File size: 120,111 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T01:52:47.685572Z"
    },
    "title": "Sta n z a : A Python Natural Language Processing Toolkit for Many Human Languages",
    "authors": [
        {
            "first": "Peng",
            "middle": [],
            "last": "Qi",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Stanford University Stanford",
                "location": {
                    "postCode": "94305",
                    "region": "CA"
                }
            },
            "email": "pengqi@stanford.edu"
        },
        {
            "first": "Yuhao",
            "middle": [],
            "last": "Zhang",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Stanford University Stanford",
                "location": {
                    "postCode": "94305",
                    "region": "CA"
                }
            },
            "email": "yuhaozhang@stanford.edu"
        },
        {
            "first": "Yuhui",
            "middle": [],
            "last": "Zhang",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Stanford University Stanford",
                "location": {
                    "postCode": "94305",
                    "region": "CA"
                }
            },
            "email": "yuhuiz@stanford.edu"
        },
        {
            "first": "Jason",
            "middle": [],
            "last": "Bolton",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Stanford University Stanford",
                "location": {
                    "postCode": "94305",
                    "region": "CA"
                }
            },
            "email": "jebolton@stanford.edu"
        },
        {
            "first": "Christopher",
            "middle": [
                "D"
            ],
            "last": "Manning",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Stanford University Stanford",
                "location": {
                    "postCode": "94305",
                    "region": "CA"
                }
            },
            "email": "manning@stanford.edu"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "We introduce Sta n z a , an open-source Python natural language processing toolkit supporting 66 human languages. Compared to existing widely used toolkits, Sta n z a features a language-agnostic fully neural pipeline for text analysis, including tokenization, multiword token expansion, lemmatization, part-ofspeech and morphological feature tagging, dependency parsing, and named entity recognition. We have trained Sta n z a on a total of 112 datasets, including the Universal Dependencies treebanks and other multilingual corpora, and show that the same neural architecture generalizes well and achieves competitive performance on all languages tested. Additionally, Sta n z a includes a native Python interface to the widely used Java Stanford CoreNLP software, which further extends its functionality to cover other tasks such as coreference resolution and relation extraction. Source code, documentation, and pretrained models for 66 languages are available at https:// stanfordnlp.github.io/stanza/. * Equal contribution. Order decided by a tossed coin.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "We introduce Sta n z a , an open-source Python natural language processing toolkit supporting 66 human languages. Compared to existing widely used toolkits, Sta n z a features a language-agnostic fully neural pipeline for text analysis, including tokenization, multiword token expansion, lemmatization, part-ofspeech and morphological feature tagging, dependency parsing, and named entity recognition. We have trained Sta n z a on a total of 112 datasets, including the Universal Dependencies treebanks and other multilingual corpora, and show that the same neural architecture generalizes well and achieves competitive performance on all languages tested. Additionally, Sta n z a includes a native Python interface to the widely used Java Stanford CoreNLP software, which further extends its functionality to cover other tasks such as coreference resolution and relation extraction. Source code, documentation, and pretrained models for 66 languages are available at https:// stanfordnlp.github.io/stanza/. * Equal contribution. Order decided by a tossed coin.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "The growing availability of open-source natural language processing (NLP) toolkits has made it easier for users to build tools with sophisticated linguistic processing. While existing NLP toolkits such as CoreNLP (Manning et al., 2014) , FLAIR (Akbik et al., 2019) , spaCy 1 , and UDPipe (Straka, 2018) have had wide usage, they also suffer from several limitations. First, existing toolkits often support only a few major languages. This has significantly limited the community's ability to process multilingual text. Second, widely used tools are sometimes under-optimized for accuracy either due to a focus on efficiency (e.g., spaCy) or use of less powerful models (e.g., CoreNLP), potentially mislead- ing downstream applications and insights obtained from them. Third, some tools assume input text has been tokenized or annotated with other tools, lacking the ability to process raw text within a unified framework. This has limited their wide applicability to text from diverse sources.",
                "cite_spans": [
                    {
                        "start": 213,
                        "end": 235,
                        "text": "(Manning et al., 2014)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 244,
                        "end": 264,
                        "text": "(Akbik et al., 2019)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 288,
                        "end": 302,
                        "text": "(Straka, 2018)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We introduce Sta n z a 2 , a Python natural language processing toolkit supporting many human languages. As shown in Table 1 , compared to existing widely-used NLP toolkits, Sta n z a has the following advantages:",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 117,
                        "end": 124,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 From raw text to annotations. Sta n z a features a fully neural pipeline which takes raw text as input, and produces annotations including tokenization, multi-word token expansion, lemmatization, part-of-speech and morphological feature tagging, dependency parsing, and named entity recognition.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Multilinguality. Sta n z a 's architectural design is language-agnostic and data-driven, which allows us to release models support- ing 66 languages, by training the pipeline on the Universal Dependencies (UD) treebanks and other multilingual corpora.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 State-of-the-art performance. We evaluate Sta n z a on a total of 112 datasets, and find its neural pipeline adapts well to text of different genres, achieving state-of-the-art or competitive performance at each step of the pipeline.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Additionally, Sta n z a features a Python interface to the widely used Java CoreNLP package, allowing access to additional tools such as coreference resolution and relation extraction.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Sta n z a is fully open source and we make pretrained models for all supported languages and datasets available for public download. We hope Sta n z a can facilitate multilingual NLP research and applications, and drive future research that produces insights from human languages.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "At the top level, Sta n z a consists of two individual components: (1) a fully neural multilingual NLP pipeline; (2) a Python client interface to the Java Stanford CoreNLP software. In this section we introduce their designs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "System Design and Architecture",
                "sec_num": "2"
            },
            {
                "text": "Sta n z a 's neural pipeline consists of models that range from tokenizing raw text to performing syntactic analysis on entire sentences (see Figure 1 ). All components are designed with processing many human languages in mind, with high-level design choices capturing common phenomena in many languages and data-driven models that learn the difference between these languages from data. Moreover, the implementation of Sta n z a components is highly modular, and reuses basic model architectures when possible for compactness. We highlight the important design choices here, and refer the reader to Qi et al. (2018) for modeling details. The des in the first sentence corresponds to two syntactic words, de and les; the second des is a single word.",
                "cite_spans": [
                    {
                        "start": 600,
                        "end": 616,
                        "text": "Qi et al. (2018)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 142,
                        "end": 150,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Neural Multilingual NLP Pipeline",
                "sec_num": "2.1"
            },
            {
                "text": "Tokenization and Sentence Splitting. When presented raw text, Sta n z a tokenizes it and groups tokens into sentences as the first step of processing. Unlike most existing toolkits, Sta n z a combines tokenization and sentence segmentation from raw text into a single module. This is modeled as a tagging problem over character sequences, where the model predicts whether a given character is the end of a token, end of a sentence, or end of a multi-word token (MWT, see Figure 2 ). 3 We choose to predict MWTs jointly with tokenization because this task is context-sensitive in some languages.",
                "cite_spans": [
                    {
                        "start": 483,
                        "end": 484,
                        "text": "3",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 471,
                        "end": 479,
                        "text": "Figure 2",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Neural Multilingual NLP Pipeline",
                "sec_num": "2.1"
            },
            {
                "text": "Multi-word Token Expansion. Once MWTs are identified by the tokenizer, they are expanded into the underlying syntactic words as the basis of downstream processing. This is achieved with an ensemble of a frequency lexicon and a neural sequence-to-sequence (seq2seq) model, to ensure that frequently observed expansions in the training set are always robustly expanded while maintaining flexibility to model unseen words statistically.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Neural Multilingual NLP Pipeline",
                "sec_num": "2.1"
            },
            {
                "text": "POS and Morphological Feature Tagging. For each word in a sentence, Sta n z a assigns it a partof-speech (POS), and analyzes its universal morphological features (UFeats, e.g., singular/plural, 1 st /2 nd /3 rd person, etc.). To predict POS and UFeats, we adopt a bidirectional long short-term memory network (Bi-LSTM) as the basic architecture. For consistency among universal POS (UPOS), treebank-specific POS (XPOS), and UFeats, we adopt the biaffine scoring mechanism from Dozat and Manning (2017) to condition XPOS and UFeats prediction on that of UPOS.",
                "cite_spans": [
                    {
                        "start": 477,
                        "end": 501,
                        "text": "Dozat and Manning (2017)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Neural Multilingual NLP Pipeline",
                "sec_num": "2.1"
            },
            {
                "text": "Lemmatization. Sta n z a also lemmatizes each word in a sentence to recover its canonical form (e.g., did\u2192do). Similar to the multi-word token expander, Sta n z a 's lemmatizer is implemented as an ensemble of a dictionary-based lemmatizer and a neural seq2seq lemmatizer. An additional classifier is built on the encoder output of the seq2seq model, to predict shortcuts such as lowercasing and identity copy for robustness on long input sequences such as URLs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Neural Multilingual NLP Pipeline",
