File size: 120,111 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 |
{
"paper_id": "2020",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T01:52:47.685572Z"
},
"title": "Sta n z a : A Python Natural Language Processing Toolkit for Many Human Languages",
"authors": [
{
"first": "Peng",
"middle": [],
"last": "Qi",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Stanford University Stanford",
"location": {
"postCode": "94305",
"region": "CA"
}
},
"email": "pengqi@stanford.edu"
},
{
"first": "Yuhao",
"middle": [],
"last": "Zhang",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Stanford University Stanford",
"location": {
"postCode": "94305",
"region": "CA"
}
},
"email": "yuhaozhang@stanford.edu"
},
{
"first": "Yuhui",
"middle": [],
"last": "Zhang",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Stanford University Stanford",
"location": {
"postCode": "94305",
"region": "CA"
}
},
"email": "yuhuiz@stanford.edu"
},
{
"first": "Jason",
"middle": [],
"last": "Bolton",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Stanford University Stanford",
"location": {
"postCode": "94305",
"region": "CA"
}
},
"email": "jebolton@stanford.edu"
},
{
"first": "Christopher",
"middle": [
"D"
],
"last": "Manning",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Stanford University Stanford",
"location": {
"postCode": "94305",
"region": "CA"
}
},
"email": "manning@stanford.edu"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "We introduce Sta n z a , an open-source Python natural language processing toolkit supporting 66 human languages. Compared to existing widely used toolkits, Sta n z a features a language-agnostic fully neural pipeline for text analysis, including tokenization, multiword token expansion, lemmatization, part-ofspeech and morphological feature tagging, dependency parsing, and named entity recognition. We have trained Sta n z a on a total of 112 datasets, including the Universal Dependencies treebanks and other multilingual corpora, and show that the same neural architecture generalizes well and achieves competitive performance on all languages tested. Additionally, Sta n z a includes a native Python interface to the widely used Java Stanford CoreNLP software, which further extends its functionality to cover other tasks such as coreference resolution and relation extraction. Source code, documentation, and pretrained models for 66 languages are available at https:// stanfordnlp.github.io/stanza/. * Equal contribution. Order decided by a tossed coin.",
"pdf_parse": {
"paper_id": "2020",
"_pdf_hash": "",
"abstract": [
{
"text": "We introduce Sta n z a , an open-source Python natural language processing toolkit supporting 66 human languages. Compared to existing widely used toolkits, Sta n z a features a language-agnostic fully neural pipeline for text analysis, including tokenization, multiword token expansion, lemmatization, part-ofspeech and morphological feature tagging, dependency parsing, and named entity recognition. We have trained Sta n z a on a total of 112 datasets, including the Universal Dependencies treebanks and other multilingual corpora, and show that the same neural architecture generalizes well and achieves competitive performance on all languages tested. Additionally, Sta n z a includes a native Python interface to the widely used Java Stanford CoreNLP software, which further extends its functionality to cover other tasks such as coreference resolution and relation extraction. Source code, documentation, and pretrained models for 66 languages are available at https:// stanfordnlp.github.io/stanza/. * Equal contribution. Order decided by a tossed coin.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "The growing availability of open-source natural language processing (NLP) toolkits has made it easier for users to build tools with sophisticated linguistic processing. While existing NLP toolkits such as CoreNLP (Manning et al., 2014) , FLAIR (Akbik et al., 2019) , spaCy 1 , and UDPipe (Straka, 2018) have had wide usage, they also suffer from several limitations. First, existing toolkits often support only a few major languages. This has significantly limited the community's ability to process multilingual text. Second, widely used tools are sometimes under-optimized for accuracy either due to a focus on efficiency (e.g., spaCy) or use of less powerful models (e.g., CoreNLP), potentially mislead- ing downstream applications and insights obtained from them. Third, some tools assume input text has been tokenized or annotated with other tools, lacking the ability to process raw text within a unified framework. This has limited their wide applicability to text from diverse sources.",
"cite_spans": [
{
"start": 213,
"end": 235,
"text": "(Manning et al., 2014)",
"ref_id": "BIBREF7"
},
{
"start": 244,
"end": 264,
"text": "(Akbik et al., 2019)",
"ref_id": "BIBREF0"
},
{
"start": 288,
"end": 302,
"text": "(Straka, 2018)",
"ref_id": "BIBREF13"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "We introduce Sta n z a 2 , a Python natural language processing toolkit supporting many human languages. As shown in Table 1 , compared to existing widely-used NLP toolkits, Sta n z a has the following advantages:",
"cite_spans": [],
"ref_spans": [
{
"start": 117,
"end": 124,
"text": "Table 1",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 From raw text to annotations. Sta n z a features a fully neural pipeline which takes raw text as input, and produces annotations including tokenization, multi-word token expansion, lemmatization, part-of-speech and morphological feature tagging, dependency parsing, and named entity recognition.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 Multilinguality. Sta n z a 's architectural design is language-agnostic and data-driven, which allows us to release models support- ing 66 languages, by training the pipeline on the Universal Dependencies (UD) treebanks and other multilingual corpora.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 State-of-the-art performance. We evaluate Sta n z a on a total of 112 datasets, and find its neural pipeline adapts well to text of different genres, achieving state-of-the-art or competitive performance at each step of the pipeline.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Additionally, Sta n z a features a Python interface to the widely used Java CoreNLP package, allowing access to additional tools such as coreference resolution and relation extraction.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Sta n z a is fully open source and we make pretrained models for all supported languages and datasets available for public download. We hope Sta n z a can facilitate multilingual NLP research and applications, and drive future research that produces insights from human languages.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "At the top level, Sta n z a consists of two individual components: (1) a fully neural multilingual NLP pipeline; (2) a Python client interface to the Java Stanford CoreNLP software. In this section we introduce their designs.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "System Design and Architecture",
"sec_num": "2"
},
{
"text": "Sta n z a 's neural pipeline consists of models that range from tokenizing raw text to performing syntactic analysis on entire sentences (see Figure 1 ). All components are designed with processing many human languages in mind, with high-level design choices capturing common phenomena in many languages and data-driven models that learn the difference between these languages from data. Moreover, the implementation of Sta n z a components is highly modular, and reuses basic model architectures when possible for compactness. We highlight the important design choices here, and refer the reader to Qi et al. (2018) for modeling details. The des in the first sentence corresponds to two syntactic words, de and les; the second des is a single word.",
