6"
            },
            {
                "text": "We acknowledge that EXBERT is limited compared to more global analyses since it only presents statistics across a small number of neighbors for a single token at a time. These neighbors do not necessarily reveal a head's or an embedding's global behavior. However, EXBERT can effectively narrow the scope and refine hypotheses through quick testing iterations. These hypotheses about the model behavior can, in a later step, be evaluated by robust statistical tests on a global level.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "6"
            },
            {
                "text": "To assist researchers with their model investigations, we host a demo of the tool with multiple models at exbert.net.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "6"
            },
            {
                "text": "For autoregressive models like GPT-2(Radford et al., 2019), this matrix is triangular since attention cannot point toward unseen tokens.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://github.com/bhoov/exbert.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://www.gutenberg.org/ebooks/55",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "We allow direct linking to an experimental setup in the interface. A list of the links to reproduce our results is given below (all links in the supplementary material are correct at the time of publishing, but may be changed in the distant future):\u2022 Overview (Figure 1 ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 260,
                        "end": 269,
                        "text": "(Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "A Recreating the experiments",
                "sec_num": null
            },
            {
                "text": "In addition to the content presented in the main paper, we have recorded a short video demo showing how to use the tool to probe for particular patterns at https://youtu.be/e31oyfo_thY.A Lite version of the tool, without the corpus searching, demoing many common Transformer models is hosted by Huggingface at huggingface. co/exbert. Figure 6 : The most similar embeddings, in context, to the MASKed token \"escape\" in the sentence: \"The girl ran to a local pub to escape the din of her city\" at the output of layer 12 of BERT base (shown in Figure 2a ). Corpus results are annotated excerpts from the Wizard of Oz. Notice how at the output layer all attentions are primarily to the word itself or the final punctuation mark of the sentence, indicating that the most important information is likely already encoded in the selected token's embedding.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 334,
                        "end": 342,
                        "text": "Figure 6",
                        "ref_id": null
                    },
                    {
                        "start": 541,
                        "end": 550,
                        "text": "Figure 2a",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "B Additional Material",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Analysis methods in neural language processing: A survey",
                "authors": [
                    {
                        "first": "Yonatan",
                        "middle": [],
                        "last": "Belinkov",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Glass",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Transactions of the Association for Computational Linguistics",
                "volume": "7",
                "issue": "",
                "pages": "49--72",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yonatan Belinkov and James Glass. 2019. Analysis methods in neural language processing: A survey. Transactions of the Association for Computational Linguistics, 7:49-72.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "On the validity of self-attention as explanation in transformer models",
                "authors": [
                    {
                        "first": "Gino",
                        "middle": [],
                        "last": "Brunner",
                        "suffix": ""
                    },
                    {
                        "first": "Yang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Dami\u00e3\u0105n",
                        "middle": [],
                        "last": "Pascual",
                        "suffix": ""
                    },
                    {
                        "first": "Oliver",
                        "middle": [],
                        "last": "Richter",
                        "suffix": ""
                    },
                    {
                        "first": "Roger",
                        "middle": [],
                        "last": "Wattenhofer",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gino Brunner, Yang Liu, Dami\u00c3\u0105n Pascual, Oliver Richter, and Roger Wattenhofer. 2019. On the va- lidity of self-attention as explanation in transformer models.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "What does BERT look at? an analysis of bert's attention. CoRR",
                "authors": [
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "Urvashi",
                        "middle": [],
                        "last": "Khandelwal",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. 2019. What does BERT look at? an analysis of bert's attention. CoRR, abs/1906.04341.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "What you can cram into a single vector: Probing sentence embeddings for linguistic properties",
                "authors": [
                    {
                        "first": "Alexis",
                        "middle": [],
                        "last": "Conneau",
                        "suffix": ""
                    },
                    {
                        "first": "Germ\u00e1n",
                        "middle": [],
                        "last": "Kruszewski",
                        "suffix": ""
                    },
                    {
                        "first": "Guillaume",
                        "middle": [],
                        "last": "Lample",
                        "suffix": ""
                    },
