Dataset Viewer
Auto-converted to Parquet
id
stringlengths
14
15
text
stringlengths
22
2.51k
source
stringlengths
61
160
b2499a3c04c8-0
langchain API Reference¶ langchain.agents¶ Agent is a class that uses an LLM to choose a sequence of actions to take. In Chains, a sequence of actions is hardcoded. In Agents, a language model is used as a reasoning engine to determine which actions to take and in which order. Agents select and use Tools and Toolkits for actions. Class hierarchy: BaseSingleActionAgent --> LLMSingleActionAgent OpenAIFunctionsAgent XMLAgent Agent --> <name>Agent # Examples: ZeroShotAgent, ChatAgent BaseMultiActionAgent --> OpenAIMultiFunctionsAgent Main helpers: AgentType, AgentExecutor, AgentOutputParser, AgentExecutorIterator, AgentAction, AgentFinish Classes¶ agents.agent.Agent Agent that calls the language model and deciding the action. agents.agent.AgentExecutor Agent that is using tools. agents.agent.AgentOutputParser Base class for parsing agent output into agent action/finish. agents.agent.BaseMultiActionAgent Base Multi Action Agent class. agents.agent.BaseSingleActionAgent Base Single Action Agent class. agents.agent.ExceptionTool Tool that just returns the query. agents.agent.LLMSingleActionAgent Base class for single action agents. agents.agent_iterator.AgentExecutorIterator(...) Iterator for AgentExecutor. agents.agent_iterator.BaseAgentExecutorIterator() Base class for AgentExecutorIterator. agents.agent_toolkits.amadeus.toolkit.AmadeusToolkit Toolkit for interacting with Office365. agents.agent_toolkits.azure_cognitive_services.AzureCognitiveServicesToolkit Toolkit for Azure Cognitive Services. agents.agent_toolkits.base.BaseToolkit Base Toolkit representing a collection of related tools. agents.agent_toolkits.file_management.toolkit.FileManagementToolkit Toolkit for interacting with a Local Files. agents.agent_toolkits.github.toolkit.GitHubToolkit GitHub Toolkit.
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-1
agents.agent_toolkits.github.toolkit.GitHubToolkit GitHub Toolkit. agents.agent_toolkits.gmail.toolkit.GmailToolkit Toolkit for interacting with Gmail. agents.agent_toolkits.jira.toolkit.JiraToolkit Jira Toolkit. agents.agent_toolkits.json.toolkit.JsonToolkit Toolkit for interacting with a JSON spec. agents.agent_toolkits.nla.tool.NLATool Natural Language API Tool. agents.agent_toolkits.nla.toolkit.NLAToolkit Natural Language API Toolkit. agents.agent_toolkits.office365.toolkit.O365Toolkit Toolkit for interacting with Office 365. agents.agent_toolkits.openapi.planner.RequestsDeleteToolWithParsing A tool that sends a DELETE request and parses the response. agents.agent_toolkits.openapi.planner.RequestsGetToolWithParsing Requests GET tool with LLM-instructed extraction of truncated responses. agents.agent_toolkits.openapi.planner.RequestsPatchToolWithParsing Requests PATCH tool with LLM-instructed extraction of truncated responses. agents.agent_toolkits.openapi.planner.RequestsPostToolWithParsing Requests POST tool with LLM-instructed extraction of truncated responses. agents.agent_toolkits.openapi.toolkit.OpenAPIToolkit Toolkit for interacting with an OpenAPI API. agents.agent_toolkits.openapi.toolkit.RequestsToolkit Toolkit for making REST requests. agents.agent_toolkits.playwright.toolkit.PlayWrightBrowserToolkit Toolkit for PlayWright browser tools. agents.agent_toolkits.powerbi.toolkit.PowerBIToolkit Toolkit for interacting with Power BI dataset. agents.agent_toolkits.spark_sql.toolkit.SparkSQLToolkit Toolkit for interacting with Spark SQL. agents.agent_toolkits.sql.toolkit.SQLDatabaseToolkit Toolkit for interacting with SQL databases. agents.agent_toolkits.vectorstore.toolkit.VectorStoreInfo Information about a VectorStore. agents.agent_toolkits.vectorstore.toolkit.VectorStoreRouterToolkit