"cite_spans": [
{
"start": 600,
"end": 616,
"text": "Qi et al. (2018)",
"ref_id": "BIBREF12"
}
],
"ref_spans": [
{
"start": 142,
"end": 150,
"text": "Figure 1",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Neural Multilingual NLP Pipeline",
"sec_num": "2.1"
},
{
"text": "Tokenization and Sentence Splitting. When presented raw text, Sta n z a tokenizes it and groups tokens into sentences as the first step of processing. Unlike most existing toolkits, Sta n z a combines tokenization and sentence segmentation from raw text into a single module. This is modeled as a tagging problem over character sequences, where the model predicts whether a given character is the end of a token, end of a sentence, or end of a multi-word token (MWT, see Figure 2 ). 3 We choose to predict MWTs jointly with tokenization because this task is context-sensitive in some languages.",
"cite_spans": [
{
"start": 483,
"end": 484,
"text": "3",
"ref_id": null
}
],
"ref_spans": [
{
"start": 471,
"end": 479,
"text": "Figure 2",
"ref_id": "FIGREF2"
}
],
"eq_spans": [],
"section": "Neural Multilingual NLP Pipeline",
"sec_num": "2.1"
},
{
"text": "Multi-word Token Expansion. Once MWTs are identified by the tokenizer, they are expanded into the underlying syntactic words as the basis of downstream processing. This is achieved with an ensemble of a frequency lexicon and a neural sequence-to-sequence (seq2seq) model, to ensure that frequently observed expansions in the training set are always robustly expanded while maintaining flexibility to model unseen words statistically.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Neural Multilingual NLP Pipeline",
"sec_num": "2.1"
},
{
"text": "POS and Morphological Feature Tagging. For each word in a sentence, Sta n z a assigns it a partof-speech (POS), and analyzes its universal morphological features (UFeats, e.g., singular/plural, 1 st /2 nd /3 rd person, etc.). To predict POS and UFeats, we adopt a bidirectional long short-term memory network (Bi-LSTM) as the basic architecture. For consistency among universal POS (UPOS), treebank-specific POS (XPOS), and UFeats, we adopt the biaffine scoring mechanism from Dozat and Manning (2017) to condition XPOS and UFeats prediction on that of UPOS.",
"cite_spans": [
{
"start": 477,
"end": 501,
"text": "Dozat and Manning (2017)",
"ref_id": "BIBREF6"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Neural Multilingual NLP Pipeline",
"sec_num": "2.1"
},
{
"text": "Lemmatization. Sta n z a also lemmatizes each word in a sentence to recover its canonical form (e.g., did\u2192do). Similar to the multi-word token expander, Sta n z a 's lemmatizer is implemented as an ensemble of a dictionary-based lemmatizer and a neural seq2seq lemmatizer. An additional classifier is built on the encoder output of the seq2seq model, to predict shortcuts such as lowercasing and identity copy for robustness on long input sequences such as URLs.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Neural Multilingual NLP Pipeline",
"sec_num": "2.1"
},
{
"text": "Dependency Parsing. Sta n z a parses each sentence for its syntactic structure, where each word in the sentence is assigned a syntactic head that is either another word in the sentence, or in the case of the root word, an artificial root symbol. We implement a Bi-LSTM-based deep biaffine neural dependency parser (Dozat and Manning, 2017) . We further augment this model with two linguistically motivated features: one that predicts the linearization order of two words in a given language, and the other that predicts the typical distance in linear order between them. We have previously shown that these features significantly improve parsing accuracy (Qi et al., 2018) .",
"cite_spans": [
{
"start": 314,
"end": 339,
"text": "(Dozat and Manning, 2017)",
"ref_id": "BIBREF6"
},
{
"start": 655,
"end": 672,
"text": "(Qi et al., 2018)",
"ref_id": "BIBREF12"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Neural Multilingual NLP Pipeline",
"sec_num": "2.1"
},
{
"text": "Named Entity Recognition. For each input sentence, Sta n z a also recognizes named entities in it (e.g., person names, organizations, etc.). For NER we adopt the contextualized string representationbased sequence tagger from Akbik et al. (2018) . We first train a forward and a backward characterlevel LSTM language model, and at tagging time we concatenate the representations at the end of each word position from both language models with word embeddings, and feed the result into a standard one-layer Bi-LSTM sequence tagger with a conditional random field (CRF)-based decoder.",
"cite_spans": [
{
"start": 225,
"end": 244,
"text": "Akbik et al. (2018)",
"ref_id": "BIBREF1"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Neural Multilingual NLP Pipeline",
"sec_num": "2.1"
},
{
"text": "Stanford's Java CoreNLP software provides a comprehensive set of NLP tools especially for the English language. However, these tools are not easily accessible with Python, the programming language of choice for many NLP practitioners, due to the lack of official support. To facilitate the use of CoreNLP from Python, we take advantage of the existing server interface in CoreNLP, and implement a robust client as its Python interface.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "CoreNLP Client",
"sec_num": "2.2"
},
{
"text": "When the CoreNLP client is instantiated, Sta n z a will automatically start the CoreNLP server as a local process. The client then communicates with the server through its RESTful APIs, after which annotations are transmitted in Protocol Buffers, and converted back to native Python objects. Users can also specify JSON or XML as annotation format. To ensure robustness, while the client is being used, Sta n z a periodically checks the health of the server, and restarts it if necessary.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "CoreNLP Client",
"sec_num": "2.2"
},
{
"text": "Sta n z a 's user interface is designed to allow quick out-of-the-box processing of multilingual text. To achieve this, Sta n z a supports automated model download via Python code and pipeline customization with processors of choice. Annotation results can be accessed as native Python objects to allow for flexible post-processing.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "System Usage",
"sec_num": "3"
},
{
"text": "Sta n z a 's neural NLP pipeline can be initialized with the Pipeline class, taking language name as an argument. By default, all processors will be loaded and run over the input text; however, users can also specify the processors to load and run with a list of processor names as an argument. Users can additionally specify other processor-level properties, such as batch sizes used by processors, at initialization time.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Neural Pipeline Interface",
"sec_num": "3.1"
},
{
"text": "The following code snippet shows a minimal usage of Sta n z a for downloading the Chinese model, annotating a sentence with customized processors, and printing out all annotations:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Neural Pipeline Interface",
"sec_num": "3.1"
},
{
"text": "import stanza # download Chinese model stanza.download('zh') # initialize Chinese neural pipeline nlp = stanza.Pipeline('zh', processors='tokenize, pos,ner') # run annotation over a sentence doc = nlp('\u65af\u5766\u798f\u662f\u4e00\u6240\u79c1\u7acb\u7814\u7a76\u578b\u5927\u5b66\u3002') print (doc) After all processors are run, a Document instance will be returned, which stores all annotation results. Within a Document, annotations are further stored in Sentences, Tokens and Words in a top-down fashion (Figure 1 ). The following code snippet demonstrates how to access the text and POS tag of each word in a document and all named entities in the document: # print the text and POS of all words for sentence in doc.sentences:",
"cite_spans": [
