The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 7 new columns ({'Valid Time', 'pressure min', 'Initial Time', 'lat', 'wind max', 'lon', 'ensemble_idx'}) and 11 missing columns ({'NAME', 'BASIN', 'USA_ATCF_ID', 'ISO_TIME', 'LAT', 'SUBBASIN', 'SEASON', 'NATURE', 'USA_WIND', 'USA_PRES', 'LON'}). This happened while the csv dataset builder was generating data using hf://datasets/TCBench/TCBench/matched_tracks/2023_Gencast(weathernext).csv (at revision 1803d051fb8aecd55dc5d2b2b326251b68986c1d) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 643, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast Unnamed: 0: int64 SID: string Initial Time: string Valid Time: string ensemble_idx: int64 lat: double lon: double wind max: double pressure min: double -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1307 to {'Unnamed: 0': Value(dtype='int64', id=None), 'SID': Value(dtype='string', id=None), 'SEASON': Value(dtype='int64', id=None), 'BASIN': Value(dtype='string', id=None), 'SUBBASIN': Value(dtype='string', id=None), 'NAME': Value(dtype='string', id=None), 'ISO_TIME': Value(dtype='string', id=None), 'NATURE': Value(dtype='string', id=None), 'LAT': Value(dtype='float64', id=None), 'LON': Value(dtype='float64', id=None), 'USA_ATCF_ID': Value(dtype='string', id=None), 'USA_WIND': Value(dtype='string', id=None), 'USA_PRES': Value(dtype='string', id=None)} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1428, in compute_config_parquet_and_info_response parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet( File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 989, in stream_convert_to_parquet builder._prepare_split( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 7 new columns ({'Valid Time', 'pressure min', 'Initial Time', 'lat', 'wind max', 'lon', 'ensemble_idx'}) and 11 missing columns ({'NAME', 'BASIN', 'USA_ATCF_ID', 'ISO_TIME', 'LAT', 'SUBBASIN', 'SEASON', 'NATURE', 'USA_WIND', 'USA_PRES', 'LON'}). This happened while the csv dataset builder was generating data using hf://datasets/TCBench/TCBench/matched_tracks/2023_Gencast(weathernext).csv (at revision 1803d051fb8aecd55dc5d2b2b326251b68986c1d) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Unnamed: 0
int64 | SID
string | SEASON
int64 | BASIN
string | SUBBASIN
string | NAME
string | ISO_TIME
string | NATURE
string | LAT
float64 | LON
float64 | USA_ATCF_ID
string | USA_WIND
string | USA_PRES
string |
---|---|---|---|---|---|---|---|---|---|---|---|---|
705,503 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-01 00:00:00 | TS | -17.5 | 127 | SH062023 | 25 | 993 |
705,504 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-01 03:00:00 | TS | -17.3 | 127 | SH062023 | 25 | 993 |
705,505 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-01 06:00:00 | TS | -17.2 | 127.1875 | SH062023 | 25 | 992 |
705,506 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-01 09:00:00 | TS | -17.2 | 127.375 | SH062023 | 25 | 992 |
705,507 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-01 12:00:00 | TS | -17.3 | 127.625 | SH062023 | 25 | 992 |
705,508 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-01 15:00:00 | TS | -17.4 | 127.5 | SH062023 | 25 | 992 |
705,509 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-01 18:00:00 | TS | -17.5 | 127.375 | SH062023 | 25 | 992 |
705,510 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-01 21:00:00 | TS | -17.6 | 127.375 | SH062023 | 25 | 993 |
705,511 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-02 00:00:00 | TS | -17.7 | 127.375 | SH062023 | 25 | 993 |
705,512 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-02 03:00:00 | TS | -17.8 | 127.375 | SH062023 | 25 | 993 |
705,513 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-02 06:00:00 | TS | -18 | 127.375 | SH062023 | 25 | 993 |
705,514 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-02 09:00:00 | TS | -18.1 | 127.3125 | SH062023 | 25 | 993 |
