File size: 110,815 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T01:35:59.964220Z"
    },
    "title": "ConvLab-2: An Open-Source Toolkit for Building, Evaluating, and Diagnosing Dialogue Systems",
    "authors": [
        {
            "first": "Qi",
            "middle": [],
            "last": "Zhu",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Zheng",
            "middle": [],
            "last": "Zhang",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Yan",
            "middle": [],
            "last": "Fang",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Xiang",
            "middle": [],
            "last": "Li",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Ryuichi",
            "middle": [],
            "last": "Takanobu",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Jinchao",
            "middle": [],
            "last": "Li",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Microsoft Research",
                "location": {
                    "settlement": "Redmond",
                    "country": "USA"
                }
            },
            "email": ""
        },
        {
            "first": "Baolin",
            "middle": [],
            "last": "Peng",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Microsoft Research",
                "location": {
                    "settlement": "Redmond",
                    "country": "USA"
                }
            },
            "email": "bapeng@microsoft.com"
        },
        {
            "first": "Jianfeng",
            "middle": [],
            "last": "Gao",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Microsoft Research",
                "location": {
                    "settlement": "Redmond",
                    "country": "USA"
                }
            },
            "email": "jfgao@microsoft.com"
        },
        {
            "first": "Xiaoyan",
            "middle": [],
            "last": "Zhu",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Minlie",
            "middle": [],
            "last": "Huang",
            "suffix": "",
            "affiliation": {},
            "email": "aihuang@tsinghua.edu.cn"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "We present ConvLab-2, an open-source toolkit that enables researchers to build task-oriented dialogue systems with state-of-the-art models, perform an end-to-end evaluation, and diagnose the weakness of systems. As the successor of ConvLab (Lee et al., 2019b), ConvLab-2 inherits ConvLab's framework but integrates more powerful dialogue models and supports more datasets. Besides, we have developed an analysis tool and an interactive tool to assist researchers in diagnosing dialogue systems. The analysis tool presents rich statistics and summarizes common mistakes from simulated dialogues, which facilitates error analysis and system improvement. The interactive tool provides a user interface that allows developers to diagnose an assembled dialogue system by interacting with the system and modifying the output of each system component.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "We present ConvLab-2, an open-source toolkit that enables researchers to build task-oriented dialogue systems with state-of-the-art models, perform an end-to-end evaluation, and diagnose the weakness of systems. As the successor of ConvLab (Lee et al., 2019b), ConvLab-2 inherits ConvLab's framework but integrates more powerful dialogue models and supports more datasets. Besides, we have developed an analysis tool and an interactive tool to assist researchers in diagnosing dialogue systems. The analysis tool presents rich statistics and summarizes common mistakes from simulated dialogues, which facilitates error analysis and system improvement. The interactive tool provides a user interface that allows developers to diagnose an assembled dialogue system by interacting with the system and modifying the output of each system component.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Task-oriented dialogue systems are gaining increasing attention in recent years, resulting in a number of datasets (Henderson et al., 2014; Budzianowski et al., 2018b; Rastogi et al., 2019 ) and a wide variety of models (Wen et al., 2015; Peng et al., 2017; Lei et al., 2018; Wu et al., 2019; . However, very few opensource toolkits provide full support to assembling an end-to-end dialogue system with state-of-the-art models, evaluating the performance in an end-toend fashion, and analyzing the bottleneck both qualitatively and quantitatively. To fill the gap, we have developed ConvLab-2 based on our previous dialogue system platform ConvLab (Lee et al., 2019b) . ConvLab-2 inherits its predecessor's framework and extend it by integrating many recently proposed state-of-the-art dialogue models. In addition, Figure 1 : Framework of ConvLab-2. The top block shows different approaches to build a dialogue system. two powerful tools, namely the analysis tool and the interactive tool, are provided for in-depth error analysis. ConvLab-2 will be the development platform for Multi-domain Task-oriented Dialog Challenge II track in the 9th Dialog System Technology Challenge (DSTC9) 1 .",
                "cite_spans": [
                    {
                        "start": 115,
                        "end": 139,
                        "text": "(Henderson et al., 2014;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 140,
                        "end": 167,
                        "text": "Budzianowski et al., 2018b;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 168,
                        "end": 188,
                        "text": "Rastogi et al., 2019",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 220,
                        "end": 238,
                        "text": "(Wen et al., 2015;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 239,
                        "end": 257,
                        "text": "Peng et al., 2017;",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 258,
                        "end": 275,
                        "text": "Lei et al., 2018;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 276,
                        "end": 292,
                        "text": "Wu et al., 2019;",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 648,
                        "end": 667,
                        "text": "(Lee et al., 2019b)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 1187,
                        "end": 1188,
                        "text": "1",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 816,
                        "end": 824,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "As shown in Figure 1 , there are many approaches to building a task-oriented dialogue system, ranging from pipeline methods with multiple components to fully end-to-end models. Previous toolkits focus on either end-to-end models (Miller et al., 2017) or one specific component such as dialogue policy (POL) , while the others toolkits that are designed for developers (Bocklisch et al., 2017; Papangelis et al., 2020) do not have state-of-the-art models integrated. ConvLab (Lee et al., 2019b) is the first toolkit that provides various powerful models for all dialogue components and allows researchers to quickly assemble a complete dialogue system (using a set of recipes). ConvLab-2 inherits the flexible framework of Con-vLab and imports recently proposed models that achieve state-of-the-art performance. In addition, ConvLab-2 supports several large-scale dialogue datasets including CamRest676 (Wen et al., 2017), MultiWOZ (Budzianowski et al., 2018b) , DealOrN-oDeal (Lewis et al., 2017) , and CrossWOZ (Zhu et al., 2020) .",
                "cite_spans": [
                    {
                        "start": 229,
                        "end": 250,
                        "text": "(Miller et al., 2017)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 368,
                        "end": 392,
                        "text": "(Bocklisch et al., 2017;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 393,
                        "end": 417,
                        "text": "Papangelis et al., 2020)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 474,
                        "end": 493,
                        "text": "(Lee et al., 2019b)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 931,
                        "end": 959,
                        "text": "(Budzianowski et al., 2018b)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 962,
                        "end": 996,
                        "text": "DealOrN-oDeal (Lewis et al., 2017)",
                        "ref_id": null
                    },
                    {
                        "start": 1012,
                        "end": 1030,
                        "text": "(Zhu et al., 2020)",
                        "ref_id": "BIBREF30"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 12,