{
"start": 225,
"end": 230,
"text": "(doc)",
"ref_id": null
}
],
"ref_spans": [
{
"start": 439,
"end": 448,
"text": "(Figure 1",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Neural Pipeline Interface",
"sec_num": "3.1"
},
{
"text": "for word in sentence.words: print(word.text, word.pos) # print all entities in the document print(doc.entities)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Neural Pipeline Interface",
"sec_num": "3.1"
},
{
"text": "Sta n z a is designed to be run on different hardware devices. By default, CUDA devices will be used whenever they are visible by the pipeline, or otherwise CPUs will be used. However, users can force all computation to be run on CPUs by setting use_gpu=False at initialization time.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Neural Pipeline Interface",
"sec_num": "3.1"
},
{
"text": "The CoreNLP client interface is designed in a way that the actual communication with the backend CoreNLP server is transparent to the user. To annotate an input text with the CoreNLP client, a CoreNLPClient instance needs to be initialized, with an optional list of CoreNLP annotators. After the annotation is complete, results will be accessible as native Python objects.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "CoreNLP Client Interface",
"sec_num": "3.2"
},
{
"text": "This code snippet shows how to establish a CoreNLP client and obtain the NER and coreference annotations of an English sentence: With the client interface, users can annotate text in 6 languages as supported by CoreNLP.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "CoreNLP Client Interface",
"sec_num": "3.2"
},
{
"text": "To help visualize documents and their annotations generated by Sta n z a , we build an interactive web demo that runs the pipeline interactively. For all languages and all annotations Sta n z a provides in those languages, we generate predictions from the models trained on the largest treebank/NER dataset, and visualize the result with the Brat rapid annotation tool. 4 This demo runs in a client/server architecture, and annotation is performed on the server side. We make one instance of this demo publicly available at http://stanza.run/. It can also be run locally with proper Python libraries installed. An example of running Sta n z a on a German sentence can be found in Figure 3 .",
"cite_spans": [
{
"start": 370,
"end": 371,
"text": "4",
"ref_id": null
}
],
"ref_spans": [
{
"start": 680,
"end": 688,
"text": "Figure 3",
"ref_id": "FIGREF4"
}
],
"eq_spans": [],
"section": "Interactive Web-based Demo",
"sec_num": "3.3"
},
{
"text": "For all neural processors, Sta n z a provides command-line interfaces for users to train their own customized models. To do this, users need to prepare the training and development data in compatible formats (i.e., CoNLL-U format for the Universal Dependencies pipeline and BIO format column files for the NER model). The following command trains a neural dependency parser with user-specified training and development data: Table 2 : Neural pipeline performance comparisons on the Universal Dependencies (v2.5) test treebanks. For our system we show macro-averaged results over all 100 treebanks. We also compare our system against UDPipe and spaCy on treebanks of five major languages where the corresponding pretrained models are publicly available. All results are F 1 scores produced by the 2018 UD Shared Task official evaluation script.",
"cite_spans": [],
"ref_spans": [
{
"start": 425,
"end": 432,
"text": "Table 2",
"ref_id": null
}
],
"eq_spans": [],
"section": "Training Pipeline Models",
"sec_num": "3.4"
},
{
"text": "$ python -m",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Training Pipeline Models",
"sec_num": "3.4"
},
{
"text": "the training data as development data. These treebanks represent 66 languages, mostly European languages, but spanning a diversity of language families, including Indo-European, Afro-Asiatic, Uralic, Turkic, Sino-Tibetan, etc. For NER, we train and evaluate Sta n z a with 12 publicly available datasets covering 8 major languages as shown in Table 3 (Nothman et al., 2013; Tjong Kim Sang and De Meulder, 2003; Tjong Kim Sang, 2002; Benikova et al., 2014; Mohit et al., 2012; Taul\u00e9 et al., 2008; Weischedel et al., 2013) . For the WikiNER corpora, as canonical splits are not available, we randomly split them into 70% training, 15% dev and 15% test splits. For all other corpora we used their canonical splits.",
"cite_spans": [
{
"start": 351,
"end": 373,
"text": "(Nothman et al., 2013;",
"ref_id": "BIBREF11"
},
{
"start": 374,
"end": 410,
"text": "Tjong Kim Sang and De Meulder, 2003;",
"ref_id": "BIBREF16"
},
{
"start": 411,
"end": 432,
"text": "Tjong Kim Sang, 2002;",
"ref_id": "BIBREF15"
},
{
"start": 433,
"end": 455,
"text": "Benikova et al., 2014;",
"ref_id": "BIBREF3"
},
{
"start": 456,
"end": 475,
"text": "Mohit et al., 2012;",
"ref_id": "BIBREF8"
},
{
"start": 476,
"end": 495,
"text": "Taul\u00e9 et al., 2008;",
"ref_id": "BIBREF14"
},
{
"start": 496,
"end": 520,
"text": "Weischedel et al., 2013)",
"ref_id": "BIBREF17"
}
],
"ref_spans": [
{
"start": 343,
"end": 350,
"text": "Table 3",
"ref_id": "TABREF4"
}
],
"eq_spans": [],
"section": "Training Pipeline Models",
"sec_num": "3.4"
},
{
"text": "Training. On the Universal Dependencies treebanks, we tuned all hyper-parameters on several large treebanks and applied them to all other treebanks. We used the word2vec embeddings released as part of the 2018 UD Shared Task (Zeman et al., 2018) , or the fastText embeddings (Bojanowski et al., 2017) whenever word2vec is not available. For the character-level language models in the NER component, we pretrained them on a mix of the Common Crawl and Wikipedia dumps, and the news corpora released by the WMT19 Shared Task (Barrault et al., 2019) , except for English and Chinese, for which we pretrained on the Google One Billion Word (Chelba et al., 2013) and the Chi-nese Gigaword corpora 5 , respectively. We again applied the same hyper-parameters to models for all languages.",
"cite_spans": [
{
"start": 225,
"end": 245,
"text": "(Zeman et al., 2018)",
"ref_id": "BIBREF18"
},
{
"start": 275,
"end": 300,
"text": "(Bojanowski et al., 2017)",
"ref_id": "BIBREF4"
},
{
"start": 523,
"end": 546,
"text": "(Barrault et al., 2019)",
"ref_id": "BIBREF2"
},
{
"start": 636,
"end": 657,
"text": "(Chelba et al., 2013)",
"ref_id": "BIBREF5"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Training Pipeline Models",
"sec_num": "3.4"
},
{
"text": "Universal Dependencies Results. For performance on UD treebanks, we compared Sta n z a (v1.0) against UDPipe (v1.2) and spaCy (v2.2) on treebanks of 5 major languages whenever a pretrained model is available. As shown in Table 2 , St a n z a achieved the best performance on most scores reported. Notably, we find that Sta n z a 's languageagnostic architecture is able to adapt to datasets of different languages and genres. This is also shown by Sta n z a 's high macro-averaged scores over 100 treebanks covering 66 languages.",
"cite_spans": [],
"ref_spans": [
{
"start": 221,
"end": 228,
"text": "Table 2",
"ref_id": null
}
],
"eq_spans": [],
"section": "Training Pipeline Models",
"sec_num": "3.4"
},
{
"text": "NER Results. For performance of the NER component, we compared Sta n z a (v1.0) against FLAIR (v0.4.5) and spaCy (v2.2). For spaCy we reported results from its publicly available pretrained model whenever one trained on the same dataset can be found, otherwise we retrained its model on our datasets with default hyper-parameters, following the publicly available tutorial. 6 For FLAIR, since their downloadable models were pretrained on dataset versions different from canonical ones, we retrained all models on our own dataset splits with their best reported hyper-parameters. All test results are shown in Table 3 . We find that on all datasets Sta n z a achieved either higher or close F 1 scores when compared against FLAIR. When compared to spaCy, Sta n z a 's NER performance is much better. It is worth noting that Sta n z a 's high performance is achieved with much smaller models compared with FLAIR (up to 75% smaller), as we intentionally compressed the models for memory efficiency and ease of distribution.",