705,515 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-02 12:00:00 | TS | -18.3 | 127.3125 | SH062023 | 25 | 993 |
705,516 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-02 15:00:00 | TS | -18.5 | 127 | SH062023 | 28 | 992 |
705,517 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-02 18:00:00 | TS | -18.7 | 126.625 | SH062023 | 30 | 991 |
705,518 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-02 21:00:00 | TS | -18.7 | 126 | SH062023 | 30 | 991 |
705,519 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-03 00:00:00 | TS | -18.7 | 125.3125 | SH062023 | 30 | 991 |
705,520 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-03 03:00:00 | TS | -18.7 | 124.8125 | SH062023 | 30 | 991 |
705,521 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-03 06:00:00 | TS | -18.7 | 124.375 | SH062023 | 30 | 991 |
705,522 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-03 09:00:00 | TS | -18.7 | 124 | SH062023 | 30 | 991 |
705,523 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-03 12:00:00 | TS | -18.8 | 123.6875 | SH062023 | 30 | 991 |
705,524 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-03 15:00:00 | TS | -18.6 | 123.1875 | SH062023 | 30 | 991 |
705,525 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-03 18:00:00 | TS | -18.5 | 122.875 | SH062023 | 30 | 991 |
705,526 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-03 21:00:00 | TS | -18.2 | 123 | SH062023 | 33 | 990 |
705,527 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-04 00:00:00 | MX | -18 | 123.3125 | SH062023 | 35 | 989 |
705,528 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-04 03:00:00 | MX | -18.2 | 123.375 | SH062023 | 35 | 989 |
705,529 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-04 06:00:00 | MX | -18.5 | 123.375 | SH062023 | 35 | 989 |
705,530 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-04 09:00:00 | MX | -18.6 | 123.3125 | SH062023 | 33 | 991 |
705,531 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-04 12:00:00 | MX | -18.7 | 123.125 | SH062023 | 30 | 992 |
705,532 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-04 15:00:00 | MX | -18.8 | 122.875 | SH062023 | 30 | 992 |
705,533 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-04 18:00:00 | MX | -18.8 | 122.8125 | SH062023 | 30 | 992 |
705,534 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-04 21:00:00 | MX | -18.7 | 122.8125 | SH062023 | 30 | 992 |
705,535 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-05 00:00:00 | MX | -18.6 | 123 | SH062023 | 30 | 992 |
705,536 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-05 03:00:00 | MX | -18.6 | 123.125 | SH062023 | 30 | 992 |
705,537 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-05 06:00:00 | MX | -18.6 | 123.1875 | SH062023 | 30 | 992 |
705,538 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-05 09:00:00 | MX | -18.8 | 123.375 | SH062023 | 30 | 992 |
705,539 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-05 12:00:00 | MX | -19 | 123.6875 | SH062023 | 30 | 992 |
705,540 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-05 15:00:00 | MX | -19.1 | 124 | SH062023 | 30 | 992 |
705,541 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-05 18:00:00 | MX | -19.2 | 124.375 | SH062023 | 30 | 992 |
705,542 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-05 21:00:00 | MX | -19.2 | 124.6875 | SH062023 | 28 | 993 |
705,543 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-06 00:00:00 | MX | -19.3 | 125.125 | SH062023 | 25 | 994 |
705,544 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-06 03:00:00 | MX | -19.5 | 125.5 | SH062023 | 25 | 994 |
705,545 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-06 06:00:00 | MX | -19.8 | 125.875 | SH062023 | 25 | 994 |
705,546 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-06 09:00:00 | TS | -20 | 126.625 | SH062023 | ||
705,547 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-06 12:00:00 | TS | -20.1 | 127 | |||