                    {
                        "first": "Lo\u00efc",
                        "middle": [],
                        "last": "Barrault",
                        "suffix": ""
                    },
                    {
                        "first": "Marco",
                        "middle": [],
                        "last": "Baroni",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "2126--2136",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alexis Conneau, Germ\u00e1n Kruszewski, Guillaume Lam- ple, Lo\u00efc Barrault, and Marco Baroni. 2018. What you can cram into a single vector: Probing sentence embeddings for linguistic properties. In Proceed- ings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa- pers), pages 2126-2136.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Bert: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "4171--4186",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Tech- nologies, Volume 1 (Long and Short Papers), pages 4171-4186.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Equalizing gender biases in neural machine translation with word embeddings techniques",
                "authors": [
                    {
                        "first": "Joel",
                        "middle": [
                            "Escud\u00e9"
                        ],
                        "last": "Font",
                        "suffix": ""
                    },
                    {
                        "first": "Marta",
                        "middle": [
                            "R"
                        ],
                        "last": "Costa-Juss\u00e0",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joel Escud\u00e9 Font and Marta R. Costa-juss\u00e0. 2019. Equalizing gender biases in neural machine trans- lation with word embeddings techniques. CoRR, abs/1901.03116.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Assessing bert's syntactic abilities",
                "authors": [
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1901.05287"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yoav Goldberg. 2019. Assessing bert's syntactic abili- ties. arXiv preprint arXiv:1901.05287.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "2017. spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing",
                "authors": [
                    {
                        "first": "Matthew",
                        "middle": [],
                        "last": "Honnibal",
                        "suffix": ""
                    },
                    {
                        "first": "Ines",
                        "middle": [],
                        "last": "Montani",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Matthew Honnibal and Ines Montani. 2017. spaCy 2: Natural language understanding with Bloom embed- dings, convolutional neural networks and incremen- tal parsing. To appear.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Attention is not explanation",
                "authors": [
                    {
                        "first": "Sarthak",
                        "middle": [],
                        "last": "Jain",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Byron",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Wallace",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "3543--3556",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sarthak Jain and Byron C Wallace. 2019. Attention is not explanation. In Proceedings of the 2019 Con- ference of the North American Chapter of the Asso- ciation for Computational Linguistics: Human Lan- guage Technologies, Volume 1 (Long and Short Pa- pers), pages 3543-3556.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Billion-scale similarity search with gpus",
                "authors": [
                    {
                        "first": "Jeff",
                        "middle": [],
                        "last": "Johnson",
                        "suffix": ""
                    },
                    {
                        "first": "Matthijs",
                        "middle": [],
                        "last": "Douze",
                        "suffix": ""
                    },
                    {
                        "first": "Herv\u00e9",
                        "middle": [],
                        "last": "J\u00e9gou",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "IEEE Transactions on Big Data",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jeff Johnson, Matthijs Douze, and Herv\u00e9 J\u00e9gou. 2019. Billion-scale similarity search with gpus. IEEE Transactions on Big Data.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "On the word alignment from neural machine translation",
                "authors": [
                    {
                        "first": "Xintong",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Guanlin",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Lemao",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Max",
                        "middle": [],
                        "last": "Meng",
                        "suffix": ""
                    },
                    {
                        "first": "Shuming",
                        "middle": [],
                        "last": "Shi",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "1293--1303",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1124"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Xintong Li, Guanlin Li, Lemao Liu, Max Meng, and Shuming Shi. 2019. On the word alignment from neural machine translation. In Proceedings of the 57th Annual Meeting of the Association for Com- putational Linguistics, pages 1293-1303, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Roberta: A robustly optimized bert pretraining approach",
                "authors": [
                    {
                        "first": "Yinhan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Myle",
                        "middle": [],
                        "last": "Ott",
                        "suffix": ""
                    },
                    {
                        "first": "Naman",
                        "middle": [],
                        "last": "Goyal",
