File size: 62,233 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
{
    "paper_id": "A00-1032",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T01:12:03.935537Z"
    },
    "title": "Language Independent Morphological Analysis",
    "authors": [
        {
            "first": "Tatsuo",
            "middle": [],
            "last": "Matsumoto",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Nara Institute of Science and Technology { tatuo-y",
                "location": {}
            },
            "email": "matsu@is.aist-nara@ac.jp"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "This paper proposes a framework of language independent morphological analysis and mainly concentrate on tokenization, the first process of morphological analysis. Although tokenization is usually not regarded as a difficult task in most segmented languages such as English, there are a number of problems in achieving precise treatment of lexical entries. We first introduce the concept of morpho-fragments, which are intermediate units between characters and lexical entries. We describe our approach to resolve problems arising in tokenization so as to attain a language independent morphological analyzer.",
    "pdf_parse": {
        "paper_id": "A00-1032",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "This paper proposes a framework of language independent morphological analysis and mainly concentrate on tokenization, the first process of morphological analysis. Although tokenization is usually not regarded as a difficult task in most segmented languages such as English, there are a number of problems in achieving precise treatment of lexical entries. We first introduce the concept of morpho-fragments, which are intermediate units between characters and lexical entries. We describe our approach to resolve problems arising in tokenization so as to attain a language independent morphological analyzer.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "The first step in natural language processing is to identify words in a sentence. We call this process a morphological analysis. Various languages exist in the world, and strategies for morphological analysis differ by types of language. Conventionally, morphological analyzers have been developed in one analyzer for each language approach. This is a language dependent approach. In contrast, We propose a framework of language independent morphological analysis system. We employ one analyzer for any language approach. This approach enables a rapid implementation of morphological analysis systems for new languages.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We define two types of written languages: one is a segmented language, and the other is a nonsegmented language. In non-segmented languages such as Chinese and Japanese, since words are not separated by delimiters such as white spaces, tokenization is a important and difficult task. In segmented languages such as English, since words are seemingly separated by white spaces or punctuation marks, tokenization is regarded as a relatively easy task and little attention has been paid to. Therefore, each language dependent morphological analyzer has its own strategy for tokenization. We call a string defined in the dictionary lexeme. From an algorithmic point of view, tokenization is regarded as the process of converting an input stream of characters into a stream of lexemes.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We assume that a morphological analysis consists of three processes: tokenization, dictionary lookup, and disambiguation. Dictionary look-up gets a string and returns a set of lexemes with part-ofspeech information. This implicitly contains lemmatization. Disambiguation selects the most plausible sequence of lexemes by a use of a rule-base model or a hidden Markov model (HMM) (Manning and Schiitze, 1999) . Disambiguation i s already language independent, since it does not process strings directly and therefore will not be taken up. On the other hand, tokenization and dictionary look-up are language dependent and shall be explained more in this paper.",
                "cite_spans": [
                    {
                        "start": 379,
                        "end": 407,
                        "text": "(Manning and Schiitze, 1999)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We consider problems concerning tokenization of segmented languages in Section 2. To resolve these problem, we first apply the method of nonsegmented languages processing to segmented languages (Section 3). However, we do not obtain a satisfactory result. Then, we introduce the concept of morpho-fragments to generalize the method of non-segmented language processing (Section 4). The proposed framework resolves most problems in tokenization, and an efficient language independent part-of-speech tagging becomes possible.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In segmented languages such as English, tokenization is regarded as a relatively easy task and little attention has been paid to. When a sentence has clear word boundaries, the analyzer just consults the dictionary look-up component whether strings between delimiters exist in the dictionary. If any string exists, the dictionary look-up component returns the set of possible parts-of-speech. This string is known as graphic word which is defined as \"a string of contiguous alphanumeric characters with space on either side; may include hyphens and apostrophes, but no other punctuation marks\" (Ku~era and Francis, 1967 Figure 1 ) and searches the dictionary for these graphic words. However, in practice, we want a sequence of lexemes (see the line labeled \"Lexemes\" in Figure 1 ). We list two major problems of tokenization in segmented languages below (examples in English). We use the term segment to refer to a string separated by white spaces.",