705,548 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-06 15:00:00 | TS | -20.2 | 127.5 | |||
705,549 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-06 18:00:00 | TS | -20.4 | 127.875 | |||
705,550 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-06 21:00:00 | TS | -20.5 | 128.375 | |||
705,551 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-07 00:00:00 | TS | -20.6 | 128.75 | |||
705,552 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-07 03:00:00 | TS | -20.7 | 129 | |||
705,553 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-07 06:00:00 | TS | -20.8 | 129.25 | |||
705,554 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-07 09:00:00 | TS | -20.8 | 129.5 | |||
705,555 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-07 12:00:00 | TS | -20.8 | 129.75 | |||
705,556 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-07 15:00:00 | TS | -20.8 | 130 | |||
705,557 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-07 18:00:00 | TS | -20.8 | 130.25 | |||
705,558 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-07 21:00:00 | TS | -20.8 | 130.375 | |||
705,559 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-08 00:00:00 | TS | -20.9 | 130.625 | |||
705,560 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-08 03:00:00 | TS | -21 | 130.75 | |||
705,561 | 2022355S10128 | 2,023 | SI | WA | ELLIE | 2023-01-08 06:00:00 | TS | -21.1 | 131 | |||
705,588 | 2023005S18142 | 2,023 | SP | EA | HALE | 2023-01-04 18:00:00 | DS | -18.2 | 142 | SH072023 | 20 | 1007 |
705,589 | 2023005S18142 | 2,023 | SP | EA | HALE | 2023-01-04 21:00:00 | DS | -18.1 | 142.5 | SH072023 | 20 | 1007 |
705,590 | 2023005S18142 | 2,023 | SP | EA | HALE | 2023-01-05 00:00:00 | DS | -18.1 | 143 | SH072023 | 20 | 1007 |
705,591 | 2023005S18142 | 2,023 | SP | EA | HALE | 2023-01-05 03:00:00 | DS | -18.1 | 143.5 | SH072023 | 20 | 1007 |
705,592 | 2023005S18142 | 2,023 | SP | EA | HALE | 2023-01-05 06:00:00 | DS | -18.1 | 144.125 | SH072023 | 20 | 1007 |
705,593 | 2023005S18142 | 2,023 | SP | EA | HALE | 2023-01-05 09:00:00 | DS | -18.1 | 144.625 | SH072023 | 20 | 1007 |
705,594 | 2023005S18142 | 2,023 | SP | EA | HALE | 2023-01-05 12:00:00 | DS | -18.1 | 145.25 | SH072023 | 20 | 1006 |
705,595 | 2023005S18142 | 2,023 | SP | EA | HALE | 2023-01-05 15:00:00 | DS | -18.2 | 146.875 | SH072023 | 23 | 1003 |
705,596 | 2023005S18142 | 2,023 | SP | EA | HALE | 2023-01-05 18:00:00 | TS | -18.3 | 148.375 | SH072023 | 25 | 1000 |
705,597 | 2023005S18142 | 2,023 | SP | EA | HALE | 2023-01-05 21:00:00 | TS | -18.5 | 149.125 | SH072023 | 25 | 1000 |
705,598 | 2023005S18142 | 2,023 | SP | EA | HALE | 2023-01-06 00:00:00 | TS | -18.5 | 149.25 | SH072023 | 25 | 1000 |
705,599 | 2023005S18142 | 2,023 | SP | EA | HALE | 2023-01-06 03:00:00 | TS | -18.5 | 149.75 | SH072023 | 28 | 1000 |
705,600 | 2023005S18142 | 2,023 | SP | EA | HALE | 2023-01-06 06:00:00 | TS | -18.5 | 150.5 | SH072023 | 30 | 999 |
705,601 | 2023005S18142 | 2,023 | SP | EA | HALE | 2023-01-06 09:00:00 | TS | -18.7 | 150.75 | SH072023 | 33 | 999 |
705,602 | 2023005S18142 | 2,023 | SP | EA | HALE | 2023-01-06 12:00:00 | TS | -19 | 151.25 | SH072023 | 35 | 999 |
705,603 | 2023005S18142 | 2,023 | SP | EA | HALE | 2023-01-06 15:00:00 | TS | -19.3 | 152 | SH072023 | 38 | 997 |
705,604 | 2023005S18142 | 2,023 | SP | EA | HALE | 2023-01-06 18:00:00 | TS | -19.7 | 152.75 | SH072023 | 40 | 994 |
705,605 | 2023005S18142 | 2,023 | SP | EA | HALE | 2023-01-06 21:00:00 | TS | -20.1 | 153.75 | SH072023 | 40 | 994 |
705,606 | 2023005S18142 | 2,023 | SP | EA | HALE | 2023-01-07 00:00:00 | TS | -20.6 | 154.75 | SH072023 | 40 | 994 |
705,607 | 2023005S18142 | 2,023 | SP | EA | HALE | 2023-01-07 03:00:00 | TS | -20.8 | 155.625 | SH072023 | 45 | 992 |
705,608 | 2023005S18142 | 2,023 | SP | EA | HALE | 2023-01-07 06:00:00 | TS | -21.1 | 156.75 | SH072023 | 50 | 989 |
705,609 | 2023005S18142 | 2,023 | SP | EA | HALE | 2023-01-07 09:00:00 | TS | -21.6 | 158 | SH072023 | 48 | 991 |