                "sec_num": "2.1"
            },
            {
                "text": "Dependency Parsing. Sta n z a parses each sentence for its syntactic structure, where each word in the sentence is assigned a syntactic head that is either another word in the sentence, or in the case of the root word, an artificial root symbol. We implement a Bi-LSTM-based deep biaffine neural dependency parser (Dozat and Manning, 2017) . We further augment this model with two linguistically motivated features: one that predicts the linearization order of two words in a given language, and the other that predicts the typical distance in linear order between them. We have previously shown that these features significantly improve parsing accuracy (Qi et al., 2018) .",
                "cite_spans": [
                    {
                        "start": 314,
                        "end": 339,
                        "text": "(Dozat and Manning, 2017)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 655,
                        "end": 672,
                        "text": "(Qi et al., 2018)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Neural Multilingual NLP Pipeline",
                "sec_num": "2.1"
            },
            {
                "text": "Named Entity Recognition. For each input sentence, Sta n z a also recognizes named entities in it (e.g., person names, organizations, etc.). For NER we adopt the contextualized string representationbased sequence tagger from Akbik et al. (2018) . We first train a forward and a backward characterlevel LSTM language model, and at tagging time we concatenate the representations at the end of each word position from both language models with word embeddings, and feed the result into a standard one-layer Bi-LSTM sequence tagger with a conditional random field (CRF)-based decoder.",
                "cite_spans": [
                    {
                        "start": 225,
                        "end": 244,
                        "text": "Akbik et al. (2018)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Neural Multilingual NLP Pipeline",
                "sec_num": "2.1"
            },
            {
                "text": "Stanford's Java CoreNLP software provides a comprehensive set of NLP tools especially for the English language. However, these tools are not easily accessible with Python, the programming language of choice for many NLP practitioners, due to the lack of official support. To facilitate the use of CoreNLP from Python, we take advantage of the existing server interface in CoreNLP, and implement a robust client as its Python interface.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CoreNLP Client",
                "sec_num": "2.2"
            },
            {
                "text": "When the CoreNLP client is instantiated, Sta n z a will automatically start the CoreNLP server as a local process. The client then communicates with the server through its RESTful APIs, after which annotations are transmitted in Protocol Buffers, and converted back to native Python objects. Users can also specify JSON or XML as annotation format. To ensure robustness, while the client is being used, Sta n z a periodically checks the health of the server, and restarts it if necessary.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CoreNLP Client",
                "sec_num": "2.2"
            },
            {
                "text": "Sta n z a 's user interface is designed to allow quick out-of-the-box processing of multilingual text. To achieve this, Sta n z a supports automated model download via Python code and pipeline customization with processors of choice. Annotation results can be accessed as native Python objects to allow for flexible post-processing.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "System Usage",
                "sec_num": "3"
            },
            {
                "text": "Sta n z a 's neural NLP pipeline can be initialized with the Pipeline class, taking language name as an argument. By default, all processors will be loaded and run over the input text; however, users can also specify the processors to load and run with a list of processor names as an argument. Users can additionally specify other processor-level properties, such as batch sizes used by processors, at initialization time.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Neural Pipeline Interface",
                "sec_num": "3.1"
            },
            {
                "text": "The following code snippet shows a minimal usage of Sta n z a for downloading the Chinese model, annotating a sentence with customized processors, and printing out all annotations:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Neural Pipeline Interface",
                "sec_num": "3.1"
            },
            {
                "text": "import stanza # download Chinese model stanza.download('zh') # initialize Chinese neural pipeline nlp = stanza.Pipeline('zh', processors='tokenize, pos,ner') # run annotation over a sentence doc = nlp('\u65af\u5766\u798f\u662f\u4e00\u6240\u79c1\u7acb\u7814\u7a76\u578b\u5927\u5b66\u3002') print (doc) After all processors are run, a Document instance will be returned, which stores all annotation results. Within a Document, annotations are further stored in Sentences, Tokens and Words in a top-down fashion (Figure 1 ). The following code snippet demonstrates how to access the text and POS tag of each word in a document and all named entities in the document: # print the text and POS of all words for sentence in doc.sentences:",
                "cite_spans": [
                    {
                        "start": 225,
                        "end": 230,
                        "text": "(doc)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 439,
                        "end": 448,
                        "text": "(Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Neural Pipeline Interface",
                "sec_num": "3.1"
            },
            {
                "text": "for word in sentence.words: print(word.text, word.pos) # print all entities in the document print(doc.entities)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Neural Pipeline Interface",
                "sec_num": "3.1"
            },
            {
                "text": "Sta n z a is designed to be run on different hardware devices. By default, CUDA devices will be used whenever they are visible by the pipeline, or otherwise CPUs will be used. However, users can force all computation to be run on CPUs by setting use_gpu=False at initialization time.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Neural Pipeline Interface",
                "sec_num": "3.1"
            },
            {
                "text": "The CoreNLP client interface is designed in a way that the actual communication with the backend CoreNLP server is transparent to the user. To annotate an input text with the CoreNLP client, a CoreNLPClient instance needs to be initialized, with an optional list of CoreNLP annotators. After the annotation is complete, results will be accessible as native Python objects.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CoreNLP Client Interface",
                "sec_num": "3.2"
            },
            {
                "text": "This code snippet shows how to establish a CoreNLP client and obtain the NER and coreference annotations of an English sentence: With the client interface, users can annotate text in 6 languages as supported by CoreNLP.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CoreNLP Client Interface",
                "sec_num": "3.2"
            },
            {
                "text": "To help visualize documents and their annotations generated by Sta n z a , we build an interactive web demo that runs the pipeline interactively. For all languages and all annotations Sta n z a provides in those languages, we generate predictions from the models trained on the largest treebank/NER dataset, and visualize the result with the Brat rapid annotation tool. 4 This demo runs in a client/server architecture, and annotation is performed on the server side. We make one instance of this demo publicly available at http://stanza.run/. It can also be run locally with proper Python libraries installed. An example of running Sta n z a on a German sentence can be found in Figure 3 .",
                "cite_spans": [
                    {
                        "start": 370,
                        "end": 371,
                        "text": "4",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 680,
                        "end": 688,
                        "text": "Figure 3",
                        "ref_id": "FIGREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Interactive Web-based Demo",
                "sec_num": "3.3"
            },
            {
                "text": "For all neural processors, Sta n z a provides command-line interfaces for users to train their own customized models. To do this, users need to prepare the training and development data in compatible formats (i.e., CoNLL-U format for the Universal Dependencies pipeline and BIO format column files for the NER model). The following command trains a neural dependency parser with user-specified training and development data: Table 2 : Neural pipeline performance comparisons on the Universal Dependencies (v2.5) test treebanks. For our system we show macro-averaged results over all 100 treebanks. We also compare our system against UDPipe and spaCy on treebanks of five major languages where the corresponding pretrained models are publicly available. All results are F 1 scores produced by the 2018 UD Shared Task official evaluation script.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 425,
                        "end": 432,
                        "text": "Table 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Training Pipeline Models",
                "sec_num": "3.4"
            },
            {
                "text": "$ python -m",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training Pipeline Models",
                "sec_num": "3.4"
            },
            {
                "text": "the training data as development data. These treebanks represent 66 languages, mostly European languages, but spanning a diversity of language families, including Indo-European, Afro-Asiatic, Uralic, Turkic, Sino-Tibetan, etc. For NER, we train and evaluate Sta n z a with 12 publicly available datasets covering 8 major languages as shown in Table 3 (Nothman et al., 2013; Tjong Kim Sang and De Meulder, 2003; Tjong Kim Sang, 2002; Benikova et al., 2014; Mohit et al., 2012; Taul\u00e9 et al., 2008; Weischedel et al., 2013) . For the WikiNER corpora, as canonical splits are not available, we randomly split them into 70% training, 15% dev and 15% test splits. For all other corpora we used their canonical splits.",
                "cite_spans": [
                    {
                        "start": 351,
                        "end": 373,
                        "text": "(Nothman et al., 2013;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 374,
                        "end": 410,
                        "text": "Tjong Kim Sang and De Meulder, 2003;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 411,
                        "end": 432,
                        "text": "Tjong Kim Sang, 2002;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 433,
                        "end": 455,
                        "text": "Benikova et al., 2014;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 456,
                        "end": 475,
                        "text": "Mohit et al., 2012;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 476,
                        "end": 495,
                        "text": "Taul\u00e9 et al., 2008;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 496,
