File size: 56,169 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 |
{
"paper_id": "A92-1020",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T02:03:28.882300Z"
},
"title": "A Corpus-Based Statistical Approach to Automatic Book Indexing",
"authors": [
{
"first": "Jyun-Sheng",
"middle": [],
"last": "Chang",
"suffix": "",
"affiliation": {},
"email": "schang@cs.nthu.edu.tw"
},
{
"first": "Tsung-Yih",
"middle": [],
"last": "Tseng",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Ying",
"middle": [],
"last": "Cheng",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Huey-Chyun",
"middle": [],
"last": "Chen",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Shun-Der",
"middle": [],
"last": "Cheng",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Sur-Jin",
"middle": [],
"last": "Ker",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "John",
"middle": [
"S"
],
"last": "Liu",
"suffix": "",
"affiliation": {},
"email": ""
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "The paper reports on a new approach to automatic generation of back-of-book indexes for Chinese books. Parsing on the level of complete sentential analysis is avoided because of the inefficiency and unavailability of a Chinese Grammar with enough coverage. Instead, fundamental analysis particular to Chinese text called word segmentation is performed to break up characters into a sequence of lexical units equivalent to words in English. The sequence of words then goes through part-ofspeech tagging and noun phrase analysis. All these analyses are done using a corpus-based statistical algorithm. Experimental results have shown satisfactory results.",
"pdf_parse": {
"paper_id": "A92-1020",
"_pdf_hash": "",
"abstract": [
{
"text": "The paper reports on a new approach to automatic generation of back-of-book indexes for Chinese books. Parsing on the level of complete sentential analysis is avoided because of the inefficiency and unavailability of a Chinese Grammar with enough coverage. Instead, fundamental analysis particular to Chinese text called word segmentation is performed to break up characters into a sequence of lexical units equivalent to words in English. The sequence of words then goes through part-ofspeech tagging and noun phrase analysis. All these analyses are done using a corpus-based statistical algorithm. Experimental results have shown satisfactory results.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "Preparing back-of-book indexes is of vital importance to the publishing industry but is a very labor intensive task. Attempts have been made over the years to automate this procedure for the apparent benefits of cost saving, shorter preparation time, and possibility of producing more complete and consistent indexes. Early work involves using occurrence characteristics of contents words [Borko, 1970] . Later people came to realize that indexes are often multi-word terms and their generation might involve more elaborated syntactic analysis on phrasal or sentential level [Salton, 1988; Dillon and McDonald, 1983] . However, a full syntactical approach [Salton, 1988] to this task has real problem with efficiency and coverage for unrestricted text. No viable automatic solution is currently in use.",
"cite_spans": [
{
"start": 389,
"end": 402,
"text": "[Borko, 1970]",
"ref_id": "BIBREF3"
},
{
"start": 575,
"end": 589,
"text": "[Salton, 1988;",
"ref_id": "BIBREF18"
},
{
"start": 590,
"end": 616,
"text": "Dillon and McDonald, 1983]",
"ref_id": "BIBREF15"
},
{
"start": 656,
"end": 670,
"text": "[Salton, 1988]",
"ref_id": "BIBREF18"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "I. Introduction",
"sec_num": null
},
{
"text": "Indexing Chinese books involves another severe obstacle, namely the word segmentation problem. Chinese text consists of a sequence of characters which roughly correspond to letters in English. However, there are no spaces to mark the beginning and end of a word as in English. Until recently, this problem has been considered difficult to solve without elaborated syntactical and semantic analyses [Chen, 1988] .",
"cite_spans": [
{
"start": 398,
"end": 410,
"text": "[Chen, 1988]",
"ref_id": "BIBREF11"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "I. Introduction",
"sec_num": null
},
{