705,610 | 2023005S18142 | 2,023 | SP | EA | HALE | 2023-01-07 12:00:00 | TS | -22.1 | 159.5 | SH072023 | 45 | 992 |
705,611 | 2023005S18142 | 2,023 | SP | MM | HALE | 2023-01-07 15:00:00 | TS | -22.7 | 161.25 | SH072023 | 43 | 994 |
705,612 | 2023005S18142 | 2,023 | SP | MM | HALE | 2023-01-07 18:00:00 | TS | -23.3 | 162.625 | SH072023 | 40 | 996 |
705,613 | 2023005S18142 | 2,023 | SP | MM | HALE | 2023-01-07 21:00:00 | TS | -24 | 163.375 | SH072023 | 38 | 997 |
705,614 | 2023005S18142 | 2,023 | SP | MM | HALE | 2023-01-08 00:00:00 | TS | -24.6 | 164.25 | SH072023 | 35 | 998 |
705,615 | 2023005S18142 | 2,023 | SP | MM | HALE | 2023-01-08 03:00:00 | TS | -25 | 165.5 | SH072023 | 35 | 998 |
705,616 | 2023005S18142 | 2,023 | SP | MM | HALE | 2023-01-08 06:00:00 | MX | -25.3 | 166.75 | SH072023 | 35 | 997 |
705,617 | 2023005S18142 | 2,023 | SP | MM | HALE | 2023-01-08 09:00:00 | TS | -25.4 | 167.625 | SH072023 | 30 | 992 |
705,618 | 2023005S18142 | 2,023 | SP | MM | HALE | 2023-01-08 12:00:00 | SS | -25.4 | 168.125 | SH072023 | 25 | 987 |
705,619 | 2023005S18142 | 2,023 | SP | MM | HALE | 2023-01-08 15:00:00 | SS | -25.2 | 168.875 | SH072023 | 25 | 986 |
705,620 | 2023005S18142 | 2,023 | SP | MM | HALE | 2023-01-08 18:00:00 | SS | -25.1 | 169.875 | SH072023 | 25 | 985 |
705,621 | 2023005S18142 | 2,023 | SP | MM | HALE | 2023-01-08 21:00:00 | SS | -25.1 | 171.125 | SH072023 | 23 | 987 |
705,622 | 2023005S18142 | 2,023 | SP | MM | HALE | 2023-01-09 00:00:00 | SS | -25.4 | 172.625 | SH072023 | 20 | 988 |
705,623 | 2023005S18142 | 2,023 | SP | MM | HALE | 2023-01-09 03:00:00 | SS | -25.8 | 174.25 | SH072023 | 20 | 988 |
705,624 | 2023005S18142 | 2,023 | SP | MM | HALE | 2023-01-09 06:00:00 | SS | -26.6 | 175.875 | SH072023 | 20 | 988 |
705,625 | 2023005S18142 | 2,023 | SP | MM | HALE | 2023-01-09 09:00:00 | NR | -28.6 | 178 | SH072023 | ||
705,626 | 2023005S18142 | 2,023 | SP | MM | HALE | 2023-01-09 12:00:00 | NR | -30.7 | 179.5 | |||
705,627 | 2023005S18142 | 2,023 | SP | MM | HALE | 2023-01-09 15:00:00 | NR | -32.3 | 179.625 | |||
705,628 | 2023005S18142 | 2,023 | SP | MM | HALE | 2023-01-09 18:00:00 | NR | -33.5 | 178.875 |
Dataset Card for TCBench
Dataset Details
Dataset Description
TCBench leverages existing datasets to create an integrated, value-added dataset spanning 1980-Present. Additionally, it provides tools to seamlessly integrate new data sources and pre-process them in a consistent matter across studies. It targets the development and refinement of data-driven models for tropical cyclone prediction, including precipitation downscaling and intensity predictions. Tropical cyclones are some of the highest-impact weather events in affected regions, and we thus strive to support the development of a homogenized, publicly available, database of high-impact events. Our efforts include the optimized use of multiple datasets by fusing reanalysis and observational datasets into a comprehensive benchmark dataset in an expandable framework for experimental flexibility.
We plan to include state-of-the art uncertainty quantification methods designed for AI models of geospatial data and, following best practices, to contain open-access, AI-ready datasets that follow FAIR principles and will provide clear evaluation protocols for AI models. Finally, tropical cyclone datasets often require complex pre-processing, hindering their use by AI experts without domain knowledge. By providing homogenized data and well-defined evaluation protocols, TCBench will advance the use of AI for Earth sciences. It will facilitate the application and evaluation of sophisticated AI frameworks for tropical cyclone predictions.
In summary, TCBench aims to provide opportunities to study the predictability of tropical cyclones (and changes in behavior associated with changing climate), as well as developing a dataset and evaluation tools that can be used freely by the scientific community.