                        "end": 520,
                        "text": "Weischedel et al., 2013)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 343,
                        "end": 350,
                        "text": "Table 3",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Training Pipeline Models",
                "sec_num": "3.4"
            },
            {
                "text": "Training. On the Universal Dependencies treebanks, we tuned all hyper-parameters on several large treebanks and applied them to all other treebanks. We used the word2vec embeddings released as part of the 2018 UD Shared Task (Zeman et al., 2018) , or the fastText embeddings (Bojanowski et al., 2017) whenever word2vec is not available. For the character-level language models in the NER component, we pretrained them on a mix of the Common Crawl and Wikipedia dumps, and the news corpora released by the WMT19 Shared Task (Barrault et al., 2019) , except for English and Chinese, for which we pretrained on the Google One Billion Word (Chelba et al., 2013) and the Chi-nese Gigaword corpora 5 , respectively. We again applied the same hyper-parameters to models for all languages.",
                "cite_spans": [
                    {
                        "start": 225,
                        "end": 245,
                        "text": "(Zeman et al., 2018)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 275,
                        "end": 300,
                        "text": "(Bojanowski et al., 2017)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 523,
                        "end": 546,
                        "text": "(Barrault et al., 2019)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 636,
                        "end": 657,
                        "text": "(Chelba et al., 2013)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training Pipeline Models",
                "sec_num": "3.4"
            },
            {
                "text": "Universal Dependencies Results. For performance on UD treebanks, we compared Sta n z a (v1.0) against UDPipe (v1.2) and spaCy (v2.2) on treebanks of 5 major languages whenever a pretrained model is available. As shown in Table 2 , St a n z a achieved the best performance on most scores reported. Notably, we find that Sta n z a 's languageagnostic architecture is able to adapt to datasets of different languages and genres. This is also shown by Sta n z a 's high macro-averaged scores over 100 treebanks covering 66 languages.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 221,
                        "end": 228,
                        "text": "Table 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Training Pipeline Models",
                "sec_num": "3.4"
            },
            {
                "text": "NER Results. For performance of the NER component, we compared Sta n z a (v1.0) against FLAIR (v0.4.5) and spaCy (v2.2). For spaCy we reported results from its publicly available pretrained model whenever one trained on the same dataset can be found, otherwise we retrained its model on our datasets with default hyper-parameters, following the publicly available tutorial. 6 For FLAIR, since their downloadable models were pretrained on dataset versions different from canonical ones, we retrained all models on our own dataset splits with their best reported hyper-parameters. All test results are shown in Table 3 . We find that on all datasets Sta n z a achieved either higher or close F 1 scores when compared against FLAIR. When compared to spaCy, Sta n z a 's NER performance is much better. It is worth noting that Sta n z a 's high performance is achieved with much smaller models compared with FLAIR (up to 75% smaller), as we intentionally compressed the models for memory efficiency and ease of distribution.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 609,
                        "end": 616,
                        "text": "Table 3",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Training Pipeline Models",
                "sec_num": "3.4"
            },
            {
                "text": "Speed comparison. We compare Sta n z a against existing toolkits to evaluate the time it takes to annotate text (see Table 4 ). For GPU tests we use a single NVIDIA Titan RTX card. Unsurprisingly, Sta n z a 's extensive use of accurate neural models makes it take significantly longer than spaCy to annotate text, but it is still competitive when compared against toolkits of similar accuracy, especially with the help of GPU acceleration.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 117,
                        "end": 124,
                        "text": "Table 4",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Training Pipeline Models",
                "sec_num": "3.4"
            },
            {
                "text": "We introduced Sta n z a , a Python natural language processing toolkit supporting many human languages. We have showed that Sta n z a 's neural pipeline not only has wide coverage of human languages, but also is accurate on all tasks, thanks to its language-agnostic, fully neural architectural design. Simultaneously, Sta n z a 's CoreNLP client extends its functionality with additional NLP tools. For future work, we consider the following areas of improvement in the near term:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "5"
            },
            {
                "text": "The toolkit was called StanfordNLP prior to v1.0.0.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Following Universal Dependencies(Nivre et al., 2020), we make a distinction between tokens (contiguous spans of characters in the input text) and syntactic words. These are interchangeable aside from the cases of MWTs, where one token can correspond to multiple words.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://brat.nlplab.org/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://catalog.ldc.upenn.edu/ LDC2011T136 https://spacy.io/usage/training#ner Note that, following this public tutorial, we did not use pretrained word embeddings when training spaCy NER models, although using pretrained word embeddings may potentially improve the NER results.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "The authors would like to thank the anonymous reviewers for their comments, Arun Chaganty for his early contribution to this toolkit, Tim Dozat for his design of the original architectures of the tagger and parser models, Matthew Honnibal and Ines Montani for their help with spaCy integration and helpful comments on the draft, Ranting Guo for the logo design, and John Bauer and the community contributors for their help with maintaining and improving this toolkit. This research is funded in part by Samsung Electronics Co., Ltd. and in part by the SAIL-JD Research Initiative.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            },
            {
                "text": "\u2022 Models downloadable in Sta n z a are largely trained on a single dataset. To make models robust to many different genres of text, we would like to investigate the possibility of pooling various sources of compatible data to train \"default\" models for each language;\u2022 The amount of computation and resources available to us is limited. We would therefore like to build an open \"model zoo\" for Sta n z a , so that researchers from outside our group can also contribute their models and benefit from models released by others;\u2022 Sta n z a was designed to optimize for accuracy of its predictions, but this sometimes comes at the cost of computational efficiency and limits the toolkit's use. We would like to further investigate reducing model sizes and speeding up computation in the toolkit, while still maintaining the same level of accuracy.\u2022 We would also like to expand Sta n z a 's functionality by adding other processors such as neural coreference resolution or relation extraction for richer text analytics.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "annex",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "FLAIR: An easy-to-use framework for state-of-theart NLP",
                "authors": [
                    {
                        "first": "Alan",
                        "middle": [],
                        "last": "Akbik",
                        "suffix": ""
                    },
                    {
                        "first": "Tanja",
                        "middle": [],
                        "last": "Bergmann",
                        "suffix": ""
                    },
                    {
                        "first": "Duncan",
                        "middle": [],
                        "last": "Blythe",
                        "suffix": ""
                    },
                    {
                        "first": "Kashif",
                        "middle": [],
                        "last": "Rasul",
                        "suffix": ""
                    },
                    {
                        "first": "Stefan",
                        "middle": [],
                        "last": "Schweter",
                        "suffix": ""
                    },
                    {
                        "first": "Roland",
                        "middle": [],
                        "last": "Vollgraf",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations). Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif Rasul, Stefan Schweter, and Roland Vollgraf. 2019. FLAIR: An easy-to-use framework for state-of-the- art NLP. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations). Asso- ciation for Computational Linguistics.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Contextual string embeddings for sequence labeling",
                "authors": [
                    {
                        "first": "Alan",
                        "middle": [],
                        "last": "Akbik",
                        "suffix": ""
                    },
                    {
                        "first": "Duncan",
                        "middle": [],
                        "last": "Blythe",
                        "suffix": ""
                    },
                    {
                        "first": "Roland",
                        "middle": [],
                        "last": "Vollgraf",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 27th International Conference on Computational Linguistics. Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alan Akbik, Duncan Blythe, and Roland Vollgraf. 2018. Contextual string embeddings for sequence labeling. In Proceedings of the 27th International Conference on Computational Linguistics. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Findings of the 2019 conference on machine translation (WMT19)",
                "authors": [
                    {
                        "first": "Lo\u00efc",
                        "middle": [],
                        "last": "Barrault",
                        "suffix": ""
                    },
                    {
                        "first": "Ond\u0159ej",
                        "middle": [],
                        "last": "Bojar",
                        "suffix": ""
                    },
                    {
                        "first": "Marta",
                        "middle": [
                            "R"
                        ],
                        "last": "Costa-Juss\u00e0",
                        "suffix": ""
                    },
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Federmann",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Fishel",
                        "suffix": ""
                    },
                    {
                        "first": "Yvette",
                        "middle": [],
                        "last": "Graham",
                        "suffix": ""
                    },
                    {
                        "first": "Barry",
                        "middle": [],
                        "last": "Haddow",
                        "suffix": ""
                    },
                    {
                        "first": "Matthias",