                        "end": 20,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "To support end-to-end evaluation, ConvLab-2 provides user simulators for automatic evaluation and integrates Amazon Mechanical Turk for human evaluation, similar to ConvLab. Moreover, it provides an analysis tool and a human-machine interactive tool for diagnosing a dialogue system. Researchers can perform quantitative analysis using the analysis tool. It presents useful statistics extracted from the conversations between the user simulator and the dialogue system. This information helps reveal the weakness of the system and signifies the direction for further improvement. With the interactive tool, researchers can perform qualitative analysis by deploying their dialogue systems and conversing with the systems via the webpage. During the conversation, the intermediate output of each component in a pipeline system, such as the user dialogue acts and belief state, are presented on the webpage. In this way, the performance of the system can be examined, and the prediction errors of those components can be corrected manually, which helps the developers identify the bottleneck component. The interactive tool can also be used to collect real-time humanmachine dialogues and user feedback for further system improvement.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "2 ConvLab-2",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Each speaker in a conversation is regarded as an agent. ConvLab-2 inherits and simplifies Con-vLab's framework to accommodate more complicated dialogue agents (e.g., using multiple models for one component) and more general scenarios (e.g., multi-party conversations). Thanks to the flexibility of the agent definition, researchers can build an agent with different types of configurations, such as a traditional pipeline method (as shown in the first layer of the top block in Figure 1) , a fully end-to-end method (the last layer), and between (other layers) once instantiating corresponding models. Researchers can also freely customize an agent, such as incorporating two dialogue systems into one agent to cope with multiple tasks. Based on the unified agent definition that both dialogue systems and user simulators are treated as agents, ConvLab-2 supports conversation between two agents and can be extended to more general scenarios involving three or more parties.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 478,
                        "end": 487,
                        "text": "Figure 1)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Dialogue Agent",
                "sec_num": "2.1"
            },
            {
                "text": "ConvLab-2 provides the following models for every possible component in a dialogue agent. Note that compared to ConvLab, newly integrated models in ConvLab-2 are marked in bold. Researchers can easily add their models by implementing the interface of the corresponding component. We will keep adding state-of-the-art models to reflect the latest progress in task-oriented dialogue.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Models",
                "sec_num": "2.2"
            },
            {
                "text": "The natural language understanding (NLU) component, which is used to parse the other agent's intent, takes an utterance as input and outputs the corresponding dialogue acts. ConvLab-2 provides three models: Semantic Tuple Classifier (STC) (Mairesse et al., 2009) , MILU (Lee et al., 2019b) , and BERTNLU. BERT (Devlin et al., 2019) has shown strong performance in many NLP tasks. Thus, ConvLab-2 proposes a new BERTNLU model. BERTNLU adds two MLPs on top of BERT for intent classification and slot tagging, respectively, and fine-tunes all parameters on the specified tasks. BERTNLU achieves the best performance on MultiWOZ in comparison with other models.",
                "cite_spans": [
                    {
                        "start": 239,
                        "end": 262,
                        "text": "(Mairesse et al., 2009)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 270,
                        "end": 289,
                        "text": "(Lee et al., 2019b)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 310,
                        "end": 331,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Natural Language Understanding",
                "sec_num": "2.2.1"
            },
            {
                "text": "The dialogue state tracking (DST) component updates the belief state, which contains the constraints and requirements of the other agent (such as a user). ConvLab-2 provides a rule-based tracker that takes dialogue acts parsed by the NLU as input.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dialogue State Tracking",
                "sec_num": "2.2.2"
            },
            {
                "text": "Word-level DST obtains the belief state directly from the dialogue history. ConvLab-2 integrates four models: MDBT (Ramadan et al., 2018), SUMBT (Lee et al., 2019a) , and TRADE (Wu et al., 2019) . TRADE generates the belief state from utterances using a copy mechanism and achieves state-of-the-art performance on Multi-WOZ.",
                "cite_spans": [
                    {
                        "start": 145,
                        "end": 164,
                        "text": "(Lee et al., 2019a)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 177,
                        "end": 194,
                        "text": "(Wu et al., 2019)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Word-level Dialogue State Tracking",
                "sec_num": "2.2.3"
            },
            {
                "text": "Dialogue policy receives the belief state and outputs system dialogue acts. ConvLab-2 provides a rule-based policy, a simple neural policy that learns directly from the corpus using imitation learning, and reinforcement learning policies including RE-INFORCE (Williams, 1992) , PPO (Schulman et al., 2017) , and GDPL (Takanobu et al., 2019) . GDPL achieves state-of-the-art performance on Multi-WOZ.",
                "cite_spans": [
                    {
                        "start": 259,
                        "end": 275,
                        "text": "(Williams, 1992)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 282,
                        "end": 305,
                        "text": "(Schulman et al., 2017)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 317,
                        "end": 340,
                        "text": "(Takanobu et al., 2019)",
                        "ref_id": "BIBREF22"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dialogue Policy",
                "sec_num": "2.2.4"
            },
            {
                "text": "The natural language generation (NLG) component transforms dialogue acts into a natural language sentence. ConvLab-2 provides a template-based method and SC-LSTM (Wen et al., 2015).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Natural Language Generation",
                "sec_num": "2.2.5"
            },
            {
                "text": "Word-level policy directly generates a natural language response (rather than dialogue acts) according to the dialogue history and the belief state. ConvLab-2 integrates three models: MDRG (Budzianowski et al., 2018a) , HDSA (Chen et al., 2019) , and LaRL (Zhao et al., 2019) . MDRG is the baseline model proposed by Budzianowski et al. (2018b) on MultiWOZ, while HDSA and LaRL achieve much stronger performance on this dataset.",
                "cite_spans": [
                    {
                        "start": 189,
                        "end": 217,
                        "text": "(Budzianowski et al., 2018a)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 225,
                        "end": 244,
                        "text": "(Chen et al., 2019)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 256,
                        "end": 275,
                        "text": "(Zhao et al., 2019)",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 317,
                        "end": 344,
                        "text": "Budzianowski et al. (2018b)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Word-level Policy",
                "sec_num": "2.2.6"
            },
            {
                "text": "User policy is the core of a user simulator. It takes a pre-set user goal and system dialogue acts as input and outputs user dialogue acts. ConvLab-2 provides an agenda-based (Schatzmann et al., 2007) model and neural network-based models including HUS and its variational variants (G\u00fcr et al., 2018) . To perform end-to-end simulation, researchers can equip the user policy with NLU and NLG components to assemble a complete user simulator.",
                "cite_spans": [
                    {
                        "start": 175,
                        "end": 200,
                        "text": "(Schatzmann et al., 2007)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 282,
                        "end": 300,
                        "text": "(G\u00fcr et al., 2018)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "User Policy",
                "sec_num": "2.2.7"
            },
            {
                "text": "A fully end-to-end dialogue model receives the dialogue history and generates a response in natural language directly. ConvLab-2 extends Sequicity (Lei et al., 2018) to multi-domain scenarios: when the model senses that the current domain has switched, it resets the belief span, which records information of the current domain. ConvLab-2 also integrates DAMD (Zhang et al., 2019) which obtains state-of-the-art results on MultiWOZ. As for the DealOrNoDeal dataset, we provide the ROLL-OUTS RL policy proposed by Lewis et al. (2017) .",
                "cite_spans": [
                    {
                        "start": 147,
                        "end": 165,
                        "text": "(Lei et al., 2018)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 360,
                        "end": 380,
                        "text": "(Zhang et al., 2019)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 513,
                        "end": 532,
                        "text": "Lewis et al. (2017)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "End-to-end Model",
                "sec_num": "2.2.8"
            },
            {
                "text": "Compared with ConvLab, ConvLab-2 can integrate a new dataset more conveniently. For each dataset, ConvLab-2 provides a unified data loader that can be used by all the models, thus separating data processing from the model definition. Currently, ConvLab-2 supports four task-oriented dialogue datasets, including CamRest676 (Wen et al., 2017), MultiWOZ (Eric et al., 2019) , DealOrN-oDeal (Lewis et al., 2017) , and CrossWOZ (Zhu et al., 2020) .",