"cite_spans": [],
"ref_spans": [
{
"start": 609,
"end": 616,
"text": "Table 3",
"ref_id": "TABREF4"
}
],
"eq_spans": [],
"section": "Training Pipeline Models",
"sec_num": "3.4"
},
{
"text": "Speed comparison. We compare Sta n z a against existing toolkits to evaluate the time it takes to annotate text (see Table 4 ). For GPU tests we use a single NVIDIA Titan RTX card. Unsurprisingly, Sta n z a 's extensive use of accurate neural models makes it take significantly longer than spaCy to annotate text, but it is still competitive when compared against toolkits of similar accuracy, especially with the help of GPU acceleration.",
"cite_spans": [],
"ref_spans": [
{
"start": 117,
"end": 124,
"text": "Table 4",
"ref_id": "TABREF6"
}
],
"eq_spans": [],
"section": "Training Pipeline Models",
"sec_num": "3.4"
},
{
"text": "We introduced Sta n z a , a Python natural language processing toolkit supporting many human languages. We have showed that Sta n z a 's neural pipeline not only has wide coverage of human languages, but also is accurate on all tasks, thanks to its language-agnostic, fully neural architectural design. Simultaneously, Sta n z a 's CoreNLP client extends its functionality with additional NLP tools. For future work, we consider the following areas of improvement in the near term:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion and Future Work",
"sec_num": "5"
},
{
"text": "The toolkit was called StanfordNLP prior to v1.0.0.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "Following Universal Dependencies(Nivre et al., 2020), we make a distinction between tokens (contiguous spans of characters in the input text) and syntactic words. These are interchangeable aside from the cases of MWTs, where one token can correspond to multiple words.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "https://brat.nlplab.org/",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "https://catalog.ldc.upenn.edu/ LDC2011T136 https://spacy.io/usage/training#ner Note that, following this public tutorial, we did not use pretrained word embeddings when training spaCy NER models, although using pretrained word embeddings may potentially improve the NER results.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "The authors would like to thank the anonymous reviewers for their comments, Arun Chaganty for his early contribution to this toolkit, Tim Dozat for his design of the original architectures of the tagger and parser models, Matthew Honnibal and Ines Montani for their help with spaCy integration and helpful comments on the draft, Ranting Guo for the logo design, and John Bauer and the community contributors for their help with maintaining and improving this toolkit. This research is funded in part by Samsung Electronics Co., Ltd. and in part by the SAIL-JD Research Initiative.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgments",
"sec_num": null
},
{
"text": "\u2022 Models downloadable in Sta n z a are largely trained on a single dataset. To make models robust to many different genres of text, we would like to investigate the possibility of pooling various sources of compatible data to train \"default\" models for each language;\u2022 The amount of computation and resources available to us is limited. We would therefore like to build an open \"model zoo\" for Sta n z a , so that researchers from outside our group can also contribute their models and benefit from models released by others;\u2022 Sta n z a was designed to optimize for accuracy of its predictions, but this sometimes comes at the cost of computational efficiency and limits the toolkit's use. We would like to further investigate reducing model sizes and speeding up computation in the toolkit, while still maintaining the same level of accuracy.\u2022 We would also like to expand Sta n z a 's functionality by adding other processors such as neural coreference resolution or relation extraction for richer text analytics.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "annex",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "FLAIR: An easy-to-use framework for state-of-theart NLP",
"authors": [
{
"first": "Alan",
"middle": [],
"last": "Akbik",
"suffix": ""
},
{
"first": "Tanja",
"middle": [],
"last": "Bergmann",
"suffix": ""
},
{
"first": "Duncan",
"middle": [],
"last": "Blythe",
"suffix": ""
},
{
"first": "Kashif",
"middle": [],
"last": "Rasul",
"suffix": ""
},
{
"first": "Stefan",
"middle": [],
"last": "Schweter",
"suffix": ""
},
{
"first": "Roland",
"middle": [],
"last": "Vollgraf",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations). Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif Rasul, Stefan Schweter, and Roland Vollgraf. 2019. FLAIR: An easy-to-use framework for state-of-the- art NLP. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations). Asso- ciation for Computational Linguistics.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Contextual string embeddings for sequence labeling",
"authors": [
{
"first": "Alan",
"middle": [],
"last": "Akbik",
"suffix": ""
},
{
"first": "Duncan",
"middle": [],
"last": "Blythe",
"suffix": ""
},
{
"first": "Roland",
"middle": [],
"last": "Vollgraf",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 27th International Conference on Computational Linguistics. Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Alan Akbik, Duncan Blythe, and Roland Vollgraf. 2018. Contextual string embeddings for sequence labeling. In Proceedings of the 27th International Conference on Computational Linguistics. Associa- tion for Computational Linguistics.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Findings of the 2019 conference on machine translation (WMT19)",
"authors": [
{
"first": "Lo\u00efc",
"middle": [],
"last": "Barrault",
"suffix": ""
},
{
"first": "Ond\u0159ej",
"middle": [],
"last": "Bojar",
"suffix": ""
},
{
"first": "Marta",
"middle": [
"R"
],
"last": "Costa-Juss\u00e0",
"suffix": ""
},
{
"first": "Christian",
"middle": [],
"last": "Federmann",
"suffix": ""
},
{
"first": "Mark",
"middle": [],
"last": "Fishel",
"suffix": ""
},
{
"first": "Yvette",
"middle": [],
"last": "Graham",
"suffix": ""
},
{
"first": "Barry",
"middle": [],
"last": "Haddow",
"suffix": ""
},
{
"first": "Matthias",
"middle": [],
"last": "Huck",
"suffix": ""
},
{
"first": "Philipp",
"middle": [],
"last": "Koehn",
"suffix": ""
},
{
"first": "Shervin",
"middle": [],
"last": "Malmasi",
"suffix": ""
},
{
"first": "Christof",
"middle": [],
"last": "Monz",
"suffix": ""
},
{
"first": "Mathias",
"middle": [],
"last": "M\u00fcller",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the Fourth Conference on Machine Translation",
"volume": "2",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Lo\u00efc Barrault, Ond\u0159ej Bojar, Marta R. Costa-juss\u00e0, Christian Federmann, Mark Fishel, Yvette Gra- ham, Barry Haddow, Matthias Huck, Philipp Koehn, Shervin Malmasi, Christof Monz, Mathias M\u00fcller, Santanu Pal, Matt Post, and Marcos Zampieri. 2019. Findings of the 2019 conference on machine transla- tion (WMT19). In Proceedings of the Fourth Con- ference on Machine Translation (Volume 2: Shared Task Papers, Day 1). Association for Computational Linguistics.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "NoSta-D named entity annotation for German: Guidelines and dataset",
"authors": [
{
"first": "Darina",
"middle": [],
"last": "Benikova",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Biemann",
"suffix": ""
},
{
"first": "Marc",
"middle": [],