"text": "Recent research advances may lead to the development of viable book indexing methods for Chinese books. These include the availability of efficient and high precision word segmentation methods for Chinese text [Chang et al., 1991; Sproat and Shih, 1990; Wang et al., 1990] , the availability of statistical analysis of a Chinese corpus [Liu et al., 1975] and large-scale electronic Chinese dictionaries with partof-speech information [Chang et al., 1988; BDC, 1992] , the corpus-based statistical part-of-speech tagger [Church, 1988; DeRose, 1988; Beale, 1988] , as well as phrasal and clausal analyzers [Church 1988; Ejerhed 1990] ",
"cite_spans": [
{
"start": 210,
"end": 230,
"text": "[Chang et al., 1991;",
"ref_id": "BIBREF4"
},
{
"start": 231,
"end": 253,
"text": "Sproat and Shih, 1990;",
"ref_id": "BIBREF19"
},
{
"start": 254,
"end": 272,
"text": "Wang et al., 1990]",
"ref_id": null
},
{
"start": 336,
"end": 354,
"text": "[Liu et al., 1975]",
"ref_id": "BIBREF17"
},
{
"start": 434,
"end": 454,
"text": "[Chang et al., 1988;",
"ref_id": null
},
{
"start": 455,
"end": 465,
"text": "BDC, 1992]",
"ref_id": null
},
{
"start": 519,
"end": 533,
"text": "[Church, 1988;",
"ref_id": "BIBREF12"
},
{
"start": 534,
"end": 547,
"text": "DeRose, 1988;",
"ref_id": "BIBREF13"
},
{
"start": 548,
"end": 560,
"text": "Beale, 1988]",
"ref_id": null
},
{
"start": 604,
"end": 617,
"text": "[Church 1988;",
"ref_id": "BIBREF12"
},
{
"start": 618,
"end": 631,
"text": "Ejerhed 1990]",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "I. Introduction",
"sec_num": null
},
{
"text": "As being pointed out in [Salton, 1988] , back-of-book indexes may consist of more than one word that are derived from a noun phrase. Given the text of a book, an indexing system, must perform some kind of phrasal and statistical analysis in order to produce a list of candidate indexes and their occurrence statistics in order to generate indexes as shown in Figure 1 which is an excerpt from the reconstruction of indexes of a book on transformational grammar for Mandarin Chinese [Tang, 1977] .",
"cite_spans": [
{
"start": 24,
"end": 38,
"text": "[Salton, 1988]",
"ref_id": "BIBREF18"
},
{
"start": 482,
"end": 494,
"text": "[Tang, 1977]",
"ref_id": null
}
],
"ref_spans": [
{
"start": 359,
"end": 367,
"text": "Figure 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Problem description",
"sec_num": "2."
},
{
"text": "Before phrasal analysis can be performed, the text must go through the more fundamental morphological and partof-speech analysis.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Problem description",
"sec_num": "2."
},
{
"text": "The morphological analysis for Chinese text is mainly a so-called word segmentation process, which segments a sequence of Chinese character into a sequence of words. See Figure 2 for illustration.",
"cite_spans": [],
"ref_spans": [
{
"start": 170,
"end": 178,
"text": "Figure 2",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Problem description",
"sec_num": "2."
},
{
"text": "The noun phrase generation process described in this paper is based on a corpus-based statistical analysis and does not use an explicit syntactical representation. Examples of noun phrases found are underlined as shown in Figure 2 . ",
"cite_spans": [],
"ref_spans": [
{
"start": 222,
"end": 230,
"text": "Figure 2",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Problem description",
"sec_num": "2."
},
{
"text": "~1~/~!~!~!~!~!",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Problem description",
"sec_num": "2."
},
{
"text": "[zai/qianmian/dc/shuci/de/hioj i/fangwei/] P/NC/CTM/NC/CTM/NC/NC/ is within the logical scope of predicates before it. The constraint satisfaction problem The constraint satisfaction problem involves the assignment of values to variables subject to a set of constraining relations. Examples of CSPs include map coloring, understanding line drawing, and scheduling [Detcher and Pear, 1988] . The CSP with binary constraints can be defined as follows: Given a set of n variables XI, X2 .... , Xn and a set of binary constraints Kij, find all possible n-tuples (Xl, x2 ..... Xn) such that each n-tuple is an instantiation of the n variables satisfying (~, x]) in Kij, for all Kij",
"cite_spans": [
{
"start": 364,
"end": 388,
"text": "[Detcher and Pear, 1988]",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Problem description",
"sec_num": "2."