                "cite_spans": [
                    {
                        "start": 352,
                        "end": 371,
                        "text": "(Eric et al., 2019)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 388,
                        "end": 408,
                        "text": "(Lewis et al., 2017)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 424,
                        "end": 442,
                        "text": "(Zhu et al., 2020)",
                        "ref_id": "BIBREF30"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "2.3"
            },
            {
                "text": "CamRest676 (Wen et al., 2017) is a Wizard-of-Oz dataset, consisting of 676 dialogues in a restaurant domain. ConvLab-2 offers an agenda-based user simulator and a complete set of models for building a traditional pipeline dialogue system on the CamRest676 dataset.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CamRest676",
                "sec_num": "2.3.1"
            },
            {
                "text": "MultiWOZ (Budzianowski et al., 2018b ) is a largescale multi-domain Wizard-of-Oz dataset. It consists of 10,438 dialogues with system dialogue acts and belief states. However, user dialogue acts are missing, and belief state annotations and dialogue utterances are noisy. To address these issues, Convlab (Lee et al., 2019b) annotated user dialogue acts automatically using heuristics. Eric et al. (2019) further re-annotated the belief states and utterances, resulting in the MultiWOZ 2.1 dataset.",
                "cite_spans": [
                    {
                        "start": 9,
                        "end": 36,
                        "text": "(Budzianowski et al., 2018b",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 305,
                        "end": 324,
                        "text": "(Lee et al., 2019b)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 386,
                        "end": 404,
                        "text": "Eric et al. (2019)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "MultiWOZ",
                "sec_num": "2.3.2"
            },
            {
                "text": "DealOrNoDeal (Lewis et al., 2017 ) is a dataset of human-human negotiations on a multi-issue bargaining task. It contains 5,805 dialogues based on 2,236 unique scenarios. On this dataset, ConvLab-2 implements ROLLOUTS RL (Lewis et al., 2017) and LaRL (Zhao et al., 2019) models.",
                "cite_spans": [
                    {
                        "start": 13,
                        "end": 32,
                        "text": "(Lewis et al., 2017",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 221,
                        "end": 241,
                        "text": "(Lewis et al., 2017)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 251,
                        "end": 270,
                        "text": "(Zhao et al., 2019)",
                        "ref_id": "BIBREF29"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "DealOrNoDeal",
                "sec_num": "2.3.3"
            },
            {
                "text": "CrossWOZ (Zhu et al., 2020) is the first large-scale Chinese multi-domain Wizard-of-Oz dataset proposed recently. It contains 6,012 dialogues spanning over five domains. Besides dialogue acts and belief states, the annotations of user states, which indicate the completion of a user goal, are also provided. ConvLab-2 offers a rule-based user simulator and a complete set of models for building a pipeline system on the CrossWOZ dataset. Invalid system dialogue acts: -31%: Inform-Hotel-Parking -28%: Inform-Hotel-Internet Redundant system dialogue acts:",
                "cite_spans": [
                    {
                        "start": 9,
                        "end": 27,
                        "text": "(Zhu et al., 2020)",
                        "ref_id": "BIBREF30"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CrossWOZ",
                "sec_num": "2.3.4"
            },
            {
                "text": "-34%: Inform-Hotel-Stars Missing system dialogue acts:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CrossWOZ",
                "sec_num": "2.3.4"
            },
            {
                "text": "-25%: Inform-Hotel-Phone",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CrossWOZ",
                "sec_num": "2.3.4"
            },
            {
                "text": "Recommend-Hotel-Parking-yes -21%: Recommend-Hotel-Parking-none -18%: Inform-Hotel-Parking-none Inform-Hotel-Parking-yes -17%: Inform-Hotel-Parking-none Inform-Hotel-Stars-4 -16%: Inform-Hotel-Internet-none",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Most confusing system dialogue acts:",
                "sec_num": null
            },
            {
                "text": "User dialogue acts that cause loop: -53% Request-Hotel-Phone-? -21% Request-Hotel-Post-? -14% Request-Hotel-Addr-? ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Most confusing system dialogue acts:",
                "sec_num": null
            },
            {
                "text": "To evaluate a dialogue system quantitatively, ConvLab-2 offers an analysis tool to perform an end-to-end evaluation with a specified user simulator and generate an HTML report which contains rich statistics of simulated dialogues. Charts and tables are used in the test report for better demonstration. Partial results of a demo system in Section 3 are shown in Figure 2 and Table 1 . Currently, the report contains the following pieces of information for each task domain:",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 362,
                        "end": 370,
                        "text": "Figure 2",
                        "ref_id": "FIGREF0"
                    },
                    {
                        "start": 375,
                        "end": 382,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Analysis Tool",
                "sec_num": "2.4"
            },
            {
                "text": "\u2022 Metrics for overall performance such as success rate, inform F1, average turn number, etc.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis Tool",
                "sec_num": "2.4"
            },
            {
                "text": "\u2022 Common errors of the NLU component, such as the confusion matrix of user dialogue acts. For the example in Table 1 , 34% of the requests for the Postcode in the Hotel domain are misinterpreted as the requests in the Hospital domain.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 109,
                        "end": 116,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Analysis Tool",
                "sec_num": "2.4"
            },
            {
                "text": "\u2022 Frequent invalid, redundant, and missing system dialogue acts predicted by the dialogue policy.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis Tool",
                "sec_num": "2.4"
            },
            {
                "text": "\u2022 The system dialogue acts from which the NLG component generates responses that confuse the user simulator. For the example in Table  1 , it is hard to inform the user that the hotel has free parking.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 128,
                        "end": 136,
                        "text": "Table  1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Analysis Tool",
                "sec_num": "2.4"
            },
            {
                "text": "\u2022 The causes of dialogue loops. Dialogue loop is the situation that the user keeps repeating the same request until the max turn number is reached. This result shows the requests that are hard for the system to handle. The analysis tool also supports the comparison between different dialogue systems that interact with the same user simulator. The above statistics and comparison results can significantly facilitate error analysis and system improvement.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis Tool",
                "sec_num": "2.4"
            },
            {
                "text": "ConvLab-2 provides an interactive tool that enables researchers to converse with a dialogue system through a graphical user interface and modify intermediate results to correct system errors.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Interactive Tool",
                "sec_num": "2.5"
            },
            {
                "text": "As shown in Figure 3 , researchers can customize their dialogue system by selecting the dataset and the model of each component. Then, they can interact with the system via the user interface. During a conversation, the output of each component is displayed on the left side as a JSON formatted string, including the user dialogue acts parsed by the NLU, the belief state tracked by the DST, the system dialogue acts selected by the policy and the final system response generated by the NLG. By showing both the dialogue history and the component outputs, the researchers can get a good understanding of how their system works.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 12,
                        "end": 20,
                        "text": "Figure 3",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Interactive Tool",
                "sec_num": "2.5"
            },
            {
                "text": "In addition to the fine-grained system output, the interactive tool also supports intermediate output modification. When a component makes a mistake and the dialogue fails to continue, the researchers can correct the JSON output of that component to redirect the conversation by replacing the original output with the correct one. This function is helpful when the researchers are debugging a specific component.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Interactive Tool",