- License: MIT
Dataset Sources [optional]
The data for TCBench is compiled from a variety of sources. The International Best Track Archive for Climate Stewardship (IBTrACS, Knapp et. al. (2010), Gahtan et. al. (2024)) is the most complete observational archive of global tropical cyclones, and serves as the ``ground truth'' for model evaluation. ERA5 reanalysis (Hersbach et al. (2020)) provides dozens of high-resolution meteorological variables used to initialize physical and neural weather models. ERA5 reanalysis is available through the European Centre for Medium-range Weather Forecasting (ECMWF). Hindcasts from physical weather models are obtained from The International Grand Global Ensemble (TIGGE) product (Bougeault et. al. ), which provides ensemble reforecasts of many physical weather prediction models, including the Global Ensemble Forecasting System (GEFS) and the International Forecast System (IFS). Finally, neural weather model forecasts were obtained from various sources, including NVIDIA's FourCastNetv2 (Bonev et. al. (2023)), Huawei's Pangu-Weather (Bi et al. (2023)), Google DeepMind's GenCast (Price et al. (2025)), and the ECMWF's AIFS v1.0 (Lang et. al. (2024)).
- Bi, K. L. Xie, H. Zhang, X. Chen, X. Gu, and Q. Tian, 2023: Accurate medium-range global weather forecasting with 3D neural networks. Nature, 619, 533-538. doi:10.1038/s41586-023-06185-3.
- Bonev, B., T. Kurth, C. Hundt, J. Pathak, M. Baust, K. Kashinak, and A. Anandkumar, 2023: Spherical Fourier Neural Operators: Learning Stable Dynamics on the Sphere. arXiv preprint: https://arxiv.org/abs/2306.03838.
- Bougeault, P., and coauthors, 2010: The THORPEX Interactive Grand Global Ensemble. Bull. Amer. Meteorol. Soc., 91, 1059-1072. doi:10.1175/2010BAMS2853.1.
- Gahtan, J., K.R. Knapp, C.J. III Schreck, H.J. Diamond, J.P. Kossin, and M.C. Kruk, 2024: International Best Track Archive for Climate Stewardship (IBTrACS) Project, Version 4.01. NOAA National Centers for Environmental Information, https://doi.org/10.25921/82ty-9e16.
- Hersbach, H., B. Bell, P. Berrisford, S. Hirahara, A. Hor{'a}nyi, J. Mu{~n}oz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, and coauthors, 2020: The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146, 1999-2049.
- Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone best track data. Bull. Amer. Meteor. Soc., 91, 363-376. doi:10.1175/2009BAMS2755.1
- Lang, S., M. Alexe, M. Chantry, J. Dramsch, F. Pinault, B. Raoult, M. Clare, C. Lessig, M. Maier-Gerber, L. Magnusson, and coauthors, 2024: AIFS--ECMWF's data-driven forecasting system. arXiv preprint arXiv:2406.01465.
- Price, I., A. Sanchez-Gonzalez, F. Alet, T.R. Andersson, A. El-Kadi, D. Masters, T. Ewalds, J. Stott, S. Mohamed, P. Battaglia, and coauthors, 2025: Probabilistic weather forecasting with machine learning. Nature, 637, 84-90.
Out-of-Scope Use
TCBench should not be used for general atmospheric prediction tasks, extra-tropical cyclones, El Niño prediction, nor should it be used as a production capability. TCBench is made to measure the performance of prediction models for tropical cyclones only. The impossibility of creating a single dataset that fits all purposes necessitates trade-offs, such as neglecting some teleconnections or using datasets only available for the past approximately 15 years.
Dataset Structure
matched_tracks
|-- (Tracks obtained from the neural weather model).csv
|-- 2023_aifs.csv
|-- ...
neural_weather_models
|-- weather_model_1/
|---- (Raw weather model outputs for when a storm was observed).nc
|---- ...
|-- ..
Dataset Creation
Data Collection and Processing
[More Information Needed]
Bias, Risks, and Limitations
TCBench represents a subset of all possible tropical cylone tracks and materialization conditions. It has global coverage, but not every region that can see a tropical cyclone has a materalized cyclone in the dataset. Therefore, as an evaluation, TCBench may be missing certain geographical areas or settings under which tropical cyclones could materialize.
Citation
@article{gomez2025tcbench,
title={TCBench: A Benchmark for Tropical Cyclone Track and Intensity Forecasting at the Global Scale},
author={...},
journal={TBD},
year={2025}
}
Dataset Card Authors
- Ritwik Gupta
- Milton Gomez
- Marie McGraw
- Ilia Azizi
Dataset Card Contact
Ritwik Gupta firstlast@berkeley.edu
- Downloads last month
- 101