},
{
"text": "The word segmentation problem for Chinese can be simply stated as follows: Given a Chinese sentence, segment the sentence into words. For example, given we are supposed to segment it into [ba/liuxianzhong/de/queshi/xiendong/cuo/le/fenxi] Xian-Zhong Liu's exact action was given an analysis.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Segmentation through Constraint Satisfaction",
"sec_num": null
},
{
"text": "where ~q (Liu) is a surname and ~ (Xian-Zhong) is a last name. In the following, we will describe a method that extends our previous work on segmentation [Chang et al., 1991a ] to handle surname-names [Chang et al., 1991b] . Segmentation is solved as a constraint satisfaction problem.",
"cite_spans": [
{
"start": 154,
"end": 174,
"text": "[Chang et al., 1991a",
"ref_id": null
},
{
"start": 201,
"end": 222,
"text": "[Chang et al., 1991b]",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Segmentation through Constraint Satisfaction",
"sec_num": null
},
{
"text": "The word segmentation problem can be cast as a CSP as follows: Suppose that we are given a sequence of Chinese character (C1, C2 ...... Cn) and are to segment the sequence into subsequences of characters that are either words in the dictionary or surname-names. We can think of a solution to this segmentation problem as an assignment of break~continue (denoted by the symbols '>' and '=' respectively) to each place X i between two adjacent characters Ci and Ci+l:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Segmentation as a Constraint Satisfaction Problem",
"sec_num": null
},
{
"text": "ICl IC21 Ca ... I Cnl Xo xl X2 ... Xn-l Xn",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Segmentation as a Constraint Satisfaction Problem",
"sec_num": null
},
{
"text": "subject to the constraint that the characters between two closest breaks correspond to either a Chinese word in the dictionary or surname-names. (For convenience, we add two more places; one at the beginning, the other at the end.) So the set of constraints can be constructed as follows:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Segmentation as a Constraint Satisfaction Problem",
"sec_num": null
},
{
"text": "For each sequence of characters Ci ..... Cj, (j >= i) which are a Chinese word in the dictionary or a suruame-name, ifj = i, then put (>,>) in Ki-l,i. ifj > i, then put (>,=) in Ki-l,i, (=,=) in Ki,i+l ..... and (=,>) in Kj-1 ,j.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Segmentation as a Constraint Satisfaction Problem",
"sec_num": null
},
{
"text": "For example, consider again the following:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Segmentation as a Constraint Satisfaction Problem",
"sec_num": null
},
{
"text": "The ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Segmentation as a Constraint Satisfaction Problem",
"sec_num": null
},
{
"text": "are either words in the dictionary or probable surnamenames (hypothesized words).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "~?i~1~4~1~'~17 I~lmsilTI",
"sec_num": null
},
{
"text": "Typically, there will be more than one solution to this CSP. So the most probable one with highest product of probability of hypothesized words is chosen to be the solution. Ordinary words are listed in the dictionary along with this kind of probability estimated from a general corpus [Liu et al., 1975] . As for proper names such as Chinese surname-names not listed in the dictionary, their probability are approximated by using another corpus containing more than 18,000 names as described in the following subsection.",
"cite_spans": [
{
"start": 286,
"end": 304,
"text": "[Liu et al., 1975]",
"ref_id": "BIBREF17"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "~?i~1~4~1~'~17 I~lmsilTI",
"sec_num": null
},
{
"text": "Proper nouns account for only about 2% of average Chinese text. However, according to a recent study on word segmentation [Chang et al., 1991a] , they account for at least 50% of errors made by a typical segmentation system. Moreover, proper names are oftentimes indexes. Therefore their correct segmentation is crucial to automatic generation of back-of-book indexes.",
"cite_spans": [
{
"start": 122,
"end": 143,
"text": "[Chang et al., 1991a]",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "The Problem with Proper Names in Chinese Text",
"sec_num": null
},
{
"text": "The difficulties involved in handling proper names are due to the following: (1) No apparent punctuation marking is given like capitalization in English. (2). Most of characters in proper names have different usage. So this problem has been held impossible to solve in the segmentation process. And it was suggested that proper names are best left untouched in the segmentation process and rely on syntactical and semantic analysis to solve the problem when nothing can be made out of the characters representing them [Chen, 1988] . Using the corpus-based statistical approach, we have shown that it is possible to identify most Chinese surname-names (~ ~fi) without using explicit syntactical or semantic representation.",
