File size: 111,323 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T01:28:59.918204Z"
    },
    "title": "Label Noise in Context",
    "authors": [
        {
            "first": "Michael",
            "middle": [],
            "last": "Desmond",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "IBM Research AI",
                "location": {
                    "addrLine": "1101 Kitchawan Rd",
                    "postCode": "10598",
                    "settlement": "Yorktown Heights",
                    "region": "NY",
                    "country": "USA"
                }
            },
            "email": "mdesmond@us.ibm.com"
        },
        {
            "first": "Catherine",
            "middle": [],
            "last": "Finegan-Dollak",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "IBM Research AI",
                "location": {
                    "addrLine": "1101 Kitchawan Rd",
                    "postCode": "10598",
                    "settlement": "Yorktown Heights",
                    "region": "NY",
                    "country": "USA"
                }
            },
            "email": ""
        },
        {
            "first": "Jeff",
            "middle": [],
            "last": "Boston",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "IBM Research AI",
                "location": {
                    "addrLine": "1101 Kitchawan Rd",
                    "postCode": "10598",
                    "settlement": "Yorktown Heights",
                    "region": "NY",
                    "country": "USA"
                }
            },
            "email": ""
        },
        {
            "first": "Matthew",
            "middle": [],
            "last": "Arnold",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "IBM Research AI",
                "location": {
                    "addrLine": "1101 Kitchawan Rd",
                    "postCode": "10598",
                    "settlement": "Yorktown Heights",
                    "region": "NY",
                    "country": "USA"
                }
            },
            "email": "marnold@us.ibm.com"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Label noise-incorrectly or ambiguously labeled training examples-can negatively impact model performance. Although noise detection techniques have been around for decades, practitioners rarely apply them, as manual noise remediation is a tedious process. Examples incorrectly flagged as noise waste reviewers' time, and correcting label noise without guidance can be difficult. We propose LNIC, a noise-detection method that uses an example's neighborhood within the training set to (a) reduce false positives and (b) provide an explanation as to why the example was flagged as noise. We demonstrate on several short-text classification datasets that LNIC outperforms the state of the art on measures of precision and F 0.5-score. We also show how LNIC's training set context helps a reviewer to understand and correct label noise in a dataset. The LNIC tool lowers the barriers to label noise remediation, increasing its utility for NLP practitioners.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Label noise-incorrectly or ambiguously labeled training examples-can negatively impact model performance. Although noise detection techniques have been around for decades, practitioners rarely apply them, as manual noise remediation is a tedious process. Examples incorrectly flagged as noise waste reviewers' time, and correcting label noise without guidance can be difficult. We propose LNIC, a noise-detection method that uses an example's neighborhood within the training set to (a) reduce false positives and (b) provide an explanation as to why the example was flagged as noise. We demonstrate on several short-text classification datasets that LNIC outperforms the state of the art on measures of precision and F 0.5-score. We also show how LNIC's training set context helps a reviewer to understand and correct label noise in a dataset. The LNIC tool lowers the barriers to label noise remediation, increasing its utility for NLP practitioners.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Label noise-examples with incorrect or ambiguous labels in a training set-degrades the performance of the learned model, resulting in inaccurate predictions (Fr\u00e9nay and Verleysen, 2014) . Automated data collection risks generating noisy datasets, and human annotators may introduce noise through a lack of attention or expertise.",
                "cite_spans": [
                    {
                        "start": 157,
                        "end": 185,
                        "text": "(Fr\u00e9nay and Verleysen, 2014)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Automatic noise-detection algorithms analyze a training set and flag \"suspicious\" examples that are likely mislabeled (Brodley and Friedl, 1999; Fr\u00e9nay and Verleysen, 2014) . Suspicious examples can be deleted, automatically corrected by an algorithm, or reviewed by a human. Human review is the most effective of these mitigation options but is comparatively expensive. * The first two authors contributed equally. Two problems contribute to making human review time consuming: false positives and a lack of explanation. False positives are examples that are incorrectly flagged as noise; reviewing such examples wastes the annotator's time. Showing a reviewer a suspicious example without an explanation is effective in the simplest cases, but is likely to cause difficulty and frustration in the more common case of non-obvious noise that requires a deeper comprehension of the data.",
                "cite_spans": [
                    {
                        "start": 118,
                        "end": 144,
                        "text": "(Brodley and Friedl, 1999;",
                        "ref_id": null
                    },
                    {
                        "start": 145,
                        "end": 172,
                        "text": "Fr\u00e9nay and Verleysen, 2014)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "To date, few noise-detection algorithms have been designed with human review in mind. Sluban et al. (2010) is the only work we are aware of that recognized that a noise-detection algorithm for use in a human review process should emphasize precision (i.e., reduce the proportion of false positives). However, we are unaware of any existing work that addresses the explainability of detected label noise.",
                "cite_spans": [
                    {
                        "start": 86,
                        "end": 106,
                        "text": "Sluban et al. (2010)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We propose the Label Noise in Context system, or LNIC, which uses the neighborhood surrounding a suspicious example in the training set to improve both precision and explainability. By calculating a similarity matrix for the dataset, we are able to identify a suspicious example's neighborhood and use a method similar to a nearest-neighbors classifier to filter out false positives. Applying a set of simple heuristics to the same similarity matrix allows us to construct a training set context, like that in Table 1 . Seen in isolation, an example about running ability labeled as belonging to the sports class is not obviously wrong; however, once the annotator understands that she is seeing it because there are more similar examples in the fitness class, it becomes apparent that there is a better label.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 510,
                        "end": 517,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The main contributions of this work are \u2022 We describe LNIC's nearest-neighbors-based algorithm to improve precision and explainability of automatically detected label noise (Sec. 3). \u2022 We show that neighborhood-based filtering after noise-detection improves precision and F 0.5 over the state of the art for five short-text classification datasets (Sec. 4 and 5). \u2022 We present the LNIC tool for reviewing noise in context, demonstrating the value of explanations for understanding and fixing label noise (Sec. 6).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "A demo video is available at https://www. youtube.com/watch?v=20cigQaCc_k, and a live web demo is at http://lnic.mybluemix.net/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Noise Detection. Fr\u00e9nay and Verleysen (2014) conducted a comprehensive survey of the various approaches to detecting and remediating label noise. Many works advocate removing label noise to improve model performance (Brodley and Friedl, 1999; S\u00e1nchez et al., 2003; Smith and Martinez, 2011) . Teng (2000) advocates automatic relabeling, while others present the case for human-inthe-loop (Ekambaram et al., 2016; Fefilatyev et al., 2012; Matic et al., 1992; Sluban et al., 2010) and hybrid techniques (Miranda et al., 2009) . In work contemporaneous with ours, Northcutt et al. (2019) remove examples where a classifier's confidence is low.",
                "cite_spans": [
                    {
                        "start": 216,
                        "end": 242,
                        "text": "(Brodley and Friedl, 1999;",
                        "ref_id": null
                    },
                    {
                        "start": 243,
                        "end": 264,
                        "text": "S\u00e1nchez et al., 2003;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 265,
                        "end": 290,
                        "text": "Smith and Martinez, 2011)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 293,
                        "end": 304,
                        "text": "Teng (2000)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 388,
                        "end": 412,
                        "text": "(Ekambaram et al., 2016;",
                        "ref_id": null
                    },
                    {
                        "start": 413,
                        "end": 437,
                        "text": "Fefilatyev et al., 2012;",
                        "ref_id": null
                    },
                    {
                        "start": 438,
                        "end": 457,
                        "text": "Matic et al., 1992;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 458,
                        "end": 478,
                        "text": "Sluban et al., 2010)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 501,
                        "end": 523,
                        "text": "(Miranda et al., 2009)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 561,
                        "end": 584,
                        "text": "Northcutt et al. (2019)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "The most directly related work is Brodley and Friedl (1999) , describing a noise detection method using predictions from an ensemble of classifiers, and Sluban et al. (2010) , proposing the High Agreement Random Forest (HARF) system; both systems are described in detail in Section 3.1. Brodley and Friedl (1999) dropped suspicious examples but propose correction instead as future work. Sluban et al. (2010) note that precision of noise-detection is important when a human will review all suspicious examples. Garcia et al. (2016) 's experiments show that HARF also achieved stateof-the-art F 1 scores on a variety of datasets.",