                "cite_spans": [
                    {
                        "start": 594,
                        "end": 619,
                        "text": "(Ku~era and Francis, 1967",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 620,
                        "end": 628,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    },
                    {
                        "start": 771,
                        "end": 779,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Problems of Tokenization in Segmented Languages",
                "sec_num": "2"
            },
            {
                "text": "1. Segmentation(one segment into several lexemes): Segments with a period at the end (e.g, \"Calif.\" and \"etc.\") suffer from segmentation ambiguity. The period can denote an abbreviation, the end of a sentence, or both. The problem of sentence boundary ambiguity is not easy to solve (Palmer and Hearst, 1997) . A segment with an apostrophe also has segmentation ambiguity. For example, \"McDonald's\" is ambiguous since this string can be segmented into either \"Mc-Donald / Proper noun\" + \" 's / Possessive ending\" or \"McDonald's / Proper noun (company name)\". In addition, \"boys' \" in a sentence \"... the boys' toys ...\" is ambiguous. The string can be segmented into either \"boys' / Plural possessive\" or \"boys/Plural Noun\" \u00f7 \" ' / Punctuation (the end of a quotation)\" (Manning and Schiitze, 1999) . If a hyphenated segment such as \"data-base,\" \"F-16,\" or \"MS-DOS\" exists in the dictionary, it should be an independent lexeme. However, if a hyphenated segment such as \"55-years-old\" does not exist in the dictionary, hyphens should be treated as independent tokens (Fox, 1992) . Other punctuation marks such as \"/\" or \"_\" have the same problem in \"OS/2\" or \"max_size\" (in programming languages).",
                "cite_spans": [
                    {
                        "start": 283,
                        "end": 308,
                        "text": "(Palmer and Hearst, 1997)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 770,
                        "end": 798,
                        "text": "(Manning and Schiitze, 1999)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 1066,
                        "end": 1077,
                        "text": "(Fox, 1992)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Problems of Tokenization in Segmented Languages",
                "sec_num": "2"
            },
            {
                "text": "If a lexeme consisting of a sequence of segments such as a proper noun (e.g., \"New York\") or a phrasal verb (e.g., \"look at\" and \"get up\") exists in the dictionary, it should be a lexeme.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Round-up(several segments into one lexeme):",
                "sec_num": "2."
            },
            {
                "text": "To handle such lexemes, we need to store multisegment lexemes in the dictionary. Webster and Kit handle idioms and fixed expressions in this way (Webster and Kit, 1992) . In Penn Treebank (Santorini, 1990 ), a proper noun like \"New York\" is defined as two individual proper nouns \"New / NNP\" \u00f7 \"York / NNP,\" disregarding round-up of several:segments into a lexeme.",
                "cite_spans": [
                    {
                        "start": 145,
                        "end": 168,
                        "text": "(Webster and Kit, 1992)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 188,
                        "end": 204,
                        "text": "(Santorini, 1990",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Round-up(several segments into one lexeme):",
                "sec_num": "2."
            },
            {
                "text": "The definition of lexemes in a dictionary depends on the requirement of application. Therefore, a simple pattern matcher is not enough to deal with language independent tokenization.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Round-up(several segments into one lexeme):",
                "sec_num": "2."
            },
            {
                "text": "Non-segmented languages do not have a delimiter between lexemes ( Figure 2 ). Therefore, a treatment of further segmentation and rounding up has been well considered. In a non-segmented language, the analyzer considers all prefixes from each position in the sentence, checks whether each prefix matches the lexeme in the dictionary, stores these lexemes in a graph structure, and finds the most plausible sequence of lexemes in the graph structure. To find the sequence, Nagata proposed a probabilistic language model for non-segmented languages (Nagata, 1994) (Nagata, 1999) .",
                "cite_spans": [
                    {
                        "start": 546,
                        "end": 560,
                        "text": "(Nagata, 1994)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 561,
                        "end": 575,
                        "text": "(Nagata, 1999)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 66,
                        "end": 74,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Round-up(several segments into one lexeme):",
                "sec_num": "2."