"cite_spans": [
{
"start": 518,
"end": 530,
"text": "[Chen, 1988]",
"ref_id": "BIBREF11"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "The Problem with Proper Names in Chinese Text",
"sec_num": null
},
{
"text": "Most surnames are single character and some rare ones are of two characters (single-surnames and doublesurnames). Names can be either one or two characters (single-names and double-names). Some characters are more often used for names than others. Currently, there are more double-names than single-name in Taiwan. The formation of hypothesized surname-names is triggered by the recognition of a surname. In the example above, ~r] (Liu) is one of some 300 surnames. Subsequently, we will take one character and two characters after the surname as probable last names, in this case ~ (Xian) and ~ ~q~ (Xian-Zhong). A general corpus, G and a surname-name corpus N are used to evaluate the probability of a surname-name. For instance, the probability of a most common kind of 3-character name (single-surname/double-name) such as J[IJ~ ~ is : p( ~rJ~ ~, ) = p( single-surname/double-names in G) x p(~rJ being a surname in N) x P(~ being 1 st character in names in N) x P({~ being 2nd character in names in N)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The Problem with Proper Names in Chinese Text",
"sec_num": null
},
{
"text": "Names of other combinations can be handled similarly.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The Problem with Proper Names in Chinese Text",
"sec_num": null
},
{
"text": "To sum up, the whole process of word segmentation with surname-name identification is as follows:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The Algorithm",
"sec_num": null
},
{
"text": "1, Scan from left to right across the sentence 2. Check to see if the prefix of what is being scanned is a hypothesize word, by 2.1. dictionary lookup of an ordinary word and its probability 2.2. checking for the existence of a surname 2.2.1. forming possible combinations of the surname-name 2.2.2. evaluating the probability of each combination 3. Post the constraints of the CSP and probability for each hypothesized word 4. Solve the CSP 5. Find the most probable solution to CSP through dynamic programming",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The Algorithm",
"sec_num": null
},
{
"text": "As far as we know, there has been only scarce research done on part-of-speech tagging for Chinese [Chang et al., 1988; Chen, 1991; Bai and Xia, 1991; BDC, 1992] . As for English, there are at least three independently developed taggers [Church 1988; DeRose 1988; Beale 1988] . We started out using an electronic dictionary 1991; Chang et al., 1988] with a very elaborated part-of-speech system based on Chao's work [Chao, 1968] . Because it is difficult to get sufficient manualy tagged data for a large tag set, we have since switched to another electronic dictionary with some 90,000 entries and a much smaller tag set. The dictionary is actually a bilingual one (Chinese-English) developed by Behavior Design Corporation [BDC, 1992] . The list of part-of-speeches is shown in Figure 3 . The algorithm is essentially the same as [DeRose, 1988] . The BDC Chinese-English Dictionary is used to obtain the list of possible part-of-speeches for each segmented word. Currently, the collocation probabilities of part-of-speech are estimated from a manually tagged text of about 4,000 words.",
"cite_spans": [
{
"start": 98,
"end": 118,
"text": "[Chang et al., 1988;",
"ref_id": null
},
{
"start": 119,
"end": 130,
"text": "Chen, 1991;",
"ref_id": "BIBREF9"
},
{
"start": 131,
"end": 149,
"text": "Bai and Xia, 1991;",
"ref_id": "BIBREF0"
},
{
"start": 150,
"end": 160,
"text": "BDC, 1992]",
"ref_id": null
},
{
"start": 236,
"end": 249,
"text": "[Church 1988;",
"ref_id": "BIBREF12"
},
{
"start": 250,
"end": 262,
"text": "DeRose 1988;",
"ref_id": "BIBREF13"
},
{
"start": 263,
"end": 274,
"text": "Beale 1988]",
"ref_id": null
},
{
"start": 323,
"end": 328,
"text": "1991;",
"ref_id": "BIBREF9"
},
{
"start": 329,
"end": 348,
"text": "Chang et al., 1988]",
"ref_id": null
},
{
"start": 415,
"end": 427,
"text": "[Chao, 1968]",
"ref_id": "BIBREF8"
},
{
"start": 724,
"end": 735,
"text": "[BDC, 1992]",
"ref_id": null
},
{
"start": 831,
"end": 845,
"text": "[DeRose, 1988]",
"ref_id": "BIBREF13"
}
],
"ref_spans": [
{
"start": 779,
"end": 787,
"text": "Figure 3",
"ref_id": "FIGREF1"
}
],
"eq_spans": [],
"section": "Part-of-speech Tagging",
"sec_num": "3.2."