"last": "Reznicek",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Darina Benikova, Chris Biemann, and Marc Reznicek. 2014. NoSta-D named entity annotation for Ger- man: Guidelines and dataset. In Proceedings of the Ninth International Conference on Language Re- sources and Evaluation (LREC'14).",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Enriching word vectors with subword information",
"authors": [
{
"first": "Piotr",
"middle": [],
"last": "Bojanowski",
"suffix": ""
},
{
"first": "Edouard",
"middle": [],
"last": "Grave",
"suffix": ""
},
{
"first": "Armand",
"middle": [],
"last": "Joulin",
"suffix": ""
},
{
"first": "Tomas",
"middle": [],
"last": "Mikolov",
"suffix": ""
}
],
"year": 2017,
"venue": "Transactions of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.1162/tacl_a_00051"
]
},
"num": null,
"urls": [],
"raw_text": "Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors with subword information. Transactions of the Associa- tion for Computational Linguistics, 5.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "One billion word benchmark for measuring progress in statistical language modeling",
"authors": [
{
"first": "Ciprian",
"middle": [],
"last": "Chelba",
"suffix": ""
},
{
"first": "Tomas",
"middle": [],
"last": "Mikolov",
"suffix": ""
},
{
"first": "Mike",
"middle": [],
"last": "Schuster",
"suffix": ""
},
{
"first": "Qi",
"middle": [],
"last": "Ge",
"suffix": ""
}
],
"year": 2013,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn, and Tony Robin- son. 2013. One billion word benchmark for measur- ing progress in statistical language modeling. Tech- nical report, Google.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Deep biaffine attention for neural dependency parsing",
"authors": [
{
"first": "Timothy",
"middle": [],
"last": "Dozat",
"suffix": ""
},
{
"first": "Christopher",
"middle": [
"D"
],
"last": "Manning",
"suffix": ""
}
],
"year": 2017,
"venue": "International Conference on Learning Representations",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Timothy Dozat and Christopher D. Manning. 2017. Deep biaffine attention for neural dependency pars- ing. In International Conference on Learning Rep- resentations (ICLR).",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "The Stanford CoreNLP natural language processing toolkit",
"authors": [
{
"first": "Christopher",
"middle": [
"D"
],
"last": "Manning",
"suffix": ""
},
{
"first": "Mihai",
"middle": [],
"last": "Surdeanu",
"suffix": ""
},
{
"first": "John",
"middle": [],
"last": "Bauer",
"suffix": ""
},
{
"first": "Jenny",
"middle": [],
"last": "Finkel",
"suffix": ""
},
{
"first": "Steven",
"middle": [
"J"
],
"last": "Bethard",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Mc-Closky",
"suffix": ""
}
],
"year": 2014,
"venue": "Association for Computational Linguistics (ACL) System Demonstrations",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and David Mc- Closky. 2014. The Stanford CoreNLP natural lan- guage processing toolkit. In Association for Compu- tational Linguistics (ACL) System Demonstrations.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Recalloriented learning of named entities in Arabic Wikipedia",
"authors": [
{
"first": "Behrang",
"middle": [],
"last": "Mohit",
"suffix": ""
},
{
"first": "Nathan",
"middle": [],
"last": "Schneider",
"suffix": ""
},
{
"first": "Rishav",
"middle": [],
"last": "Bhowmick",
"suffix": ""
},
{
"first": "Kemal",
"middle": [],
"last": "Oflazer",
"suffix": ""
},
{
"first": "Noah A",
"middle": [],
"last": "Smith",
"suffix": ""
}
],
"year": 2012,
"venue": "Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Behrang Mohit, Nathan Schneider, Rishav Bhowmick, Kemal Oflazer, and Noah A Smith. 2012. Recall- oriented learning of named entities in Arabic Wikipedia. In Proceedings of the 13th Conference of the European Chapter of the Association for Compu- tational Linguistics. Association for Computational Linguistics.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Universal dependencies v2: An evergrowing multilingual treebank collection",
"authors": [
{
"first": "Daniel",
"middle": [],
"last": "Zeman",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the Twelfth International Conference on Language Resources and Evaluation (LREC'20)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Daniel Zeman. 2020. Universal dependencies v2: An evergrowing multilingual treebank collection. In Proceedings of the Twelfth International Conference on Language Resources and Evaluation (LREC'20).",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Learning multilingual named entity recognition from Wikipedia",
"authors": [
{
"first": "Joel",
"middle": [],
"last": "Nothman",
"suffix": ""
},
{
"first": "Nicky",
"middle": [],
"last": "Ringland",
"suffix": ""
},
{
"first": "Will",
"middle": [],
"last": "Radford",
"suffix": ""
},
{
"first": "Tara",
"middle": [],
"last": "Murphy",
"suffix": ""
},
{
"first": "James R",
"middle": [],
"last": "Curran",
"suffix": ""
}
],
"year": 2013,
"venue": "Artificial Intelligence",
"volume": "194",
"issue": "",
"pages": "151--175",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, and James R Curran. 2013. Learning mul- tilingual named entity recognition from Wikipedia. Artificial Intelligence, 194:151-175.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Universal dependency parsing from scratch",
"authors": [
{
"first": "Peng",
"middle": [],
"last": "Qi",
"suffix": ""
},
{
"first": "Timothy",
"middle": [],
"last": "Dozat",
"suffix": ""
},
{
"first": "Yuhao",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Christopher",
"middle": [
"D"
],
"last": "Manning",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Peng Qi, Timothy Dozat, Yuhao Zhang, and Christo- pher D. Manning. 2018. Universal dependency pars- ing from scratch. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "UDPipe 2.0 prototype at CoNLL 2018 UD shared task",
"authors": [
{
"first": "Milan",
"middle": [],
"last": "Straka",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Milan Straka. 2018. UDPipe 2.0 prototype at CoNLL 2018 UD shared task. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "AnCora: Multilevel annotated corpora for Catalan and Spanish",
"authors": [
{
"first": "M",
"middle": [
"Ant\u00f2nia"
],
"last": "Mariona Taul\u00e9",
"suffix": ""
},
{
"first": "Marta",
"middle": [],
"last": "Mart\u00ed",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Recasens",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08). European Language Resources Association (ELRA)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mariona Taul\u00e9, M. Ant\u00f2nia Mart\u00ed, and Marta Recasens. 2008. AnCora: Multilevel annotated corpora for Catalan and Spanish. In Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08). European Language Re- sources Association (ELRA).",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Introduction to the CoNLL-2002 shared task: Language-independent named entity recognition",
"authors": [
{
"first": "Erik",
"middle": [
"F"
],
"last": "",
"suffix": ""
},
{
"first": "Tjong Kim",
"middle": [],
"last": "Sang",
"suffix": ""
}
],
"year": 2002,
"venue": "COLING-02: The 6th Conference on Natural Language Learning",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Erik F. Tjong Kim Sang. 2002. Introduction to the CoNLL-2002 shared task: Language-independent named entity recognition. In COLING-02: The 6th Conference on Natural Language Learning 2002 (CoNLL-2002).",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition",
"authors": [
{
"first": "Erik",
"middle": [
"F"
],
"last": "Tjong",
"suffix": ""
},
{
"first": "Kim",
"middle": [],
"last": "Sang",
"suffix": ""
},
{
"first": "Fien",
"middle": [],
"last": "De Meulder",
"suffix": ""
}
],
"year": 2003,
"venue": "Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Erik F. Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition. In Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "OntoNotes release 5.0. Linguistic Data Consortium",
"authors": [
{
"first": "Ralph",
"middle": [],
"last": "Weischedel",
"suffix": ""
},