                        "suffix": ""
                    },
                    {
                        "first": "Jingfei",
                        "middle": [],
                        "last": "Du",
                        "suffix": ""
                    },
                    {
                        "first": "Mandar",
                        "middle": [],
                        "last": "Joshi",
                        "suffix": ""
                    },
                    {
                        "first": "Danqi",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Lewis",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    },
                    {
                        "first": "Veselin",
                        "middle": [],
                        "last": "Stoyanov",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1907.11692"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining ap- proach. arXiv preprint arXiv:1907.11692.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Extracting syntactic trees from transformer encoder self-attentions",
                "authors": [
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Mare\u010dek",
                        "suffix": ""
                    },
                    {
                        "first": "Rudolf",
                        "middle": [],
                        "last": "Rosa",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 EMNLP Workshop Black-boxNLP: Analyzing and Interpreting Neural Networks for NLP",
                "volume": "",
                "issue": "",
                "pages": "347--349",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "David Mare\u010dek and Rudolf Rosa. 2018. Extracting syn- tactic trees from transformer encoder self-attentions. In Proceedings of the 2018 EMNLP Workshop Black- boxNLP: Analyzing and Interpreting Neural Net- works for NLP, pages 347-349.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Pointer sentinel mixture models",
                "authors": [
                    {
                        "first": "Stephen",
                        "middle": [],
                        "last": "Merity",
                        "suffix": ""
                    },
                    {
                        "first": "Caiming",
                        "middle": [],
                        "last": "Xiong",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Bradbury",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Socher",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. 2016. Pointer sentinel mixture mod- els. CoRR, abs/1609.07843.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Language models are unsupervised multitask learners",
                "authors": [
                    {
                        "first": "Alec",
                        "middle": [],
                        "last": "Radford",
                        "suffix": ""
                    },
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Rewon",
                        "middle": [],
                        "last": "Child",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Luan",
                        "suffix": ""
                    },
                    {
                        "first": "Dario",
                        "middle": [],
                        "last": "Amodei",
                        "suffix": ""
                    },
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Sutskever",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "OpenAI Blog",
                "volume": "",
                "issue": "8",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners. OpenAI Blog, 1(8).",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "An analysis of encoder representations in transformerbased machine translation",
                "authors": [
                    {
                        "first": "Alessandro",
                        "middle": [],
                        "last": "Raganato",
                        "suffix": ""
                    },
                    {
                        "first": "Jorg",
                        "middle": [],
                        "last": "Tiedemann",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "EMNLP Workshop: BlackboxNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alessandro Raganato and Jorg Tiedemann. 2018a. An analysis of encoder representations in transformer- based machine translation. In EMNLP Workshop: BlackboxNLP.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "An analysis of encoder representations in transformerbased machine translation",
                "authors": [
                    {
                        "first": "Alessandro",
                        "middle": [],
                        "last": "Raganato",
                        "suffix": ""
                    },
                    {
                        "first": "J\u00f6rg",
                        "middle": [],
                        "last": "Tiedemann",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP",
                "volume": "",
                "issue": "",
                "pages": "287--297",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alessandro Raganato and J\u00f6rg Tiedemann. 2018b. An analysis of encoder representations in transformer- based machine translation. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 287-297.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter",
                "authors": [
                    {
                        "first": "Victor",
                        "middle": [],
                        "last": "Sanh",
                        "suffix": ""
                    },
                    {
                        "first": "Lysandre",
                        "middle": [],
                        "last": "Debut",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Chaumond",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Wolf",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1910.01108"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Seq2seq-vis: A visual debugging tool for sequence-to-sequence models",
                "authors": [
                    {
                        "first": "Hendrik",
                        "middle": [],