},
{
"text": "Instead of using a full-blown parser to find noun phrases, we first mark the noun phrases in the same text of about 4,000 words and compute the statistical characteristics of categoric patterns of noun phrase and then use the statistics in a stochastic algorithm for finding noun phrases in a manner similar to [Church 1988; Ejerhed 1990] .",
"cite_spans": [
{
"start": 311,
"end": 324,
"text": "[Church 1988;",
"ref_id": "BIBREF12"
},
{
"start": 325,
"end": 338,
"text": "Ejerhed 1990]",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Finding Noun Phrases",
"sec_num": "3.3."
},
{
"text": "Extracting keywords from a noun phrase is somewhat heuristic unlike the rigorous approach of using the syntactical structure within the noun phrase in [Salton, 1988] .",
"cite_spans": [
{
"start": 151,
"end": 165,
"text": "[Salton, 1988]",
"ref_id": "BIBREF18"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Finding Noun Phrases",
"sec_num": "3.3."
},
{
"text": "The algorithm described in Section 3 is currently under development and the programs are written in C and ProFox, and run on an IBM PC compatible machine. The segmentation, tagging, and NP identification parts are completed, while the statistical analysis of the occurrence of NPs is being implemented now. The statistics used in the system consists of four parts: (S1) Appearance counts of 40,032 distinct words from a corpus of 1,000,000 words of Chinese text [Liu el al., 1975] .",
"cite_spans": [
{
"start": 462,
"end": 480,
"text": "[Liu el al., 1975]",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "The Experimental Results",
"sec_num": "4."
},
{
"text": "The BDC Chinese-English Dictionary [BDC, 1992] .",
"cite_spans": [
{
"start": 35,
"end": 46,
"text": "[BDC, 1992]",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "($2)",
"sec_num": null
},
{
"text": "A general corpus of 300,000 words. Some 4,000 words of text from this corpus is tagged and marked with NP. ($4) A name corpus of some 18,000 surnamenames. The performance of the completed parts of the system is as follows: The hit rate of word segmentation is about 97% on the average. For the surname-names alone, we get 90% average hit rate which eliminate about 40% of errors produced by our previous segmentation system. About 98% of part-of-speeches are tagged correctly. And about 95% of the noun phrases are found successfully.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "($3)",
"sec_num": null
},
{
"text": "The preliminary results that we have obtained seem very promising. The approach presented here does not rely on a fully developed Chinese grammar for syntactical analysis on the sentential level. Thus the efficiency in system development and generation of indexes is reasonable and cost of building and maintaining such a system is acceptable. Currently, we are working on (1) handling translated names, (2) improving the hit rate of tagging and NP identification by using a larger and more correctly tagged and marked training corpus, and (3) completion of the statistical analysis of occurrence of noun phrases.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Concluding Remarks",
"sec_num": "5."