{
"first": "Martha",
"middle": [],
"last": "Palmer",
"suffix": ""
},
{
"first": "Mitchell",
"middle": [],
"last": "Marcus",
"suffix": ""
},
{
"first": "Eduard",
"middle": [],
"last": "Hovy",
"suffix": ""
},
{
"first": "Sameer",
"middle": [],
"last": "Pradhan",
"suffix": ""
},
{
"first": "Lance",
"middle": [],
"last": "Ramshaw",
"suffix": ""
},
{
"first": "Nianwen",
"middle": [],
"last": "Xue",
"suffix": ""
},
{
"first": "Ann",
"middle": [],
"last": "Taylor",
"suffix": ""
},
{
"first": "Jeff",
"middle": [],
"last": "Kaufman",
"suffix": ""
},
{
"first": "Michelle",
"middle": [],
"last": "Franchini",
"suffix": ""
}
],
"year": 2013,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Ni- anwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, et al. 2013. OntoNotes release 5.0. Lin- guistic Data Consortium.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "CoNLL 2018 shared task: Multilingual parsing from raw text to universal dependencies",
"authors": [
{
"first": "Daniel",
"middle": [],
"last": "Zeman",
"suffix": ""
},
{
"first": "Jan",
"middle": [],
"last": "Haji\u010d",
"suffix": ""
},
{
"first": "Martin",
"middle": [],
"last": "Popel",
"suffix": ""
},
{
"first": "Martin",
"middle": [],
"last": "Potthast",
"suffix": ""
},
{
"first": "Milan",
"middle": [],
"last": "Straka",
"suffix": ""
},
{
"first": "Filip",
"middle": [],
"last": "Ginter",
"suffix": ""
},
{
"first": "Joakim",
"middle": [],
"last": "Nivre",
"suffix": ""
},
{
"first": "Slav",
"middle": [],
"last": "Petrov",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Daniel Zeman, Jan Haji\u010d, Martin Popel, Martin Pot- thast, Milan Straka, Filip Ginter, Joakim Nivre, and Slav Petrov. 2018. CoNLL 2018 shared task: Mul- tilingual parsing from raw text to universal depen- dencies. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Univer- sal Dependencies. Association for Computational Linguistics.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Mohammed Attia, Aitziber Atutxa, Liesbeth Augustinus, Elena Badmaeva, Miguel Ballesteros, Esha Banerjee",
"authors": [
{
"first": "Daniel",
"middle": [],
"last": "Zeman",
"suffix": ""
},
{
"first": "Joakim",
"middle": [],
"last": "Nivre",
"suffix": ""
},
{
"first": "Mitchell",
"middle": [],
"last": "Abrams",
"suffix": ""
},
{
"first": "No\u00ebmi",
"middle": [],
"last": "Aepli",
"suffix": ""
},
{
"first": "\u017deljko",
"middle": [],
"last": "Agi\u0107",
"suffix": ""
},
{
"first": "Lars",
"middle": [],
"last": "Ahrenberg",
"suffix": ""
},
{
"first": "Gabriel\u0117",
"middle": [],
"last": "Aleksandravi\u010di\u016bt\u0117",
"suffix": ""
},
{
"first": "Lene",
"middle": [],
"last": "Antonsen",
"suffix": ""
},
{
"first": "Katya",
"middle": [],
"last": "Aplonova",
"suffix": ""
},
{
"first": "Maria",
"middle": [
"Jesus"
],
"last": "Aranzabe",
"suffix": ""
},
{
"first": "Gashaw",
"middle": [],
"last": "Arutie",
"suffix": ""
},
{
"first": "Masayuki",
"middle": [],
"last": "Asahara",
"suffix": ""
},
{
"first": "Luma",
"middle": [],
"last": "Ateyah",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Daniel Zeman, Joakim Nivre, Mitchell Abrams, No\u00ebmi Aepli, \u017deljko Agi\u0107, Lars Ahrenberg, Gabriel\u0117 Alek- sandravi\u010di\u016bt\u0117, Lene Antonsen, Katya Aplonova, Maria Jesus Aranzabe, Gashaw Arutie, Masayuki Asahara, Luma Ateyah, Mohammed Attia, Aitz- iber Atutxa, Liesbeth Augustinus, Elena Badmaeva, Miguel Ballesteros, Esha Banerjee, Sebastian Bank, Verginica Barbu Mititelu, Victoria Basmov, Colin",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Lilja \u00d8vrelid, Niko Partanen, Elena Pascual, Marco Passarotti, Agnieszka Patejuk, Guilherme Paulino-Passos, Angelika Peljak-\u0141api\u0144ska, Siyao Peng, Cenel-Augusto Perez, Guy Perrier, Daria Petrova",
"authors": [
{
"first": "John",
"middle": [],
"last": "Batchelor",
"suffix": ""
},
{
"first": "Sandra",
"middle": [],
"last": "Bauer",
"suffix": ""
},
{
"first": "Kepa",
"middle": [],
"last": "Bellato",
"suffix": ""
},
{
"first": "Yevgeni",
"middle": [],
"last": "Bengoetxea",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Berzak",
"suffix": ""
},
{
"first": "Ahmad",
"middle": [],
"last": "Irshad",
"suffix": ""
},
{
"first": "Riyaz",
"middle": [
"Ahmad"
],
"last": "Bhat",
"suffix": ""
},
{
"first": "Erica",
"middle": [],
"last": "Bhat",
"suffix": ""
},
{
"first": "Eckhard",
"middle": [],
"last": "Biagetti",
"suffix": ""
},
{
"first": "Agn\u0117",
"middle": [],
"last": "Bick",
"suffix": ""
},
{
"first": "Rogier",
"middle": [],
"last": "Bielinskien\u0117",
"suffix": ""
},
{
"first": "Victoria",
"middle": [],
"last": "Blokland",
"suffix": ""
},
{
"first": "Lo\u00efc",
"middle": [],
"last": "Bobicev",
"suffix": ""
},
{
"first": "Emanuel",
"middle": [
"Borges"
],
"last": "Boizou",
"suffix": ""
},
{
"first": "Carl",
"middle": [],
"last": "V\u00f6lker",
"suffix": ""
},
{
"first": "Cristina",
"middle": [],
"last": "B\u00f6rstell",
"suffix": ""
},
{
"first": "Gosse",
"middle": [],
"last": "Bosco",
"suffix": ""
},
{
"first": "Sam",
"middle": [],
"last": "Bouma",
"suffix": ""
},
{
"first": "Adriane",
"middle": [],
"last": "Bowman",
"suffix": ""
},
{
"first": "Kristina",
"middle": [],
"last": "Boyd",
"suffix": ""
},
{
"first": "Aljoscha",
"middle": [],
"last": "Brokait\u0117",
"suffix": ""
},
{
"first": "Marie",
"middle": [],
"last": "Burchardt",
"suffix": ""
},
{
"first": "Bernard",
"middle": [],
"last": "Candito",
"suffix": ""
},
{
"first": "Gauthier",
"middle": [],
"last": "Caron",
"suffix": ""
},
{
"first": "Tatiana",
"middle": [],
"last": "Caron",
"suffix": ""
},
{
"first": "G\u00fcl\u015fen",
"middle": [],
"last": "Cavalcanti",
"suffix": ""
},
{
"first": "Flavio",
"middle": [],
"last": "Cebiroglu Eryigit",
"suffix": ""
},
{
"first": "Giuseppe",
"middle": [
"G A"
],
"last": "Massimiliano Cecchini",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Celano",
"suffix": ""
},
{
"first": "Savas",
"middle": [],
"last": "Slavom\u00edr\u010d\u00e9pl\u00f6",
"suffix": ""
},
{
"first": "Fabricio",
"middle": [],
"last": "Cetin",
"suffix": ""
},
{
"first": "Jinho",
"middle": [],
"last": "Chalub",
"suffix": ""
},
{
"first": "Yongseok",
"middle": [],
"last": "Choi",
"suffix": ""
},
{
"first": "Jayeol",
"middle": [],
"last": "Cho",
"suffix": ""
},
{
"first": "Alessandra",
"middle": [
"T"
],
"last": "Chun",
"suffix": ""
},
{
"first": "Silvie",
"middle": [],
"last": "Cignarella",
"suffix": ""
},
{
"first": "Aur\u00e9lie",
"middle": [],
"last": "Cinkov\u00e1",
"suffix": ""
},
{
"first": "\u00c7agr\u0131",
"middle": [],
"last": "Collomb",
"suffix": ""
},
{
"first": "Miriam",
"middle": [],
"last": "\u00c7\u00f6ltekin",
"suffix": ""
},
{
"first": "Marine",
"middle": [],
"last": "Connor",
"suffix": ""
},
{
"first": "Elizabeth",
"middle": [],
"last": "Courtin",
"suffix": ""
},
{
"first": "Marie-Catherine",
"middle": [],
"last": "Davidson",
"suffix": ""
},
{
"first": "Valeria",
"middle": [],
"last": "De Marneffe",
"suffix": ""
},
{
"first": "Elvis",
"middle": [],
"last": "De Paiva",
"suffix": ""
},
{
"first": "Arantza",
"middle": [],
"last": "De Souza",
"suffix": ""
},
{
"first": "Carly",
"middle": [],
"last": "Diaz De Ilarraza",
"suffix": ""
},
{
"first": "Bamba",
"middle": [],
"last": "Dickerson",
"suffix": ""
},
{
"first": "Peter",
"middle": [],
"last": "Dione",
"suffix": ""
},
{
"first": "Kaja",
"middle": [],
"last": "Dirix",
"suffix": ""
},
{
"first": "Timothy",
"middle": [],
"last": "Dobrovoljc",
"suffix": ""
},
{
"first": "Kira",
"middle": [],
"last": "Dozat",
"suffix": ""
},
{
"first": "Puneet",
"middle": [],
"last": "Droganova",
"suffix": ""
},
{
"first": "Hanne",
"middle": [],
"last": "Dwivedi",
"suffix": ""
},
{
"first": "Marhaba",
"middle": [],
"last": "Eckhoff",
"suffix": ""
},
{
"first": "Ali",
"middle": [],
"last": "Eli",
"suffix": ""
},
{
"first": "Binyam",
"middle": [],
"last": "Elkahky",
"suffix": ""
},
{
"first": "Olga",
"middle": [],
"last": "Ephrem",
"suffix": ""
},
{
"first": "Toma\u017e",
"middle": [],
"last": "Erina",
"suffix": ""
},
{
"first": "Aline",