            },
            {
                "text": "The crucial difference between segmented and non-segmented languages in the process of morphological analysis appears in the way of the dictionary look-up. The standard technique for looking up lexemes in Japanese dictionaries is to use a trie structure (Fredkin, 1960 )(Knuth, 1998 . A trie structured dictionary gives all possible lexemes that start at a given position in a sentence effectively (Morimoto and Aoe, 1993) . We call this method of word looking-up as \"common prefix search\" (hereafter CPS). Figure 3 shows a part of the trie for Japanese lexeme dictionary. The results of CPS for \"~j~ ~'7 ~ o \"(I go to Ebina.) are \"~j~\" and \"~.\" To get all possible lexemes in the sentence, the analyzer has to slide the start position for CPS to the right by character by character.",
                "cite_spans": [
                    {
                        "start": 254,
                        "end": 268,
                        "text": "(Fredkin, 1960",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 269,
                        "end": 282,
                        "text": ")(Knuth, 1998",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 398,
                        "end": 422,
                        "text": "(Morimoto and Aoe, 1993)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 507,
                        "end": 515,
                        "text": "Figure 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Round-up(several segments into one lexeme):",
                "sec_num": "2."
            },
            {
                "text": "A simple method that directly applies the morphological analysis method for non-segmented languages can handle the problems of segmented languages.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A Naive Approach",
                "sec_num": "3"
            },
            {
                "text": "For instance, to analyze the sentence, \"They've gone to school together,\" we first delete all white spaces in the sentence and get \"They'vegonetoschooltogether.\" Then we pass it to the analyzer for non-segmented languages. However, the analyzer may return the result as \"They / 've / gone / to / school / to / get / her / .\" inducing a spurious ambiguity. Mills applied this method and tokenized the medieval manuscript in Cornish (Mills, 1998) .",
                "cite_spans": [
                    {
                        "start": 431,
                        "end": 444,
                        "text": "(Mills, 1998)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A Naive Approach",
                "sec_num": "3"
            },
            {
                "text": "We carried out experiments to examine the influence of delimiter deletion. We use Penn Treebank (Santorini, 1990 ) part-of-speech tagged corpus (1.3M lexemes) to train an HMM and analyze sentences by HMM-based morphological analyzer MOZ (Yamashita, 1999) (Ymashita et al., 1999) . We use a bigram model for training it from the corpus. Test data is the same as the training corpus. Table 1 shows accuracy of segmentation and part-ofspeech tagging. The accuracy is expressed in terms of recall and precision (Nagata, 1999) . Let the number of lexemes in the tagged corpus be Std, the number of lexemes in the output of the analyze be Sys, and the number of matched lexemes be M. Recall is defined as M/Std, precision is defined as M/Sys.",
                "cite_spans": [
                    {
                        "start": 96,
                        "end": 112,
                        "text": "(Santorini, 1990",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 237,
                        "end": 254,
                        "text": "(Yamashita, 1999)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 255,
                        "end": 278,
                        "text": "(Ymashita et al., 1999)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 507,
                        "end": 521,
                        "text": "(Nagata, 1999)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 382,
                        "end": 389,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "A Naive Approach",
                "sec_num": "3"
            },
            {
                "text": "The following are the labels in Table 1 (sentence formats and methods we use):",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 32,
                        "end": 39,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "A Naive Approach",
                "sec_num": "3"
            },
            {
                "text": "LXS We isolate all the lexemes in sentences and apply the method for segmented languages to the sentences. This situation is ideal, since the problems we discussed in Section 2 do not exist. In other words, all the sentences do not have segmentation ambiguity. We use the results as the baseline. Example sentence:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A Naive Approach",
                "sec_num": "3"
            },
            {
                "text": "\"Itu ' suMr. uLeeu ' supenu \u2022\"",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A Naive Approach",
                "sec_num": "3"
            },
            {
                "text": "NSP We remove all the spaces in sentences and apply the method for non-segmented languages to the sentences. Example sentence:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A Naive Approach",
                "sec_num": "3"
            },
            {
                "text": "\"It ' sMr. Lee ' spen.\"",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A Naive Approach",
                "sec_num": "3"
            },
            {
                "text": "NOR Sentences are in the original normal format. We apply the method for non-segmented languages to the sentences. Example sentence:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A Naive Approach",
                "sec_num": "3"
            },
            {
                "text": "\"It ' SuMr. uLee ' supen.\"",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A Naive Approach",
                "sec_num": "3"
            },
            {
                "text": "Because of no segmentation ambiguity, \"LXS\" performs better than \"NSP\" and \"NOR.\" The following are typical example of segmentation errors. The errors originate from conjunctive ambiguity and disjunctive ambiguity (Guo, 1997) .",
                "cite_spans": [
                    {
                        "start": 214,
                        "end": 225,
                        "text": "(Guo, 1997)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A Naive Approach",
                "sec_num": "3"
            },
            {