                "sec_num": "2.5"
            },
            {
                "text": "In consideration of the compatibility across platforms, the interactive tool is deployed as a web service that can be accessed via a web browser. To use self-defined models, the researchers have to edit a configuration file, which defines all available models for each component. The researchers can also add their own models into the configuration file easily.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Interactive Tool",
                "sec_num": "2.5"
            },
            {
                "text": "This section demonstrates how to use ConvLab-2 to build, evaluate, and diagnose a traditional pipeline dialogue system developed on the Mul-tiWOZ dataset.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Demo",
                "sec_num": "3"
            },
            {
                "text": "import ... # import necessary modules # Create models for each component # Parameters are omitted for simplicity sys_nlu = BERTNLU(...) sys_dst = RuleDST(...) sys_policy = RulePolicy(...) sys_nlg = TemplateNLG(...) # Assemble a pipeline system named \"sys\" sys_agent = PipelineAgent(sys_nlu, sys_dst, sys_policy, sys_nlg, name=\"sys\") # Build a user simulator similarly but without DST user_nlu = BERTNLU(...) user_policy = RulePolicy(...) user_nlg = TemplateNLG(...) user_agent = PipelineAgent(user_nlu, None, user_policy, user_nlg, name=\"user\") # Create an evaluator and a conversation environment evaluator = MultiWozEvaluator() sess = BiSession(sys_agent, user_agent, evaluator) # Start simulation sess.init_session() sys_utt = \"\" while True: sys_utt, user_utt, sess_over, reward = sess. next_turn(sys_utt) if sess_over: break print(sess.evaluator.task_success()) print(sess.evaluator.inform_F1()) # Use the analysis tool to generate a test report analyzer = Analyzer(user_agent, dataset=\"MultiWOZ\") analyzer.comprehensive_analyze(sys_agent, total_dialog=1000) # Compare multiple systems sys_agent2 = PipelineAgent(MILU(...), sys_dst, sys_policy, sys_nlg, name=\"sys\") analyzer.compare_models(agent_list= [sys_agent, sys_agent2] , model_name=[\"bertnlu\", \"milu\"], total_dialog=1000)",
                "cite_spans": [
                    {
                        "start": 1206,
                        "end": 1229,
                        "text": "[sys_agent, sys_agent2]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Demo",
                "sec_num": "3"
            },
            {
                "text": "Listing 1: Example code for the demo.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Demo",
                "sec_num": "3"
            },
            {
                "text": "To build such a dialogue system, we need to instantiate a model for each component and assemble them into a complete agent. As shown in the above code, the system consists of a BERTNLU, a rule-based DST, a rule-based system policy, and a template-based NLG. Likewise, we can build a user simulator that consists of a BERTNLU, an agenda-based user policy, and a template-based NLG. Thanks to the flexibility of the framework, the DST of the simulator can be None, which means passing the parsed dialogue acts directly to the policy without the belief state.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Demo",
                "sec_num": "3"
            },
            {
                "text": "For end-to-end evaluation, ConvLab-2 provides a BiSession class, which takes a system, a simulator, and an evaluator as inputs. Then this class can be used to simulate dialogues and calculate end-to-end evaluation metrics. For example, the task success rate of the system is 64.2%, and the inform F1 is 67.0% for 1000 simulated dialogues. In addition to automatic evaluation, ConvLab-2 can perform human evaluation via Amazon Mechanical Turk using the same system agent.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Demo",
                "sec_num": "3"
            },
            {
                "text": "Then the analysis tool can be used to perform a comprehensive evaluation. Equipped with a user simulator, the tool can analyze and compare multiple systems. Some results are shown in Figure  2 and Table 1 . We collected statistics from 1000 simulated dialogues and found that \u2022 The demo system performs the poorest in the Hotel domain but always completes the goal in the Hospital domain.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 183,
                        "end": 192,
                        "text": "Figure  2",
                        "ref_id": "FIGREF0"
                    },
                    {
                        "start": 197,
                        "end": 204,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Demo",
                "sec_num": "3"
            },
            {
                "text": "\u2022 The sub-task in the Hotel domain is more likely to cause dialogue loops than in other domains. More than half of the loops in the Hotel domain are caused by the user request for the phone number.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Demo",
                "sec_num": "3"
            },
            {
                "text": "\u2022 One of the most common errors of the NLU component is misinterpreting the domain of user dialogue acts. For example, the user request for the Postcode, address, and phone number in the Hotel domain is often parsed as in other domains.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Demo",
                "sec_num": "3"
            },
            {
                "text": "\u2022 In the Hotel domain, the dialogue acts whose slots are Parking are much harder to be perceived than other dialogue acts.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Demo",
                "sec_num": "3"
            },
            {
                "text": "The researchers can further diagnose their system by observing fine-grained output and rescuing a failed dialogue using our provided interactive tool. An example is shown in Figure 3 , in which at first the BERTNLU falsely identified the domain as Restaurant. After correcting the domain to Hotel manually, a Recall NLU button appears. By clicking the button, the dialogue system reruns this turn by skipping the NLU module and directly use the corrected NLU output. Combined with the observations from the analysis tool, alleviating the domain confusion problem of the NLU component may significantly improve system performance.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 174,
                        "end": 182,
                        "text": "Figure 3",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Demo",
                "sec_num": "3"
            },
            {
                "text": "ConvLab-2 is publicly available on https:// github.com/thu-coai/ConvLab-2. Resources such as datasets, trained models, tutorials, and demo video are also released. We will keep track of new datasets and state-of-the-art models. Contributions from the community are always welcome.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Code and Resources",
                "sec_num": "4"
            },
            {
                "text": "We present ConvLab-2, an open-source toolkit for building, evaluating, and diagnosing a taskoriented dialogue system. Based on ConvLab (Lee et al., 2019b) , ConvLab-2 integrates more powerful models, supports more datasets, and develops an analysis tool and an interactive tool for comprehensive end-to-end evaluation. For demonstration, we give an example of using ConvLab-2 to build, evaluate, and diagnose a system on the MultiWOZ dataset. We hope that ConvLab-2 is instrumental in promoting the research on task-oriented dialogue.",
                "cite_spans": [
                    {
                        "start": 135,
                        "end": 154,
                        "text": "(Lee et al., 2019b)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            },
            {
                "text": "https://sites.google.com/dstc. community/dstc9/home",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This work was jointly supported by the NSFC projects (Key project with No. 61936010 and regular project with No. 61876096), and the National Key R&D Program of China (Grant No. 2018YFC0830200). We thank THUNUS NExT Joint-Lab for the support.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Rasa: Open source language understanding and dialogue management",
                "authors": [
                    {
                        "first": "Tom",
                        "middle": [],
                        "last": "Bocklisch",
                        "suffix": ""
                    },
                    {
                        "first": "Joey",
                        "middle": [],
                        "last": "Faulkner",
                        "suffix": ""
                    },
                    {
                        "first": "Nick",
                        "middle": [],
                        "last": "Pawlowski",
                        "suffix": ""
                    },
                    {
                        "first": "Alan",
                        "middle": [],
                        "last": "Nichol",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tom Bocklisch, Joey Faulkner, Nick Pawlowski, and Alan Nichol. 2017. Rasa: Open source language un- derstanding and dialogue management.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Towards end-toend multi-domain dialogue modelling",
                "authors": [
                    {
                        "first": "Pawel",
                        "middle": [],
                        "last": "Budzianowski",
                        "suffix": ""
                    },
                    {
