Datasets:

Languages:
English
ArXiv:
License:
Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 7 new columns ({'Valid Time', 'pressure min', 'Initial Time', 'lat', 'wind max', 'lon', 'ensemble_idx'}) and 11 missing columns ({'NAME', 'BASIN', 'USA_ATCF_ID', 'ISO_TIME', 'LAT', 'SUBBASIN', 'SEASON', 'NATURE', 'USA_WIND', 'USA_PRES', 'LON'}).

This happened while the csv dataset builder was generating data using

hf://datasets/TCBench/TCBench/matched_tracks/2023_Gencast(weathernext).csv (at revision 1803d051fb8aecd55dc5d2b2b326251b68986c1d)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 643, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              Unnamed: 0: int64
              SID: string
              Initial Time: string
              Valid Time: string
              ensemble_idx: int64
              lat: double
              lon: double
              wind max: double
              pressure min: double
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1307
              to
              {'Unnamed: 0': Value(dtype='int64', id=None), 'SID': Value(dtype='string', id=None), 'SEASON': Value(dtype='int64', id=None), 'BASIN': Value(dtype='string', id=None), 'SUBBASIN': Value(dtype='string', id=None), 'NAME': Value(dtype='string', id=None), 'ISO_TIME': Value(dtype='string', id=None), 'NATURE': Value(dtype='string', id=None), 'LAT': Value(dtype='float64', id=None), 'LON': Value(dtype='float64', id=None), 'USA_ATCF_ID': Value(dtype='string', id=None), 'USA_WIND': Value(dtype='string', id=None), 'USA_PRES': Value(dtype='string', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1428, in compute_config_parquet_and_info_response
                  parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 989, in stream_convert_to_parquet
                  builder._prepare_split(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 7 new columns ({'Valid Time', 'pressure min', 'Initial Time', 'lat', 'wind max', 'lon', 'ensemble_idx'}) and 11 missing columns ({'NAME', 'BASIN', 'USA_ATCF_ID', 'ISO_TIME', 'LAT', 'SUBBASIN', 'SEASON', 'NATURE', 'USA_WIND', 'USA_PRES', 'LON'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/TCBench/TCBench/matched_tracks/2023_Gencast(weathernext).csv (at revision 1803d051fb8aecd55dc5d2b2b326251b68986c1d)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Unnamed: 0
int64
SID
string
SEASON
int64
BASIN
string
SUBBASIN
string
NAME
string
ISO_TIME
string
NATURE
string
LAT
float64
LON
float64
USA_ATCF_ID
string
USA_WIND
string
USA_PRES
string
705,503
2022355S10128
2,023
SI
WA
ELLIE
2023-01-01 00:00:00
TS
-17.5
127
SH062023
25
993
705,504
2022355S10128
2,023
SI
WA
ELLIE
2023-01-01 03:00:00
TS
-17.3
127
SH062023
25
993
705,505
2022355S10128
2,023
SI
WA
ELLIE
2023-01-01 06:00:00
TS
-17.2
127.1875
SH062023
25
992
705,506
2022355S10128
2,023
SI
WA
ELLIE
2023-01-01 09:00:00