                "cite_spans": [
                    {
                        "start": 34,
                        "end": 59,
                        "text": "Brodley and Friedl (1999)",
                        "ref_id": null
                    },
                    {
                        "start": 153,
                        "end": 173,
                        "text": "Sluban et al. (2010)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 287,
                        "end": 312,
                        "text": "Brodley and Friedl (1999)",
                        "ref_id": null
                    },
                    {
                        "start": 388,
                        "end": 408,
                        "text": "Sluban et al. (2010)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 511,
                        "end": 531,
                        "text": "Garcia et al. (2016)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Active Learning Similar to label noise remediation, active learning (Settles, 2014) seeks to minimize the effort a human needs to expend on data labeling activities in order to improve model performance. However, active learning aims to select the most informative unlabeled data to label next, while label noise detection identifies alreadylabeled data that may require additional labeling effort. We consider active learning and label noise detection as complimentary technologies, that might be woven together within a robust model improvement flow.",
                "cite_spans": [
                    {
                        "start": 68,
                        "end": 83,
                        "text": "(Settles, 2014)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "At a technical level, some active learning and label noise detection techniques are based on similar foundations. Query By Committee (QBC) (Seung et al., 1992) active learning uses an ensemble of classifiers, selecting examples on which the ensemble disagrees for labeling. Similarly ensemblebased noise detection algorithms select examples where the ensemble agrees (but disagrees with the given label). Model uncertainty, which underpins many effective active learning strategies such as least confident, margin, and entropy, is also the basis of label noise detection methods such as cleanlab (Northcutt et al., 2019) .",
                "cite_spans": [
                    {
                        "start": 139,
                        "end": 159,
                        "text": "(Seung et al., 1992)",
                        "ref_id": null
                    },
                    {
                        "start": 596,
                        "end": 620,
                        "text": "(Northcutt et al., 2019)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Explainability. With the rise of increasingly complex classification models, explaining classifier predictions has received a great deal of attention. Perhaps the most well-known system is LIME (Ribeiro et al., 2016) . The LIME authors noted that explaining classifier predictions increases human trust and provides insights that can be used to improve the model. To explain a classifier's prediction on a particular example, the algorithm collects nearby examples and the model's predictions for them. It trains a linear model on a simpler representation of this data, allowing it to indicate which words or super-pixels are important in the classifier's decision.",
                "cite_spans": [
                    {
                        "start": 194,
                        "end": 216,
                        "text": "(Ribeiro et al., 2016)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Numerous recent works in NLP and machine learning emphasize explainability. Dhurandhar et al. (2018) explained classifier predictions with positive features that push an example towards its assigned class and negative features whose absence prevent an example from being placed in a different class. Lei et al. (2016) jointly trained a generator and an encoder in order to generate rationales for sentiment prediction and a similar-questionretrieval task. Mullenbach et al. (2018) used a convolutional neural network to predict codes describing the diagnosis and treatment of patients given the clinical notes on the patent encounter. Their attention mechanism not only improved the system's precision and F 1 , but also highlighted the text that was most relevant to each code. Chiyah Garcia et al. (2018)'s system used an expert-generated decision tree and a set of templates to generate natural language explanations of what an autonomous underwater vehicle was doing and why.",
                "cite_spans": [
                    {
                        "start": 300,
                        "end": 317,
                        "text": "Lei et al. (2016)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Despite the interest in explainable models, no work that we are aware of has attempted to make detected label noise explainable.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "LNIC uses a three-step process. First, a noisedetection algorithm flags suspicious examples. Second, a neighborhood-based filter decides which of these examples to ignore and which to flag for human review. Finally, we generate a context, using rules to select neighbors to present to the user.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Algorithms",
                "sec_num": "3"
            },
            {
                "text": "LNIC's noise-detection phase can use any noisedetection algorithm. Here, we report on three ensemble algorithms derived from the literature: consensus (Brodley and Friedl, 1999) , agreed correction, and HARF (Sluban et al., 2010) . 1 Ensemble noise detection algorithms train several classifiers on cross-validation splits of the train set. Each classifier predicts labels for the left-out examples. The predicted label is the classifier's \"vote\" for that example. If it matches the current label, the classifier voted that the example is not suspicious; otherwise, the classifier voted that it is. In Brodley and Friedl (1999)'s consensus algorithm, if all votes agree that an example is suspicious, the algorithm flags that example as suspicious. Our agreed correction variant requires all votes from the ensemble to agree not only that an example is mislabeled, but also on what the correct label would be. HARF (Sluban et al., 2010) relies on the fact that a random forest is an ensemble of decision trees; it flags an example as suspicious if a super-majority of trees vote that it is.",
                "cite_spans": [
                    {
                        "start": 151,
                        "end": 177,
                        "text": "(Brodley and Friedl, 1999)",
                        "ref_id": null
                    },
                    {
                        "start": 208,
                        "end": 229,
                        "text": "(Sluban et al., 2010)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 232,
                        "end": 233,
                        "text": "1",
                        "ref_id": null
                    },
                    {
                        "start": 915,
                        "end": 936,
                        "text": "(Sluban et al., 2010)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noise-Detection Algorithms",
                "sec_num": "3.1"
            },
            {
                "text": "Neighborhood filtering reduces the number of examples that are incorrectly flagged as noise. If a majority of neighbors of an example have the same label as that example, it suggests that the example is correctly labeled, so LNIC filters it out of the list of suspicious examples.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Neighborhood Filtering",
                "sec_num": "3.2"
            },
            {
                "text": "The neighborhood filter calculates the pairwise cosine similarity of all examples in the training 1 Models and hyperparameters are listed in Appendix A data, then finds the k neighbors closest to each suspicious example s, where k is a tunable hyperparameter. If s's current label y c is also the most common among those neighbors, s is filtered from the pool of suspicious examples as a false positive, otherwise s is flagged for human review. 2 LNIC supports filtering on the feature neighborhood or the activation neighborhood. The feature neighborhood represents each example using its original feature vector (here, USE embeddings (Cer et al., 2018) ). The activation neighborhood represents each example in the training set using final layer activations from a neural classifier trained on the entire data set, the idea being to project training examples into a classification space.",
                "cite_spans": [
                    {
                        "start": 445,
                        "end": 446,
                        "text": "2",
                        "ref_id": null
                    },
                    {
                        "start": 614,
                        "end": 654,
                        "text": "(here, USE embeddings (Cer et al., 2018)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Neighborhood Filtering",
                "sec_num": "3.2"
            },
            {
                "text": "The final step of the LNIC algorithm is to apply heuristics to the neighborhood to generate a training set context. This context acts as an explanation, showing (a) which classes the noise-detection ensemble proposed as a better label for the suspicious example, and (b) the most similar examples from the current class and those proposed classes.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Context Generation",
                "sec_num": "3.3"
            },
            {
                "text": "The ensembles in the noise-detection algorithms generate a list of predicted labels for each suspicious example. These labels plus the example's current label comprise the permitted labels for that example. The heuristic selects the example from each permitted label that is closest to the suspicious example. If there are fewer than k permitted labels (where k is the desired context size), the balance of the context is filled out by selecting the remaining k \u2212 n nearest neighbors from the permitted labels.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Context Generation",
                "sec_num": "3.3"
            },
            {
                "text": "We build the explanation based on both the activation neighborhood and the feature neighborhood; an example that already appears in the activation context is omitted from the feature context and replaced by the next-nearest neighbor. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Context Generation",
                "sec_num": "3.3"
            },