                        "first": "I\u00f1igo",
                        "middle": [],
                        "last": "Casanueva",
                        "suffix": ""
                    },
                    {
                        "first": "Bo-Hsiang",
                        "middle": [],
                        "last": "Tseng",
                        "suffix": ""
                    },
                    {
                        "first": "Milica",
                        "middle": [],
                        "last": "Gasic",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Pawel Budzianowski, I\u00f1igo Casanueva, Bo-Hsiang Tseng, and Milica Gasic. 2018a. Towards end-to- end multi-domain dialogue modelling.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "MultiWOZ -a large-scale multi-domain wizard-of-Oz dataset for task-oriented dialogue modelling",
                "authors": [
                    {
                        "first": "Pawe\u0142",
                        "middle": [],
                        "last": "Budzianowski",
                        "suffix": ""
                    },
                    {
                        "first": "Tsung-Hsien",
                        "middle": [],
                        "last": "Wen",
                        "suffix": ""
                    },
                    {
                        "first": "Bo-Hsiang",
                        "middle": [],
                        "last": "Tseng",
                        "suffix": ""
                    },
                    {
                        "first": "I\u00f1igo",
                        "middle": [],
                        "last": "Casanueva",
                        "suffix": ""
                    },
                    {
                        "first": "Stefan",
                        "middle": [],
                        "last": "Ultes",
                        "suffix": ""
                    },
                    {
                        "first": "Milica",
                        "middle": [],
                        "last": "Osman Ramadan",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ga\u0161i\u0107",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "5016--5026",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D18-1547"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Pawe\u0142 Budzianowski, Tsung-Hsien Wen, Bo-Hsiang Tseng, I\u00f1igo Casanueva, Stefan Ultes, Osman Ra- madan, and Milica Ga\u0161i\u0107. 2018b. MultiWOZ -a large-scale multi-domain wizard-of-Oz dataset for task-oriented dialogue modelling. In Proceedings of the 2018 Conference on Empirical Methods in Nat- ural Language Processing, pages 5016-5026, Brus- sels, Belgium. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Semantically conditioned dialog response generation via hierarchical disentangled self-attention",
                "authors": [
                    {
                        "first": "Wenhu",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Jianshu",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Pengda",
                        "middle": [],
                        "last": "Qin",
                        "suffix": ""
                    },
                    {
                        "first": "Xifeng",
                        "middle": [],
                        "last": "Yan",
                        "suffix": ""
                    },
                    {
                        "first": "William",
                        "middle": [
                            "Yang"
                        ],
                        "last": "Wang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "3696--3709",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1360"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Wenhu Chen, Jianshu Chen, Pengda Qin, Xifeng Yan, and William Yang Wang. 2019. Semantically con- ditioned dialog response generation via hierarchical disentangled self-attention. In Proceedings of the 57th Annual Meeting of the Association for Com- putational Linguistics, pages 3696-3709, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "4171--4186",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1423"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Multiwoz 2.1: Multi-domain dialogue state corrections and state tracking baselines",
                "authors": [
                    {
                        "first": "Mihail",
                        "middle": [],
                        "last": "Eric",
                        "suffix": ""
                    },
                    {
                        "first": "Rahul",
                        "middle": [],
                        "last": "Goel",
                        "suffix": ""
                    },
                    {
                        "first": "Shachi",
                        "middle": [],
                        "last": "Paul",
                        "suffix": ""
                    },
                    {
                        "first": "Abhishek",
                        "middle": [],
                        "last": "Sethi",
                        "suffix": ""
                    },
                    {
                        "first": "Sanchit",
                        "middle": [],
                        "last": "Agarwal",
                        "suffix": ""
                    },
                    {
                        "first": "Shuyag",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Dilek",
                        "middle": [],
                        "last": "Hakkani-Tur",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1907.01669"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi, Sanchit Agarwal, Shuyag Gao, and Dilek Hakkani- Tur. 2019. Multiwoz 2.1: Multi-domain dialogue state corrections and state tracking baselines. arXiv preprint arXiv:1907.01669.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Neural approaches to conversational ai. Foundations and Trends R in Information Retrieval",
                "authors": [
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Michel",
                        "middle": [],
                        "last": "Galley",
                        "suffix": ""
                    },
                    {
                        "first": "Lihong",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "13",
                "issue": "",
                "pages": "127--298",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jianfeng Gao, Michel Galley, and Lihong Li. 2019. Neural approaches to conversational ai. Founda- tions and Trends R in Information Retrieval, 13(2- 3):127-298.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "User modeling for task oriented dialogues",
                "authors": [
                    {
                        "first": "Izzeddin",
                        "middle": [],
                        "last": "G\u00fcr",
                        "suffix": ""
                    },
                    {
                        "first": "Dilek",
                        "middle": [],
                        "last": "Hakkani-T\u00fcr",
                        "suffix": ""
                    },
                    {
                        "first": "Gokhan",
                        "middle": [],
                        "last": "T\u00fcr",
                        "suffix": ""
                    },
                    {
                        "first": "Pararth",
                        "middle": [],
                        "last": "Shah",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "2018 IEEE Spoken Language Technology Workshop (SLT)",
                "volume": "",
                "issue": "",
                "pages": "900--906",
                "other_ids": {
                    "DOI": [
                        "10.1109/SLT.2018.8639652"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Izzeddin G\u00fcr, Dilek Hakkani-T\u00fcr, Gokhan T\u00fcr, and Pararth Shah. 2018. User modeling for task oriented dialogues. In 2018 IEEE Spoken Language Technol- ogy Workshop (SLT), pages 900-906. IEEE.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "The second dialog state tracking challenge",
                "authors": [
                    {
                        "first": "Matthew",
                        "middle": [],
                        "last": "Henderson",
                        "suffix": ""
                    },
                    {
                        "first": "Blaise",
                        "middle": [],
                        "last": "Thomson",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [
                            "D"
                        ],
                        "last": "Williams",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 15th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL)",
                "volume": "",
                "issue": "",
                "pages": "263--272",
                "other_ids": {
                    "DOI": [
                        "10.3115/v1/W14-4337"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Matthew Henderson, Blaise Thomson, and Jason D. Williams. 2014. The second dialog state tracking challenge. In Proceedings of the 15th Annual Meet- ing of the Special Interest Group on Discourse and Dialogue (SIGDIAL), pages 263-272, Philadelphia, PA, U.S.A. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "SUMBT: Slot-utterance matching for universal and scalable belief tracking",
                "authors": [
                    {