}
],
"back_matter": [
{
"text": "Thanks are due to for Dr. Keh-Yih Su for making the BDC dictionary available to us. Preliminary work in segmentation has been done using the electronic dictionary developed by the Chinese Dictionary Group, Academia Sinica and acquired from Computer and Communication Research Laboratories through thd Technology Diffusion Program of ITRI.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgements",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "A Scheme for Tagging Chinese Running Text",
"authors": [
{
"first": "Shuanhu",
"middle": [],
"last": "Bai",
"suffix": ""
},
{
"first": "Ying",
"middle": [],
"last": "Xia",
"suffix": ""
}
],
"year": 1991,
"venue": "Proceedings of Natural Language Processing Pacific Rim Symposium",
"volume": "",
"issue": "",
"pages": "345--350",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Shuanhu Bai and Ying Xia. A Scheme for Tagging Chinese Running Text. In Proceedings of Natural Language Processing Pacific Rim Symposium, pages 345-350, Singapore, 1991.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Lexicon and Grammar in",
"authors": [
{
"first": "Andrew David",
"middle": [],
"last": "Beale",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Andrew David Beale. Lexicon and Grammar in",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Behavior Design Corporation",
"authors": [],
"year": 1988,
"venue": "Proceedings of the Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "211--216",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Probabilistic Tagging of written English, In Proceedings of the Annual Meeting of the Association for Computational Linguistics, pages 211-216, Buffalo, 1988. Behavior Design Corporation. BDC Electronic Chinese- English Dictionary, Hsinchu, Taiwan, 1992.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Experiments in Book Indexing by Computer, Information Storage and Retrieval",
"authors": [
{
"first": "H",
"middle": [],
"last": "Borko",
"suffix": ""
}
],
"year": 1970,
"venue": "",
"volume": "6",
"issue": "",
"pages": "5--16",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "H. Borko. Experiments in Book Indexing by Computer, Information Storage and Retrieval, 6(1 ): 5-16, 1970.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Chinese Word Segmentation through Constraint Satisfaction and Statistical Optimization",
"authors": [
{
"first": "Jyun-Sheng",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "Chi-Dah",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Shun-Der",
"middle": [],
"last": "Chen",
"suffix": ""
}
],
"year": 1991,
"venue": "Proceedings oJ ROC Computational Linguistics Conference",
"volume": "",
"issue": "",
"pages": "147--165",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jyun-Sheng Chang, Chi-Dah Chen, and Shun-Der Chen. Chinese Word Segmentation through Constraint Satisfaction and Statistical Optimization, In Proceedings oJ ROC Computational Linguistics Conference, pages 147- 165, Kenting, Taiwan, 1991, (in Chinese).",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "A Multiple-corpus Approach to Identification of Chinese Surname-Names",
"authors": [
{
"first": "Sue-Jin",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Ker",
"suffix": ""
}
],
"year": 1991,
"venue": "Proceeding~ of Natural Language Processing Pacific Rim Symposium",
"volume": "",
"issue": "",
"pages": "87--91",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Liu, and Sue-Jin Ker. A Multiple-corpus Approach to Identification of Chinese Surname-Names, In Proceeding~ of Natural Language Processing Pacific Rim Symposium, pages 87-91, Singapore, 1991.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Part-of-Speech Analysis for Mandarin Chinese, Technical Rep. T0002, Computation Center",
"authors": [
{
"first": "Li-Li",
"middle": [],
"last": "Chang",
"suffix": ""
}
],
"year": 1975,
"venue": "Academia Sinica",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Li-Li Chang et al. Part-of-Speech Analysis for Mandarin Chinese, Technical Rep. T0002, Computation Center, Academia Sinica, Taiwan, 1975, (in Chinese).",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "A Grammar for Spoken Chinese",