"middle": [],
"last": "Erjavec",
"suffix": ""
},
{
"first": "Wograine",
"middle": [],
"last": "Etienne",
"suffix": ""
},
{
"first": "Rich\u00e1rd",
"middle": [],
"last": "Evelyn",
"suffix": ""
},
{
"first": "Hector",
"middle": [],
"last": "Farkas",
"suffix": ""
},
{
"first": "Jennifer",
"middle": [],
"last": "Fernandez Alcalde",
"suffix": ""
},
{
"first": "Cl\u00e1udia",
"middle": [],
"last": "Foster",
"suffix": ""
},
{
"first": "Kazunori",
"middle": [],
"last": "Freitas",
"suffix": ""
},
{
"first": "Katar\u00edna",
"middle": [],
"last": "Fujita",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "Gajdo\u0161ov\u00e1",
"suffix": ""
},
{
"first": "Marcos",
"middle": [],
"last": "Galbraith",
"suffix": ""
},
{
"first": "Moa",
"middle": [],
"last": "Garcia",
"suffix": ""
},
{
"first": "Sebastian",
"middle": [],
"last": "G\u00e4rdenfors",
"suffix": ""
},
{
"first": "Kim",
"middle": [],
"last": "Garza",
"suffix": ""
},
{
"first": "Filip",
"middle": [],
"last": "Gerdes",
"suffix": ""
},
{
"first": "Iakes",
"middle": [],
"last": "Ginter",
"suffix": ""
},
{
"first": "Koldo",
"middle": [],
"last": "Goenaga",
"suffix": ""
},
{
"first": "Memduh",
"middle": [],
"last": "Gojenola",
"suffix": ""
},
{
"first": "Yoav",
"middle": [],
"last": "G\u00f6k\u0131rmak",
"suffix": ""
},
{
"first": "Xavier",
"middle": [
"G\u00f3mez"
],
"last": "Goldberg",
"suffix": ""
},
{
"first": "Berta",
"middle": [
"Gonz\u00e1lez"
],
"last": "Guinovart",
"suffix": ""
},
{
"first": "Bernadeta",
"middle": [],
"last": "Saavedra",
"suffix": ""
},
{
"first": "Matias",
"middle": [],
"last": "Grici\u016bt\u0117",
"suffix": ""
},
{
"first": "Normunds",
"middle": [],
"last": "Grioni",
"suffix": ""
},
{
"first": "Bruno",
"middle": [],
"last": "Gr\u016bz\u012btis",
"suffix": ""
},
{
"first": "C\u00e9line",
"middle": [],
"last": "Guillaume",
"suffix": ""
},
{
"first": "Nizar",
"middle": [],
"last": "Guillot-Barbance",
"suffix": ""
},
{
"first": "Mika",
"middle": [],
"last": "Habash ; Haji\u010d Jr",
"suffix": ""
},
{
"first": "Linh",
"middle": [
"H\u00e0"
],
"last": "H\u00e4m\u00e4l\u00e4inen",
"suffix": ""
},
{
"first": "Na-Rae",
"middle": [],
"last": "M\u1ef9",
"suffix": ""
},
{
"first": "Kim",
"middle": [],
"last": "Han",
"suffix": ""
},
{
"first": "Dag",
"middle": [],
"last": "Harris",
"suffix": ""
},
{
"first": "Johannes",
"middle": [],
"last": "Haug",
"suffix": ""
},
{
"first": "Felix",
"middle": [],
"last": "Heinecke",
"suffix": ""
},
{
"first": "Barbora",
"middle": [],
"last": "Hennig",
"suffix": ""
},
{
"first": "Jaroslava",
"middle": [],
"last": "Hladk\u00e1",
"suffix": ""
},
{
"first": "Florinel",
"middle": [],
"last": "Hlav\u00e1\u010dov\u00e1",
"suffix": ""
},
{
"first": "Petter",
"middle": [],
"last": "Hociung",
"suffix": ""
},
{
"first": "Jena",
"middle": [],
"last": "Hohle",
"suffix": ""
},
{
"first": "Takumi",
"middle": [],
"last": "Hwang",
"suffix": ""
},
{
"first": "Radu",
"middle": [],
"last": "Ikeda",
"suffix": ""
},
{
"first": "Elena",
"middle": [],
"last": "Ion",
"suffix": ""
},
{
"first": "O",
"middle": [],
"last": "Irimia",
"suffix": ""
},
{
"first": "Tom\u00e1\u0161",
"middle": [],
"last": "Ishola",
"suffix": ""
},
{
"first": "Anders",
"middle": [],
"last": "Jel\u00ednek",
"suffix": ""
},
{
"first": "Fredrik",
"middle": [],
"last": "Johannsen",
"suffix": ""
},
{
"first": "Markus",
"middle": [],
"last": "J\u00f8rgensen",
"suffix": ""
},
{
"first": "H\u00fcner",
"middle": [],
"last": "Juutinen",
"suffix": ""
},
{
"first": "Andre",
"middle": [],
"last": "Ka\u015f\u0131kara",
"suffix": ""
},
{
"first": "Nadezhda",
"middle": [],
"last": "Kaasen",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Kabaeva",
"suffix": ""
},
{
"first": "Hiroshi",
"middle": [],
"last": "Sylvain Kahane",
"suffix": ""
},
{
"first": "Jenna",
"middle": [],
"last": "Kanayama",
"suffix": ""
},
{
"first": "Boris",
"middle": [],
"last": "Kanerva",
"suffix": ""
},
{
"first": "Tolga",
"middle": [],
"last": "Katz",
"suffix": ""
},
{
"first": "Jessica",
"middle": [],
"last": "Kayadelen",
"suffix": ""
},
{
"first": "V\u00e1clava",
"middle": [],
"last": "Kenney",
"suffix": ""
},
{
"first": "Jesse",
"middle": [],
"last": "Kettnerov\u00e1",
"suffix": ""
},
{
"first": "Elena",
"middle": [],
"last": "Kirchner",
"suffix": ""
},
{
"first": "Arne",
"middle": [],
"last": "Klementieva",
"suffix": ""
},
{
"first": "Kamil",
"middle": [],
"last": "K\u00f6hn",
"suffix": ""
},
{
"first": "Natalia",
"middle": [],
"last": "Kopacewicz",
"suffix": ""
},
{
"first": "Jolanta",
"middle": [],
"last": "Kotsyba",
"suffix": ""
},
{
"first": "Simon",
"middle": [],
"last": "Kovalevskait\u0117",
"suffix": ""
},
{
"first": "Sookyoung",
"middle": [],
"last": "Krek",
"suffix": ""
},
{
"first": "Veronika",
"middle": [],
"last": "Kwak",
"suffix": ""
},
{
"first": "Lorenzo",
"middle": [],
"last": "Laippala",
"suffix": ""
},
{
"first": "Lucia",
"middle": [],
"last": "Lambertino",
"suffix": ""
},
{
"first": "Tatiana",
"middle": [],
"last": "Lam",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Lando",
"suffix": ""
},
{
"first": "Alexei",
"middle": [],
"last": "Septina Dian Larasati",
"suffix": ""
},
{
"first": "John",
"middle": [],
"last": "Lavrentiev",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Alessandro",
"middle": [],
"last": "Ph\u01b0\u01a1ng L\u00ea H\u1ed3ng",
"suffix": ""
},
{
"first": "Saran",
"middle": [],
"last": "Lenci",
"suffix": ""
},
{
"first": "Herman",
"middle": [],
"last": "Lertpradit",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Leung",
"suffix": ""
},
{
"first": "Ying",
"middle": [],
"last": "Cheuk",
"suffix": ""
},
{
"first": "Josie",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Keying",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Kyungtae",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Maria",
"middle": [],
"last": "Lim",
"suffix": ""
},
{
"first": "Yuan",
"middle": [],
"last": "Liovina",
"suffix": ""
},
{
"first": "Nikola",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Olga",
"middle": [],
"last": "Ljube\u0161i\u0107",
"suffix": ""
},
{
"first": "Olga",
"middle": [],
"last": "Loginova",
"suffix": ""
},
{
"first": "Teresa",
"middle": [],
"last": "Lyashevskaya",
"suffix": ""
},
{
"first": "Vivien",
"middle": [],
"last": "Lynn",
"suffix": ""
},
{
"first": "Aibek",
"middle": [],
"last": "Macketanz",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Makazhanov",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "Mandl",
"suffix": ""
},
{
"first": "Ruli",
"middle": [],
"last": "Manning",
"suffix": ""
},
{
"first": ";",
"middle": [],
"last": "Manurung",
"suffix": ""
},
{
"first": "Zsolt",
"middle": [],
"last": "Suzuki",
"suffix": ""
},
{
"first": "Dima",
"middle": [],
"last": "Sz\u00e1nt\u00f3",
"suffix": ""
},
{
"first": "Yuta",
"middle": [],
"last": "Taji",
"suffix": ""
},
{
"first": "Fabio",
"middle": [],
"last": "Takahashi",
"suffix": ""
},
{
"first": "Takaaki",
"middle": [],
"last": "Tamburini",
"suffix": ""
},
{
"first": "Isabelle",
"middle": [],
"last": "Tanaka",
"suffix": ""
},
{
"first": "Guillaume",
"middle": [],
"last": "Tellier",
"suffix": ""
},
{
"first": "Liisi",
"middle": [],
"last": "Thomas",
"suffix": ""
},
{
"first": "Trond",
"middle": [],
"last": "Torga",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Trosterud",
"suffix": ""
}
],
"year": null,