                "text": "conjunctive ambiguity The analyzer recognized \"away, .... ahead,\" \"anymore,\" and '~orkforce\" as \"a way,\" \"a head,\" \"any more,\" and '~ork force,\" respectively. In the results of \"NSP,\" the number of this type of error is 11,267.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A Naive Approach",
                "sec_num": "3"
            },
            {
                "text": "disjunctive ambiguity The analyzer recognized \"a tour,\" \"a ton,\" and \"Alaskan or\" as \"at our,\" \"at on,\" and \"Alaska nor,\" respectively. In the results of \"NSP,\" the number of this type of error is 233.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A Naive Approach",
                "sec_num": "3"
            },
            {
                "text": "Since only \"NSP\" has disjunctive ambiguity, \"NOR\" performs better than \"NSP.\" This shows that white spaces between segments help to decrease segmentation ambiguity. Though the proportional difference in accuracy looks slight between these models, there is a considerable influence in the analysis efficiency. In the cases of \"NSP\" and \"NOR,\" the analyzer may look up the dictionary from any position in a given sentence, therefore candidates for lexemes increase, and the analysis time also increase. The results of our experiments show that the run time of analyses of \"NSP\" or \"NOR\" takes about 4 times more than that of \"LXS.\"",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A Naive Approach",
                "sec_num": "3"
            },
            {
                "text": "Morpho-fragments: The Building Blocks Although segmented languages seemingly have clear word boundaries, there are problems of further segmentation and rounding up as introduced in Section 2. The naive approach in Section 3 does not work well. In this section, we propose an efficient and sophisticated method to solve the problems by introducing the concept of morpho-/ragments. We also show that a uniform treatment of segmented and non-segmented languages is possible without inducing the spurious ambiguity.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "4",
                "sec_num": null
            },
            {
                "text": "The morpho-fragments (MFs) of a language is defined as the smallest set of strings of the alphabet which can compose all lexemes in the dictionary. In other words, MFs are intermediate units between Figure 1 and Figure 2 ). MFs are well defined tokens which are specialized for language independent morphological analysis. For example, in English, all punctuation marks are MFs. Parts of a token separated by a punctuation mark such as \"He,\" \"s,\" and the punctuation mark itself, ..... in \"He's\" are MFs. The tokens in a compound lexeme such as \"New\" and \"York\" in \"New York\" are also MFs. In non-segmented languages such as Chinese and Japanese, every single character is a MF. Figure 4 shows decomposition of sentences into MFs (enclosed by \"[\" and \"]\") for several languages. Delimiters (denoted \"J') are treated as special MFs that cannot start nor end a lexeme.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 199,
                        "end": 207,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    },
                    {
                        "start": 212,
                        "end": 220,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 679,
                        "end": 687,
                        "text": "Figure 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Definition",
                "sec_num": "4.1"
            },
            {
                "text": "Once the set of MFs is determined, the dictionary is compiled into a trie structure in which the edges are labeled by MFs, as shown in Figure 5 for English and in Figure 3 for Japanese. A trie structure ensures to return all and only possible lexemes starting at a particular position in a sentence by a one-time consultation to the dictionary, resulting in an efficient dictionary look-up with no spurious ambiguity.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 135,
                        "end": 143,
                        "text": "Figure 5",
                        "ref_id": "FIGREF3"
                    },
                    {
                        "start": 163,
                        "end": 171,
                        "text": "Figure 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Definition",
                "sec_num": "4.1"
            },
            {
                "text": "When we analyze a sentence of a non-segmented language, to get all possible lexemes in the sentence, the analyzer slides the position one character by one character from the beginning to the end of the sentence and consults the trie structured dictionary (Section 2). Note that every character is a MF in non-segmented languages. In the same way, to analyze a sentence of a segmented language, the analyzer slides the position one MF by one MF and consults the trie structured dictionary, then, all possible lexemes are obtained. For example, in Figure 5 , the results of CPS for \"'m in ...\" are ..... and \"'m,\" and the results for \"New York is ...\" are \"New\" and \"New York.\" Therefore, a morphological analyzer with CPSbased dictionary look-up for non-segmented languages can be used for the analysis of segmented languages. In other words, MFs make possible language independent morphological analysis. We can also say MFs specify the positions to start as well as to end the dictionary look-up. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 546,
                        "end": 554,
                        "text": "Figure 5",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Definition",
                "sec_num": "4.1"
            },
            {
                "text": "The problem is that it is not easy to identify the complete set of MFs for a segmented language. We do not make effort to find out the minimum and complete set of MFs. Instead, we decide to specify all the possible delimiters and punctuation marks appearing in the dictionary, these may separate MFs or become themselves as MFs. By specifying the following three kinds of information for the language under consideration, we attain a pseudo-complete MF definition. The following setting not only simplifies the identification of MFs but also achieves a uniform framework of language dependent morphological analysis system.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "How to Recognize Morpho-fragments",
                "sec_num": "4.2"
            },
            {
                "text": "The languages are classified into two groups: segmented and non-segmented languages. \"Language type\" decides if every character in the language can be an MF. In non-segmented language every character can be an MF. In segmented language, punctuation marks and sequences of characters except for delimiters can be an MF.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The language type:",
                "sec_num": "1."