                        "middle": [],
                        "last": "Huck",
                        "suffix": ""
                    },
                    {
                        "first": "Philipp",
                        "middle": [],
                        "last": "Koehn",
                        "suffix": ""
                    },
                    {
                        "first": "Shervin",
                        "middle": [],
                        "last": "Malmasi",
                        "suffix": ""
                    },
                    {
                        "first": "Christof",
                        "middle": [],
                        "last": "Monz",
                        "suffix": ""
                    },
                    {
                        "first": "Mathias",
                        "middle": [],
                        "last": "M\u00fcller",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the Fourth Conference on Machine Translation",
                "volume": "2",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lo\u00efc Barrault, Ond\u0159ej Bojar, Marta R. Costa-juss\u00e0, Christian Federmann, Mark Fishel, Yvette Gra- ham, Barry Haddow, Matthias Huck, Philipp Koehn, Shervin Malmasi, Christof Monz, Mathias M\u00fcller, Santanu Pal, Matt Post, and Marcos Zampieri. 2019. Findings of the 2019 conference on machine transla- tion (WMT19). In Proceedings of the Fourth Con- ference on Machine Translation (Volume 2: Shared Task Papers, Day 1). Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "NoSta-D named entity annotation for German: Guidelines and dataset",
                "authors": [
                    {
                        "first": "Darina",
                        "middle": [],
                        "last": "Benikova",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Biemann",
                        "suffix": ""
                    },
                    {
                        "first": "Marc",
                        "middle": [],
                        "last": "Reznicek",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Darina Benikova, Chris Biemann, and Marc Reznicek. 2014. NoSta-D named entity annotation for Ger- man: Guidelines and dataset. In Proceedings of the Ninth International Conference on Language Re- sources and Evaluation (LREC'14).",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Enriching word vectors with subword information",
                "authors": [
                    {
                        "first": "Piotr",
                        "middle": [],
                        "last": "Bojanowski",
                        "suffix": ""
                    },
                    {
                        "first": "Edouard",
                        "middle": [],
                        "last": "Grave",
                        "suffix": ""
                    },
                    {
                        "first": "Armand",
                        "middle": [],
                        "last": "Joulin",
                        "suffix": ""
                    },
                    {
                        "first": "Tomas",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Transactions of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1162/tacl_a_00051"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors with subword information. Transactions of the Associa- tion for Computational Linguistics, 5.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "One billion word benchmark for measuring progress in statistical language modeling",
                "authors": [
                    {
                        "first": "Ciprian",
                        "middle": [],
                        "last": "Chelba",
                        "suffix": ""
                    },
                    {
                        "first": "Tomas",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    },
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Schuster",
                        "suffix": ""
                    },
                    {
                        "first": "Qi",
                        "middle": [],
                        "last": "Ge",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn, and Tony Robin- son. 2013. One billion word benchmark for measur- ing progress in statistical language modeling. Tech- nical report, Google.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Deep biaffine attention for neural dependency parsing",
                "authors": [
                    {
                        "first": "Timothy",
                        "middle": [],
                        "last": "Dozat",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Timothy Dozat and Christopher D. Manning. 2017. Deep biaffine attention for neural dependency pars- ing. In International Conference on Learning Rep- resentations (ICLR).",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "The Stanford CoreNLP natural language processing toolkit",
                "authors": [
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    },
                    {
                        "first": "Mihai",
                        "middle": [],
                        "last": "Surdeanu",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Bauer",
                        "suffix": ""
                    },
                    {
                        "first": "Jenny",
                        "middle": [],
                        "last": "Finkel",
                        "suffix": ""
                    },
                    {
                        "first": "Steven",
                        "middle": [
                            "J"
                        ],
                        "last": "Bethard",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Mc-Closky",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Association for Computational Linguistics (ACL) System Demonstrations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and David Mc- Closky. 2014. The Stanford CoreNLP natural lan- guage processing toolkit. In Association for Compu- tational Linguistics (ACL) System Demonstrations.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Recalloriented learning of named entities in Arabic Wikipedia",
                "authors": [
                    {
                        "first": "Behrang",
                        "middle": [],
                        "last": "Mohit",
                        "suffix": ""
                    },
                    {
                        "first": "Nathan",
                        "middle": [],
                        "last": "Schneider",
                        "suffix": ""
                    },
                    {
                        "first": "Rishav",
                        "middle": [],
                        "last": "Bhowmick",
                        "suffix": ""
                    },
                    {
                        "first": "Kemal",
                        "middle": [],
                        "last": "Oflazer",
                        "suffix": ""
                    },
                    {
                        "first": "Noah A",
                        "middle": [],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Behrang Mohit, Nathan Schneider, Rishav Bhowmick, Kemal Oflazer, and Noah A Smith. 2012. Recall- oriented learning of named entities in Arabic Wikipedia. In Proceedings of the 13th Conference of the European Chapter of the Association for Compu- tational Linguistics. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Universal dependencies v2: An evergrowing multilingual treebank collection",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Zeman",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the Twelfth International Conference on Language Resources and Evaluation (LREC'20)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Daniel Zeman. 2020. Universal dependencies v2: An evergrowing multilingual treebank collection. In Proceedings of the Twelfth International Conference on Language Resources and Evaluation (LREC'20).",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Learning multilingual named entity recognition from Wikipedia",
                "authors": [
                    {
                        "first": "Joel",
                        "middle": [],
                        "last": "Nothman",
                        "suffix": ""
                    },
                    {
                        "first": "Nicky",
                        "middle": [],
                        "last": "Ringland",
                        "suffix": ""
                    },
                    {
                        "first": "Will",
                        "middle": [],
                        "last": "Radford",
                        "suffix": ""
                    },
                    {
                        "first": "Tara",
                        "middle": [],
                        "last": "Murphy",
                        "suffix": ""
                    },
                    {
                        "first": "James R",
                        "middle": [],
                        "last": "Curran",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Artificial Intelligence",
                "volume": "194",
                "issue": "",
                "pages": "151--175",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, and James R Curran. 2013. Learning mul- tilingual named entity recognition from Wikipedia. Artificial Intelligence, 194:151-175.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Universal dependency parsing from scratch",
                "authors": [
                    {
                        "first": "Peng",
                        "middle": [],
                        "last": "Qi",
                        "suffix": ""
                    },
                    {
                        "first": "Timothy",
                        "middle": [],
                        "last": "Dozat",
                        "suffix": ""
                    },
                    {
                        "first": "Yuhao",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Peng Qi, Timothy Dozat, Yuhao Zhang, and Christo- pher D. Manning. 2018. Universal dependency pars- ing from scratch. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "UDPipe 2.0 prototype at CoNLL 2018 UD shared task",
                "authors": [
                    {
                        "first": "Milan",
                        "middle": [],
                        "last": "Straka",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Milan Straka. 2018. UDPipe 2.0 prototype at CoNLL 2018 UD shared task. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "AnCora: Multilevel annotated corpora for Catalan and Spanish",
                "authors": [
                    {
                        "first": "M",
                        "middle": [
                            "Ant\u00f2nia"
                        ],
                        "last": "Mariona Taul\u00e9",
                        "suffix": ""
                    },
                    {
                        "first": "Marta",
                        "middle": [],
                        "last": "Mart\u00ed",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Recasens",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08). European Language Resources Association (ELRA)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mariona Taul\u00e9, M. Ant\u00f2nia Mart\u00ed, and Marta Recasens. 2008. AnCora: Multilevel annotated corpora for Catalan and Spanish. In Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08). European Language Re- sources Association (ELRA).",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Introduction to the CoNLL-2002 shared task: Language-independent named entity recognition",
                "authors": [
                    {
                        "first": "Erik",
                        "middle": [
                            "F"
                        ],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Tjong Kim",