"venue": "Faculty of Mathematics and Physics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Batchelor, John Bauer, Sandra Bellato, Kepa Ben- goetxea, Yevgeni Berzak, Irshad Ahmad Bhat, Riyaz Ahmad Bhat, Erica Biagetti, Eckhard Bick, Agn\u0117 Bielinskien\u0117, Rogier Blokland, Victoria Bo- bicev, Lo\u00efc Boizou, Emanuel Borges V\u00f6lker, Carl B\u00f6rstell, Cristina Bosco, Gosse Bouma, Sam Bow- man, Adriane Boyd, Kristina Brokait\u0117, Aljoscha Burchardt, Marie Candito, Bernard Caron, Gauthier Caron, Tatiana Cavalcanti, G\u00fcl\u015fen Cebiroglu Ery- igit, Flavio Massimiliano Cecchini, Giuseppe G. A. Celano, Slavom\u00edr\u010c\u00e9pl\u00f6, Savas Cetin, Fabri- cio Chalub, Jinho Choi, Yongseok Cho, Jayeol Chun, Alessandra T. Cignarella, Silvie Cinkov\u00e1, Aur\u00e9lie Collomb, \u00c7agr\u0131 \u00c7\u00f6ltekin, Miriam Con- nor, Marine Courtin, Elizabeth Davidson, Marie- Catherine de Marneffe, Valeria de Paiva, Elvis de Souza, Arantza Diaz de Ilarraza, Carly Dicker- son, Bamba Dione, Peter Dirix, Kaja Dobrovoljc, Timothy Dozat, Kira Droganova, Puneet Dwivedi, Hanne Eckhoff, Marhaba Eli, Ali Elkahky, Binyam Ephrem, Olga Erina, Toma\u017e Erjavec, Aline Eti- enne, Wograine Evelyn, Rich\u00e1rd Farkas, Hector Fernandez Alcalde, Jennifer Foster, Cl\u00e1udia Fre- itas, Kazunori Fujita, Katar\u00edna Gajdo\u0161ov\u00e1, Daniel Galbraith, Marcos Garcia, Moa G\u00e4rdenfors, Se- bastian Garza, Kim Gerdes, Filip Ginter, Iakes Goenaga, Koldo Gojenola, Memduh G\u00f6k\u0131rmak, Yoav Goldberg, Xavier G\u00f3mez Guinovart, Berta Gonz\u00e1lez Saavedra, Bernadeta Grici\u016bt\u0117, Matias Gri- oni, Normunds Gr\u016bz\u012btis, Bruno Guillaume, C\u00e9line Guillot-Barbance, Nizar Habash, Jan Haji\u010d, Jan Ha- ji\u010d jr., Mika H\u00e4m\u00e4l\u00e4inen, Linh H\u00e0 M\u1ef9, Na-Rae Han, Kim Harris, Dag Haug, Johannes Heinecke, Fe- lix Hennig, Barbora Hladk\u00e1, Jaroslava Hlav\u00e1\u010dov\u00e1, Florinel Hociung, Petter Hohle, Jena Hwang, Takumi Ikeda, Radu Ion, Elena Irimia, O . l\u00e1j\u00edd\u00e9 Ishola, Tom\u00e1\u0161 Jel\u00ednek, Anders Johannsen, Fredrik J\u00f8rgensen, Markus Juutinen, H\u00fcner Ka\u015f\u0131kara, An- dre Kaasen, Nadezhda Kabaeva, Sylvain Kahane, Hiroshi Kanayama, Jenna Kanerva, Boris Katz, Tolga Kayadelen, Jessica Kenney, V\u00e1clava Ket- tnerov\u00e1, Jesse Kirchner, Elena Klementieva, Arne K\u00f6hn, Kamil Kopacewicz, Natalia Kotsyba, Jolanta Kovalevskait\u0117, Simon Krek, Sookyoung Kwak, Veronika Laippala, Lorenzo Lambertino, Lucia Lam, Tatiana Lando, Septina Dian Larasati, Alexei Lavrentiev, John Lee, Ph\u01b0\u01a1ng L\u00ea H\u1ed3ng, Alessandro Lenci, Saran Lertpradit, Herman Leung, Cheuk Ying Li, Josie Li, Keying Li, KyungTae Lim, Maria Li- ovina, Yuan Li, Nikola Ljube\u0161i\u0107, Olga Loginova, Olga Lyashevskaya, Teresa Lynn, Vivien Macke- tanz, Aibek Makazhanov, Michael Mandl, Christo- pher Manning, Ruli Manurung, C\u0203t\u0203lina M\u0203r\u0203n- duc, David Mare\u010dek, Katrin Marheinecke, H\u00e9c- tor Mart\u00ednez Alonso, Andr\u00e9 Martins, Jan Ma\u0161ek, Yuji Matsumoto, Ryan McDonald, Sarah McGuin- ness, Gustavo Mendon\u00e7a, Niko Miekka, Mar- garita Misirpashayeva, Anna Missil\u00e4, C\u0203t\u0203lin Mi- titelu, Maria Mitrofan, Yusuke Miyao, Simonetta Montemagni, Amir More, Laura Moreno Romero, Keiko Sophie Mori, Tomohiko Morioka, Shin- suke Mori, Shigeki Moro, Bjartur Mortensen, Bohdan Moskalevskyi, Kadri Muischnek, Robert Munro, Yugo Murawaki, Kaili M\u00fc\u00fcrisep, Pinkey Nainwani, Juan Ignacio Navarro Hor\u00f1iacek, Anna Nedoluzhko, Gunta Ne\u0161pore-B\u0113rzkalne, L\u01b0\u01a1ng Nguy\u1ec5n Thi . , Huy\u1ec1n Nguy\u1ec5n Thi . Minh, Yoshi- hiro Nikaido, Vitaly Nikolaev, Rattima Nitisaroj, Hanna Nurmi, Stina Ojala, Atul Kr. Ojha, Ad\u00e9dayo . Ol\u00fa\u00f2kun, Mai Omura, Petya Osenova, Robert \u00d6stling, Lilja \u00d8vrelid, Niko Partanen, Elena Pas- cual, Marco Passarotti, Agnieszka Patejuk, Guil- herme Paulino-Passos, Angelika Peljak-\u0141api\u0144ska, Siyao Peng, Cenel-Augusto Perez, Guy Perrier, Daria Petrova, Slav Petrov, Jason Phelan, Jussi Piitulainen, Tommi A Pirinen, Emily Pitler, Bar- bara Plank, Thierry Poibeau, Larisa Ponomareva, Martin Popel, Lauma Pretkalni\u0146a, Sophie Pr\u00e9vost, Prokopis Prokopidis, Adam Przepi\u00f3rkowski, Tiina Puolakainen, Sampo Pyysalo, Peng Qi, Andriela R\u00e4\u00e4bis, Alexandre Rademaker, Loganathan Ra- masamy, Taraka Rama, Carlos Ramisch, Vinit Rav- ishankar, Livy Real, Siva Reddy, Georg Rehm, Ivan Riabov, Michael Rie\u00dfler, Erika Rimkut\u0117, Larissa Ri- naldi, Laura Rituma, Luisa Rocha, Mykhailo Ro- manenko, Rudolf Rosa, Davide Rovati, Valentin Rosca, Olga Rudina, Jack Rueter, Shoval Sadde, Beno\u00eet Sagot, Shadi Saleh, Alessio Salomoni, Tanja Samard\u017ei\u0107, Stephanie Samson, Manuela Sanguinetti, Dage S\u00e4rg, Baiba Saul\u012bte, Yanin Sawanakunanon, Nathan Schneider, Sebastian Schuster, Djam\u00e9 Sed- dah, Wolfgang Seeker, Mojgan Seraji, Mo Shen, Atsuko Shimada, Hiroyuki Shirasu, Muh Shohibus- sirri, Dmitry Sichinava, Aline Silveira, Natalia Sil- veira, Maria Simi, Radu Simionescu, Katalin Simk\u00f3, M\u00e1ria \u0160imkov\u00e1, Kiril Simov, Aaron Smith, Isabela Soares-Bastos, Carolyn Spadine, Antonio Stella, Milan Straka, Jana Strnadov\u00e1, Alane Suhr, Umut Sulubacak, Shingo Suzuki, Zsolt Sz\u00e1nt\u00f3, Dima Taji, Yuta Takahashi, Fabio Tamburini, Takaaki Tanaka, Isabelle Tellier, Guillaume Thomas, Li- isi Torga, Trond Trosterud, Anna Trukhina, Reut Tsarfaty, Francis Tyers, Sumire Uematsu, Zde\u0148ka Ure\u0161ov\u00e1, Larraitz Uria, Hans Uszkoreit, Andrius Utka, Sowmya Vajjala, Daniel van Niekerk, Gert- jan van Noord, Viktor Varga, Eric Villemonte de la Clergerie, Veronika Vincze, Lars Wallin, Abigail Walsh, Jing Xian Wang, Jonathan North Washing- ton, Maximilan Wendt, Seyi Williams, Mats Wir\u00e9n, Christian Wittern, Tsegay Woldemariam, Tak-sum Wong, Alina Wr\u00f3blewska, Mary Yako, Naoki Ya- mazaki, Chunxiao Yan, Koichi Yasuoka, Marat M. Yavrumyan, Zhuoran Yu, Zden\u011bk \u017dabokrtsk\u00fd, Amir Zeldes, Manying Zhang, and Hanzhi Zhu. 2019. Universal Dependencies 2.5. LINDAT/CLARIAH- CZ digital library at the Institute of Formal and Ap- plied Linguistics (\u00daFAL), Faculty of Mathematics and Physics, Charles University.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"type_str": "figure",
"text": "Overview of Sta n z a 's neural NLP pipeline. Sta n z a takes multilingual text as input, and produces annotations accessible as native Python objects. Besides this neural pipeline, Sta n z a also features a Python client interface to the Java CoreNLP software.",
"uris": null,
"num": null
},
"FIGREF1": {
"type_str": "figure",
"text": "fr) L'Association des H\u00f4tels (en) The Association of Hotels (fr) Il y a des h\u00f4tels en bas de la rue (en) There are hotels down the street",
"uris": null,
"num": null
},
"FIGREF2": {
"type_str": "figure",
"text": "An example of multi-word tokens in French.",
"uris": null,
"num": null
},
"FIGREF3": {
"type_str": "figure",
"text": "from stanza.server import CoreNLPClient # start a CoreNLP client with CoreNLPClient(annotators=['tokenize','ssplit ','pos','lemma','ner','parse','coref']) as client: # run annotation over input ann = client.annotate('Emily said that she liked the movie.') # access all entities for sent in ann.sentence: print(sent.mentions) # access coreference annotations print(ann.corefChain)",
"uris": null,
"num": null
},
"FIGREF4": {
"type_str": "figure",
"text": "Sta n z a annotates a German sentence, as visualized by our interactive demo. Note am is expanded into syntactic words an and dem before downstream analyses are performed.",
"uris": null,
"num": null
},
"TABREF1": {
"type_str": "table",
"num": null,
"html": null,
"content": "<table/>",
"text": "Feature comparisons of Sta n z a against other popular natural language processing toolkits."
},
"TABREF4": {
"type_str": "table",
"num": null,
"html": null,
"content": "<table/>",
"text": "NER performance across different languages and corpora. All scores reported are entity microaveraged test F 1 . For each corpus we also list the number of entity types. * marks results from publicly available pretrained models on the same dataset, while others are from models retrained on our datasets."
},
"TABREF6": {
"type_str": "table",
"num": null,
"html": null,
"content": "<table/>",
"text": "Annotation runtime of various toolkits relative to spaCy (CPU) on the English EWT treebank and OntoNotes NER test sets. For reference, on the compared UD and NER tasks, spaCy is able to process 8140 and 5912 tokens per second, respectively."
}
}
}
} |