            {
                "text": "We hypothesize that adding a neighborhood-based filter after noise detection reduces the rates of false positives while retaining true noisy examples. We test this by injecting noise into datasets, running algorithms over them, and measuring the correctly and incorrectly flagged suspicious examples.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "4"
            },
            {
                "text": "We evaluate on the short-text classification datasets listed in Table 2 . 3 Phase one of the evaluation introduces label noise-effectively \"corrupting\" the datasets. The amount of introduced label noise was controlled by an error-rate parameter, interpreted as the fraction of the training set to mislabel.",
                "cite_spans": [
                    {
                        "start": 74,
                        "end": 75,
                        "text": "3",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 64,
                        "end": 71,
                        "text": "Table 2",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "4.1"
            },
            {
                "text": "We used two strategies to introduce label noise: random and next-best. Both selected a random sample of the training data to mislabel. The random strategy assigned a random incorrect label to each selected example. The next-best strategy assigned the \"next-best\" incorrect label, as predicted by a classifier trained on the entire train set; this simulates a best effort but incorrect labeling, as might be performed by a confused human labeler.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "4.1"
            },
            {
                "text": "Because the goal of the algorithm is to avoid wasting human time, our evaluation should heavily punish false positives. We therefore measure the precision of each algorithm. We also follow Sluban et al. (2010) in reporting F 0.5 , an F -score that values precision twice as much as recall.",
                "cite_spans": [
                    {
                        "start": 189,
                        "end": 209,
                        "text": "Sluban et al. (2010)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Metrics",
                "sec_num": "4.2"
            },
            {
                "text": "precision \u2022 recall F 0.5 = (1 + 0.5 2 ) (0.5 2 \u2022 precision) + recall",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Metrics",
                "sec_num": "4.2"
            },
            {
                "text": "(1) Not every situation calls for precision to be valued twice as much as recall. Therefore, we also report F \u03b2 (Rijsbergen, 1979) for \u03b2 \u2208 {1.0, 0.2, 0.1} to reflect the preferences of users who value precision and recall equally, precision five times more than recall, and precision ten times more.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Metrics",
                "sec_num": "4.2"
            },
            {
                "text": "Figure 1 shows average precision and F 0.5 scores across the five datasets, and Table 3 further summarizes by averaging across error rates. Appendix B shows results split by dataset and error rate. Table 3 shows that, averaged across datasets and error rates, adding neighborhood filtering of any kind improves precision of all of the underlying algorithms. For randomly generated noise, this is true for F 0.5 as well. Figure 1a also shows that the neighborhood activation filter gives a large boost to precision over all three noise-detection algorithms, and the feature neighborhood filter gives a smaller but still observable benefit. For next-best noise, adding the feature neighborhood filtering improves F 0.5 , but activation neighborhood filtering slightly worsens F 0.5 . From the graph in Figure 1d , it is apparent that activation neighborhood filtering has a benefit to F 0.5 at low error rates but declines relative to the other systems as the error rate increases, crossing at error rates near 15%. Addition of too much next-best noise negatively impacts the neural network trained on the uncorrected data, distorting the activation space. While this distortion does not harm precision, it is detrimental to recall.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 80,
                        "end": 87,
                        "text": "Table 3",
                        "ref_id": "TABREF5"
                    },
                    {
                        "start": 198,
                        "end": 205,
                        "text": "Table 3",
                        "ref_id": "TABREF5"
                    },
                    {
                        "start": 420,
                        "end": 429,
                        "text": "Figure 1a",
                        "ref_id": "FIGREF2"
                    },
                    {
                        "start": 800,
                        "end": 809,
                        "text": "Figure 1d",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5"
            },
            {
                "text": "For both random and next-best noise, agreed correction with activation neighborhood filtering achieves the best average precision. For random noise, HARF with activation-neighborhood filtering gives the best F 0.5 across noise rates. However, for next-best noise, HARF suffered a dramatic loss in recall when error rates exceeded about 12% (Figure 1d) , leading it to have low overall F 0.5 . This may be due to the random forest's use of bagging: if a subset of trees trains on samples with a great deal of non-random noise, those trees could learn to misclassify systematically. Agreed correction with feature neighborhood filtering gave the highest average F 0.5 for next-best noise.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 340,
                        "end": 351,
                        "text": "(Figure 1d)",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5"
            },
            {
                "text": "The upward trend in precision as error rates increase suggests that the same core of false positives are consistently detected. As the number of true positives increases with higher error rates, the core of false positives makes up a smaller fraction of the total number of examples flagged as suspicious. Table 4 lists F \u03b2 scores. As expected, using a neighborhood filter, which reduces the number of suspicious examples shown to a user, is particularly advantageous when precision is valued more than recall (F 0.2 and F 0.1 ), but often extracts a cost when recall and precision are equally important (F 1.0 ). Thus, agreed correction with no neighborhood filter is the best system to optimize F 1.0 when using next-best noise. Nevertheless, the strongest system for F 1.0 on random noise is still HARF with activation neighborhood filtering, followed closely by consensus with activation neighborhood filtering.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 306,
                        "end": 313,
                        "text": "Table 4",
                        "ref_id": "TABREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5"
            },
            {
                "text": "The LNIC tool implements the algorithms described above and provides a web interface to review label noise in context. The interface visually summarizes the overall label noise within a dataset and links to groups of suspicious examples in con- (Xu et al., 2015) Subset of www.j-archive.com (Price, 1990; Hakkani-Tur et al., 2016) https://github.com/snipsco/ nlu-benchmark/ text. LNIC's representation of the noise summary column. 4 Clicking on a cell brings the user to a (Figure 2 ) is similar to a confusion matrix. In the list of examples flagged as noise. Each of these label noise matrix each cell indicates the number examples can be expanded to show the context, as of noisy examples discovered where the context includes the classes specified by the row and the Data from Stack Exchange illustrates how context helps a reviewer understand problems in a dataset. Sometimes, context shows that an example is mislabeled. Without context, it is easy for an annotator to be uncertain of whether a question about the existence of a myth belongs in the history class; it is a question about a historical civilization, after all. However, from the context in Figure 4 , it is clear that even questions about the history of myths are categorized as mythology, and so the example's label should be changed to maintain consistency. Other times, context can reveal more complex issues with the class structure of the data. Figure 5 shows a suspicious example from the health class that the noise detection algorithm suggests may belong in the fitness class. The context shows that in fact, both classes include questions about the timing of meals with regard to exercise. A human reviewer should make a decision about where the boundary between these two classes should lie and assign these utterances consistently to one class.",
                "cite_spans": [
                    {
                        "start": 245,
                        "end": 262,
                        "text": "(Xu et al., 2015)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 291,
                        "end": 304,
                        "text": "(Price, 1990;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 305,
                        "end": 330,
                        "text": "Hakkani-Tur et al., 2016)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 431,
                        "end": 432,
                        "text": "4",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 473,
                        "end": 482,
                        "text": "(Figure 2",
                        "ref_id": "FIGREF4"
                    },
                    {
                        "start": 1160,
                        "end": 1168,
                        "text": "Figure 4",
                        "ref_id": "FIGREF6"
                    },
                    {
                        "start": 1420,
                        "end": 1428,
                        "text": "Figure 5",
                        "ref_id": "FIGREF7"
                    }
                ],
                "eq_spans": [],
                "section": "The LNIC Tool",
                "sec_num": "6"
            },
            {
                "text": "Although NLP practitioners know that label noise harms performance, and noise detection algorithms have long been available, this technology is not being applied in practice, perhaps because human review of detected errors is difficult and time consuming. LNIC makes human review of possible label noise easier and more efficient. It reduces the number of false positive examples that the reviewer must look at, providing state-of-the-art precision and F 0.5 across several short text datasets. And by providing an explanation of why the model flagged an example as suspicious, it makes the output of label noise detectors understandable and actionable. A Appendix: Model Details",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "7"
            },
            {