                        "first": "Hwaran",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Jinsik",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Tae-Yoon",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1546"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Hwaran Lee, Jinsik Lee, and Tae-Yoon Kim. 2019a. SUMBT: Slot-utterance matching for universal and scalable belief tracking. In Proceedings of the 57th",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Annual Meeting of the Association for Computational Linguistics",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "5478--5483",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Annual Meeting of the Association for Computa- tional Linguistics, pages 5478-5483, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "ConvLab: Multi-domain end-to-end dialog system platform",
                "authors": [
                    {
                        "first": "Sungjin",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Qi",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    },
                    {
                        "first": "Ryuichi",
                        "middle": [],
                        "last": "Takanobu",
                        "suffix": ""
                    },
                    {
                        "first": "Zheng",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Yaoqin",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Xiang",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Jinchao",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Baolin",
                        "middle": [],
                        "last": "Peng",
                        "suffix": ""
                    },
                    {
                        "first": "Xiujun",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Minlie",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations",
                "volume": "",
                "issue": "",
                "pages": "64--69",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-3011"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Sungjin Lee, Qi Zhu, Ryuichi Takanobu, Zheng Zhang, Yaoqin Zhang, Xiang Li, Jinchao Li, Baolin Peng, Xiujun Li, Minlie Huang, and Jianfeng Gao. 2019b. ConvLab: Multi-domain end-to-end dialog system platform. In Proceedings of the 57th Annual Meet- ing of the Association for Computational Linguis- tics: System Demonstrations, pages 64-69, Flo- rence, Italy. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Sequicity: Simplifying task-oriented dialogue systems with single sequence-to-sequence architectures",
                "authors": [
                    {
                        "first": "Wenqiang",
                        "middle": [],
                        "last": "Lei",
                        "suffix": ""
                    },
                    {
                        "first": "Xisen",
                        "middle": [],
                        "last": "Jin",
                        "suffix": ""
                    },
                    {
                        "first": "Min-Yen",
                        "middle": [],
                        "last": "Kan",
                        "suffix": ""
                    },
                    {
                        "first": "Zhaochun",
                        "middle": [],
                        "last": "Ren",
                        "suffix": ""
                    },
                    {
                        "first": "Xiangnan",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Dawei",
                        "middle": [],
                        "last": "Yin",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "1437--1447",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P18-1133"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Wenqiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun Ren, Xiangnan He, and Dawei Yin. 2018. Sequicity: Simplifying task-oriented dialogue systems with sin- gle sequence-to-sequence architectures. In Proceed- ings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa- pers), pages 1437-1447, Melbourne, Australia. As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Deal or no deal? end-toend learning of negotiation dialogues",
                "authors": [
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Lewis",
                        "suffix": ""
                    },
                    {
                        "first": "Denis",
                        "middle": [],
                        "last": "Yarats",
                        "suffix": ""
                    },
                    {
                        "first": "Yann",
                        "middle": [],
                        "last": "Dauphin",
                        "suffix": ""
                    },
                    {
                        "first": "Devi",
                        "middle": [],
                        "last": "Parikh",
                        "suffix": ""
                    },
                    {
                        "first": "Dhruv",
                        "middle": [],
                        "last": "Batra",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "2443--2453",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D17-1259"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Mike Lewis, Denis Yarats, Yann Dauphin, Devi Parikh, and Dhruv Batra. 2017. Deal or no deal? end-to- end learning of negotiation dialogues. In Proceed- ings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2443-2453, Copenhagen, Denmark. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Spoken language understanding from unaligned data using discriminative classification models",
                "authors": [
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Mairesse",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Gasic",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Jurcicek",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Keizer",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Thomson",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Young",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "IEEE International Conference on Acoustics, Speech and Signal Processing",
                "volume": "",
                "issue": "",
                "pages": "4749--4752",
                "other_ids": {
                    "DOI": [
                        "10.1109/ICASSP.2009.4960692"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "F. Mairesse, M. Gasic, F. Jurcicek, S. Keizer, B. Thom- son, K. Yu, and S. Young. 2009. Spoken language understanding from unaligned data using discrimi- native classification models. In 2009 IEEE Interna- tional Conference on Acoustics, Speech and Signal Processing, pages 4749-4752.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "ParlAI: A dialog research software platform",
                "authors": [
                    {
                        "first": "Alexander",
                        "middle": [],
                        "last": "Miller",
                        "suffix": ""
                    },
                    {
                        "first": "Will",
                        "middle": [],
                        "last": "Feng",
                        "suffix": ""
                    },
                    {
                        "first": "Dhruv",
                        "middle": [],
                        "last": "Batra",
                        "suffix": ""
                    },
                    {
                        "first": "Antoine",
                        "middle": [],
                        "last": "Bordes",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Fisch",
                        "suffix": ""
                    },
                    {
                        "first": "Jiasen",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    },
                    {
                        "first": "Devi",
                        "middle": [],
                        "last": "Parikh",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Weston",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
                "volume": "",
                "issue": "",
                "pages": "79--84",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D17-2014"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Alexander Miller, Will Feng, Dhruv Batra, Antoine Bordes, Adam Fisch, Jiasen Lu, Devi Parikh, and Jason Weston. 2017. ParlAI: A dialog research soft- ware platform. In Proceedings of the 2017 Con- ference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 79-84, Copenhagen, Denmark. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Plato dialogue system: A flexible conversational ai research platform",
                "authors": [
                    {
                        "first": "Alexandros",
                        "middle": [],
                        "last": "Papangelis",
                        "suffix": ""
                    },
                    {
                        "first": "Mahdi",
                        "middle": [],
                        "last": "Namazifar",
                        "suffix": ""
                    },
                    {
                        "first": "Chandra",
                        "middle": [],
                        "last": "Khatri",
                        "suffix": ""
                    },
                    {
                        "first": "Yi-Chia",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Piero",
                        "middle": [],
                        "last": "Molino",
                        "suffix": ""
                    },
                    {
                        "first": "Gokhan",
                        "middle": [],
                        "last": "Tur",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alexandros Papangelis, Mahdi Namazifar, Chandra Khatri, Yi-Chia Wang, Piero Molino, and Gokhan Tur. 2020. Plato dialogue system: A flexible conver- sational ai research platform.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Composite task-completion dialogue policy learning via hierarchical deep reinforcement learning",