                        "last": "Strobelt",
                        "suffix": ""
                    },
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "Gehrmann",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Behrisch",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Perer",
                        "suffix": ""
                    },
                    {
                        "first": "Hanspeter",
                        "middle": [],
                        "last": "Pfister",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [
                            "M"
                        ],
                        "last": "Rush",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hendrik Strobelt, Sebastian Gehrmann, Michael Behrisch, Adam Perer, Hanspeter Pfister, and Alexander M. Rush. 2018. Seq2seq-vis: A vi- sual debugging tool for sequence-to-sequence mod- els. CoRR, abs/1804.09299.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "LSTMVis: A tool for visual analysis of hidden state dynamics in recurrent neural networks",
                "authors": [
                    {
                        "first": "Hendrik",
                        "middle": [],
                        "last": "Strobelt",
                        "suffix": ""
                    },
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "Gehrmann",
                        "suffix": ""
                    },
                    {
                        "first": "Hanspeter",
                        "middle": [],
                        "last": "Pfister",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander M",
                        "middle": [],
                        "last": "Rush",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "IEEE transactions on visualization and computer graphics",
                "volume": "24",
                "issue": "1",
                "pages": "667--676",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hendrik Strobelt, Sebastian Gehrmann, Hanspeter Pfis- ter, and Alexander M Rush. 2017. LSTMVis: A tool for visual analysis of hidden state dynamics in recur- rent neural networks. IEEE transactions on visual- ization and computer graphics, 24(1):667-676.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Bert rediscovers the classical nlp pipeline",
                "authors": [
                    {
                        "first": "Ian",
                        "middle": [],
                        "last": "Tenney",
                        "suffix": ""
                    },
                    {
                        "first": "Dipanjan",
                        "middle": [],
                        "last": "Das",
                        "suffix": ""
                    },
                    {
                        "first": "Ellie",
                        "middle": [],
                        "last": "Pavlick",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "4593--4601",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019a. Bert rediscovers the classical nlp pipeline. In Pro- ceedings of the 57th Annual Meeting of the Asso- ciation for Computational Linguistics, pages 4593- 4601.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "What do you learn from context? probing for sentence structure in contextualized word representations",
                "authors": [
                    {
                        "first": "Ian",
                        "middle": [],
                        "last": "Tenney",
                        "suffix": ""
                    },
                    {
                        "first": "Patrick",
                        "middle": [],
                        "last": "Xia",
                        "suffix": ""
                    },
                    {
                        "first": "Berlin",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Alex",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Poliak",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Mccoy",
                        "suffix": ""
                    },
                    {
                        "first": "Najoung",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "Benjamin",
                        "middle": [],
                        "last": "Van Durme",
                        "suffix": ""
                    },
                    {
                        "first": "Sam",
                        "middle": [],
                        "last": "Bowman",
                        "suffix": ""
                    },
                    {
                        "first": "Dipanjan",
                        "middle": [],
                        "last": "Das",
                        "suffix": ""
                    },
                    {
                        "first": "Ellie",
                        "middle": [],
                        "last": "Pavlick",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak, R Thomas McCoy, Najoung Kim, Benjamin Van Durme, Sam Bowman, Dipanjan Das, and Ellie Pavlick. 2019b. What do you learn from context? probing for sentence structure in contextu- alized word representations. In International Con- ference on Learning Representations.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Attention is all you need",
                "authors": [
                    {
                        "first": "Ashish",
                        "middle": [],
                        "last": "Vaswani",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Shazeer",
                        "suffix": ""
                    },
                    {
                        "first": "Niki",
                        "middle": [],
                        "last": "Parmar",
                        "suffix": ""
                    },
                    {
                        "first": "Jakob",
                        "middle": [],
                        "last": "Uszkoreit",
                        "suffix": ""
                    },
                    {
                        "first": "Llion",
                        "middle": [],
                        "last": "Jones",
                        "suffix": ""
                    },
                    {
                        "first": "Aidan",
                        "middle": [