                "text": "For ease of replication, this appendix specifies the details of the models used in our experiments. For consensus and agreed-only noise detection, our ensemble consisted of three classifiers from Scikit Learn (Pedregosa et al., 2011) : LogisticRegression, RandomForestClassifier, and MLPClassifier. We used default parameters, except that we set MLPClassifier's max iter parameter to 1000 to speed up experiments.",
                "cite_spans": [
                    {
                        "start": 209,
                        "end": 233,
                        "text": "(Pedregosa et al., 2011)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "7"
            },
            {
                "text": "For HARF, we used a RandomForestClassifier model with 500 trees and required 90% agreement. Sluban et al. (2010) reported on models requiring lower levels of agreement, but preliminary testing demonstrated that 90% improved results on our datasets.",
                "cite_spans": [
                    {
                        "start": 92,
                        "end": 112,
                        "text": "Sluban et al. (2010)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "7"
            },
            {
                "text": "For the neighborhood filter, we set k = 5.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "7"
            },
            {
                "text": "Our raw vector representation of all utterances was USE (Cer et al., 2018) . The activations for activation-based filtering and context generation were generated using an MLPClassifier with hidden layer sizes = [100, 512].",
                "cite_spans": [
                    {
                        "start": 52,
                        "end": 74,
                        "text": "USE (Cer et al., 2018)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "7"
            },
            {
                "text": "Results were summarized in the body of the paper for conciseness. In this appendix, we present precision and F 0.5 for each of the five datasets and for each of the error rates. This appendix contains the same images as the body of the paper, enlarged to improve accessibility. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "B Appendix: Detailed Results",
                "sec_num": null
            },
            {
                "text": "When using raw features, this filter acts like a k-nearest neighbors classifier with veto power over the ensemble. Experiments with a vote by weighted cosine similarity correlated closely with this simpler technique, and we did not pursue it.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "All data is publicly available. Lists of the exact subsets we used for Stack Exchange, Stack Overflow, and Jeopardy are available at https://github.com/cfd-01/ LNiC_data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "The agreed-correction algorithm guarantees that each context contains exactly two classes. When using larger contexts, the summary can be a list of class tuples.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "We thank Evelyn Duesterwald as well as the anonymous reviewers for helpful feedback. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Noise detection in the metalearning level",
                "authors": [
                    {
                        "first": "P",
                        "middle": [
                            "F"
                        ],
                        "last": "Lu\u00eds",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Garcia",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "P L F"
                        ],
                        "last": "Andr\u00e9",
                        "suffix": ""
                    },
                    {
                        "first": "Ana",
                        "middle": [
                            "C"
                        ],
                        "last": "De Carvalho",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Lorena",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Neurocomputing",
                "volume": "176",
                "issue": "",
                "pages": "14--25",
                "other_ids": {
                    "DOI": [
                        "10.1016/j.neucom.2014.12.100"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Lu\u00eds P.F. Garcia, Andr\u00e9 C.P.L.F. de Carvalho, and Ana C. Lorena. 2016. Noise detection in the meta- learning level. Neurocomputing, 176:14-25.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Multi-domain joint semantic frame parsing using bi-directional RNN-LSTM",
                "authors": [
                    {
                        "first": "Dilek",
                        "middle": [],
                        "last": "Hakkani-Tur",
                        "suffix": ""
                    },
                    {
                        "first": "Gokhan",
                        "middle": [],
                        "last": "Tur",
                        "suffix": ""
                    },
                    {
                        "first": "Asli",
                        "middle": [],
                        "last": "Celikyilmaz",
                        "suffix": ""
                    },
                    {
                        "first": "Yun-Nung",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Ye-Yi",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of Interspeech",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dilek Hakkani-Tur, Gokhan Tur, Asli Celikyilmaz, Yun-Nung Chen, Jianfeng Gao, and Ye-Yi Wang. 2016. Multi-domain joint semantic frame parsing using bi-directional RNN-LSTM. In Proceedings of Interspeech.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Rationalizing Neural Predictions",
                "authors": [
                    {
                        "first": "Tao",
                        "middle": [],
                        "last": "Lei",
                        "suffix": ""
                    },
                    {
                        "first": "Regina",
                        "middle": [],
                        "last": "Barzilay",
                        "suffix": ""
                    },
                    {
                        "first": "Tommi",
                        "middle": [],
                        "last": "Jaakkola",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "107--117",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D16-1011"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016. Rationalizing Neural Predictions. In Proceedings of the 2016 Conference on Empirical Methods in Nat- ural Language Processing, pages 107-117, Austin, Texas. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Computer aided cleaning of large databases for character recognition",
                "authors": [
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Matic",
                        "suffix": ""
                    },
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Guyon",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Bottou",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Denker",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Vapnik",
                        "suffix": ""
                    }
                ],
                "year": 1992,
                "venue": "Proceedings., 11th IAPR International Conference on Pattern Recognition",
                "volume": "II",
                "issue": "",
                "pages": "330--333",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "N. Matic, I. Guyon, L. Bottou, J. Denker, and V. Vapnik. 1992. Computer aided cleaning of large databases for character recognition. In Proceedings., 11th IAPR International Conference on Pattern Recog- nition. Vol. II. Conference B: Pattern Recognition Methodology and Systems, pages 330-333. IEEE.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Use of classification algorithms in noise detection and elimination",
                "authors": [
                    {
                        "first": "L",
                        "middle": [
                            "B"
                        ],
                        "last": "Andr\u00e9",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Miranda",
                        "suffix": ""
                    },
                    {
                        "first": "Paulo",
                        "middle": [
                            "F"
                        ],
                        "last": "Lu\u00eds",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Garcia",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "P L F"
                        ],
                        "last": "Andr\u00e9",
                        "suffix": ""
                    },
                    {
                        "first": "Ana",
                        "middle": [
                            "C"
                        ],
                        "last": "Carvalho",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Lorena",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "International Conference on Hybrid Artificial Intelligence Systems",
                "volume": "",
                "issue": "",
                "pages": "417--424",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Andr\u00e9 L.B. Miranda, Lu\u00eds Paulo F. Garcia, Andr\u00e9 C.P.L.F. Carvalho, and Ana C. Lorena. 2009. Use of classification algorithms in noise detection and elimination. In International Con- ference on Hybrid Artificial Intelligence Systems, pages 417-424. Springer.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Explainable Prediction of Medical Codes from Clinical Text",
                "authors": [
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Mullenbach",
                        "suffix": ""
                    },
                    {
                        "first": "Sarah",
                        "middle": [],
                        "last": "Wiegreffe",
                        "suffix": ""
                    },
                    {
                        "first": "Jon",
                        "middle": [],
                        "last": "Duke",
                        "suffix": ""
                    },
                    {
                        "first": "Jimeng",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Eisenstein",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "1101--1111",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N18-1100"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "James Mullenbach, Sarah Wiegreffe, Jon Duke, Jimeng Sun, and Jacob Eisenstein. 2018. Explainable Pre- diction of Medical Codes from Clinical Text. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computa- tional Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1101-1111, New Orleans, Louisiana. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Confident learning: Estimating uncertainty in dataset labels",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Curtis",
                        "suffix": ""
                    },
                    {
                        "first": "Lu",
                        "middle": [],