TS
-17.2
127.375
SH062023
25
992
705,507
2022355S10128
2,023
SI
WA
ELLIE
2023-01-01 12:00:00
TS
-17.3
127.625
SH062023
25
992
705,508
2022355S10128
2,023
SI
WA
ELLIE
2023-01-01 15:00:00
TS
-17.4
127.5
SH062023
25
992
705,509
2022355S10128
2,023
SI
WA
ELLIE
2023-01-01 18:00:00
TS
-17.5
127.375
SH062023
25
992
705,510
2022355S10128
2,023
SI
WA
ELLIE
2023-01-01 21:00:00
TS
-17.6
127.375
SH062023
25
993
705,511
2022355S10128
2,023
SI
WA
ELLIE
2023-01-02 00:00:00
TS
-17.7
127.375
SH062023
25
993
705,512
2022355S10128
2,023
SI
WA
ELLIE
2023-01-02 03:00:00
TS
-17.8
127.375
SH062023
25
993
705,513
2022355S10128
2,023
SI
WA
ELLIE
2023-01-02 06:00:00
TS
-18
127.375
SH062023
25
993
705,514
2022355S10128
2,023
SI
WA
ELLIE
2023-01-02 09:00:00
TS
-18.1
127.3125
SH062023
25
993
705,515
2022355S10128
2,023
SI
WA
ELLIE
2023-01-02 12:00:00
TS
-18.3
127.3125
SH062023
25
993
705,516
2022355S10128
2,023
SI
WA
ELLIE
2023-01-02 15:00:00
TS
-18.5
127
SH062023
28
992
705,517
2022355S10128
2,023
SI
WA
ELLIE
2023-01-02 18:00:00
TS
-18.7
126.625
SH062023
30
991
705,518
2022355S10128
2,023
SI
WA
ELLIE
2023-01-02 21:00:00
TS
-18.7
126
SH062023
30
991
705,519
2022355S10128
2,023
SI
WA
ELLIE
2023-01-03 00:00:00
TS
-18.7
125.3125
SH062023
30
991
705,520
2022355S10128
2,023
SI
WA
ELLIE
2023-01-03 03:00:00
TS
-18.7
124.8125
SH062023
30
991
705,521
2022355S10128
2,023
SI
WA
ELLIE
2023-01-03 06:00:00
TS
-18.7
124.375
SH062023
30
991
705,522
2022355S10128
2,023
SI
WA
ELLIE
2023-01-03 09:00:00
TS
-18.7
124
SH062023
30
991
705,523
2022355S10128
2,023
SI
WA
ELLIE
2023-01-03 12:00:00
TS
-18.8
123.6875
SH062023
30
991
705,524
2022355S10128
2,023
SI
WA
ELLIE
2023-01-03 15:00:00
TS
-18.6
123.1875
SH062023
30
991
705,525
2022355S10128
2,023
SI
WA
ELLIE
2023-01-03 18:00:00
TS
-18.5
122.875
SH062023
30
991
705,526
2022355S10128
2,023
SI
WA
ELLIE
2023-01-03 21:00:00
TS
-18.2
123
SH062023
33
990
705,527
2022355S10128
2,023
SI
WA
ELLIE
2023-01-04 00:00:00
MX
-18
123.3125
SH062023
35
989
705,528
2022355S10128
2,023
SI
WA
ELLIE
2023-01-04 03:00:00
MX
-18.2
123.375
SH062023
35
989
705,529
2022355S10128
2,023
SI
WA
ELLIE
2023-01-04 06:00:00
MX
-18.5
123.375
SH062023
35
989
705,530
2022355S10128
2,023
SI
WA
ELLIE
2023-01-04 09:00:00
MX
-18.6
123.3125
SH062023
33
991
705,531
2022355S10128
2,023
SI
WA
ELLIE
2023-01-04 12:00:00
MX
-18.7
123.125
SH062023
30
992
705,532
2022355S10128
2,023
SI
WA
ELLIE
2023-01-04 15:00:00
MX
-18.8
122.875
SH062023
30
992
705,533
2022355S10128
2,023
SI
WA
ELLIE
2023-01-04 18:00:00
MX
-18.8
122.8125
SH062023
30
992
705,534
2022355S10128
2,023
SI
WA
ELLIE
2023-01-04 21:00:00
MX
-18.7
122.8125
SH062023
30
992
705,535
2022355S10128
2,023
SI
WA
ELLIE
2023-01-05 00:00:00
MX
-18.6
123
SH062023
30
992
705,536
2022355S10128
2,023
SI
WA
ELLIE
2023-01-05 03:00:00
MX
-18.6
123.125
SH062023
30
992
705,537
2022355S10128
2,023
SI
WA
ELLIE