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-2
Information about a VectorStore. agents.agent_toolkits.vectorstore.toolkit.VectorStoreRouterToolkit Toolkit for routing between Vector Stores. agents.agent_toolkits.vectorstore.toolkit.VectorStoreToolkit Toolkit for interacting with a Vector Store. agents.agent_toolkits.zapier.toolkit.ZapierToolkit Zapier Toolkit. agents.agent_types.AgentType(value[, names, ...]) Enumerator with the Agent types. agents.chat.base.ChatAgent Chat Agent. agents.chat.output_parser.ChatOutputParser Output parser for the chat agent. agents.conversational.base.ConversationalAgent An agent that holds a conversation in addition to using tools. agents.conversational.output_parser.ConvoOutputParser Output parser for the conversational agent. agents.conversational_chat.base.ConversationalChatAgent An agent designed to hold a conversation in addition to using tools. agents.conversational_chat.output_parser.ConvoOutputParser Output parser for the conversational agent. agents.mrkl.base.ChainConfig(action_name, ...) Configuration for chain to use in MRKL system. agents.mrkl.base.MRKLChain Chain that implements the MRKL system. agents.mrkl.base.ZeroShotAgent Agent for the MRKL chain. agents.mrkl.output_parser.MRKLOutputParser MRKL Output parser for the chat agent. agents.openai_functions_agent.base.OpenAIFunctionsAgent An Agent driven by OpenAIs function powered API. agents.openai_functions_multi_agent.base.OpenAIMultiFunctionsAgent An Agent driven by OpenAIs function powered API. agents.react.base.ReActChain Chain that implements the ReAct paper. agents.react.base.ReActDocstoreAgent Agent for the ReAct chain. agents.react.base.ReActTextWorldAgent Agent for the ReAct TextWorld chain. agents.react.output_parser.ReActOutputParser
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-3
Agent for the ReAct TextWorld chain. agents.react.output_parser.ReActOutputParser Output parser for the ReAct agent. agents.schema.AgentScratchPadChatPromptTemplate Chat prompt template for the agent scratchpad. agents.self_ask_with_search.base.SelfAskWithSearchAgent Agent for the self-ask-with-search paper. agents.self_ask_with_search.base.SelfAskWithSearchChain Chain that does self-ask with search. agents.self_ask_with_search.output_parser.SelfAskOutputParser Output parser for the self-ask agent. agents.structured_chat.base.StructuredChatAgent Structured Chat Agent. agents.structured_chat.output_parser.StructuredChatOutputParser Output parser for the structured chat agent. agents.structured_chat.output_parser.StructuredChatOutputParserWithRetries Output parser with retries for the structured chat agent. agents.tools.InvalidTool Tool that is run when invalid tool name is encountered by agent. agents.xml.base.XMLAgent Agent that uses XML tags. agents.xml.base.XMLAgentOutputParser Create a new model by parsing and validating input data from keyword arguments. Functions¶ agents.agent_iterator.rebuild_callback_manager_on_set(...) Decorator to force setters to rebuild callback mgr agents.agent_toolkits.csv.base.create_csv_agent(...) Create csv agent by loading to a dataframe and using pandas agent. agents.agent_toolkits.json.base.create_json_agent(...) Construct a json agent from an LLM and tools. agents.agent_toolkits.multion.base.create_multion_agent(...) Construct a multion agent from an LLM and tool. agents.agent_toolkits.openapi.base.create_openapi_agent(...) Construct an OpenAPI agent from an LLM and tools. agents.agent_toolkits.openapi.planner.create_openapi_agent(...) Instantiate OpenAI API planner and controller for a given spec. agents.agent_toolkits.openapi.spec.dereference_refs(...)