                        "last": "Northcutt",
                        "suffix": ""
                    },
                    {
                        "first": "Isaac",
                        "middle": [
                            "L"
                        ],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Chuang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1911.00068"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Curtis G Northcutt, Lu Jiang, and Isaac L Chuang. 2019. Confident learning: Estimating uncertainty in dataset labels. arXiv preprint arXiv:1911.00068.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Scikit-learn: Machine learning in Python",
                "authors": [
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Pedregosa",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Varoquaux",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Gramfort",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Michel",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Thirion",
                        "suffix": ""
                    },
                    {
                        "first": "O",
                        "middle": [],
                        "last": "Grisel",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Blondel",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Prettenhofer",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Weiss",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Dubourg",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Vanderplas",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Passos",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Cournapeau",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Brucher",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Perrot",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Duchesnay",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Journal of Machine Learning Research",
                "volume": "12",
                "issue": "",
                "pages": "2825--2830",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch- esnay. 2011. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825-2830.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Evaluation of spoken language systems: The ATIS domain",
                "authors": [
                    {
                        "first": "P",
                        "middle": [
                            "J"
                        ],
                        "last": "Price",
                        "suffix": ""
                    }
                ],
                "year": 1990,
                "venue": "Proceedings of the Workshop on Speech and Natural Language, HLT '90",
                "volume": "",
                "issue": "",
                "pages": "91--95",
                "other_ids": {
                    "DOI": [
                        "10.3115/116580.116612"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "P. J. Price. 1990. Evaluation of spoken language sys- tems: The ATIS domain. In Proceedings of the Workshop on Speech and Natural Language, HLT '90, pages 91-95, Stroudsburg, PA, USA. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Explaining the Predictions of Any Classifier Marco",
                "authors": [
                    {
                        "first": "Sameer",
                        "middle": [],
                        "last": "Marco Tulio Ribeiro",
                        "suffix": ""
                    },
                    {
                        "first": "Carlos",
                        "middle": [],
                        "last": "Singh",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Guestrin",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining",
                "volume": "",
                "issue": "",
                "pages": "1135--1144",
                "other_ids": {
                    "DOI": [
                        "10.1145/2939672.2939778"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. \"Why Should I Trust You?\" Ex- plaining the Predictions of Any Classifier Marco. In Proceedings of the 22nd ACM SIGKDD Inter- national Conference on Knowledge Discovery and Data Mining, pages 1135-1144, San Francisco, Cal- ifornia, USA. ACM.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Analysis of new techniques to obtain quality training sets",
                "authors": [
                    {
                        "first": "Salvador",
                        "middle": [],
                        "last": "Jos\u00e9",
                        "suffix": ""
                    },
                    {
                        "first": "Ricardo",
                        "middle": [],
                        "last": "S\u00e1nchez",
                        "suffix": ""
                    },
                    {
                        "first": "Ana",
                        "middle": [
                            "I"
                        ],
                        "last": "Barandela",
                        "suffix": ""
                    },
                    {
                        "first": "Roberto",
                        "middle": [],
                        "last": "Marqu\u00e9s",
                        "suffix": ""
                    },
                    {
                        "first": "Jorge",
                        "middle": [],
                        "last": "Alejo",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Badenas",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Pattern Recognition Letters",
                "volume": "24",
                "issue": "7",
                "pages": "1015--1022",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jos\u00e9 Salvador S\u00e1nchez, Ricardo Barandela, Ana I. Marqu\u00e9s, Roberto Alejo, and Jorge Badenas. 2003. Analysis of new techniques to obtain quality training sets. Pattern Recognition Letters, 24(7):1015-1022.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Active learning literature survey",
                "authors": [
                    {
                        "first": "Burr",
                        "middle": [],
                        "last": "Settles",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Computer Sciences Technical Report",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Burr Settles. 2014. Active learning literature survey. 2010. Computer Sciences Technical Report, 1648.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Manfred Opper, and Haim Sompolinsky. 1992. Query by committee",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "H Sebastian Seung",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "Proceedings of the fifth annual workshop on Computational learning theory",
                "volume": "",
                "issue": "",
                "pages": "287--294",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H Sebastian Seung, Manfred Opper, and Haim Som- polinsky. 1992. Query by committee. In Proceed- ings of the fifth annual workshop on Computational learning theory, pages 287-294.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Advances in class noise detection",
                "authors": [
                    {
                        "first": "Borut",
                        "middle": [],
                        "last": "Sluban",
                        "suffix": ""
                    },
                    {
                        "first": "Dragan",
                        "middle": [],
                        "last": "Gamberger",
                        "suffix": ""
                    },
                    {
                        "first": "Nada",
                        "middle": [],
                        "last": "Lavra",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the 19th European Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "1105--1106",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Borut Sluban, Dragan Gamberger, and Nada Lavra. 2010. Advances in class noise detection. In Pro- ceedings of the 19th European Conference on Artifi- cial Intelligence, pages 1105-1106. IOS Press.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Improving classification accuracy by identifying and removing instances that should be misclassified",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Michael",
                        "suffix": ""
                    },
                    {
                        "first": "Tony",
                        "middle": [],
                        "last": "Smith",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Martinez",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "The 2011 International Joint Conference on Neural Networks",
                "volume": "",
                "issue": "",
                "pages": "2690--2697",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Michael R. Smith and Tony Martinez. 2011. Improving classification accuracy by identifying and removing instances that should be misclassified. In The 2011 International Joint Conference on Neural Networks, pages 2690-2697. IEEE.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Evaluating noise correction",
                "authors": [
                    {
                        "first": "Teng",
                        "middle": [],
                        "last": "Choh Man",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Pacific Rim International Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "188--198",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Choh Man Teng. 2000. Evaluating noise correction. In Pacific Rim International Conference on Artificial Intelligence, pages 188-198. Springer.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Short text clustering via convolutional neural networks",
                "authors": [
                    {
                        "first": "Jiaming",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Peng",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Guanhua",
                        "middle": [],
                        "last": "Tian",
                        "suffix": ""
                    },
                    {
                        "first": "Bo",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Jun",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Fangyuan",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Hongwei",
                        "middle": [],
                        "last": "Hao",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "62--69",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jiaming Xu, Peng Wang, Guanhua Tian, Bo Xu, Jun Zhao, Fangyuan Wang, and Hongwei Hao. 2015. Short text clustering via convolutional neural net- works. In Proceedings of the 1st Workshop on Vec- tor Space Modeling for Natural Language Process- ing, pages 62-69, Denver, Colorado. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Precision of noise detection for randomly generated noise (b) Precision of noise detection for next-best noise",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": ") Precision of noise detection for randomly generated noise (b) Precision of noise detection for next-best noise.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Precision at various noise levels, averaged across the five datasets. (c) F0.5 of noise detection for randomly generated noise (d) F0.5 of noise detection for next",