2023-01-05 06:00:00
MX
-18.6
123.1875
SH062023
30
992
705,538
2022355S10128
2,023
SI
WA
ELLIE
2023-01-05 09:00:00
MX
-18.8
123.375
SH062023
30
992
705,539
2022355S10128
2,023
SI
WA
ELLIE
2023-01-05 12:00:00
MX
-19
123.6875
SH062023
30
992
705,540
2022355S10128
2,023
SI
WA
ELLIE
2023-01-05 15:00:00
MX
-19.1
124
SH062023
30
992
705,541
2022355S10128
2,023
SI
WA
ELLIE
2023-01-05 18:00:00
MX
-19.2
124.375
SH062023
30
992
705,542
2022355S10128
2,023
SI
WA
ELLIE
2023-01-05 21:00:00
MX
-19.2
124.6875
SH062023
28
993
705,543
2022355S10128
2,023
SI
WA
ELLIE
2023-01-06 00:00:00
MX
-19.3
125.125
SH062023
25
994
705,544
2022355S10128
2,023
SI
WA
ELLIE
2023-01-06 03:00:00
MX
-19.5
125.5
SH062023
25
994
705,545
2022355S10128
2,023
SI
WA
ELLIE
2023-01-06 06:00:00
MX
-19.8
125.875
SH062023
25
994
705,546
2022355S10128
2,023
SI
WA
ELLIE
2023-01-06 09:00:00
TS
-20
126.625
SH062023
705,547
2022355S10128
2,023
SI
WA
ELLIE
2023-01-06 12:00:00
TS
-20.1
127
705,548
2022355S10128
2,023
SI
WA
ELLIE
2023-01-06 15:00:00
TS
-20.2
127.5
705,549
2022355S10128
2,023
SI
WA
ELLIE
2023-01-06 18:00:00
TS
-20.4
127.875
705,550
2022355S10128
2,023
SI
WA
ELLIE
2023-01-06 21:00:00
TS
-20.5
128.375
705,551
2022355S10128
2,023
SI
WA
ELLIE
2023-01-07 00:00:00
TS
-20.6
128.75
705,552
2022355S10128
2,023
SI
WA
ELLIE
2023-01-07 03:00:00
TS
-20.7
129
705,553
2022355S10128
2,023
SI
WA
ELLIE
2023-01-07 06:00:00
TS
-20.8
129.25
705,554
2022355S10128
2,023
SI
WA
ELLIE
2023-01-07 09:00:00
TS
-20.8
129.5
705,555
2022355S10128
2,023
SI
WA
ELLIE
2023-01-07 12:00:00
TS
-20.8
129.75
705,556
2022355S10128
2,023
SI
WA
ELLIE
2023-01-07 15:00:00
TS
-20.8
130
705,557
2022355S10128
2,023
SI
WA
ELLIE
2023-01-07 18:00:00
TS
-20.8
130.25
705,558
2022355S10128
2,023
SI
WA
ELLIE
2023-01-07 21:00:00
TS
-20.8
130.375
705,559
2022355S10128
2,023
SI
WA
ELLIE
2023-01-08 00:00:00
TS
-20.9
130.625
705,560
2022355S10128
2,023
SI
WA
ELLIE
2023-01-08 03:00:00
TS
-21
130.75
705,561
2022355S10128
2,023
SI
WA
ELLIE
2023-01-08 06:00:00
TS
-21.1
131
705,588
2023005S18142
2,023
SP
EA
HALE
2023-01-04 18:00:00
DS
-18.2
142
SH072023
20
1007
705,589
2023005S18142
2,023
SP
EA
HALE
2023-01-04 21:00:00
DS
-18.1
142.5
SH072023
20
1007
705,590
2023005S18142
2,023
SP
EA
HALE
2023-01-05 00:00:00
DS
-18.1
143
SH072023
20
1007
705,591
2023005S18142
2,023
SP
EA
HALE
2023-01-05 03:00:00
DS
-18.1
143.5
SH072023
20
1007
705,592
2023005S18142
2,023
SP
EA
HALE
2023-01-05 06:00:00
DS
-18.1
144.125
SH072023
20
1007
705,593
2023005S18142
2,023
SP
EA
HALE
2023-01-05 09:00:00
DS
-18.1
144.625
SH072023
20
1007
705,594
2023005S18142
2,023
SP
EA
HALE
2023-01-05 12:00:00
DS
-18.1
145.25
SH072023
20
1006
705,595
2023005S18142
2,023
SP
EA
HALE
2023-01-05 15:00:00
DS
-18.2
146.875
SH072023
23
1003
705,596
2023005S18142
2,023
SP
EA
HALE
2023-01-05 18:00:00
TS
-18.3
148.375
SH072023
25
1000
705,597
2023005S18142