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-4
agents.agent_toolkits.openapi.spec.dereference_refs(...) Try to substitute $refs. agents.agent_toolkits.openapi.spec.reduce_openapi_spec(spec) Simplify/distill/minify a spec somehow. agents.agent_toolkits.pandas.base.create_pandas_dataframe_agent(llm, df) Construct a pandas agent from an LLM and dataframe. agents.agent_toolkits.powerbi.base.create_pbi_agent(llm) Construct a Power BI agent from an LLM and tools. agents.agent_toolkits.powerbi.chat_base.create_pbi_chat_agent(llm) Construct a Power BI agent from a Chat LLM and tools. agents.agent_toolkits.python.base.create_python_agent(...) Construct a python agent from an LLM and tool. agents.agent_toolkits.spark.base.create_spark_dataframe_agent(llm, df) Construct a Spark agent from an LLM and dataframe. agents.agent_toolkits.spark_sql.base.create_spark_sql_agent(...) Construct a Spark SQL agent from an LLM and tools. agents.agent_toolkits.sql.base.create_sql_agent(...) Construct an SQL agent from an LLM and tools. agents.agent_toolkits.vectorstore.base.create_vectorstore_agent(...) Construct a VectorStore agent from an LLM and tools. agents.agent_toolkits.vectorstore.base.create_vectorstore_router_agent(...) Construct a VectorStore router agent from an LLM and tools. agents.agent_toolkits.xorbits.base.create_xorbits_agent(...) Construct a xorbits agent from an LLM and dataframe. agents.initialize.initialize_agent(tools, llm) Load an agent executor given tools and LLM. agents.load_tools.get_all_tool_names() Get a list of all possible tool names. agents.load_tools.load_huggingface_tool(...) Loads a tool from the HuggingFace Hub. agents.load_tools.load_tools(tool_names[, ...]) Load tools based on their name.
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-5
agents.load_tools.load_tools(tool_names[, ...]) Load tools based on their name. agents.loading.load_agent(path, **kwargs) Unified method for loading an agent from LangChainHub or local fs. agents.loading.load_agent_from_config(config) Load agent from Config Dict. agents.utils.validate_tools_single_input(...) Validate tools for single input. langchain.cache¶ Warning Beta Feature! Cache provides an optional caching layer for LLMs. Cache is useful for two reasons: It can save you money by reducing the number of API calls you make to the LLM provider if you’re often requesting the same completion multiple times. It can speed up your application by reducing the number of API calls you make to the LLM provider. Cache directly competes with Memory. See documentation for Pros and Cons. Class hierarchy: BaseCache --> <name>Cache # Examples: InMemoryCache, RedisCache, GPTCache Classes¶ cache.BaseCache() Base interface for cache. cache.FullLLMCache(**kwargs) SQLite table for full LLM Cache (all generations). cache.GPTCache([init_func]) Cache that uses GPTCache as a backend. cache.InMemoryCache() Cache that stores things in memory. cache.MomentoCache(cache_client, cache_name, *) Cache that uses Momento as a backend. cache.RedisCache(redis_) Cache that uses Redis as a backend. cache.RedisSemanticCache(redis_url, embedding) Cache that uses Redis as a vector-store backend. cache.SQLAlchemyCache(engine, cache_schema) Cache that uses SQAlchemy as a backend. cache.SQLiteCache([database_path]) Cache that uses SQLite as a backend. langchain.callbacks¶ Callback handlers allow listening to events in LangChain. Class hierarchy:
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-6