                            "N"
                        ],
                        "last": "Gomez",
                        "suffix": ""
                    },
                    {
                        "first": "\u0141ukasz",
                        "middle": [],
                        "last": "Kaiser",
                        "suffix": ""
                    },
                    {
                        "first": "Illia",
                        "middle": [],
                        "last": "Polosukhin",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Advances in neural information processing systems",
                "volume": "",
                "issue": "",
                "pages": "5998--6008",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, \u0141ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in neural information pro- cessing systems, pages 5998-6008.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "A multiscale visualization of attention in the transformer model",
                "authors": [
                    {
                        "first": "Jesse",
                        "middle": [],
                        "last": "Vig",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jesse Vig. 2019. A multiscale visualization of attention in the transformer model. CoRR, abs/1906.05714.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Analyzing the structure of attention in a transformer language model",
                "authors": [
                    {
                        "first": "Jesse",
                        "middle": [],
                        "last": "Vig",
                        "suffix": ""
                    },
                    {
                        "first": "Yonatan",
                        "middle": [],
                        "last": "Belinkov",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jesse Vig and Yonatan Belinkov. 2019. Analyzing the structure of attention in a transformer language model. CoRR, abs/1906.04284.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Attention is not not explanation",
                "authors": [
                    {
                        "first": "Sarah",
                        "middle": [],
                        "last": "Wiegreffe",
                        "suffix": ""
                    },
                    {
                        "first": "Yuval",
                        "middle": [],
                        "last": "Pinter",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sarah Wiegreffe and Yuval Pinter. 2019. Attention is not not explanation.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "R\u00c3l'mi Louf, Morgan Funtowicz, and Jamie Brew",
                "authors": [
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Wolf",
                        "suffix": ""
                    },
                    {
                        "first": "Lysandre",
                        "middle": [],
                        "last": "Debut",
                        "suffix": ""
                    },
                    {
                        "first": "Victor",
                        "middle": [],
                        "last": "Sanh",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Chaumond",
                        "suffix": ""
                    },
                    {
                        "first": "Clement",
                        "middle": [],
                        "last": "Delangue",
                        "suffix": ""
                    },
                    {
                        "first": "Anthony",
                        "middle": [],
                        "last": "Moi",
                        "suffix": ""
                    },
                    {
                        "first": "Pierric",
                        "middle": [],
                        "last": "Cistac",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Rault",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Transformers: State-ofthe-art natural language processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pier- ric Cistac, Tim Rault, R\u00c3l'mi Louf, Morgan Funtow- icz, and Jamie Brew. 2019. Transformers: State-of- the-art natural language processing.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Gender bias in coreference resolution: Evaluation and debiasing methods",
                "authors": [
                    {
                        "first": "Jieyu",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Tianlu",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Yatskar",
                        "suffix": ""
                    },
                    {
                        "first": "Vicente",
                        "middle": [],
                        "last": "Ordonez",
                        "suffix": ""
                    },
                    {
                        "first": "Kai-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "2",
                "issue": "",
                "pages": "15--20",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N18-2003"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or- donez, and Kai-Wei Chang. 2018. Gender bias in coreference resolution: Evaluation and debiasing methods. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 15-20, New Orleans, Louisiana. Association for Computa- tional Linguistics.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "num": null,
                "uris": null,
                "type_str": "figure",
                "text": "Exploration of different attention heads for pretrained model BERT base and different corpora. (a) shows head 5-3 expecting looks at the presents of an auxiliary verb (AUX) to predict that the MASK should be a verb. Head 7-5 in (b) shows a head that has learned to attend to Objects of the Preposition (POBJ). Finally, (c) shows Head 5-5 learning correct co-reference."
            },
            "FIGREF1": {
                "num": null,
                "uris": null,
                "type_str": "figure",
                "text": "Discovering simple head patterns in GPT-2 using the sentence. (a) shows strong detection of the AUX dependency. (b) shows a head detecting the DOBJ dependency"
            }
        }
    }
}