2,023
SP
EA
HALE
2023-01-05 21:00:00
TS
-18.5
149.125
SH072023
25
1000
705,598
2023005S18142
2,023
SP
EA
HALE
2023-01-06 00:00:00
TS
-18.5
149.25
SH072023
25
1000
705,599
2023005S18142
2,023
SP
EA
HALE
2023-01-06 03:00:00
TS
-18.5
149.75
SH072023
28
1000
705,600
2023005S18142
2,023
SP
EA
HALE
2023-01-06 06:00:00
TS
-18.5
150.5
SH072023
30
999
705,601
2023005S18142
2,023
SP
EA
HALE
2023-01-06 09:00:00
TS
-18.7
150.75
SH072023
33
999
705,602
2023005S18142
2,023
SP
EA
HALE
2023-01-06 12:00:00
TS
-19
151.25
SH072023
35
999
705,603
2023005S18142
2,023
SP
EA
HALE
2023-01-06 15:00:00
TS
-19.3
152
SH072023
38
997
705,604
2023005S18142
2,023
SP
EA
HALE
2023-01-06 18:00:00
TS
-19.7
152.75
SH072023
40
994
705,605
2023005S18142
2,023
SP
EA
HALE
2023-01-06 21:00:00
TS
-20.1
153.75
SH072023
40
994
705,606
2023005S18142
2,023
SP
EA
HALE
2023-01-07 00:00:00
TS
-20.6
154.75
SH072023
40
994
705,607
2023005S18142
2,023
SP
EA
HALE
2023-01-07 03:00:00
TS
-20.8
155.625
SH072023
45
992
705,608
2023005S18142
2,023
SP
EA
HALE
2023-01-07 06:00:00
TS
-21.1
156.75
SH072023
50
989
705,609
2023005S18142
2,023
SP
EA
HALE
2023-01-07 09:00:00
TS
-21.6
158
SH072023
48
991
705,610
2023005S18142
2,023
SP
EA
HALE
2023-01-07 12:00:00
TS
-22.1
159.5
SH072023
45
992
705,611
2023005S18142
2,023
SP
MM
HALE
2023-01-07 15:00:00
TS
-22.7
161.25
SH072023
43
994
705,612
2023005S18142
2,023
SP
MM
HALE
2023-01-07 18:00:00
TS
-23.3
162.625
SH072023
40
996
705,613
2023005S18142
2,023
SP
MM
HALE
2023-01-07 21:00:00
TS
-24
163.375
SH072023
38
997
705,614
2023005S18142
2,023
SP
MM
HALE
2023-01-08 00:00:00
TS
-24.6
164.25
SH072023
35
998
705,615
2023005S18142
2,023
SP
MM
HALE
2023-01-08 03:00:00
TS
-25
165.5
SH072023
35
998
705,616
2023005S18142
2,023
SP
MM
HALE
2023-01-08 06:00:00
MX
-25.3
166.75
SH072023
35
997
705,617
2023005S18142
2,023
SP
MM
HALE
2023-01-08 09:00:00
TS
-25.4
167.625
SH072023
30
992
705,618
2023005S18142
2,023
SP
MM
HALE
2023-01-08 12:00:00
SS
-25.4
168.125
SH072023
25
987
705,619
2023005S18142
2,023
SP
MM
HALE
2023-01-08 15:00:00
SS
-25.2
168.875
SH072023
25
986
705,620
2023005S18142
2,023
SP
MM
HALE
2023-01-08 18:00:00
SS
-25.1
169.875
SH072023
25
985
705,621
2023005S18142
2,023
SP
MM
HALE
2023-01-08 21:00:00
SS
-25.1
171.125
SH072023
23
987
705,622
2023005S18142
2,023
SP
MM
HALE
2023-01-09 00:00:00
SS
-25.4
172.625
SH072023
20
988
705,623
2023005S18142
2,023
SP
MM
HALE
2023-01-09 03:00:00
SS
-25.8
174.25
SH072023
20
988
705,624
2023005S18142
2,023
SP
MM
HALE
2023-01-09 06:00:00
SS
-26.6
175.875
SH072023
20
988
705,625
2023005S18142
2,023
SP
MM
HALE
2023-01-09 09:00:00
NR
-28.6
178
SH072023
705,626
2023005S18142
2,023
SP
MM
HALE
2023-01-09 12:00:00
NR
-30.7
179.5
705,627
2023005S18142
2,023
SP
MM
HALE
2023-01-09 15:00:00
NR
-32.3
179.625
705,628
2023005S18142
2,023
SP
MM
HALE
2023-01-09 18:00:00
NR
-33.5
178.875
End of preview.