            },
            {
                "text": "2. The set of the delimiters acting as boundaries: These act as boundaries of MFs. However, these can not be independent MFs (can not start nor end a lexeme). For example, white spaces are delimiters in segmented languages.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The language type:",
                "sec_num": "1."
            },
            {
                "text": "3. The set of the punctuation marks and other symbols: These act as a boundary of MFs as well as an MF. Examples are an apostrophe in \"It's,\" a period in \"Mr.,\" and a hyphen in \"F-16.\"",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The language type:",
                "sec_num": "1."
            },
            {
                "text": "\u2022 Using these information, the process of recognizing MFs becomes simple and easy. The process can be implemented by a finite state machine or a simple pattern matcher.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The language type:",
                "sec_num": "1."
            },
            {
                "text": "The following is the example of the definition for English: In incompletely-segmented languages, such as Korean, we have to consider two types of connection of lexemes, one is \"over a delimiter\" and the other is \"inside a segment\" (Hirano and Matsumoto, 1996) . If we regard delimiters as lexemes, a trigram model can make it possible to treat both types. The definition gives possible starting positions of MFs in sentences of the language and the same morphological analysis system is usable for any language.",
                "cite_spans": [
                    {
                        "start": 231,
                        "end": 259,
                        "text": "(Hirano and Matsumoto, 1996)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The language type:",
                "sec_num": "1."
            },
            {
                "text": "We examined an effect of applying the morphofragments to analysis. Conditions of the experiment are almost the same as \"NOR.\" The difference is that we use the morpho-fragments definition for English. The row labeled \"MF\" in Table 1 shows the results of the analysis. Using the morpho-fragments decreases the analysis time drastically. The accuracy is also better than those of the naive approaches.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 225,
                        "end": 232,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "The language type:",
                "sec_num": "1."
            },
            {
                "text": "Well studied language such as English may have a hand tuned tokenizer which is superior to ours. However, to tune a tokenizer by hand is not suitable to implement many minor languages.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The language type:",
                "sec_num": "1."
            },
            {
                "text": "We implement a language independent morphological analysis system based on the concept of morphofragments (Yamashita, 1999) . With an existence of tagged corpus, it is straightforward to implement part-of-speech taggers. We have implemented several of such taggers. The system uses an HMM. This is trained by a part-of-speech tagged corpus. We overview the setting and performance of tagging for several languages.",
                "cite_spans": [
                    {
                        "start": 106,
                        "end": 123,
                        "text": "(Yamashita, 1999)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Implementation",
                "sec_num": "4.3"
            },
            {
                "text": "An HMM is trained by the part-of-speech tagged corpus part of Penn Treebank (Santorini, 1990) (1.3 million morphemes). We use a trigram model. The lexemes in the dictionary are taken from the corpus as well as from the entry words in Oxford Advanced Learner's Dictionary (Mitton, 1992) . The system achieves 97% precision and recall for training data, 95% precision and recall for test data.",
                "cite_spans": [
                    {
                        "start": 76,
                        "end": 93,
                        "text": "(Santorini, 1990)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 271,
                        "end": 285,
                        "text": "(Mitton, 1992)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "English",
                "sec_num": null
            },
            {
                "text": "An HMM is trained by Japanese part-of-speech tagged corpus(Rea, 1998) (0.9 million morphemes).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Japanese",
                "sec_num": null
            },
            {
                "text": "We use a trigram model. The lexemes in the dictionary are taken from the corpus as well as from the dictionary of ChaSen ), a freely available Japanese morphological analyzer. The system achieves 97% precision and recall for training and test data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Japanese",
                "sec_num": null
            },
            {
                "text": "An HMM is trained by the Chinese part-ofspeech tagged corpus released by CKIP(Chinese Knowledge Information Processing Group, 1995) (2.1 million morphemes). We use a bigram model. The lexemes in the dictionary are taken only from the corpus. The system achieves 95% precision and recall for training data, 91% precision and recall for test data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Chinese",
                "sec_num": null
            },
            {
                "text": "We address two problems of tokenization in segmented languages: further segmentation and roundup. These problems are discussed by several authors including Mills (Mills, 1998) Webster & Kit (Webster and Kit, 1992) . However, their proposed solutions are not language independent.",