"authors": [
{
"first": "Chao",
"middle": [],
"last": "Yuen Ren",
"suffix": ""
}
],
"year": 1968,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yuen Ren Chao, A Grammar for Spoken Chinese, University of California Press, California, 1968.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Segmentation and Part-of-speech Tagging for Chinese, master thesis",
"authors": [
{
"first": "Chih-Dah",
"middle": [],
"last": "Chen",
"suffix": ""
}
],
"year": 1991,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Chih-Dah Chen. Segmentation and Part-of-speech Tagging for Chinese, master thesis, National Tsing-Hua University, Hsinchu, Taiwan, 1991.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Word Classifications and Grammatical Representation in Chinese",
"authors": [
{
"first": "Keh-Jiann",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Chu-Ren",
"middle": [],
"last": "Huang",
"suffix": ""
}
],
"year": 1991,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Keh-Jiann Chen and Chu-Ren Huang, Word Classifications and Grammatical Representation in Chinese, manuscript, 1991.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Problems and Strategies in Parsing Chinese Sentences -A Tutorial",
"authors": [
{
"first": "Keh-Jiann",
"middle": [],
"last": "Chen",
"suffix": ""
}
],
"year": 1988,
"venue": "Proceedings of ROC Computational Linguistics Workshop, Sitou, Talwan",
"volume": "",
"issue": "",
"pages": "19--24",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Keh-Jiann Chen. Problems and Strategies in Parsing Chinese Sentences -A Tutorial, In Proceedings of ROC Computational Linguistics Workshop, Sitou, Talwan, September, 1988, pp. 19-24, (in Chinese).",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "A Stochastic Parts Program and Noun Phrase Parser for Unrestricted Text",
"authors": [
{
"first": "Kenneth",
"middle": [
"Ward"
],
"last": "Church",
"suffix": ""
}
],
"year": 1988,
"venue": "Proceedings of Second Conference on Applied Natural Language Processing",
"volume": "",
"issue": "",
"pages": "136--143",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kenneth Ward Church. A Stochastic Parts Program and Noun Phrase Parser for Unrestricted Text. In Proceedings of Second Conference on Applied Natural Language Processing, pages 136-143, Austin, 1988.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Grammatical Category Disambiguation by Statistical Optimization",
"authors": [
{
"first": "J",
"middle": [],
"last": "Steven",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Derose",
"suffix": ""
}
],
"year": 1988,
"venue": "Computational Linguistics",
"volume": "14",
"issue": "1",
"pages": "31--39",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Steven J. DeRose. Grammatical Category Disambiguation by Statistical Optimization, Computational Linguistics, 14(1):31-39, Winter 1988.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Network-Based Heuristics for Constraint-Satisfaction Problems",
"authors": [
{
"first": "Rina",
"middle": [],
"last": "Dechter",
"suffix": ""
},
{
"first": "Judea",
"middle": [],
"last": "Pearl",
"suffix": ""
}
],
"year": 1988,
"venue": "J. of Artificial Intelligence",
"volume": "34",
"issue": "1",
"pages": "1--38",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Rina Dechter and Judea Pearl, 1988, Network-Based Heuristics for Constraint-Satisfaction Problems, J. of Artificial Intelligence 34(1): 1-38, 1988.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Fully Automatic Book Indexing",
"authors": [
{
"first": "M",
"middle": [],
"last": "Dillon",
"suffix": ""
},
{
"first": "L",
"middle": [
"K"
],
"last": "Mcdonald",
"suffix": ""
}
],
"year": 1983,
"venue": "Journal of Documentation",
"volume": "39",
"issue": "3",
"pages": "135--154",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "M. Dillon and L.K. McDonald. Fully Automatic Book Indexing, Journal of Documentation, 39(3):135-154, 1983.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Finding Clauses in Unrestricted Text by Finitary and Stochastic Methods",
"authors": [
{
"first": "Eva",
"middle": [
"I"
],
"last": "Ejerhed",
"suffix": ""
}