Dataset Card for TCBench

Dataset Details

Homepage License GitHub arXiv

Dataset Description

TCBench leverages existing datasets to create an integrated, value-added dataset spanning 1980-Present. Additionally, it provides tools to seamlessly integrate new data sources and pre-process them in a consistent matter across studies. It targets the development and refinement of data-driven models for tropical cyclone prediction, including precipitation downscaling and intensity predictions. Tropical cyclones are some of the highest-impact weather events in affected regions, and we thus strive to support the development of a homogenized, publicly available, database of high-impact events. Our efforts include the optimized use of multiple datasets by fusing reanalysis and observational datasets into a comprehensive benchmark dataset in an expandable framework for experimental flexibility.

We plan to include state-of-the art uncertainty quantification methods designed for AI models of geospatial data and, following best practices, to contain open-access, AI-ready datasets that follow FAIR principles and will provide clear evaluation protocols for AI models. Finally, tropical cyclone datasets often require complex pre-processing, hindering their use by AI experts without domain knowledge. By providing homogenized data and well-defined evaluation protocols, TCBench will advance the use of AI for Earth sciences. It will facilitate the application and evaluation of sophisticated AI frameworks for tropical cyclone predictions.

In summary, TCBench aims to provide opportunities to study the predictability of tropical cyclones (and changes in behavior associated with changing climate), as well as developing a dataset and evaluation tools that can be used freely by the scientific community.

  • License: MIT

Dataset Sources [optional]

The data for TCBench is compiled from a variety of sources. The International Best Track Archive for Climate Stewardship (IBTrACS, Knapp et. al. (2010), Gahtan et. al. (2024)) is the most complete observational archive of global tropical cyclones, and serves as the ``ground truth'' for model evaluation. ERA5 reanalysis (Hersbach et al. (2020)) provides dozens of high-resolution meteorological variables used to initialize physical and neural weather models. ERA5 reanalysis is available through the European Centre for Medium-range Weather Forecasting (ECMWF). Hindcasts from physical weather models are obtained from The International Grand Global Ensemble (TIGGE) product (Bougeault et. al. ), which provides ensemble reforecasts of many physical weather prediction models, including the Global Ensemble Forecasting System (GEFS) and the International Forecast System (IFS). Finally, neural weather model forecasts were obtained from various sources, including NVIDIA's FourCastNetv2 (Bonev et. al. (2023)), Huawei's Pangu-Weather (Bi et al. (2023)), Google DeepMind's GenCast (Price et al. (2025)), and the ECMWF's AIFS v1.0 (Lang et. al. (2024)).

