The dataset viewer is not available for this dataset.
Cannot get the config names for the dataset.
Error code:   ConfigNamesError
Exception:    DataFilesNotFoundError
Message:      No (supported) data files found in Romain3Ch216/TlseHypDataSet
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/dataset/", line 73, in compute_config_names_response
                  config_names = get_dataset_config_names(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/", line 347, in get_dataset_config_names
                  dataset_module = dataset_module_factory(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/", line 1904, in dataset_module_factory
                  raise e1 from None
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/", line 1885, in dataset_module_factory
                  return HubDatasetModuleFactoryWithoutScript(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/", line 1270, in get_module
                  module_name, default_builder_kwargs = infer_module_for_data_files(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/", line 597, in infer_module_for_data_files
                  raise DataFilesNotFoundError("No (supported) data files found" + (f" in {path}" if path else ""))
              datasets.exceptions.DataFilesNotFoundError: No (supported) data files found in Romain3Ch216/TlseHypDataSet

Need help to make the dataset viewer work? Open a discussion for direct support.

YAML Metadata Warning: empty or missing yaml metadata in repo card (

Toulouse Hyperspectral Data Set

Contains the 1D hyperspectral data of the Toulouse Hyperspectral Data Set.


  title = {Multi-source datasets acquired over Toulouse (France) in 2021 for urban microclimate studies during the CAMCATT/AI4GEO field campaign},
  journal = {Data in Brief},
  volume = {48},
  pages = {109109},
  year = {2023},
  issn = {2352-3409},
  doi = {},
  url = {},
  author = {L. Roupioz and X. Briottet and K. Adeline and A. {Al Bitar} and D. Barbon-Dubosc and R. Barda-Chatain and P. Barillot and S. Bridier and E. Carroll and C. Cassante and A. Cerbelaud and P. Déliot and P. Doublet and P.E. Dupouy and S. Gadal and S. Guernouti and A. {De Guilhem De Lataillade} and A. Lemonsu and R. Llorens and R. Luhahe and A. Michel and A. Moussous and M. Musy and F. Nerry and L. Poutier and A. Rodler and N. Riviere and T. Riviere and J.L. Roujean and A. Roy and A. Schilling and D. Skokovic and J. Sobrino},
  keywords = {Land surface temperature, Spectral emissivity, Spectral reflectance, Air temperature, Airborne LiDAR, Atmospheric data, Urban area},

  title = {Toulouse Hyperspectral Data Set: A benchmark data set to assess semi-supervised spectral representation learning and pixel-wise classification techniques},
  journal = {ISPRS Journal of Photogrammetry and Remote Sensing},
  volume = {212},
  pages = {323-337},
  year = {2024},
  issn = {0924-2716},
  doi = {},
  url = {},
  author = {Romain Thoreau and Laurent Risser and Véronique Achard and Béatrice Berthelot and Xavier Briottet},
  keywords = {Hyperspectral imaging, Land cover mapping, Benchmark data set, Semi-supervised learning, Self-supervised learning},

license: mit

Downloads last month