                "cite_spans": [
                    {
                        "start": 162,
                        "end": 175,
                        "text": "(Mills, 1998)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 190,
                        "end": 213,
                        "text": "(Webster and Kit, 1992)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work and Remarks",
                "sec_num": "5"
            },
            {
                "text": "To resolve the problems of tokenization, we first apply the method of non-segmented languages processing. However, this causes spurious segmentation ambiguity and a considerable influence in the analysis times. Therefore, we propose the concept of morpho-fragments that minimally comprises the lexemes in a language. Although the idea is quite simple, our approach avoids spurious ambiguity and attains an efficient look-up of a trie structured dictionary. In conclusion, the concept of morphofragments makes it easy to implemented language independent morphological analysis.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work and Remarks",
                "sec_num": "5"
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Chinese Knowledge Information Processing Group",
                "authors": [],
                "year": 1995,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chinese Knowledge Information Processing Group, 1995. ~ ~;",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Lexical Analysis and Stoplists",
                "authors": [
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Fox",
                        "suffix": ""
                    }
                ],
                "year": 1992,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "102--130",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christopher Fox, 1992. Lexical Analysis and Sto- plists, chapter 7, pages 102-130. In Frakes and Baeza-Yates (Frakes and Baeza-Yates, 1992).",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Information Retrieval: Data Structures ~ Algorithms",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "William",
                        "suffix": ""
                    },
                    {
                        "first": "Ricardo",
                        "middle": [
                            "A"
                        ],
                        "last": "Frakes",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Baeza-Yates",
                        "suffix": ""
                    }
                ],
                "year": 1992,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "William B. Frakes and Ricardo A. Baeza-Yates, ed- itors. 1992. Information Retrieval: Data Struc- tures ~ Algorithms. Prentice-Hall.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Trie memory",
                "authors": [
                    {
                        "first": "Edward",
                        "middle": [],
                        "last": "Fredkin",
                        "suffix": ""
                    }
                ],
                "year": 1960,
                "venue": "Communications of the ACM",
                "volume": "3",
                "issue": "9",
                "pages": "490--500",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Edward Fredkin. 1960. Trie memory. Communica- tions of the ACM, 3(9):490-500, September.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Critical tokenization and its properties",
                "authors": [
                    {
                        "first": "Jin",
                        "middle": [],
                        "last": "Guo",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Computational Linguistics",
                "volume": "23",
                "issue": "4",
                "pages": "569--596",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jin Guo. 1997. Critical tokenization and its prop- erties. Computational Linguistics, 23(4):569-596, December.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "A proposal of korean conjugation system and its application to morphological analysis",
                "authors": [
                    {
                        "first": "Yoshitaka",
                        "middle": [],
                        "last": "Hirano",
                        "suffix": ""
                    },
                    {
                        "first": "Yuji",
                        "middle": [],
                        "last": "Matsumoto",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Proceedings of the 11th Pacific Asia Conference on Language, Information and Computation (PACLIC 11)",
                "volume": "",
                "issue": "",
                "pages": "229--236",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yoshitaka Hirano and Yuji Matsumoto. 1996. A proposal of korean conjugation system and its ap- plication to morphological analysis. In Proceed- ings of the 11th Pacific Asia Conference on Lan- guage, Information and Computation (PACLIC 11), pages 229-236, December.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "The Art of Computer Programming : Sorting and Searching",
                "authors": [
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Donald",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Knuth",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "",
                "volume": "3",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Donald E. Knuth. 1998. The Art of Computer Pro- gramming : Sorting and Searching, volume 3. Addison-Wesley, second edition, May.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Computational Analysis of Present-Day American English",
                "authors": [
                    {
                        "first": "Henry",
                        "middle": [],