                "authors": [
                    {
                        "first": "Baolin",
                        "middle": [],
                        "last": "Peng",
                        "suffix": ""
                    },
                    {
                        "first": "Xiujun",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Lihong",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Asli",
                        "middle": [],
                        "last": "Celikyilmaz",
                        "suffix": ""
                    },
                    {
                        "first": "Sungjin",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kam-Fai",
                        "middle": [],
                        "last": "Wong",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "2231--2240",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D17-1237"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Baolin Peng, Xiujun Li, Lihong Li, Jianfeng Gao, Asli Celikyilmaz, Sungjin Lee, and Kam-Fai Wong. 2017. Composite task-completion dialogue policy learning via hierarchical deep reinforcement learn- ing. In Proceedings of the 2017 Conference on Em- pirical Methods in Natural Language Processing, pages 2231-2240, Copenhagen, Denmark. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Large-scale multi-domain belief tracking with knowledge sharing",
                "authors": [
                    {
                        "first": "Pawe\u0142",
                        "middle": [],
                        "last": "Osman Ramadan",
                        "suffix": ""
                    },
                    {
                        "first": "Milica",
                        "middle": [],
                        "last": "Budzianowski",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ga\u0161i\u0107",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
                "volume": "2",
                "issue": "",
                "pages": "432--437",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P18-2069"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Osman Ramadan, Pawe\u0142 Budzianowski, and Milica Ga\u0161i\u0107. 2018. Large-scale multi-domain belief track- ing with knowledge sharing. In Proceedings of the 56th Annual Meeting of the Association for Com- putational Linguistics (Volume 2: Short Papers), pages 432-437, Melbourne, Australia. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Towards scalable multi-domain conversational agents: The schema-guided dialogue dataset",
                "authors": [
                    {
                        "first": "Abhinav",
                        "middle": [],
                        "last": "Rastogi",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaoxue",
                        "middle": [],
                        "last": "Zang",
                        "suffix": ""
                    },
                    {
                        "first": "Srinivas",
                        "middle": [],
                        "last": "Sunkara",
                        "suffix": ""
                    },
                    {
                        "first": "Raghav",
                        "middle": [],
                        "last": "Gupta",
                        "suffix": ""
                    },
                    {
                        "first": "Pranav",
                        "middle": [],
                        "last": "Khaitan",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1909.05855"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan. 2019. Towards scalable multi-domain conversational agents: The schema-guided dialogue dataset. arXiv preprint arXiv:1909.05855.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Agenda-based user simulation for bootstrapping a POMDP dialogue system",
                "authors": [
                    {
                        "first": "Jost",
                        "middle": [],
                        "last": "Schatzmann",
                        "suffix": ""
                    },
                    {
                        "first": "Blaise",
                        "middle": [],
                        "last": "Thomson",
                        "suffix": ""
                    },
                    {
                        "first": "Karl",
                        "middle": [],
                        "last": "Weilhammer",
                        "suffix": ""
                    },
                    {
                        "first": "Hui",
                        "middle": [],
                        "last": "Ye",
                        "suffix": ""
                    },
                    {
                        "first": "Steve",
                        "middle": [],
                        "last": "Young",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Companion Volume, Short Papers",
                "volume": "",
                "issue": "",
                "pages": "149--152",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jost Schatzmann, Blaise Thomson, Karl Weilhammer, Hui Ye, and Steve Young. 2007. Agenda-based user simulation for bootstrapping a POMDP dia- logue system. In Human Language Technologies 2007: The Conference of the North American Chap- ter of the Association for Computational Linguis- tics; Companion Volume, Short Papers, pages 149- 152, Rochester, New York. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Proximal policy optimization algorithms",
                "authors": [
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Schulman",
                        "suffix": ""
                    },
                    {
                        "first": "Filip",
                        "middle": [],
                        "last": "Wolski",
                        "suffix": ""
                    },
                    {
                        "first": "Prafulla",
                        "middle": [],
                        "last": "Dhariwal",
                        "suffix": ""
                    },
                    {
                        "first": "Alec",
                        "middle": [],
                        "last": "Radford",
                        "suffix": ""
                    },
                    {
                        "first": "Oleg",
                        "middle": [],
                        "last": "Klimov",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1707.06347"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Guided dialog policy learning: Reward estimation for multi-domain task-oriented dialog",
                "authors": [
                    {
                        "first": "Ryuichi",
                        "middle": [],
                        "last": "Takanobu",
                        "suffix": ""
                    },
                    {
                        "first": "Hanlin",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    },
                    {
                        "first": "Minlie",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "100--110",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1010"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ryuichi Takanobu, Hanlin Zhu, and Minlie Huang. 2019. Guided dialog policy learning: Reward es- timation for multi-domain task-oriented dialog. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Lan- guage Processing (EMNLP-IJCNLP), pages 100- 110, Hong Kong, China. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "PyDial: A multi-domain statistical dialogue system toolkit",
                "authors": [
                    {
                        "first": "Stefan",
                        "middle": [],
                        "last": "Ultes",
                        "suffix": ""
                    },
                    {
                        "first": "Lina",
                        "middle": [
                            "M"
                        ],
                        "last": "Rojas-Barahona",
                        "suffix": ""
                    },
                    {
                        "first": "Pei-Hao",
                        "middle": [],
                        "last": "Su",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Vandyke",
                        "suffix": ""
                    },
                    {
                        "first": "Dongho",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "I\u00f1igo",
                        "middle": [],
                        "last": "Casanueva",
                        "suffix": ""
                    },
                    {
                        "first": "Pawe\u0142",
                        "middle": [],
                        "last": "Budzianowski",
                        "suffix": ""
                    },
                    {
                        "first": "Nikola",
                        "middle": [],
                        "last": "Mrk\u0161i\u0107",
                        "suffix": ""
                    },
                    {
                        "first": "Tsung-Hsien",
                        "middle": [],
                        "last": "Wen",
                        "suffix": ""
                    },
                    {
                        "first": "Milica",
                        "middle": [],
                        "last": "Ga\u0161i\u0107",
                        "suffix": ""
                    },
                    {
                        "first": "Steve",
                        "middle": [],
                        "last": "Young",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of ACL 2017, System Demonstrations",
                "volume": "",
                "issue": "",