],
"year": 1988,
"venue": "Proceedings of the Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "219--227",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Eva I. Ejerhed. Finding Clauses in Unrestricted Text by Finitary and Stochastic Methods, In Proceedings of the Annual Meeting of the Association for Computational Linguistics, pages 219-227, Austin, 1988.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Frequency Counts of Chinese Words",
"authors": [
{
"first": "In-Mao",
"middle": [],
"last": "Liu",
"suffix": ""
}
],
"year": 1975,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "In-mao Liu et al. Frequency Counts of Chinese Words, Lucky Book Co., Taipei, Taiwan, 1975.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Syntactical Approaches to Automatic Book Indexing",
"authors": [
{
"first": "Gerard",
"middle": [],
"last": "Salton",
"suffix": ""
}
],
"year": 1988,
"venue": "Proceedings of the Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "204--210",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Gerard Salton. Syntactical Approaches to Automatic Book Indexing, In Proceedings of the Annual Meeting of the Association for Computational Linguistics, pages 204-210, 1988.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "A Statistical Method for Finding Word Boundaries in Chinese Text",
"authors": [
{
"first": "Richard",
"middle": [],
"last": "Sproat",
"suffix": ""
},
{
"first": "Chilin",
"middle": [],
"last": "Shih",
"suffix": ""
}
],
"year": 1990,
"venue": "Journal of Computer Processing of Chinese and Oriental Languages",
"volume": "4",
"issue": "4",
"pages": "336--351",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Richard Sproat and Chilin Shih, A Statistical Method for Finding Word Boundaries in Chinese Text, Journal of Computer Processing of Chinese and Oriental Languages, 4(4):336-351, March, 1990.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "A Parsing Method for Identifying Words in Mandarin Chinese Sentences, Identification of Chinese Name",
"authors": [
{
"first": "Lian-Jyh",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Tzusheng",
"middle": [],
"last": "Pei",
"suffix": ""
},
{
"first": "Wei-Chuan",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Lih-Ching",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Huang",
"suffix": ""
}
],
"year": 1991,
"venue": "Proceedings of International Joint Conference on Artificial Intelligence",
"volume": "",
"issue": "",
"pages": "1018--1023",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Lian-Jyh Wang, Tzusheng Pei, Wei-Chuan Li, and Lih- Ching R. Huang. A Parsing Method for Identifying Words in Mandarin Chinese Sentences, Identification of Chinese Name, In Proceedings of International Joint Conference on Artificial Intelligence, pages 1018-1023, Sidney, 1991.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"num": null,
"uris": null,
"text": "Segmentation, tagging, and noun phrase finding",
"type_str": "figure"
},
"FIGREF1": {
"num": null,
"uris": null,
"text": "List of part-of-speeches",
"type_str": "figure"
},
"TABREF1": {
"content": "<table><tr><td>1. V</td><td>Verbe (Predicative)</td></tr><tr><td>2. NC</td><td>Nouns</td></tr><tr><td>3. NP</td><td>Proper Names or Pronouns</td></tr><tr><td>4. A</td><td>Adjectives (Non-Predicative)</td></tr><tr><td>5. P</td><td>Prepositions</td></tr><tr><td colspan=\"2\">6. ADV Adverbs</td></tr><tr><td>7. CJ</td><td>Conjunctions</td></tr><tr><td>8. D</td><td>Determiners</td></tr><tr><td>9. Q</td><td>Quantifiers</td></tr><tr><td>10. CL</td><td>Ciassifers</td></tr><tr><td colspan=\"2\">11. LOC Locatives</td></tr><tr><td colspan=\"2\">12. ASP Aspect Markers</td></tr><tr><td colspan=\"2\">13. CTS Sententiai Clitics</td></tr><tr><td colspan=\"2\">14. CTN Noun Clitics</td></tr><tr><td colspan=\"2\">15. CTM Modifiers Clitics</td></tr><tr><td colspan=\"2\">16. INT Interrogatives</td></tr><tr><td>17. S</td><td>Sentences</td></tr><tr><td>18. PP</td><td>Prepositional Phrases</td></tr><tr><td colspan=\"2\">19. PREF Prefixes</td></tr><tr><td colspan=\"2\">20. SUF Suffixes</td></tr></table>",
"html": null,
"num": null,
"type_str": "table",
"text": ""
}
}
}
} |