                        "last": "Ku~era",
                        "suffix": ""
                    },
                    {
                        "first": "W. Nelson",
                        "middle": [],
                        "last": "Francis",
                        "suffix": ""
                    }
                ],
                "year": 1967,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Henry Ku~era and W. Nelson Francis. 1967. Com- putational Analysis of Present-Day American En- glish. Brown University Press.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Foundations of Statistical Natural Language Processing",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Christopher",
                        "suffix": ""
                    },
                    {
                        "first": "Hinrich",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Schiitze",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christopher D. Manning and Hinrich Schiitze. 1999. Foundations of Statistical Natural Language Pro- cessing. The MIT Press.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Japanese Morphological Analysis System ChaSen version",
                "authors": [
                    {
                        "first": "Yuji",
                        "middle": [],
                        "last": "Matsumoto",
                        "suffix": ""
                    },
                    {
                        "first": "Akira",
                        "middle": [],
                        "last": "Kitauchi",
                        "suffix": ""
                    },
                    {
                        "first": "Tatsuo",
                        "middle": [],
                        "last": "Yamashita",
                        "suffix": ""
                    },
                    {
                        "first": "Yoshitaka",
                        "middle": [],
                        "last": "Hirano",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yuji Matsumoto, Akira Kitauchi, Tatsuo Yamashita, and Yoshitaka Hirano, 1999. Japanese Mor- phological Analysis System ChaSen version 2.0",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Lexicon based critical tokenization: An algorithm",
                "authors": [
                    {
                        "first": "Jon",
                        "middle": [],
                        "last": "Mills",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "Euralex'98",
                "volume": "",
                "issue": "",
                "pages": "213--220",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jon Mills. 1998. Lexicon based critical tokenization: An algorithm. In Euralex'98, pages 213-220, Au- gust.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "A Description of A Computer-Usable Dictionary File Based on The Oxford Advanced Learner's Dictionary of Current English",
                "authors": [
                    {
                        "first": "Roger",
                        "middle": [],
                        "last": "Mitton",
                        "suffix": ""
                    }
                ],
                "year": 1992,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Roger Mitton, 1992. A Description of A Computer- Usable Dictionary File Based on The Oxford Ad- vanced Learner's Dictionary of Current English.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Two trie structures for natural language dictionaries",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Morimoto",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Aoe",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "Proceedings of Natural Language Processing Pacific Rim Symposium",
                "volume": "",
                "issue": "",
                "pages": "302--311",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "K. Morimoto and J. Aoe. 1993. Two trie structures for natural language dictionaries. In Proceedings of Natural Language Processing Pacific Rim Sym- posium, pages 302-311.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "A stochastic japanese morphological analyzer using a forward-dp backwarda* n-best search algorithm",
                "authors": [
                    {
                        "first": "Masaaki",
                        "middle": [],
                        "last": "Nagata",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "COLING-9$",
                "volume": "1",
                "issue": "",
                "pages": "201--207",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Masaaki Nagata. 1994. A stochastic japanese mor- phological analyzer using a forward-dp backward- a* n-best search algorithm. In COLING-9$, vol- ume 1, pages 201-207, August.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "A part of speech estimation method for japanese unknown words using a statistical model of morphology and context",
                "authors": [
                    {
                        "first": "Masaaki",
                        "middle": [],
                        "last": "Nagata",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "37th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference",
                "volume": "",
                "issue": "",
                "pages": "277--284",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Masaaki Nagata. 1999. A part of speech estimation method for japanese unknown words using a sta- tistical model of morphology and context. In 37th Annual Meeting of the Association for Computa- tional Linguistics, Proceedings of the Conference, pages 277-284, June.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Adaptive multilingual sentence boundary disambiguation",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "David",
                        "suffix": ""
                    },
                    {