                        "middle": [],
                        "last": "Sang",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "COLING-02: The 6th Conference on Natural Language Learning",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Erik F. Tjong Kim Sang. 2002. Introduction to the CoNLL-2002 shared task: Language-independent named entity recognition. In COLING-02: The 6th Conference on Natural Language Learning 2002 (CoNLL-2002).",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition",
                "authors": [
                    {
                        "first": "Erik",
                        "middle": [
                            "F"
                        ],
                        "last": "Tjong",
                        "suffix": ""
                    },
                    {
                        "first": "Kim",
                        "middle": [],
                        "last": "Sang",
                        "suffix": ""
                    },
                    {
                        "first": "Fien",
                        "middle": [],
                        "last": "De Meulder",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Erik F. Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition. In Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "OntoNotes release 5.0. Linguistic Data Consortium",
                "authors": [
                    {
                        "first": "Ralph",
                        "middle": [],
                        "last": "Weischedel",
                        "suffix": ""
                    },
                    {
                        "first": "Martha",
                        "middle": [],
                        "last": "Palmer",
                        "suffix": ""
                    },
                    {
                        "first": "Mitchell",
                        "middle": [],
                        "last": "Marcus",
                        "suffix": ""
                    },
                    {
                        "first": "Eduard",
                        "middle": [],
                        "last": "Hovy",
                        "suffix": ""
                    },
                    {
                        "first": "Sameer",
                        "middle": [],
                        "last": "Pradhan",
                        "suffix": ""
                    },
                    {
                        "first": "Lance",
                        "middle": [],
                        "last": "Ramshaw",
                        "suffix": ""
                    },
                    {
                        "first": "Nianwen",
                        "middle": [],
                        "last": "Xue",
                        "suffix": ""
                    },
                    {
                        "first": "Ann",
                        "middle": [],
                        "last": "Taylor",
                        "suffix": ""
                    },
                    {
                        "first": "Jeff",
                        "middle": [],
                        "last": "Kaufman",
                        "suffix": ""
                    },
                    {
                        "first": "Michelle",
                        "middle": [],
                        "last": "Franchini",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Ni- anwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, et al. 2013. OntoNotes release 5.0. Lin- guistic Data Consortium.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "CoNLL 2018 shared task: Multilingual parsing from raw text to universal dependencies",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Zeman",
                        "suffix": ""
                    },
                    {
                        "first": "Jan",
                        "middle": [],
                        "last": "Haji\u010d",
                        "suffix": ""
                    },
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Popel",
                        "suffix": ""
                    },
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Potthast",
                        "suffix": ""
                    },
                    {
                        "first": "Milan",
                        "middle": [],
                        "last": "Straka",
                        "suffix": ""
                    },
                    {
                        "first": "Filip",
                        "middle": [],
                        "last": "Ginter",
                        "suffix": ""
                    },
                    {
                        "first": "Joakim",
                        "middle": [],
                        "last": "Nivre",
                        "suffix": ""
                    },
                    {
                        "first": "Slav",
                        "middle": [],
                        "last": "Petrov",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Daniel Zeman, Jan Haji\u010d, Martin Popel, Martin Pot- thast, Milan Straka, Filip Ginter, Joakim Nivre, and Slav Petrov. 2018. CoNLL 2018 shared task: Mul- tilingual parsing from raw text to universal depen- dencies. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Univer- sal Dependencies. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Mohammed Attia, Aitziber Atutxa, Liesbeth Augustinus, Elena Badmaeva, Miguel Ballesteros, Esha Banerjee",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Zeman",
                        "suffix": ""
                    },
                    {
                        "first": "Joakim",
                        "middle": [],
                        "last": "Nivre",
                        "suffix": ""
                    },
                    {
                        "first": "Mitchell",
                        "middle": [],
                        "last": "Abrams",
                        "suffix": ""
                    },
                    {
                        "first": "No\u00ebmi",
                        "middle": [],
                        "last": "Aepli",
                        "suffix": ""
                    },
                    {
                        "first": "\u017deljko",
                        "middle": [],
                        "last": "Agi\u0107",
                        "suffix": ""
                    },
                    {
                        "first": "Lars",
                        "middle": [],
                        "last": "Ahrenberg",
                        "suffix": ""
                    },
                    {
                        "first": "Gabriel\u0117",
                        "middle": [],
                        "last": "Aleksandravi\u010di\u016bt\u0117",
                        "suffix": ""
                    },
                    {
                        "first": "Lene",
                        "middle": [],
                        "last": "Antonsen",
                        "suffix": ""
                    },
                    {
                        "first": "Katya",
                        "middle": [],
                        "last": "Aplonova",
                        "suffix": ""
                    },
                    {
                        "first": "Maria",
                        "middle": [
                            "Jesus"
                        ],
                        "last": "Aranzabe",
                        "suffix": ""
                    },
                    {
                        "first": "Gashaw",
                        "middle": [],
                        "last": "Arutie",
                        "suffix": ""
                    },
                    {
                        "first": "Masayuki",
                        "middle": [],
                        "last": "Asahara",
                        "suffix": ""
                    },
                    {
                        "first": "Luma",
                        "middle": [],
                        "last": "Ateyah",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Daniel Zeman, Joakim Nivre, Mitchell Abrams, No\u00ebmi Aepli, \u017deljko Agi\u0107, Lars Ahrenberg, Gabriel\u0117 Alek- sandravi\u010di\u016bt\u0117, Lene Antonsen, Katya Aplonova, Maria Jesus Aranzabe, Gashaw Arutie, Masayuki Asahara, Luma Ateyah, Mohammed Attia, Aitz- iber Atutxa, Liesbeth Augustinus, Elena Badmaeva, Miguel Ballesteros, Esha Banerjee, Sebastian Bank, Verginica Barbu Mititelu, Victoria Basmov, Colin",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Lilja \u00d8vrelid, Niko Partanen, Elena Pascual, Marco Passarotti, Agnieszka Patejuk, Guilherme Paulino-Passos, Angelika Peljak-\u0141api\u0144ska, Siyao Peng, Cenel-Augusto Perez, Guy Perrier, Daria Petrova",
                "authors": [
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Batchelor",
                        "suffix": ""
                    },
                    {
                        "first": "Sandra",
                        "middle": [],
                        "last": "Bauer",
                        "suffix": ""
                    },
                    {
                        "first": "Kepa",
                        "middle": [],
                        "last": "Bellato",
                        "suffix": ""
                    },
                    {
                        "first": "Yevgeni",
                        "middle": [],
                        "last": "Bengoetxea",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Berzak",
                        "suffix": ""
                    },
                    {
                        "first": "Ahmad",
                        "middle": [],
                        "last": "Irshad",
                        "suffix": ""
                    },
                    {
                        "first": "Riyaz",
                        "middle": [
                            "Ahmad"
                        ],
                        "last": "Bhat",
                        "suffix": ""
                    },
                    {
                        "first": "Erica",
                        "middle": [],
                        "last": "Bhat",
                        "suffix": ""
                    },
                    {
                        "first": "Eckhard",
                        "middle": [],
                        "last": "Biagetti",
                        "suffix": ""
                    },
                    {
                        "first": "Agn\u0117",
                        "middle": [],
                        "last": "Bick",
                        "suffix": ""
                    },
                    {
                        "first": "Rogier",
                        "middle": [],
                        "last": "Bielinskien\u0117",
                        "suffix": ""
                    },
                    {
                        "first": "Victoria",
                        "middle": [],
                        "last": "Blokland",
                        "suffix": ""
                    },
                    {
                        "first": "Lo\u00efc",
                        "middle": [],
                        "last": "Bobicev",
                        "suffix": ""
                    },
                    {
                        "first": "Emanuel",
                        "middle": [
                            "Borges"
                        ],
                        "last": "Boizou",
                        "suffix": ""
                    },
                    {
                        "first": "Carl",
                        "middle": [],
                        "last": "V\u00f6lker",
                        "suffix": ""
                    },
                    {
                        "first": "Cristina",
                        "middle": [],
                        "last": "B\u00f6rstell",
                        "suffix": ""
                    },
                    {
                        "first": "Gosse",