                "pages": "73--78",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Stefan Ultes, Lina M. Rojas-Barahona, Pei-Hao Su, David Vandyke, Dongho Kim, I\u00f1igo Casanueva, Pawe\u0142 Budzianowski, Nikola Mrk\u0161i\u0107, Tsung-Hsien Wen, Milica Ga\u0161i\u0107, and Steve Young. 2017. PyDial: A multi-domain statistical dialogue system toolkit. In Proceedings of ACL 2017, System Demonstra- tions, pages 73-78, Vancouver, Canada. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Semantically conditioned LSTM-based natural language generation for spoken dialogue systems",
                "authors": [
                    {
                        "first": "Milica",
                        "middle": [],
                        "last": "Tsung-Hsien Wen",
                        "suffix": ""
                    },
                    {
                        "first": "Nikola",
                        "middle": [],
                        "last": "Ga\u0161i\u0107",
                        "suffix": ""
                    },
                    {
                        "first": "Pei-Hao",
                        "middle": [],
                        "last": "Mrk\u0161i\u0107",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Su",
                        "suffix": ""
                    },
                    {
                        "first": "Steve",
                        "middle": [],
                        "last": "Vandyke",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Young",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1711--1721",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D15-1199"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Tsung-Hsien Wen, Milica Ga\u0161i\u0107, Nikola Mrk\u0161i\u0107, Pei- Hao Su, David Vandyke, and Steve Young. 2015. Semantically conditioned LSTM-based natural lan- guage generation for spoken dialogue systems. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1711-1721, Lisbon, Portugal. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "A networkbased end-to-end trainable task-oriented dialogue system",
                "authors": [
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Tsung-Hsien Wen",
                        "suffix": ""
                    },
                    {
                        "first": "Nikola",
                        "middle": [],
                        "last": "Vandyke",
                        "suffix": ""
                    },
                    {
                        "first": "Milica",
                        "middle": [],
                        "last": "Mrk\u0161i\u0107",
                        "suffix": ""
                    },
                    {
                        "first": "Lina",
                        "middle": [
                            "M"
                        ],
                        "last": "Ga\u0161i\u0107",
                        "suffix": ""
                    },
                    {
                        "first": "Pei-Hao",
                        "middle": [],
                        "last": "Rojas-Barahona",
                        "suffix": ""
                    },
                    {
                        "first": "Stefan",
                        "middle": [],
                        "last": "Su",
                        "suffix": ""
                    },
                    {
                        "first": "Steve",
                        "middle": [],
                        "last": "Ultes",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Young",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "438--449",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tsung-Hsien Wen, David Vandyke, Nikola Mrk\u0161i\u0107, Milica Ga\u0161i\u0107, Lina M. Rojas-Barahona, Pei-Hao Su, Stefan Ultes, and Steve Young. 2017. A network- based end-to-end trainable task-oriented dialogue system. In Proceedings of the 15th Conference of the European Chapter of the Association for Compu- tational Linguistics: Volume 1, Long Papers, pages 438-449, Valencia, Spain. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Simple statistical gradientfollowing algorithms for connectionist reinforcement learning",
                "authors": [
                    {
                        "first": "Ronald",
                        "middle": [
                            "J"
                        ],
                        "last": "Williams",
                        "suffix": ""
                    }
                ],
                "year": 1992,
                "venue": "Machine Learning",
                "volume": "8",
                "issue": "",
                "pages": "229--256",
                "other_ids": {
                    "DOI": [
                        "10.1007/BF00992696"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ronald J. Williams. 1992. Simple statistical gradient- following algorithms for connectionist reinforce- ment learning. Machine Learning, 8(3):229-256.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Transferable multi-domain state generator for task-oriented dialogue systems",
                "authors": [
                    {
                        "first": "Chien-Sheng",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Andrea",
                        "middle": [],
                        "last": "Madotto",
                        "suffix": ""
                    },
                    {
                        "first": "Ehsan",
                        "middle": [],
                        "last": "Hosseini-Asl",
                        "suffix": ""
                    },
                    {
                        "first": "Caiming",
                        "middle": [],
                        "last": "Xiong",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Socher",
                        "suffix": ""
                    },
                    {
                        "first": "Pascale",
                        "middle": [],
                        "last": "Fung",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "808--819",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini- Asl, Caiming Xiong, Richard Socher, and Pascale Fung. 2019. Transferable multi-domain state gener- ator for task-oriented dialogue systems. In Proceed- ings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 808-819, Flo- rence, Italy. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Task-Oriented Dialog Systems that Consider Multiple Appropriate Responses under the Same Context",
                "authors": [
                    {
                        "first": "Yichi",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Zhijian",
                        "middle": [],
                        "last": "Ou",
                        "suffix": ""
                    },
                    {
                        "first": "Zhou",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the AAAI Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yichi Zhang, Zhijian Ou, and Zhou Yu. 2019. Task- Oriented Dialog Systems that Consider Multiple Ap- propriate Responses under the Same Context. In Proceedings of the AAAI Conference on Artificial In- telligence.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Rethinking action spaces for reinforcement learning in end-to-end dialog agents with latent variable models",
                "authors": [
                    {
                        "first": "Tiancheng",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Kaige",
                        "middle": [],
                        "last": "Xie",
                        "suffix": ""
                    },
                    {
                        "first": "Maxine",
                        "middle": [],
                        "last": "Eskenazi",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "1208--1218",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1123"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Tiancheng Zhao, Kaige Xie, and Maxine Eskenazi. 2019. Rethinking action spaces for reinforcement learning in end-to-end dialog agents with latent vari- able models. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 1208-1218, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "CrossWOZ: A large-scale chinese cross-domain task-oriented dialogue dataset",
                "authors": [
                    {
                        "first": "Qi",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    },
                    {
                        "first": "Kaili",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Zheng",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaoyan",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    },
                    {
                        "first": "Minlie",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Transactions of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Qi Zhu, Kaili Huang, Zheng Zhang, Xiaoyan Zhu, and Minlie Huang. 2020. CrossWOZ: A large-scale chinese cross-domain task-oriented dialogue dataset. Transactions of the Association for Computational Linguistics.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "text": "Performance of the demo system in Section 3. Left: Success rate and inform F1 for each domain. Right: Proportions of the dialogue loop in each domain.Overall results: Success Rate: 60.8%; inform F1: 44.5%Most confusing user dialogue acts: Request-Hotel-Post-?-34%: Request-Hospital-Post-? -32%: Request-Attraction-Post-",
                "num": null,
                "uris": null
            },
            "FIGREF1": {
                "type_str": "figure",
                "text": "The interface of the Interactive Tool.",
                "num": null,
                "uris": null
            },
            "TABREF0": {
                "content": "<table/>",
                "text": "",
                "num": null,
                "html": null,
                "type_str": "table"
            }
        }
    }
}