                "authors": [],
                "year": null,
                "venue": "Figure",
                "volume": "6",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Figure 6: Precision at various noise levels, averaged across the five datasets. (c) F0.5 of noise detection for randomly generated noise (d) F0.5 of noise detection for next-best noise.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "Figures 4 and 5 show a examples of this contextual explanation.",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF2": {
                "text": "Precision of noise detection for randomly generated noise (b) Precision of noise detection for next-best noise.(c) F0.5 of noise detection for randomly generated noise (d) F0.5 of noise detection for next-best noise.",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF3": {
                "text": "Precision and F 0.5 at various noise levels, averaged across the five datasets.",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF4": {
                "text": "The label noise matrix summarizing noise discovered in approximately 30k examples from the Stack Exchange dataset.",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF5": {
                "text": "Suspicious examples at the intersection of history and mythology classes without context.",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF6": {
                "text": "An example fromFigure 3, with context. In red is the suspicious example. Examples in the white box are its context from activation space, and those in the blue box are context from raw embedding space. Numbers in parentheses indicate cosine similarity.",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF7": {
                "text": "Context shows overlapping class definitions.",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF8": {
                "text": "A summary of noise discovered in approximately 30k examples from Stack Exchange.",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF9": {
                "text": "Suspicious examples at the intersection of history and mythology classes without context.",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF10": {
                "text": "An example fromFigure 3, with context. In red is the suspicious example. Examples in the white box are its context from activation space, and those in the blue box are context from raw embedding space. Numbers in parentheses indicate cosine similarity.",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF11": {
                "text": "Context shows overlapping class definitions.",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "TABREF1": {
                "content": "<table/>",
                "num": null,
                "type_str": "table",
                "text": "Training set context can help an annotator decide if the highlighted suspicious training example is correctly labeled sports or should be labeled fitness.",
                "html": null
            },
            "TABREF3": {
                "content": "<table/>",
                "num": null,
                "type_str": "table",
                "text": "Dataset details.",
                "html": null
            },
            "TABREF5": {
                "content": "<table/>",
                "num": null,
                "type_str": "table",
                "text": "Mean precision and F 0.5 for the five datasets, averaged across all error rates. The top row in each section is a baseline system with no filtering.",
                "html": null
            },
            "TABREF7": {
                "content": "<table/>",
                "num": null,
                "type_str": "table",
                "text": "Average F-scores across the datasets valuing precision to different degrees.",
                "html": null
            },
            "TABREF10": {
                "content": "<table><tr><td>Underlying Algorithm</td><td>Context Filter</td><td>error rate</td><td>precision</td><td>F0.5</td></tr><tr><td/><td/><td>0.01</td><td>0.203559</td><td>0.235175</td></tr><tr><td/><td/><td>0.05</td><td>0.516995</td><td>0.551899</td></tr><tr><td/><td/><td>0.10</td><td>0.678281</td><td>0.692148</td></tr><tr><td/><td/><td>0.15</td><td>0.758825</td><td>0.754214</td></tr><tr><td/><td>(baseline)</td><td>0.20</td><td>0.815761</td><td>0.792989</td></tr><tr><td/><td/><td>0.25</td><td>0.855683</td><td>0.815505</td></tr><tr><td/><td/><td>0.30</td><td>0.874819</td><td>0.821995</td></tr><tr><td/><td/><td>0.35</td><td>0.902361</td><td>0.829439</td></tr><tr><td/><td/><td>0.40</td><td>0.914755</td><td>0.823054</td></tr><tr><td/><td/><td>0.01</td><td>0.379626</td><td>0.374314</td></tr><tr><td/><td/><td>0.05</td><td>0.653646</td><td>0.647463</td></tr><tr><td/><td/><td>0.10</td><td>0.777705</td><td>0.745331</td></tr><tr><td/><td/><td>0.15</td><td>0.831916</td><td>0.782190</td></tr><tr><td/><td>activation</td><td>0.20</td><td>0.873480</td><td>0.801011</td></tr><tr><td/><td/><td>0.25</td><td>0.899718</td><td>0.810401</td></tr><tr><td/><td/><td>0.30</td><td>0.910957</td><td>0.806536</td></tr><tr><td/><td/><td>0.35</td><td>0.925808</td><td>0.796353</td></tr><tr><td>Agreed correction</td><td/><td>0.40 0.01</td><td>0.936250 0.228381</td><td>0.779562 0.261363</td></tr><tr><td/><td/><td>0.05</td><td>0.551033</td><td>0.582140</td></tr><tr><td/><td/><td>0.10</td><td>0.709730</td><td>0.716853</td></tr><tr><td/><td/><td>0.15</td><td>0.785696</td><td>0.772165</td></tr><tr><td/><td>feature</td><td>0.20</td><td>0.836971</td><td>0.804862</td></tr><tr><td/><td/><td>0.25</td><td>0.871780</td><td>0.821373</td></tr><tr><td/><td/><td>0.30</td><td>0.887976</td><td>0.823381</td></tr><tr><td/><td/><td>0.35</td><td>0.912542</td><td>0.825164</td></tr><tr><td/><td/><td>0.40</td><td>0.925177</td><td>0.816177</td></tr><tr><td/><td/><td>0.01</td><td>0.219619</td><td>0.252413</td></tr><tr><td/><td/><td>0.05</td><td>0.541191</td><td>0.573870</td></tr><tr><td/><td/><td>0.10</td><td>0.700703</td><td>0.710048</td></tr><tr><td/><td/><td>0.15</td><td>0.777494</td><td>0.767097</td></tr><tr><td/><td>nonsuspicious</td><td>0.20</td><td>0.832716</td><td>0.802072</td></tr><tr><td/><td/><td>0.25</td><td>0.870279</td><td>0.820193</td></tr><tr><td/><td/><td>0.30</td><td>0.885262</td><td>0.822268</td></tr><tr><td/><td/><td>0.35</td><td>0.909316</td><td>0.823756</td></tr><tr><td/><td/><td>0.40</td><td>0.922156</td><td>0.814744</td></tr></table>",
                "num": null,
                "type_str": "table",
                "text": "ATIS, Next-Best Noise",
                "html": null
            },
            "TABREF11": {
                "content": "<table><tr><td>Underlying Algorithm</td><td>Context Filter</td><td>error rate</td><td>precision</td><td>F0.5</td></tr><tr><td/><td/><td>0.01</td><td>0.203559</td><td>0.235175</td></tr><tr><td/><td/><td>0.05</td><td>0.516995</td><td>0.551899</td></tr><tr><td/><td/><td>0.10</td><td>0.678281</td><td>0.692148</td></tr><tr><td/><td/><td>0.15</td><td>0.758825</td><td>0.754214</td></tr><tr><td/><td>(baseline)</td><td>0.20</td><td>0.815761</td><td>0.792989</td></tr><tr><td/><td/><td>0.25</td><td>0.855683</td><td>0.815505</td></tr><tr><td/><td/><td>0.30</td><td>0.874819</td><td>0.821995</td></tr><tr><td/><td/><td>0.35</td><td>0.902361</td><td>0.829439</td></tr><tr><td/><td/><td>0.40</td><td>0.914755</td><td>0.823054</td></tr><tr><td/><td/><td>0.01</td><td>0.379626</td><td>0.374314</td></tr><tr><td/><td/><td>0.05</td><td>0.653646</td><td>0.647463</td></tr><tr><td/><td/><td>0.10</td><td>0.777705</td><td>0.745331</td></tr><tr><td/><td/><td>0.15</td><td>0.831916</td><td>0.782190</td></tr><tr><td/><td>activation</td><td>0.20</td><td>0.873480</td><td>0.801011</td></tr><tr><td/><td/><td>0.25</td><td>0.899718</td><td>0.810401</td></tr><tr><td/><td/><td>0.30</td><td>0.910957</td><td>0.806536</td></tr><tr><td/><td/><td>0.35</td><td>0.925808</td><td>0.796353</td></tr><tr><td>Agreed correction</td><td/><td>0.40 0.01</td><td>0.936250 0.228381</td><td>0.779562 0.261363</td></tr><tr><td/><td/><td>0.05</td><td>0.551033</td><td>0.582140</td></tr><tr><td/><td/><td>0.10</td><td>0.709730</td><td>0.716853</td></tr><tr><td/><td/><td>0.15</td><td>0.785696</td><td>0.772165</td></tr><tr><td/><td>feature</td><td>0.20</td><td>0.836971</td><td>0.804862</td></tr><tr><td/><td/><td>0.25</td><td>0.871780</td><td>0.821373</td></tr><tr><td/><td/><td>0.30</td><td>0.887976</td><td>0.823381</td></tr><tr><td/><td/><td>0.35</td><td>0.912542</td><td>0.825164</td></tr><tr><td/><td/><td>0.40</td><td>0.925177</td><td>0.816177</td></tr><tr><td/><td/><td>0.01</td><td>0.219619</td><td>0.252413</td></tr><tr><td/><td/><td>0.05</td><td>0.541191</td><td>0.573870</td></tr><tr><td/><td/><td>0.10</td><td>0.700703</td><td>0.710048</td></tr><tr><td/><td/><td>0.15</td><td>0.777494</td><td>0.767097</td></tr><tr><td/><td>nonsuspicious</td><td>0.20</td><td>0.832716</td><td>0.802072</td></tr><tr><td/><td/><td>0.25</td><td>0.870279</td><td>0.820193</td></tr><tr><td/><td/><td>0.30</td><td>0.885262</td><td>0.822268</td></tr><tr><td/><td/><td>0.35</td><td>0.909316</td><td>0.823756</td></tr><tr><td/><td/><td>0.40</td><td>0.922156</td><td>0.814744</td></tr><tr><td/><td/><td>0.01</td><td>0.169058</td><td>0.197610</td></tr><tr><td/><td/><td>0.05</td><td>0.438177</td><td>0.479689</td></tr><tr><td/><td/><td>0.10</td><td>0.591796</td><td>0.626953</td></tr><tr><td/><td/><td>0.15</td><td>0.678183</td><td>0.704604</td></tr><tr><td/><td>(baseline)</td><td>0.20</td><td>0.741275</td><td>0.758822</td></tr><tr><td/><td/><td>0.25</td><td>0.787061</td><td>0.794762</td></tr><tr><td/><td/><td>0.30</td><td>0.818512</td><td>0.818545</td></tr><tr><td/><td/><td>0.35</td><td>0.847556</td><td>0.837087</td></tr><tr><td/><td/><td>0.40</td><td>0.865010</td><td>0.843633</td></tr><tr><td/><td/><td>0.01</td><td>0.340710</td><td>0.337163</td></tr><tr><td/><td/><td>0.05</td><td>0.581698</td><td>0.591143</td></tr><tr><td/><td/><td>0.10</td><td>0.702483</td><td>0.699962</td></tr><tr><td/><td/><td>0.15</td><td>0.765191</td><td>0.752932</td></tr><tr><td/><td>activation</td><td>0.20</td><td>0.811529</td><td>0.785388</td></tr><tr><td/><td/><td>0.25</td><td>0.843820</td><td>0.806149</td></tr><tr><td/><td/><td>0.30</td><td>0.864403</td><td>0.817224</td></tr><tr><td/><td/><td>0.35</td><td>0.882211</td><td>0.818990</td></tr><tr><td>Consensus</td><td/><td>0.40 0.01</td><td>0.895110 0.191324</td><td>0.814209 0.221609</td></tr><tr><td/><td/><td>0.05</td><td>0.472302</td><td>0.511817</td></tr><tr><td/><td/><td>0.10</td><td>0.624910</td><td>0.655624</td></tr><tr><td/><td/><td>0.15</td><td>0.707260</td><td>0.727099</td></tr><tr><td/><td>feature</td><td>0.20</td><td>0.766436</td><td>0.776426</td></tr><tr><td/><td/><td>0.25</td><td>0.806752</td><td>0.805997</td></tr><tr><td/><td/><td>0.30</td><td>0.834342</td><td>0.824318</td></tr><tr><td/><td/><td>0.35</td><td>0.862185</td><td>0.838768</td></tr><tr><td/><td/><td>0.40</td><td>0.879229</td><td>0.843028</td></tr><tr><td/><td/><td>0.01</td><td>0.185901</td><td>0.215997</td></tr><tr><td/><td/><td>0.05</td><td>0.463941</td><td>0.504450</td></tr><tr><td/><td/><td>0.10</td><td>0.614485</td><td>0.646574</td></tr><tr><td/><td/><td>0.15</td><td>0.701349</td><td>0.722953</td></tr><tr><td/><td>nonsuspicious</td><td>0.20</td><td>0.762975</td><td>0.773727</td></tr><tr><td/><td/><td>0.25</td><td>0.804869</td><td>0.804780</td></tr><tr><td/><td/><td>0.30</td><td>0.833155</td><td>0.824230</td></tr><tr><td/><td/><td>0.35</td><td>0.859147</td><td>0.835885</td></tr><tr><td/><td/><td>0.40</td><td>0.875436</td><td>0.839302</td></tr></table>",
