Dataset Preview
Go to dataset viewer
query-id (int64) | corpus-id (int64) | score (int64) |
---|---|---|
0
| 18,850
| 1
|
4
| 196,463
| 1
|
5
| 69,306
| 1
|
6
| 560,251
| 1
|
6
| 188,530
| 1
|
6
| 564,488
| 1
|
7
| 411,063
| 1
|
9
| 509,122
| 1
|
9
| 184,698
| 1
|
11
| 596,427
| 1
|
12
| 192,516
| 1
|
12
| 338,700
| 1
|
12
| 158,738
| 1
|
13
| 503,678
| 1
|
14
| 398,960
| 1
|
16
| 60,590
| 1
|
19
| 315,086
| 1
|
19
| 142,623
| 1
|
20
| 447,231
| 1
|
21
| 497,642
| 1
|
23
| 550,624
| 1
|
23
| 32,102
| 1
|
25
| 107,584
| 1
|
25
| 562,777
| 1
|
27
| 537,326
| 1
|
28
| 250,640
| 1
|
30
| 551,175
| 1
|
30
| 434,082
| 1
|
30
| 336,922
| 1
|
30
| 19,233
| 1
|
31
| 156,554
| 1
|
32
| 279,480
| 1
|
32
| 69,623
| 1
|
32
| 84,645
| 1
|
33
| 519,798
| 1
|
33
| 425,387
| 1
|
35
| 498,681
| 1
|
35
| 80,913
| 1
|
36
| 275,249
| 1
|
36
| 368,649
| 1
|
37
| 523,564
| 1
|
41
| 176,229
| 1
|
43
| 76,662
| 1
|
45
| 284,610
| 1
|
45
| 261,220
| 1
|
46
| 91,325
| 1
|
47
| 133,299
| 1
|
48
| 108,062
| 1
|
48
| 401,260
| 1
|
48
| 329,810
| 1
|
48
| 512,151
| 1
|
49
| 352,927
| 1
|
51
| 107,817
| 1
|
51
| 257,168
| 1
|
51
| 75,195
| 1
|
52
| 566,417
| 1
|
52
| 125,111
| 1
|
53
| 84,077
| 1
|
53
| 562,798
| 1
|
53
| 102,362
| 1
|
53
| 323,269
| 1
|
53
| 119,308
| 1
|
53
| 184,852
| 1
|
53
| 119,210
| 1
|
53
| 176,196
| 1
|
54
| 590,775
| 1
|
54
| 109,546
| 1
|
54
| 511,651
| 1
|
57
| 203,633
| 1
|
57
| 391,403
| 1
|
57
| 77,818
| 1
|
57
| 226,530
| 1
|
59
| 71,601
| 1
|
61
| 524,134
| 1
|
62
| 34,810
| 1
|
63
| 509,617
| 1
|
64
| 391,619
| 1
|
65
| 580,624
| 1
|
65
| 109,203
| 1
|
66
| 397,608
| 1
|
66
| 540,395
| 1
|
66
| 405,412
| 1
|
67
| 370,815
| 1
|
67
| 294,864
| 1
|
67
| 18,792
| 1
|
67
| 511,571
| 1
|
69
| 378,484
| 1
|
70
| 327,002
| 1
|
71
| 372,052
| 1
|
72
| 549,870
| 1
|
72
| 302,049
| 1
|
74
| 46,680
| 1
|
75
| 297,965
| 1
|
76
| 375,357
| 1
|
78
| 152,407
| 1
|
80
| 252,473
| 1
|
81
| 451,207
| 1
|
82
| 500,708
| 1
|
83
| 534,277
| 1
|
85
| 431,230
| 1
|
End of preview (truncated to 100
rows)
Dataset Summary
- Homepage: https://sites.google.com/view/salt-nlp-flang
- Models: https://huggingface.co/SALT-NLP/FLANG-BERT
- Repository: https://github.com/SALT-NLP/FLANG
FLUE
FLUE (Financial Language Understanding Evaluation) is a comprehensive and heterogeneous benchmark that has been built from 5 diverse financial domain specific datasets.
Sentiment Classification: Financial PhraseBank
Sentiment Analysis, Question Answering: FiQA 2018
New Headlines Classification: Headlines
Named Entity Recognition: NER
Structure Boundary Detection: FinSBD3
Dataset Structure
The FiQA dataset has a corpus, queries and qrels (relevance judgments file). They are in the following format:
corpus
file: a.jsonl
file (jsonlines) that contains a list of dictionaries, each with three fields_id
with unique document identifier,title
with document title (optional) andtext
with document paragraph or passage. For example:{"_id": "doc1", "title": "Albert Einstein", "text": "Albert Einstein was a German-born...."}
queries
file: a.jsonl
file (jsonlines) that contains a list of dictionaries, each with two fields_id
with unique query identifier andtext
with query text. For example:{"_id": "q1", "text": "Who developed the mass-energy equivalence formula?"}
qrels
file: a.tsv
file (tab-seperated) that contains three columns, i.e. thequery-id
,corpus-id
andscore
in this order. Keep 1st row as header. For example:q1 doc1 1
- Downloads last month
- 7