Search is not available for this dataset
image
image
prompt
string
word_scores
string
alignment_score_norm
float32
coherence_score_norm
float32
style_score_norm
float32
alignment_heatmap
sequence
coherence_heatmap
sequence
alignment_score
float32
coherence_score
float32
style_score
float32
The bright green grass contrasted with the dull grey pavement.
"[[\"The\", 1.3686], [\"bright\", 0.7992], [\"green\", 2.4126], [\"grass\", 2.9865], [\"contrasted\"(...TRUNCATED)
0.649863
0.552199
0.852295
[["6.55e-05","6.57e-05","6.6e-05","6.646e-05","6.706e-05","6.79e-05","6.884e-05","6.99e-05","7.12e-0(...TRUNCATED)
null
3.4574
3.5963
3.8143
image from an iPhone video of a dog in a supermarket, hyper realistic, flash photo
"[[\"image\", 1.5134], [\"from\", 1.5706], [\"an\", 0.983], [\"iPhone\", 1.9457], [\"video\", 2.1509(...TRUNCATED)
0.624388
0.743565
0.896313
null
null
3.4003
3.9851
3.9096
"A man wearing a brown cap looking sitting at his computer with a black and brown dog resting next t(...TRUNCATED)
"[[\"A\", 1.796], [\"man\", 2.2909], [\"wearing\", 1.796], [\"a\", 1.796], [\"brown\", 2.3669], [\"c(...TRUNCATED)
0.951001
0.590591
0.681444
[["0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0(...TRUNCATED)
null
4.1324
3.6743
3.4444
A beige pastry sitting in a white ball next to a spoon .
"[[\"A\", 1.5347], [\"beige\", 2.388], [\"pastry\", 4.0451], [\"sitting\", 2.0693], [\"in\", 1.8501](...TRUNCATED)
0.386734
0.704485
0.651005
null
[["0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0(...TRUNCATED)
2.8676
3.9057
3.3785
"a diverse crowd of people eagerly waits in line at a bustling street food stand in beirut. the tant(...TRUNCATED)
"[[\"a\", 0.5249], [\"diverse\", 2.0174], [\"crowd\", 2.0214], [\"of\", 0.5249], [\"people\", 2.053](...TRUNCATED)
0.780579
0.399815
0.57969
[["0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0(...TRUNCATED)
null
3.7504
3.2867
3.2241
photograph of a person drinking red wine and smoking weed with a flat cigarette
"[[\"photograph\", 0.3675], [\"of\", 0.414], [\"a\", 0.414], [\"person\", 0.4906], [\"drinking\", 2.(...TRUNCATED)
0.721823
0.599893
0.396829
[["0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0(...TRUNCATED)
null
3.6187
3.6932
2.8282
A yellow horse and a red chair.
"[[\"A\", 1.3418], [\"yellow\", 1.7208], [\"horse\", 4.6369], [\"and\", 1.9358], [\"a\", 1.6359], [\(...TRUNCATED)
0.687828
0.434368
0.515303
[["0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0(...TRUNCATED)
null
3.5425
3.3569
3.0847
A guitar made of ice cream that melts as you play it.
"[[\"A\", 1.5655], [\"guitar\", 4.3885], [\"made\", 1.7353], [\"of\", 0.8389], [\"ice\", 1.662], [\"(...TRUNCATED)
0.815556
0.474039
0.611791
[["0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0.0","0(...TRUNCATED)
null
3.8288
3.4375
3.2936
a fluffy pillow and a leather belt
"[[\"a\", 1.0406], [\"fluffy\", 1.9794], [\"pillow\", 5.4818], [\"and\", 0.9528], [\"a\", 1.5035], [(...TRUNCATED)
0.58727
0.221935
0.497705
[["0.01262","0.01261","0.01261","0.0126","0.012596","0.01258","0.012566","0.01255","0.012535","0.012(...TRUNCATED)
null
3.3171
2.9253
3.0466
hyperrealism fruits and vegetables market
"[[\"hyperrealism\", 6.4486], [\"fruits\", 3.1142], [\"and\", 1.4918], [\"vegetables\", 4.1241], [\"(...TRUNCATED)
0.87846
0.623617
0.767539
[["0.000471","0.0004714","0.000472","0.0004733","0.0004745","0.0004764","0.0004785","0.000699","0.00(...TRUNCATED)
null
3.9698
3.7414
3.6308
Rapidata Logo

Building upon Google's research Rich Human Feedback for Text-to-Image Generation we have collected over 1.5 million responses from 152'684 individual humans using Rapidata via the Python API

Overview

We asked humans to evaluate AI-generated images in style, coherence and prompt alignment. For images that contained flaws, participants were asked to identify specific problematic areas. Additionally, for all images, participants identified words from the prompts that were not accurately represented in the generated images.

Word Scores

Users identified words from the prompts that were NOT accurately depicted in the generated images. Higher word scores indicate poorer representation in the image. Participants also had the option to select "[No_mistakes]" for prompts where all elements were accurately depicted.

Examples Results:

Coherence

The coherence score measures whether the generated image is logically consistent and free from artifacts or visual glitches. Without seeing the original prompt, users were asked: "Look closely, does this image have weird errors, like senseless or malformed objects, incomprehensible details, or visual glitches?" Each image received 21 responses, which were aggregated on a scale of 1-5.

Images scoring below 3.8 in coherence were further evaluated, with participants marking specific errors in the image.

Example Results:

Alignment

The alignment score quantifies how well an image matches its prompt. Users were asked: "How well does the image match the description?". The final score is calculated on a scale of 1-5 by aggregating 21 responses per prompt-image pair.

For images with an alignment score below 3.2, additional users were asked to highlight areas where the image did not align with the prompt. These responses were then compiled into a heatmap.

As mentioned in the google paper, aligment is harder to annotate consistently, if e.g. an object is missing, it is unclear to the annotators what they need to highlight.

Example Results:

Prompt: Three cats and one dog sitting on the grass.
Three cats and one dog
Prompt: A brown toilet with a white wooden seat.
Brown toilet
Prompt: Photograph of a pale Asian woman, wearing an oriental costume, sitting in a luxurious white chair. Her head is floating off the chair, with the chin on the table and chin on her knees, her chin on her knees. Closeup
Asian woman in costume
Prompt: A tennis racket underneath a traffic light.
Racket under traffic light

Style

The style score reflects how visually appealing participants found each image, independent of the prompt. Users were asked: "How much do you like the way this image looks?" Each image received 21 responses, which were aggregated on a scale of 1-5.

About Rapidata

Rapidata's technology makes collecting human feedback at scale faster and more accessible than ever before. Visit rapidata.ai to learn more about how we're revolutionizing human feedback collection for AI development.

Downloads last month
10