  • Bi, K. L. Xie, H. Zhang, X. Chen, X. Gu, and Q. Tian, 2023: Accurate medium-range global weather forecasting with 3D neural networks. Nature, 619, 533-538. doi:10.1038/s41586-023-06185-3.
  • Bonev, B., T. Kurth, C. Hundt, J. Pathak, M. Baust, K. Kashinak, and A. Anandkumar, 2023: Spherical Fourier Neural Operators: Learning Stable Dynamics on the Sphere. arXiv preprint: https://arxiv.org/abs/2306.03838.
  • Bougeault, P., and coauthors, 2010: The THORPEX Interactive Grand Global Ensemble. Bull. Amer. Meteorol. Soc., 91, 1059-1072. doi:10.1175/2010BAMS2853.1.
  • Gahtan, J., K.R. Knapp, C.J. III Schreck, H.J. Diamond, J.P. Kossin, and M.C. Kruk, 2024: International Best Track Archive for Climate Stewardship (IBTrACS) Project, Version 4.01. NOAA National Centers for Environmental Information, https://doi.org/10.25921/82ty-9e16.
  • Hersbach, H., B. Bell, P. Berrisford, S. Hirahara, A. Hor{'a}nyi, J. Mu{~n}oz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, and coauthors, 2020: The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146, 1999-2049.
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone best track data. Bull. Amer. Meteor. Soc., 91, 363-376. doi:10.1175/2009BAMS2755.1
  • Lang, S., M. Alexe, M. Chantry, J. Dramsch, F. Pinault, B. Raoult, M. Clare, C. Lessig, M. Maier-Gerber, L. Magnusson, and coauthors, 2024: AIFS--ECMWF's data-driven forecasting system. arXiv preprint arXiv:2406.01465.
  • Price, I., A. Sanchez-Gonzalez, F. Alet, T.R. Andersson, A. El-Kadi, D. Masters, T. Ewalds, J. Stott, S. Mohamed, P. Battaglia, and coauthors, 2025: Probabilistic weather forecasting with machine learning. Nature, 637, 84-90.

Out-of-Scope Use

TCBench should not be used for general atmospheric prediction tasks, extra-tropical cyclones, El Niño prediction, nor should it be used as a production capability. TCBench is made to measure the performance of prediction models for tropical cyclones only. The impossibility of creating a single dataset that fits all purposes necessitates trade-offs, such as neglecting some teleconnections or using datasets only available for the past approximately 15 years.

Dataset Structure

matched_tracks
|-- (Tracks obtained from the neural weather model).csv
|-- 2023_aifs.csv
|-- ...

neural_weather_models
|-- weather_model_1/
|---- (Raw weather model outputs for when a storm was observed).nc
|---- ...
|-- ..

Dataset Creation

Data Collection and Processing

[More Information Needed]

Bias, Risks, and Limitations

TCBench represents a subset of all possible tropical cylone tracks and materialization conditions. It has global coverage, but not every region that can see a tropical cyclone has a materalized cyclone in the dataset. Therefore, as an evaluation, TCBench may be missing certain geographical areas or settings under which tropical cyclones could materialize.

Citation

@article{gomez2025tcbench,
  title={TCBench: A Benchmark for Tropical Cyclone Track and Intensity Forecasting at the Global Scale},
  author={...},
  journal={TBD},
  year={2025}
}

Dataset Card Authors

  • Ritwik Gupta
  • Milton Gomez
  • Marie McGraw
  • Ilia Azizi

Dataset Card Contact

Ritwik Gupta firstlast@berkeley.edu

Downloads last month
101