                        "middle": [],
                        "last": "Bosco",
                        "suffix": ""
                    },
                    {
                        "first": "Sam",
                        "middle": [],
                        "last": "Bouma",
                        "suffix": ""
                    },
                    {
                        "first": "Adriane",
                        "middle": [],
                        "last": "Bowman",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Boyd",
                        "suffix": ""
                    },
                    {
                        "first": "Aljoscha",
                        "middle": [],
                        "last": "Brokait\u0117",
                        "suffix": ""
                    },
                    {
                        "first": "Marie",
                        "middle": [],
                        "last": "Burchardt",
                        "suffix": ""
                    },
                    {
                        "first": "Bernard",
                        "middle": [],
                        "last": "Candito",
                        "suffix": ""
                    },
                    {
                        "first": "Gauthier",
                        "middle": [],
                        "last": "Caron",
                        "suffix": ""
                    },
                    {
                        "first": "Tatiana",
                        "middle": [],
                        "last": "Caron",
                        "suffix": ""
                    },
                    {
                        "first": "G\u00fcl\u015fen",
                        "middle": [],
                        "last": "Cavalcanti",
                        "suffix": ""
                    },
                    {
                        "first": "Flavio",
                        "middle": [],
                        "last": "Cebiroglu Eryigit",
                        "suffix": ""
                    },
                    {
                        "first": "Giuseppe",
                        "middle": [
                            "G A"
                        ],
                        "last": "Massimiliano Cecchini",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Celano",
                        "suffix": ""
                    },
                    {
                        "first": "Savas",
                        "middle": [],
                        "last": "Slavom\u00edr\u010d\u00e9pl\u00f6",
                        "suffix": ""
                    },
                    {
                        "first": "Fabricio",
                        "middle": [],
                        "last": "Cetin",
                        "suffix": ""
                    },
                    {
                        "first": "Jinho",
                        "middle": [],
                        "last": "Chalub",
                        "suffix": ""
                    },
                    {
                        "first": "Yongseok",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    },
                    {
                        "first": "Jayeol",
                        "middle": [],
                        "last": "Cho",
                        "suffix": ""
                    },
                    {
                        "first": "Alessandra",
                        "middle": [
                            "T"
                        ],
                        "last": "Chun",
                        "suffix": ""
                    },
                    {
                        "first": "Silvie",
                        "middle": [],
                        "last": "Cignarella",
                        "suffix": ""
                    },
                    {
                        "first": "Aur\u00e9lie",
                        "middle": [],
                        "last": "Cinkov\u00e1",
                        "suffix": ""
                    },
                    {
                        "first": "\u00c7agr\u0131",
                        "middle": [],
                        "last": "Collomb",
                        "suffix": ""
                    },
                    {
                        "first": "Miriam",
                        "middle": [],
                        "last": "\u00c7\u00f6ltekin",
                        "suffix": ""
                    },
                    {
                        "first": "Marine",
                        "middle": [],
                        "last": "Connor",
                        "suffix": ""
                    },
                    {
                        "first": "Elizabeth",
                        "middle": [],
                        "last": "Courtin",
                        "suffix": ""
                    },
                    {
                        "first": "Marie-Catherine",
                        "middle": [],
                        "last": "Davidson",
                        "suffix": ""
                    },
                    {
                        "first": "Valeria",
                        "middle": [],
                        "last": "De Marneffe",
                        "suffix": ""
                    },
                    {
                        "first": "Elvis",
                        "middle": [],
                        "last": "De Paiva",
                        "suffix": ""
                    },
                    {
                        "first": "Arantza",
                        "middle": [],
                        "last": "De Souza",
                        "suffix": ""
                    },
                    {
                        "first": "Carly",
                        "middle": [],
                        "last": "Diaz De Ilarraza",
                        "suffix": ""
                    },
                    {
                        "first": "Bamba",
                        "middle": [],
                        "last": "Dickerson",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Dione",
                        "suffix": ""
                    },
                    {
                        "first": "Kaja",
                        "middle": [],
                        "last": "Dirix",
                        "suffix": ""
                    },
                    {
                        "first": "Timothy",
                        "middle": [],
                        "last": "Dobrovoljc",
                        "suffix": ""
                    },
                    {
                        "first": "Kira",
                        "middle": [],
                        "last": "Dozat",
                        "suffix": ""
                    },
                    {
                        "first": "Puneet",
                        "middle": [],
                        "last": "Droganova",
                        "suffix": ""
                    },
                    {
                        "first": "Hanne",
                        "middle": [],
                        "last": "Dwivedi",
                        "suffix": ""
                    },
                    {
                        "first": "Marhaba",
                        "middle": [],
                        "last": "Eckhoff",
                        "suffix": ""
                    },
                    {
                        "first": "Ali",
                        "middle": [],
                        "last": "Eli",
                        "suffix": ""
                    },
                    {
                        "first": "Binyam",
                        "middle": [],
                        "last": "Elkahky",
                        "suffix": ""
                    },
                    {
                        "first": "Olga",
                        "middle": [],
                        "last": "Ephrem",
                        "suffix": ""
                    },
                    {
                        "first": "Toma\u017e",
                        "middle": [],
                        "last": "Erina",
                        "suffix": ""
                    },
                    {
                        "first": "Aline",
                        "middle": [],
                        "last": "Erjavec",
                        "suffix": ""
                    },
                    {
                        "first": "Wograine",
                        "middle": [],
                        "last": "Etienne",
                        "suffix": ""
                    },
                    {
                        "first": "Rich\u00e1rd",
                        "middle": [],
                        "last": "Evelyn",
                        "suffix": ""
                    },
                    {
                        "first": "Hector",
                        "middle": [],
                        "last": "Farkas",
                        "suffix": ""
                    },
                    {
                        "first": "Jennifer",
                        "middle": [],
                        "last": "Fernandez Alcalde",
                        "suffix": ""
                    },
                    {
                        "first": "Cl\u00e1udia",
                        "middle": [],
                        "last": "Foster",
                        "suffix": ""
                    },
                    {
                        "first": "Kazunori",
                        "middle": [],
                        "last": "Freitas",
                        "suffix": ""
                    },
                    {
                        "first": "Katar\u00edna",
                        "middle": [],
                        "last": "Fujita",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Gajdo\u0161ov\u00e1",
                        "suffix": ""
                    },
                    {
                        "first": "Marcos",
                        "middle": [],
                        "last": "Galbraith",
                        "suffix": ""
                    },
                    {
                        "first": "Moa",
                        "middle": [],
                        "last": "Garcia",
                        "suffix": ""
                    },
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "G\u00e4rdenfors",
                        "suffix": ""
                    },
                    {
                        "first": "Kim",
                        "middle": [],
                        "last": "Garza",
                        "suffix": ""
                    },
                    {
                        "first": "Filip",
                        "middle": [],
                        "last": "Gerdes",
                        "suffix": ""
                    },
                    {
                        "first": "Iakes",
                        "middle": [],
                        "last": "Ginter",
                        "suffix": ""
                    },
                    {
                        "first": "Koldo",
                        "middle": [],
                        "last": "Goenaga",
                        "suffix": ""
                    },
                    {
                        "first": "Memduh",
                        "middle": [],
                        "last": "Gojenola",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "G\u00f6k\u0131rmak",
                        "suffix": ""
                    },
                    {
                        "first": "Xavier",
                        "middle": [
                            "G\u00f3mez"
                        ],
                        "last": "Goldberg",
                        "suffix": ""
                    },
                    {
                        "first": "Berta",
                        "middle": [
                            "Gonz\u00e1lez"
                        ],
                        "last": "Guinovart",
                        "suffix": ""
                    },
                    {