                "num": null,
                "type_str": "table",
                "text": "ATIS, Random Noise",
                "html": null
            },
            "TABREF12": {
                "content": "<table><tr><td>Underlying Algorithm</td><td>Context Filter</td><td>error rate</td><td>precision</td><td>F0.5</td></tr><tr><td/><td/><td>0.01</td><td>0.203559</td><td>0.235175</td></tr><tr><td/><td/><td>0.05</td><td>0.516995</td><td>0.551899</td></tr><tr><td/><td/><td>0.10</td><td>0.678281</td><td>0.692148</td></tr><tr><td/><td/><td>0.15</td><td>0.758825</td><td>0.754214</td></tr><tr><td/><td>(baseline)</td><td>0.20</td><td>0.815761</td><td>0.792989</td></tr><tr><td/><td/><td>0.25</td><td>0.855683</td><td>0.815505</td></tr><tr><td/><td/><td>0.30</td><td>0.874819</td><td>0.821995</td></tr><tr><td/><td/><td>0.35</td><td>0.902361</td><td>0.829439</td></tr><tr><td/><td/><td>0.40</td><td>0.914755</td><td>0.823054</td></tr><tr><td/><td/><td>0.01</td><td>0.379626</td><td>0.374314</td></tr><tr><td/><td/><td>0.05</td><td>0.653646</td><td>0.647463</td></tr><tr><td/><td/><td>0.10</td><td>0.777705</td><td>0.745331</td></tr><tr><td/><td/><td>0.15</td><td>0.831916</td><td>0.782190</td></tr><tr><td/><td>activation</td><td>0.20</td><td>0.873480</td><td>0.801011</td></tr><tr><td/><td/><td>0.25</td><td>0.899718</td><td>0.810401</td></tr><tr><td/><td/><td>0.30</td><td>0.910957</td><td>0.806536</td></tr><tr><td/><td/><td>0.35</td><td>0.925808</td><td>0.796353</td></tr><tr><td>Agreed correction</td><td/><td>0.40 0.01</td><td>0.936250 0.228381</td><td>0.779562 0.261363</td></tr><tr><td/><td/><td>0.05</td><td>0.551033</td><td>0.582140</td></tr><tr><td/><td/><td>0.10</td><td>0.709730</td><td>0.716853</td></tr><tr><td/><td/><td>0.15</td><td>0.785696</td><td>0.772165</td></tr><tr><td/><td>feature</td><td>0.20</td><td>0.836971</td><td>0.804862</td></tr><tr><td/><td/><td>0.25</td><td>0.871780</td><td>0.821373</td></tr><tr><td/><td/><td>0.30</td><td>0.887976</td><td>0.823381</td></tr><tr><td/><td/><td>0.35</td><td>0.912542</td><td>0.825164</td></tr><tr><td/><td/><td>0.40</td><td>0.925177</td><td>0.816177</td></tr><tr><td/><td/><td>0.01</td><td>0.219619</td><td>0.252413</td></tr><tr><td/><td/><td>0.05</td><td>0.541191</td><td>0.573870</td></tr><tr><td/><td/><td>0.10</td><td>0.700703</td><td>0.710048</td></tr><tr><td/><td/><td>0.15</td><td>0.777494</td><td>0.767097</td></tr><tr><td/><td>nonsuspicious</td><td>0.20</td><td>0.832716</td><td>0.802072</td></tr><tr><td/><td/><td>0.25</td><td>0.870279</td><td>0.820193</td></tr><tr><td/><td/><td>0.30</td><td>0.885262</td><td>0.822268</td></tr><tr><td/><td/><td>0.35</td><td>0.909316</td><td>0.823756</td></tr><tr><td/><td/><td>0.40</td><td>0.922156</td><td>0.814744</td></tr></table>",
                "num": null,
                "type_str": "table",
                "text": "Jeopardy, Next-Best Noise",
                "html": null
            },
            "TABREF13": {
                "content": "<table><tr><td>Underlying Algorithm</td><td>Context Filter</td><td>error rate</td><td>precision</td><td>F0.5</td></tr><tr><td/><td/><td>0.01</td><td>0.203559</td><td>0.235175</td></tr><tr><td/><td/><td>0.05</td><td>0.516995</td><td>0.551899</td></tr><tr><td/><td/><td>0.10</td><td>0.678281</td><td>0.692148</td></tr><tr><td/><td/><td>0.15</td><td>0.758825</td><td>0.754214</td></tr><tr><td/><td>(baseline)</td><td>0.20</td><td>0.815761</td><td>0.792989</td></tr><tr><td/><td/><td>0.25</td><td>0.855683</td><td>0.815505</td></tr><tr><td/><td/><td>0.30</td><td>0.874819</td><td>0.821995</td></tr><tr><td/><td/><td>0.35</td><td>0.902361</td><td>0.829439</td></tr><tr><td/><td/><td>0.40</td><td>0.914755</td><td>0.823054</td></tr><tr><td/><td/><td>0.01</td><td>0.379626</td><td>0.374314</td></tr><tr><td/><td/><td>0.05</td><td>0.653646</td><td>0.647463</td></tr><tr><td/><td/><td>0.10</td><td>0.777705</td><td>0.745331</td></tr><tr><td/><td/><td>0.15</td><td>0.831916</td><td>0.782190</td></tr><tr><td/><td>activation</td><td>0.20</td><td>0.873480</td><td>0.801011</td></tr><tr><td/><td/><td>0.25</td><td>0.899718</td><td>0.810401</td></tr><tr><td/><td/><td>0.30</td><td>0.910957</td><td>0.806536</td></tr><tr><td/><td/><td>0.35</td><td>0.925808</td><td>0.796353</td></tr><tr><td>Agreed correction</td><td/><td>0.40 0.01</td><td>0.936250 0.228381</td><td>0.779562 0.261363</td></tr><tr><td/><td/><td>0.05</td><td>0.551033</td><td>0.582140</td></tr><tr><td/><td/><td>0.10</td><td>0.709730</td><td>0.716853</td></tr><tr><td/><td/><td>0.15</td><td>0.785696</td><td>0.772165</td></tr><tr><td/><td>feature</td><td>0.20</td><td>0.836971</td><td>0.804862</td></tr><tr><td/><td/><td>0.25</td><td>0.871780</td><td>0.821373</td></tr><tr><td/><td/><td>0.30</td><td>0.887976</td><td>0.823381</td></tr><tr><td/><td/><td>0.35</td><td>0.912542</td><td>0.825164</td></tr><tr><td/><td/><td>0.40</td><td>0.925177</td><td>0.816177</td></tr><tr><td/><td/><td>0.01</td><td>0.219619</td><td>0.252413</td></tr><tr><td/><td/><td>0.05</td><td>0.541191</td><td>0.573870</td></tr><tr><td/><td/><td>0.10</td><td>0.700703</td><td>0.710048</td></tr><tr><td/><td/><td>0.15</td><td>0.777494</td><td>0.767097</td></tr><tr><td/><td>nonsuspicious</td><td>0.20</td><td>0.832716</td><td>0.802072</td></tr><tr><td/><td/><td>0.25</td><td>0.870279</td><td>0.820193</td></tr><tr><td/><td/><td>0.30</td><td>0.885262</td><td>0.822268</td></tr><tr><td/><td/><td>0.35</td><td>0.909316</td><td>0.823756</td></tr><tr><td/><td/><td>0.40</td><td>0.922156</td><td>0.814744</td></tr><tr><td/><td/><td>0.01</td><td>0.169058</td><td>0.197610</td></tr><tr><td/><td/><td>0.05</td><td>0.438177</td><td>0.479689</td></tr><tr><td/><td/><td>0.10</td><td>0.591796</td><td>0.626953</td></tr><tr><td/><td/><td>0.15</td><td>0.678183</td><td>0.704604</td></tr><tr><td/><td>(baseline)</td><td>0.20</td><td>0.741275</td><td>0.758822</td></tr><tr><td/><td/><td>0.25</td><td>0.787061</td><td>0.794762</td></tr><tr><td/><td/><td>0.30</td><td>0.818512</td><td>0.818545</td></tr><tr><td/><td/><td>0.35</td><td>0.847556</td><td>0.837087</td></tr><tr><td/><td/><td>0.40</td><td>0.865010</td><td>0.843633</td></tr><tr><td/><td/><td>0.01</td><td>0.340710</td><td>0.337163</td></tr><tr><td/><td/><td>0.05</td><td>0.581698</td><td>0.591143</td></tr><tr><td/><td/><td>0.10</td><td>0.702483</td><td>0.699962</td></tr><tr><td/><td/><td>0.15</td><td>0.765191</td><td>0.752932</td></tr><tr><td/><td>activation</td><td>0.20</td><td>0.811529</td><td>0.785388</td></tr><tr><td/><td/><td>0.25</td><td>0.843820</td><td>0.806149</td></tr><tr><td/><td/><td>0.30</td><td>0.864403</td><td>0.817224</td></tr><tr><td/><td/><td>0.35</td><td>0.882211</td><td>0.818990</td></tr><tr><td>Consensus</td><td/><td>0.40 0.01</td><td>0.895110 0.191324</td><td>0.814209 0.221609</td></tr><tr><td/><td/><td>0.05</td><td>0.472302</td><td>0.511817</td></tr><tr><td/><td/><td>0.10</td><td>0.624910</td><td>0.655624</td></tr><tr><td/><td/><td>0.15</td><td>0.707260</td><td>0.727099</td></tr><tr><td/><td>feature</td><td>0.20</td><td>0.766436</td><td>0.776426</td></tr><tr><td/><td/><td>0.25</td><td>0.806752</td><td>0.805997</td></tr><tr><td/><td/><td>0.30</td><td>0.834342</td><td>0.824318</td></tr><tr><td/><td/><td>0.35</td><td>0.862185</td><td>0.838768</td></tr><tr><td/><td/><td>0.40</td><td>0.879229</td><td>0.843028</td></tr><tr><td/><td/><td>0.01</td><td>0.185901</td><td>0.215997</td></tr><tr><td/><td/><td>0.05</td><td>0.463941</td><td>0.504450</td></tr><tr><td/><td/><td>0.10</td><td>0.614485</td><td>0.646574</td></tr><tr><td/><td/><td>0.15</td><td>0.701349</td><td>0.722953</td></tr><tr><td/><td>nonsuspicious</td><td>0.20</td><td>0.762975</td><td>0.773727</td></tr><tr><td/><td/><td>0.25</td><td>0.804869</td><td>0.804780</td></tr><tr><td/><td/><td>0.30</td><td>0.833155</td><td>0.824230</td></tr><tr><td/><td/><td>0.35</td><td>0.859147</td><td>0.835885</td></tr><tr><td/><td/><td>0.40</td><td>0.875436</td><td>0.839302</td></tr></table>",
                "num": null,
                "type_str": "table",
                "text": "Jeopardy, Random Noise",
                "html": null
            },
            "TABREF14": {
                "content": "<table><tr><td/><td colspan=\"3\">: SNIPS, Next-Best Noise</td><td/></tr><tr><td>Underlying Algorithm</td><td>Context Filter</td><td>error rate</td><td>precision</td><td>F0.5</td></tr><tr><td/><td/><td>0.01</td><td>0.203559</td><td>0.235175</td></tr><tr><td/><td/><td>0.05</td><td>0.516995</td><td>0.551899</td></tr><tr><td/><td/><td>0.10</td><td>0.678281</td><td>0.692148</td></tr><tr><td/><td/><td>0.15</td><td>0.758825</td><td>0.754214</td></tr><tr><td/><td>(baseline)</td><td>0.20</td><td>0.815761</td><td>0.792989</td></tr><tr><td/><td/><td>0.25</td><td>0.855683</td><td>0.815505</td></tr><tr><td/><td/><td>0.30</td><td>0.874819</td><td>0.821995</td></tr><tr><td/><td/><td>0.35</td><td>0.902361</td><td>0.829439</td></tr><tr><td/><td/><td>0.40</td><td>0.914755</td><td>0.823054</td></tr><tr><td/><td/><td>0.01</td><td>0.379626</td><td>0.374314</td></tr><tr><td/><td/><td>0.05</td><td>0.653646</td><td>0.647463</td></tr><tr><td/><td/><td>0.10</td><td>0.777705</td><td>0.745331</td></tr><tr><td/><td/><td>0.15</td><td>0.831916</td><td>0.782190</td></tr><tr><td/><td>activation</td><td>0.20</td><td>0.873480</td><td>0.801011</td></tr><tr><td/><td/><td>0.25</td><td>0.899718</td><td>0.810401</td></tr><tr><td/><td/><td>0.30</td><td>0.910957</td><td>0.806536</td></tr><tr><td/><td/><td>0.35</td><td>0.925808</td><td>0.796353</td></tr><tr><td>Agreed correction</td><td/><td>0.40 0.01</td><td>0.936250 0.228381</td><td>0.779562 0.261363</td></tr><tr><td/><td/><td>0.05</td><td>0.551033</td><td>0.582140</td></tr><tr><td/><td/><td>0.10</td><td>0.709730</td><td>0.716853</td></tr><tr><td/><td/><td>0.15</td><td>0.785696</td><td>0.772165</td></tr><tr><td/><td>feature</td><td>0.20</td><td>0.836971</td><td>0.804862</td></tr><tr><td/><td/><td>0.25</td><td>0.871780</td><td>0.821373</td></tr><tr><td/><td/><td>0.30</td><td>0.887976</td><td>0.823381</td></tr><tr><td/><td/><td>0.35</td><td>0.912542</td><td>0.825164</td></tr><tr><td/><td/><td>0.40</td><td>0.925177</td><td>0.816177</td></tr><tr><td/><td/><td>0.01</td><td>0.219619</td><td>0.252413</td></tr><tr><td/><td/><td>0.05</td><td>0.541191</td><td>0.573870</td></tr><tr><td/><td/><td>0.10</td><td>0.700703</td><td>0.710048</td></tr><tr><td/><td/><td>0.15</td><td>0.777494</td><td>0.767097</td></tr><tr><td/><td>nonsuspicious</td><td>0.20</td><td>0.832716</td><td>0.802072</td></tr><tr><td/><td/><td>0.25</td><td>0.870279</td><td>0.820193</td></tr><tr><td/><td/><td>0.30</td><td>0.885262</td><td>0.822268</td></tr><tr><td/><td/><td>0.35</td><td>0.909316</td><td>0.823756</td></tr><tr><td/><td/><td>0.40</td><td>0.922156</td><td>0.814744</td></tr></table>",
                "num": null,
                "type_str": "table",