                        "first": "Marti",
                        "middle": [
                            "A"
                        ],
                        "last": "Palmer",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Hearst",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "June. Real World Computing Partnership",
                "volume": "23",
                "issue": "2",
                "pages": "241--267",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "David D. Palmer and Marti A. Hearst. 1997. Adap- tive multilingual sentence boundary disambigua- tion. Computational Linguistics, 23(2):241-267, June. Real World Computing Partnership, 1998. RWC Text Database Report. in Japanese.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Part-of-Speech Tagging Guidelines for the Penn Treebank Project",
                "authors": [
                    {
                        "first": "Beatrice",
                        "middle": [],
                        "last": "Santorini",
                        "suffix": ""
                    }
                ],
                "year": 1990,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Beatrice Santorini, 1990. Part-of-Speech Tagging Guidelines for the Penn Treebank Project (3rd Re- vision, 2nd printing), June.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Tokenization as the initial phase in nip",
                "authors": [
                    {
                        "first": "Jonathan",
                        "middle": [
                            "J"
                        ],
                        "last": "Webster",
                        "suffix": ""
                    },
                    {
                        "first": "Chunyu",
                        "middle": [],
                        "last": "Kit",
                        "suffix": ""
                    }
                ],
                "year": 1992,
                "venue": "COLING-92",
                "volume": "4",
                "issue": "",
                "pages": "1106--1110",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jonathan J. Webster and Chunyu Kit. 1992. Tok- enization as the initial phase in nip. In COLING- 92, volume 4, pages 1106-1110, August.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "MOZ and LimaTK Manual NAIST Computational Linguistics Laboratory",
                "authors": [
                    {
                        "first": "Tatsuo",
                        "middle": [],
                        "last": "Yamashita",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tatsuo Yamashita, 1999. MOZ and LimaTK Man- ual NAIST Computational Linguistics Labora- tory, <http://cl.aist-nara.ac.jp/-tatuo-y/ma/>, August. in Japanese.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Language independent tools for natural language processing",
                "authors": [
                    {
                        "first": "Tatsuo",
                        "middle": [],
                        "last": "Ymashita",
                        "suffix": ""
                    },
                    {
                        "first": "Msakazu",
                        "middle": [],
                        "last": "Fujio",
                        "suffix": ""
                    },
                    {
                        "first": "Yuji",
                        "middle": [],
                        "last": "Matsumoto",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Proceedings of the Eighteenth International Conference on Computer Processing",
                "volume": "",
                "issue": "",
                "pages": "237--240",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tatsuo Ymashita, Msakazu Fujio, and Yuji Mat- sumoto. 1999. Language independent tools for natural language processing. In Proceedings of the Eighteenth International Conference on Computer Processing, pages 237-240, March.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "type_str": "figure",
                "text": "Decomposition of Sentence in English Sentence (He is home for holiday.) Characters [~[ ~ [z~k[ ~t \"C\" I')~ I~\" I L t \"C [ ~ I ~ ] o Morphofragments V I'J I I L. I I I I o",
                "num": null
            },
            "FIGREF1": {
                "uris": null,
                "type_str": "figure",
                "text": "Decomposition of Sentence in Japanese \"Graphic Words\" in",
                "num": null
            },
            "FIGREF2": {
                "uris": null,
                "type_str": "figure",
                "text": "Figure 3: Japanese Trie Structured Dictionary",
                "num": null
            },
            "FIGREF3": {
                "uris": null,
                "type_str": "figure",
                "text": "my little brother.) L~--~ ~ot I ~c~. (I go to school.) -~g[~ ~ $ b .~ ~) o (Let's go to school.) English Trie Structured Dictionary",
                "num": null
            },
            "TABREF0": {
                "num": null,
                "type_str": "table",
                "html": null,
                "content": "<table><tr><td colspan=\"2\">Sentence Dr. Characters</td></tr><tr><td>Graphic Words</td><td>[Drl I ]Lee I land I IJohn'sl Isonl ]go I Itol Ithel ]McDonald's[ linl ]Newl IYork].l</td></tr><tr><td>Lexemes</td><td>[Dr.[ ILee I landl ]John]'s[ Isonl Igo] Itol ]thel IScDonald'sl ]inl tNew York].l</td></tr><tr><td>Morpho-fragments</td><td>IDr['[ ILeel landl [Johnl'lsl Isonl Igol Itol Ithel ]McDonaldl'[s] linl [Newl IYork].l</td></tr><tr><td/><td>).</td></tr><tr><td/><td>Conventionally, in segmented languages, an ana-</td></tr><tr><td/><td>lyzer converts a stream of characters into graphic</td></tr><tr><td/><td>words (see the rows labeled \"Characters\" and</td></tr></table>",
                "text": "Lee and John's son go to the McDonald's in New York."
            }
        }
    }
}