                        "first": "Bernadeta",
                        "middle": [],
                        "last": "Saavedra",
                        "suffix": ""
                    },
                    {
                        "first": "Matias",
                        "middle": [],
                        "last": "Grici\u016bt\u0117",
                        "suffix": ""
                    },
                    {
                        "first": "Normunds",
                        "middle": [],
                        "last": "Grioni",
                        "suffix": ""
                    },
                    {
                        "first": "Bruno",
                        "middle": [],
                        "last": "Gr\u016bz\u012btis",
                        "suffix": ""
                    },
                    {
                        "first": "C\u00e9line",
                        "middle": [],
                        "last": "Guillaume",
                        "suffix": ""
                    },
                    {
                        "first": "Nizar",
                        "middle": [],
                        "last": "Guillot-Barbance",
                        "suffix": ""
                    },
                    {
                        "first": "Mika",
                        "middle": [],
                        "last": "Habash ; Haji\u010d Jr",
                        "suffix": ""
                    },
                    {
                        "first": "Linh",
                        "middle": [
                            "H\u00e0"
                        ],
                        "last": "H\u00e4m\u00e4l\u00e4inen",
                        "suffix": ""
                    },
                    {
                        "first": "Na-Rae",
                        "middle": [],
                        "last": "M\u1ef9",
                        "suffix": ""
                    },
                    {
                        "first": "Kim",
                        "middle": [],
                        "last": "Han",
                        "suffix": ""
                    },
                    {
                        "first": "Dag",
                        "middle": [],
                        "last": "Harris",
                        "suffix": ""
                    },
                    {
                        "first": "Johannes",
                        "middle": [],
                        "last": "Haug",
                        "suffix": ""
                    },
                    {
                        "first": "Felix",
                        "middle": [],
                        "last": "Heinecke",
                        "suffix": ""
                    },
                    {
                        "first": "Barbora",
                        "middle": [],
                        "last": "Hennig",
                        "suffix": ""
                    },
                    {
                        "first": "Jaroslava",
                        "middle": [],
                        "last": "Hladk\u00e1",
                        "suffix": ""
                    },
                    {
                        "first": "Florinel",
                        "middle": [],
                        "last": "Hlav\u00e1\u010dov\u00e1",
                        "suffix": ""
                    },
                    {
                        "first": "Petter",
                        "middle": [],
                        "last": "Hociung",
                        "suffix": ""
                    },
                    {
                        "first": "Jena",
                        "middle": [],
                        "last": "Hohle",
                        "suffix": ""
                    },
                    {
                        "first": "Takumi",
                        "middle": [],
                        "last": "Hwang",
                        "suffix": ""
                    },
                    {
                        "first": "Radu",
                        "middle": [],
                        "last": "Ikeda",
                        "suffix": ""
                    },
                    {
                        "first": "Elena",
                        "middle": [],
                        "last": "Ion",
                        "suffix": ""
                    },
                    {
                        "first": "O",
                        "middle": [],
                        "last": "Irimia",
                        "suffix": ""
                    },
                    {
                        "first": "Tom\u00e1\u0161",
                        "middle": [],
                        "last": "Ishola",
                        "suffix": ""
                    },
                    {
                        "first": "Anders",
                        "middle": [],
                        "last": "Jel\u00ednek",
                        "suffix": ""
                    },
                    {
                        "first": "Fredrik",
                        "middle": [],
                        "last": "Johannsen",
                        "suffix": ""
                    },
                    {
                        "first": "Markus",
                        "middle": [],
                        "last": "J\u00f8rgensen",
                        "suffix": ""
                    },
                    {
                        "first": "H\u00fcner",
                        "middle": [],
                        "last": "Juutinen",
                        "suffix": ""
                    },
                    {
                        "first": "Andre",
                        "middle": [],
                        "last": "Ka\u015f\u0131kara",
                        "suffix": ""
                    },
                    {
                        "first": "Nadezhda",
                        "middle": [],
                        "last": "Kaasen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Kabaeva",
                        "suffix": ""
                    },
                    {
                        "first": "Hiroshi",
                        "middle": [],
                        "last": "Sylvain Kahane",
                        "suffix": ""
                    },
                    {
                        "first": "Jenna",
                        "middle": [],
                        "last": "Kanayama",
                        "suffix": ""
                    },
                    {
                        "first": "Boris",
                        "middle": [],
                        "last": "Kanerva",
                        "suffix": ""
                    },
                    {
                        "first": "Tolga",
                        "middle": [],
                        "last": "Katz",
                        "suffix": ""
                    },
                    {
                        "first": "Jessica",
                        "middle": [],
                        "last": "Kayadelen",
                        "suffix": ""
                    },
                    {
                        "first": "V\u00e1clava",
                        "middle": [],
                        "last": "Kenney",
                        "suffix": ""
                    },
                    {
                        "first": "Jesse",
                        "middle": [],
                        "last": "Kettnerov\u00e1",
                        "suffix": ""
                    },
                    {
                        "first": "Elena",
                        "middle": [],
                        "last": "Kirchner",
                        "suffix": ""
                    },
                    {
                        "first": "Arne",
                        "middle": [],
                        "last": "Klementieva",
                        "suffix": ""
                    },
                    {
                        "first": "Kamil",
                        "middle": [],
                        "last": "K\u00f6hn",
                        "suffix": ""
                    },
                    {
                        "first": "Natalia",
                        "middle": [],
                        "last": "Kopacewicz",
                        "suffix": ""
                    },
                    {
                        "first": "Jolanta",
                        "middle": [],
                        "last": "Kotsyba",
                        "suffix": ""
                    },
                    {
                        "first": "Simon",
                        "middle": [],
                        "last": "Kovalevskait\u0117",
                        "suffix": ""
                    },
                    {
                        "first": "Sookyoung",
                        "middle": [],
                        "last": "Krek",
                        "suffix": ""
                    },
                    {
                        "first": "Veronika",
                        "middle": [],
                        "last": "Kwak",
                        "suffix": ""
                    },
                    {
                        "first": "Lorenzo",
                        "middle": [],
                        "last": "Laippala",
                        "suffix": ""
                    },
                    {
                        "first": "Lucia",
                        "middle": [],
                        "last": "Lambertino",
                        "suffix": ""
                    },
                    {
                        "first": "Tatiana",
                        "middle": [],
                        "last": "Lam",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Lando",
                        "suffix": ""
                    },
                    {
                        "first": "Alexei",
                        "middle": [],
                        "last": "Septina Dian Larasati",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Lavrentiev",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Alessandro",
                        "middle": [],
                        "last": "Ph\u01b0\u01a1ng L\u00ea H\u1ed3ng",
                        "suffix": ""
                    },
                    {
                        "first": "Saran",
                        "middle": [],
                        "last": "Lenci",
                        "suffix": ""
                    },
                    {
                        "first": "Herman",
                        "middle": [],
                        "last": "Lertpradit",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Leung",
                        "suffix": ""
                    },
                    {
                        "first": "Ying",
                        "middle": [],
                        "last": "Cheuk",
                        "suffix": ""
                    },
                    {
                        "first": "Josie",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Keying",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Kyungtae",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Maria",
                        "middle": [],
                        "last": "Lim",
                        "suffix": ""
                    },
                    {
                        "first": "Yuan",
                        "middle": [],
                        "last": "Liovina",
                        "suffix": ""
                    },
                    {
                        "first": "Nikola",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Olga",
                        "middle": [],
                        "last": "Ljube\u0161i\u0107",
                        "suffix": ""
                    },
                    {
                        "first": "Olga",
                        "middle": [],
                        "last": "Loginova",
                        "suffix": ""
                    },
                    {
                        "first": "Teresa",