                "text": "",
                "html": null
            },
            "TABREF15": {
                "content": "<table><tr><td>: SNIPS, Random Noise</td></tr></table>",
                "num": null,
                "type_str": "table",
                "text": "",
                "html": null
            },
            "TABREF16": {
                "content": "<table><tr><td>Underlying Algorithm</td><td>Context Filter</td><td>error rate</td><td>precision</td><td>F0.5</td></tr><tr><td/><td/><td>0.01</td><td>0.203559</td><td>0.235175</td></tr><tr><td/><td/><td>0.05</td><td>0.516995</td><td>0.551899</td></tr><tr><td/><td/><td>0.10</td><td>0.678281</td><td>0.692148</td></tr><tr><td/><td/><td>0.15</td><td>0.758825</td><td>0.754214</td></tr><tr><td/><td>(baseline)</td><td>0.20</td><td>0.815761</td><td>0.792989</td></tr><tr><td/><td/><td>0.25</td><td>0.855683</td><td>0.815505</td></tr><tr><td/><td/><td>0.30</td><td>0.874819</td><td>0.821995</td></tr><tr><td/><td/><td>0.35</td><td>0.902361</td><td>0.829439</td></tr><tr><td/><td/><td>0.40</td><td>0.914755</td><td>0.823054</td></tr><tr><td/><td/><td>0.01</td><td>0.379626</td><td>0.374314</td></tr><tr><td/><td/><td>0.05</td><td>0.653646</td><td>0.647463</td></tr><tr><td/><td/><td>0.10</td><td>0.777705</td><td>0.745331</td></tr><tr><td/><td/><td>0.15</td><td>0.831916</td><td>0.782190</td></tr><tr><td/><td>activation</td><td>0.20</td><td>0.873480</td><td>0.801011</td></tr><tr><td/><td/><td>0.25</td><td>0.899718</td><td>0.810401</td></tr><tr><td/><td/><td>0.30</td><td>0.910957</td><td>0.806536</td></tr><tr><td/><td/><td>0.35</td><td>0.925808</td><td>0.796353</td></tr><tr><td>Agreed correction</td><td/><td>0.40 0.01</td><td>0.936250 0.228381</td><td>0.779562 0.261363</td></tr><tr><td/><td/><td>0.05</td><td>0.551033</td><td>0.582140</td></tr><tr><td/><td/><td>0.10</td><td>0.709730</td><td>0.716853</td></tr><tr><td/><td/><td>0.15</td><td>0.785696</td><td>0.772165</td></tr><tr><td/><td>feature</td><td>0.20</td><td>0.836971</td><td>0.804862</td></tr><tr><td/><td/><td>0.25</td><td>0.871780</td><td>0.821373</td></tr><tr><td/><td/><td>0.30</td><td>0.887976</td><td>0.823381</td></tr><tr><td/><td/><td>0.35</td><td>0.912542</td><td>0.825164</td></tr><tr><td/><td/><td>0.40</td><td>0.925177</td><td>0.816177</td></tr><tr><td/><td/><td>0.01</td><td>0.219619</td><td>0.252413</td></tr><tr><td/><td/><td>0.05</td><td>0.541191</td><td>0.573870</td></tr><tr><td/><td/><td>0.10</td><td>0.700703</td><td>0.710048</td></tr><tr><td/><td/><td>0.15</td><td>0.777494</td><td>0.767097</td></tr><tr><td/><td>nonsuspicious</td><td>0.20</td><td>0.832716</td><td>0.802072</td></tr><tr><td/><td/><td>0.25</td><td>0.870279</td><td>0.820193</td></tr><tr><td/><td/><td>0.30</td><td>0.885262</td><td>0.822268</td></tr><tr><td/><td/><td>0.35</td><td>0.909316</td><td>0.823756</td></tr><tr><td/><td/><td>0.40</td><td>0.922156</td><td>0.814744</td></tr></table>",
                "num": null,
                "type_str": "table",
                "text": "Stack Exchange, Next-Best Noise",
                "html": null
            },
            "TABREF17": {
                "content": "<table><tr><td>Underlying Algorithm</td><td>Context Filter</td><td>error rate</td><td>precision</td><td>F0.5</td></tr><tr><td/><td/><td>0.01</td><td>0.203559</td><td>0.235175</td></tr><tr><td/><td/><td>0.05</td><td>0.516995</td><td>0.551899</td></tr><tr><td/><td/><td>0.10</td><td>0.678281</td><td>0.692148</td></tr><tr><td/><td/><td>0.15</td><td>0.758825</td><td>0.754214</td></tr><tr><td/><td>(baseline)</td><td>0.20</td><td>0.815761</td><td>0.792989</td></tr><tr><td/><td/><td>0.25</td><td>0.855683</td><td>0.815505</td></tr><tr><td/><td/><td>0.30</td><td>0.874819</td><td>0.821995</td></tr><tr><td/><td/><td>0.35</td><td>0.902361</td><td>0.829439</td></tr><tr><td/><td/><td>0.40</td><td>0.914755</td><td>0.823054</td></tr><tr><td/><td/><td>0.01</td><td>0.379626</td><td>0.374314</td></tr><tr><td/><td/><td>0.05</td><td>0.653646</td><td>0.647463</td></tr><tr><td/><td/><td>0.10</td><td>0.777705</td><td>0.745331</td></tr><tr><td/><td/><td>0.15</td><td>0.831916</td><td>0.782190</td></tr><tr><td/><td>activation</td><td>0.20</td><td>0.873480</td><td>0.801011</td></tr><tr><td/><td/><td>0.25</td><td>0.899718</td><td>0.810401</td></tr><tr><td/><td/><td>0.30</td><td>0.910957</td><td>0.806536</td></tr><tr><td/><td/><td>0.35</td><td>0.925808</td><td>0.796353</td></tr><tr><td>Agreed correction</td><td/><td>0.40 0.01</td><td>0.936250 0.228381</td><td>0.779562 0.261363</td></tr><tr><td/><td/><td>0.05</td><td>0.551033</td><td>0.582140</td></tr><tr><td/><td/><td>0.10</td><td>0.709730</td><td>0.716853</td></tr><tr><td/><td/><td>0.15</td><td>0.785696</td><td>0.772165</td></tr><tr><td/><td>feature</td><td>0.20</td><td>0.836971</td><td>0.804862</td></tr><tr><td/><td/><td>0.25</td><td>0.871780</td><td>0.821373</td></tr><tr><td/><td/><td>0.30</td><td>0.887976</td><td>0.823381</td></tr><tr><td/><td/><td>0.35</td><td>0.912542</td><td>0.825164</td></tr><tr><td/><td/><td>0.40</td><td>0.925177</td><td>0.816177</td></tr><tr><td/><td/><td>0.01</td><td>0.219619</td><td>0.252413</td></tr><tr><td/><td/><td>0.05</td><td>0.541191</td><td>0.573870</td></tr><tr><td/><td/><td>0.10</td><td>0.700703</td><td>0.710048</td></tr><tr><td/><td/><td>0.15</td><td>0.777494</td><td>0.767097</td></tr><tr><td/><td>nonsuspicious</td><td>0.20</td><td>0.832716</td><td>0.802072</td></tr><tr><td/><td/><td>0.25</td><td>0.870279</td><td>0.820193</td></tr><tr><td/><td/><td>0.30</td><td>0.885262</td><td>0.822268</td></tr><tr><td/><td/><td>0.35</td><td>0.909316</td><td>0.823756</td></tr><tr><td/><td/><td>0.40</td><td>0.922156</td><td>0.814744</td></tr><tr><td/><td/><td>0.01</td><td>0.169058</td><td>0.197610</td></tr><tr><td/><td/><td>0.05</td><td>0.438177</td><td>0.479689</td></tr><tr><td/><td/><td>0.10</td><td>0.591796</td><td>0.626953</td></tr><tr><td/><td/><td>0.15</td><td>0.678183</td><td>0.704604</td></tr><tr><td/><td>(baseline)</td><td>0.20</td><td>0.741275</td><td>0.758822</td></tr><tr><td/><td/><td>0.25</td><td>0.787061</td><td>0.794762</td></tr><tr><td/><td/><td>0.30</td><td>0.818512</td><td>0.818545</td></tr><tr><td/><td/><td>0.35</td><td>0.847556</td><td>0.837087</td></tr><tr><td/><td/><td>0.40</td><td>0.865010</td><td>0.843633</td></tr><tr><td/><td/><td>0.01</td><td>0.340710</td><td>0.337163</td></tr><tr><td/><td/><td>0.05</td><td>0.581698</td><td>0.591143</td></tr><tr><td/><td/><td>0.10</td><td>0.702483</td><td>0.699962</td></tr><tr><td/><td/><td>0.15</td><td>0.765191</td><td>0.752932</td></tr><tr><td/><td>activation</td><td>0.20</td><td>0.811529</td><td>0.785388</td></tr><tr><td/><td/><td>0.25</td><td>0.843820</td><td>0.806149</td></tr><tr><td/><td/><td>0.30</td><td>0.864403</td><td>0.817224</td></tr><tr><td/><td/><td>0.35</td><td>0.882211</td><td>0.818990</td></tr><tr><td>Consensus</td><td/><td>0.40 0.01</td><td>0.895110 0.191324</td><td>0.814209 0.221609</td></tr><tr><td/><td/><td>0.05</td><td>0.472302</td><td>0.511817</td></tr><tr><td/><td/><td>0.10</td><td>0.624910</td><td>0.655624</td></tr><tr><td/><td/><td>0.15</td><td>0.707260</td><td>0.727099</td></tr><tr><td/><td>feature</td><td>0.20</td><td>0.766436</td><td>0.776426</td></tr><tr><td/><td/><td>0.25</td><td>0.806752</td><td>0.805997</td></tr><tr><td/><td/><td>0.30</td><td>0.834342</td><td>0.824318</td></tr><tr><td/><td/><td>0.35</td><td>0.862185</td><td>0.838768</td></tr><tr><td/><td/><td>0.40</td><td>0.879229</td><td>0.843028</td></tr><tr><td/><td/><td>0.01</td><td>0.185901</td><td>0.215997</td></tr><tr><td/><td/><td>0.05</td><td>0.463941</td><td>0.504450</td></tr><tr><td/><td/><td>0.10</td><td>0.614485</td><td>0.646574</td></tr><tr><td/><td/><td>0.15</td><td>0.701349</td><td>0.722953</td></tr><tr><td/><td>nonsuspicious</td><td>0.20</td><td>0.762975</td><td>0.773727</td></tr><tr><td/><td/><td>0.25</td><td>0.804869</td><td>0.804780</td></tr><tr><td/><td/><td>0.30</td><td>0.833155</td><td>0.824230</td></tr><tr><td/><td/><td>0.35</td><td>0.859147</td><td>0.835885</td></tr><tr><td/><td/><td>0.40</td><td>0.875436</td><td>0.839302</td></tr></table>",
                "num": null,
                "type_str": "table",
                "text": "Stack Exchange, Random Noise",
                "html": null
            },
            "TABREF18": {
                "content": "<table><tr><td>Underlying Algorithm</td><td>Context Filter</td><td>error rate</td><td>precision</td><td>F0.5</td></tr><tr><td/><td/><td>0.01</td><td>0.203559</td><td>0.235175</td></tr><tr><td/><td/><td>0.05</td><td>0.516995</td><td>0.551899</td></tr><tr><td/><td/><td>0.10</td><td>0.678281</td><td>0.692148</td></tr><tr><td/><td/><td>0.15</td><td>0.758825</td><td>0.754214</td></tr><tr><td/><td>(baseline)</td><td>0.20</td><td>0.815761</td><td>0.792989</td></tr><tr><td/><td/><td>0.25</td><td>0.855683</td><td>0.815505</td></tr><tr><td/><td/><td>0.30</td><td>0.874819</td><td>0.821995</td></tr><tr><td/><td/><td>0.35</td><td>0.902361</td><td>0.829439</td></tr><tr><td/><td/><td>0.40</td><td>0.914755</td><td>0.823054</td></tr><tr><td/><td/><td>0.01</td><td>0.379626</td><td>0.374314</td></tr><tr><td/><td/><td>0.05</td><td>0.653646</td><td>0.647463</td></tr><tr><td/><td/><td>0.10</td><td>0.777705</td><td>0.745331</td></tr><tr><td/><td/><td>0.15</td><td>0.831916</td><td>0.782190</td></tr><tr><td/><td>activation</td><td>0.20</td><td>0.873480</td><td>0.801011</td></tr><tr><td/><td/><td>0.25</td><td>0.899718</td><td>0.810401</td></tr><tr><td/><td/><td>0.30</td><td>0.910957</td><td>0.806536</td></tr><tr><td/><td/><td>0.35</td><td>0.925808</td><td>0.796353</td></tr><tr><td>Agreed correction</td><td/><td>0.40 0.01</td><td>0.936250 0.228381</td><td>0.779562 0.261363</td></tr><tr><td/><td/><td>0.05</td><td>0.551033</td><td>0.582140</td></tr><tr><td/><td/><td>0.10</td><td>0.709730</td><td>0.716853</td></tr><tr><td/><td/><td>0.15</td><td>0.785696</td><td>0.772165</td></tr><tr><td/><td>feature</td><td>0.20</td><td>0.836971</td><td>0.804862</td></tr><tr><td/><td/><td>0.25</td><td>0.871780</td><td>0.821373</td></tr><tr><td/><td/><td>0.30</td><td>0.887976</td><td>0.823381</td></tr><tr><td/><td/><td>0.35</td><td>0.912542</td><td>0.825164</td></tr><tr><td/><td/><td>0.40</td><td>0.925177</td><td>0.816177</td></tr><tr><td/><td/><td>0.01</td><td>0.219619</td><td>0.252413</td></tr><tr><td/><td/><td>0.05</td><td>0.541191</td><td>0.573870</td></tr><tr><td/><td/><td>0.10</td><td>0.700703</td><td>0.710048</td></tr><tr><td/><td/><td>0.15</td><td>0.777494</td><td>0.767097</td></tr><tr><td/><td>nonsuspicious</td><td>0.20</td><td>0.832716</td><td>0.802072</td></tr><tr><td/><td/><td>0.25</td><td>0.870279</td><td>0.820193</td></tr><tr><td/><td/><td>0.30</td><td>0.885262</td><td>0.822268</td></tr><tr><td/><td/><td>0.35</td><td>0.909316</td><td>0.823756</td></tr><tr><td/><td/><td>0.40</td><td>0.922156</td><td>0.814744</td></tr></table>",
                "num": null,
                "type_str": "table",
                "text": "Stack Overflow, Next-Best Noise",
                "html": null
            },
            "TABREF19": {
                "content": "<table><tr><td>C Appendix: Enlarged Figures</td></tr></table>",
                "num": null,
                "type_str": "table",
                "text": "Stack Overflow, Random Noise",
                "html": null
            }
        }
    }
}