                        "middle": [],
                        "last": "Lyashevskaya",
                        "suffix": ""
                    },
                    {
                        "first": "Vivien",
                        "middle": [],
                        "last": "Lynn",
                        "suffix": ""
                    },
                    {
                        "first": "Aibek",
                        "middle": [],
                        "last": "Macketanz",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Makazhanov",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Mandl",
                        "suffix": ""
                    },
                    {
                        "first": "Ruli",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    },
                    {
                        "first": ";",
                        "middle": [],
                        "last": "Manurung",
                        "suffix": ""
                    },
                    {
                        "first": "Zsolt",
                        "middle": [],
                        "last": "Suzuki",
                        "suffix": ""
                    },
                    {
                        "first": "Dima",
                        "middle": [],
                        "last": "Sz\u00e1nt\u00f3",
                        "suffix": ""
                    },
                    {
                        "first": "Yuta",
                        "middle": [],
                        "last": "Taji",
                        "suffix": ""
                    },
                    {
                        "first": "Fabio",
                        "middle": [],
                        "last": "Takahashi",
                        "suffix": ""
                    },
                    {
                        "first": "Takaaki",
                        "middle": [],
                        "last": "Tamburini",
                        "suffix": ""
                    },
                    {
                        "first": "Isabelle",
                        "middle": [],
                        "last": "Tanaka",
                        "suffix": ""
                    },
                    {
                        "first": "Guillaume",
                        "middle": [],
                        "last": "Tellier",
                        "suffix": ""
                    },
                    {
                        "first": "Liisi",
                        "middle": [],
                        "last": "Thomas",
                        "suffix": ""
                    },
                    {
                        "first": "Trond",
                        "middle": [],
                        "last": "Torga",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Trosterud",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "Faculty of Mathematics and Physics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Batchelor, John Bauer, Sandra Bellato, Kepa Ben- goetxea, Yevgeni Berzak, Irshad Ahmad Bhat, Riyaz Ahmad Bhat, Erica Biagetti, Eckhard Bick, Agn\u0117 Bielinskien\u0117, Rogier Blokland, Victoria Bo- bicev, Lo\u00efc Boizou, Emanuel Borges V\u00f6lker, Carl B\u00f6rstell, Cristina Bosco, Gosse Bouma, Sam Bow- man, Adriane Boyd, Kristina Brokait\u0117, Aljoscha Burchardt, Marie Candito, Bernard Caron, Gauthier Caron, Tatiana Cavalcanti, G\u00fcl\u015fen Cebiroglu Ery- igit, Flavio Massimiliano Cecchini, Giuseppe G. A. Celano, Slavom\u00edr\u010c\u00e9pl\u00f6, Savas Cetin, Fabri- cio Chalub, Jinho Choi, Yongseok Cho, Jayeol Chun, Alessandra T. Cignarella, Silvie Cinkov\u00e1, Aur\u00e9lie Collomb, \u00c7agr\u0131 \u00c7\u00f6ltekin, Miriam Con- nor, Marine Courtin, Elizabeth Davidson, Marie- Catherine de Marneffe, Valeria de Paiva, Elvis de Souza, Arantza Diaz de Ilarraza, Carly Dicker- son, Bamba Dione, Peter Dirix, Kaja Dobrovoljc, Timothy Dozat, Kira Droganova, Puneet Dwivedi, Hanne Eckhoff, Marhaba Eli, Ali Elkahky, Binyam Ephrem, Olga Erina, Toma\u017e Erjavec, Aline Eti- enne, Wograine Evelyn, Rich\u00e1rd Farkas, Hector Fernandez Alcalde, Jennifer Foster, Cl\u00e1udia Fre- itas, Kazunori Fujita, Katar\u00edna Gajdo\u0161ov\u00e1, Daniel Galbraith, Marcos Garcia, Moa G\u00e4rdenfors, Se- bastian Garza, Kim Gerdes, Filip Ginter, Iakes Goenaga, Koldo Gojenola, Memduh G\u00f6k\u0131rmak, Yoav Goldberg, Xavier G\u00f3mez Guinovart, Berta Gonz\u00e1lez Saavedra, Bernadeta Grici\u016bt\u0117, Matias Gri- oni, Normunds Gr\u016bz\u012btis, Bruno Guillaume, C\u00e9line Guillot-Barbance, Nizar Habash, Jan Haji\u010d, Jan Ha- ji\u010d jr., Mika H\u00e4m\u00e4l\u00e4inen, Linh H\u00e0 M\u1ef9, Na-Rae Han, Kim Harris, Dag Haug, Johannes Heinecke, Fe- lix Hennig, Barbora Hladk\u00e1, Jaroslava Hlav\u00e1\u010dov\u00e1, Florinel Hociung, Petter Hohle, Jena Hwang, Takumi Ikeda, Radu Ion, Elena Irimia, O . l\u00e1j\u00edd\u00e9 Ishola, Tom\u00e1\u0161 Jel\u00ednek, Anders Johannsen, Fredrik J\u00f8rgensen, Markus Juutinen, H\u00fcner Ka\u015f\u0131kara, An- dre Kaasen, Nadezhda Kabaeva, Sylvain Kahane, Hiroshi Kanayama, Jenna Kanerva, Boris Katz, Tolga Kayadelen, Jessica Kenney, V\u00e1clava Ket- tnerov\u00e1, Jesse Kirchner, Elena Klementieva, Arne K\u00f6hn, Kamil Kopacewicz, Natalia Kotsyba, Jolanta Kovalevskait\u0117, Simon Krek, Sookyoung Kwak, Veronika Laippala, Lorenzo Lambertino, Lucia Lam, Tatiana Lando, Septina Dian Larasati, Alexei Lavrentiev, John Lee, Ph\u01b0\u01a1ng L\u00ea H\u1ed3ng, Alessandro Lenci, Saran Lertpradit, Herman Leung, Cheuk Ying Li, Josie Li, Keying Li, KyungTae Lim, Maria Li- ovina, Yuan Li, Nikola Ljube\u0161i\u0107, Olga Loginova, Olga Lyashevskaya, Teresa Lynn, Vivien Macke- tanz, Aibek Makazhanov, Michael Mandl, Christo- pher Manning, Ruli Manurung, C\u0203t\u0203lina M\u0203r\u0203n- duc, David Mare\u010dek, Katrin Marheinecke, H\u00e9c- tor Mart\u00ednez Alonso, Andr\u00e9 Martins, Jan Ma\u0161ek, Yuji Matsumoto, Ryan McDonald, Sarah McGuin- ness, Gustavo Mendon\u00e7a, Niko Miekka, Mar- garita Misirpashayeva, Anna Missil\u00e4, C\u0203t\u0203lin Mi- titelu, Maria Mitrofan, Yusuke Miyao, Simonetta Montemagni, Amir More, Laura Moreno Romero, Keiko Sophie Mori, Tomohiko Morioka, Shin- suke Mori, Shigeki Moro, Bjartur Mortensen, Bohdan Moskalevskyi, Kadri Muischnek, Robert Munro, Yugo Murawaki, Kaili M\u00fc\u00fcrisep, Pinkey Nainwani, Juan Ignacio Navarro Hor\u00f1iacek, Anna Nedoluzhko, Gunta Ne\u0161pore-B\u0113rzkalne, L\u01b0\u01a1ng Nguy\u1ec5n Thi . , Huy\u1ec1n Nguy\u1ec5n Thi . Minh, Yoshi- hiro Nikaido, Vitaly Nikolaev, Rattima Nitisaroj, Hanna Nurmi, Stina Ojala, Atul Kr. Ojha, Ad\u00e9dayo . Ol\u00fa\u00f2kun, Mai Omura, Petya Osenova, Robert \u00d6stling, Lilja \u00d8vrelid, Niko Partanen, Elena Pas- cual, Marco Passarotti, Agnieszka Patejuk, Guil- herme Paulino-Passos, Angelika Peljak-\u0141api\u0144ska, Siyao Peng, Cenel-Augusto Perez, Guy Perrier, Daria Petrova, Slav Petrov, Jason Phelan, Jussi Piitulainen, Tommi A Pirinen, Emily Pitler, Bar- bara Plank, Thierry Poibeau, Larisa Ponomareva, Martin Popel, Lauma Pretkalni\u0146a, Sophie Pr\u00e9vost, Prokopis Prokopidis, Adam Przepi\u00f3rkowski, Tiina Puolakainen, Sampo Pyysalo, Peng Qi, Andriela R\u00e4\u00e4bis, Alexandre Rademaker, Loganathan Ra- masamy, Taraka Rama, Carlos Ramisch, Vinit Rav- ishankar, Livy Real, Siva Reddy, Georg Rehm, Ivan Riabov, Michael Rie\u00dfler, Erika Rimkut\u0117, Larissa Ri- naldi, Laura Rituma, Luisa Rocha, Mykhailo Ro- manenko, Rudolf Rosa, Davide Rovati, Valentin Rosca, Olga Rudina, Jack Rueter, Shoval Sadde, Beno\u00eet Sagot, Shadi Saleh, Alessio Salomoni, Tanja Samard\u017ei\u0107, Stephanie Samson, Manuela Sanguinetti, Dage S\u00e4rg, Baiba Saul\u012bte, Yanin Sawanakunanon, Nathan Schneider, Sebastian Schuster, Djam\u00e9 Sed- dah, Wolfgang Seeker, Mojgan Seraji, Mo Shen, Atsuko Shimada, Hiroyuki Shirasu, Muh Shohibus- sirri, Dmitry Sichinava, Aline Silveira, Natalia Sil- veira, Maria Simi, Radu Simionescu, Katalin Simk\u00f3, M\u00e1ria \u0160imkov\u00e1, Kiril Simov, Aaron Smith, Isabela Soares-Bastos, Carolyn Spadine, Antonio Stella, Milan Straka, Jana Strnadov\u00e1, Alane Suhr, Umut Sulubacak, Shingo Suzuki, Zsolt Sz\u00e1nt\u00f3, Dima Taji, Yuta Takahashi, Fabio Tamburini, Takaaki Tanaka, Isabelle Tellier, Guillaume Thomas, Li- isi Torga, Trond Trosterud, Anna Trukhina, Reut Tsarfaty, Francis Tyers, Sumire Uematsu, Zde\u0148ka Ure\u0161ov\u00e1, Larraitz Uria, Hans Uszkoreit, Andrius Utka, Sowmya Vajjala, Daniel van Niekerk, Gert- jan van Noord, Viktor Varga, Eric Villemonte de la Clergerie, Veronika Vincze, Lars Wallin, Abigail Walsh, Jing Xian Wang, Jonathan North Washing- ton, Maximilan Wendt, Seyi Williams, Mats Wir\u00e9n, Christian Wittern, Tsegay Woldemariam, Tak-sum Wong, Alina Wr\u00f3blewska, Mary Yako, Naoki Ya- mazaki, Chunxiao Yan, Koichi Yasuoka, Marat M. Yavrumyan, Zhuoran Yu, Zden\u011bk \u017dabokrtsk\u00fd, Amir Zeldes, Manying Zhang, and Hanzhi Zhu. 2019. Universal Dependencies 2.5. LINDAT/CLARIAH- CZ digital library at the Institute of Formal and Ap- plied Linguistics (\u00daFAL), Faculty of Mathematics and Physics, Charles University.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "text": "Overview of Sta n z a 's neural NLP pipeline. Sta n z a takes multilingual text as input, and produces annotations accessible as native Python objects. Besides this neural pipeline, Sta n z a also features a Python client interface to the Java CoreNLP software.",
                "uris": null,
                "num": null
            },
            "FIGREF1": {
                "type_str": "figure",
                "text": "fr) L'Association des H\u00f4tels (en) The Association of Hotels (fr) Il y a des h\u00f4tels en bas de la rue (en) There are hotels down the street",
                "uris": null,
                "num": null
            },
            "FIGREF2": {
                "type_str": "figure",
                "text": "An example of multi-word tokens in French.",
                "uris": null,
                "num": null
            },
            "FIGREF3": {
                "type_str": "figure",
                "text": "from stanza.server import CoreNLPClient # start a CoreNLP client with CoreNLPClient(annotators=['tokenize','ssplit ','pos','lemma','ner','parse','coref']) as client: # run annotation over input ann = client.annotate('Emily said that she liked the movie.') # access all entities for sent in ann.sentence: print(sent.mentions) # access coreference annotations print(ann.corefChain)",
                "uris": null,
                "num": null
            },
            "FIGREF4": {
                "type_str": "figure",
                "text": "Sta n z a annotates a German sentence, as visualized by our interactive demo. Note am is expanded into syntactic words an and dem before downstream analyses are performed.",
                "uris": null,
                "num": null
            },
            "TABREF1": {
                "type_str": "table",
                "num": null,
                "html": null,
                "content": "<table/>",
                "text": "Feature comparisons of Sta n z a against other popular natural language processing toolkits."
            },
            "TABREF4": {
                "type_str": "table",
                "num": null,
                "html": null,
                "content": "<table/>",
                "text": "NER performance across different languages and corpora. All scores reported are entity microaveraged test F 1 . For each corpus we also list the number of entity types. * marks results from publicly available pretrained models on the same dataset, while others are from models retrained on our datasets."
            },
            "TABREF6": {
                "type_str": "table",
                "num": null,
                "html": null,
                "content": "<table/>",
                "text": "Annotation runtime of various toolkits relative to spaCy (CPU) on the English EWT treebank and OntoNotes NER test sets. For reference, on the compared UD and NER tasks, spaCy is able to process 8140 and 5912 tokens per second, respectively."
            }
        }
    }
}