langchain.callbacks¶ Callback handlers allow listening to events in LangChain. Class hierarchy: BaseCallbackHandler --> <name>CallbackHandler # Example: AimCallbackHandler Classes¶ callbacks.aim_callback.AimCallbackHandler([...]) Callback Handler that logs to Aim. callbacks.argilla_callback.ArgillaCallbackHandler(...) Callback Handler that logs into Argilla. callbacks.arize_callback.ArizeCallbackHandler([...]) Callback Handler that logs to Arize. callbacks.arthur_callback.ArthurCallbackHandler(...) Callback Handler that logs to Arthur platform. callbacks.base.AsyncCallbackHandler() Async callback handler that can be used to handle callbacks from langchain. callbacks.base.BaseCallbackHandler() Base callback handler that can be used to handle callbacks from langchain. callbacks.base.BaseCallbackManager(handlers) Base callback manager that handles callbacks from LangChain. callbacks.clearml_callback.ClearMLCallbackHandler([...]) Callback Handler that logs to ClearML. callbacks.comet_ml_callback.CometCallbackHandler([...]) Callback Handler that logs to Comet. callbacks.context_callback.ContextCallbackHandler([...]) Callback Handler that records transcripts to the Context service. callbacks.file.FileCallbackHandler(filename) Callback Handler that writes to a file. callbacks.flyte_callback.FlyteCallbackHandler() This callback handler that is used within a Flyte task. callbacks.human.HumanApprovalCallbackHandler(...) Callback for manually validating values. callbacks.human.HumanRejectedException Exception to raise when a person manually review and rejects a value. callbacks.infino_callback.InfinoCallbackHandler([...]) Callback Handler that logs to Infino. callbacks.manager.AsyncCallbackManager(handlers) Async callback manager that handles callbacks from LangChain. callbacks.manager.AsyncCallbackManagerForChainRun(*, ...) Async callback manager for chain run. callbacks.manager.AsyncCallbackManagerForLLMRun(*, ...)
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-7
callbacks.manager.AsyncCallbackManagerForLLMRun(*, ...) Async callback manager for LLM run. callbacks.manager.AsyncCallbackManagerForRetrieverRun(*, ...) Async callback manager for retriever run. callbacks.manager.AsyncCallbackManagerForToolRun(*, ...) Async callback manager for tool run. callbacks.manager.AsyncParentRunManager(*, ...) Async Parent Run Manager. callbacks.manager.AsyncRunManager(*, run_id, ...) Async Run Manager. callbacks.manager.BaseRunManager(*, run_id, ...) Base class for run manager (a bound callback manager). callbacks.manager.CallbackManager(handlers) Callback manager that handles callbacks from langchain. callbacks.manager.CallbackManagerForChainRun(*, ...) Callback manager for chain run. callbacks.manager.CallbackManagerForLLMRun(*, ...) Callback manager for LLM run. callbacks.manager.CallbackManagerForRetrieverRun(*, ...) Callback manager for retriever run. callbacks.manager.CallbackManagerForToolRun(*, ...) Callback manager for tool run. callbacks.manager.ParentRunManager(*, ...[, ...]) Sync Parent Run Manager. callbacks.manager.RunManager(*, run_id, ...) Sync Run Manager. callbacks.mlflow_callback.MlflowCallbackHandler([...]) Callback Handler that logs metrics and artifacts to mlflow server. callbacks.openai_info.OpenAICallbackHandler() Callback Handler that tracks OpenAI info. callbacks.promptlayer_callback.PromptLayerCallbackHandler([...]) Callback handler for promptlayer. callbacks.sagemaker_callback.SageMakerCallbackHandler(run) Callback Handler that logs prompt artifacts and metrics to SageMaker Experiments. callbacks.stdout.StdOutCallbackHandler([color]) Callback Handler that prints to std out. callbacks.streaming_aiter.AsyncIteratorCallbackHandler() Callback handler that returns an async iterator.
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-8
callbacks.streaming_aiter.AsyncIteratorCallbackHandler() Callback handler that returns an async iterator. callbacks.streaming_aiter_final_only.AsyncFinalIteratorCallbackHandler(*) Callback handler that returns an async iterator. callbacks.streaming_stdout.StreamingStdOutCallbackHandler() Callback handler for streaming. callbacks.streaming_stdout_final_only.FinalStreamingStdOutCallbackHandler(*) Callback handler for streaming in agents. callbacks.streamlit.mutable_expander.ChildRecord(...) The child record as a NamedTuple. callbacks.streamlit.mutable_expander.ChildType(value) The enumerator of the child type. callbacks.streamlit.streamlit_callback_handler.LLMThoughtState(value) Enumerator of the LLMThought state. callbacks.streamlit.streamlit_callback_handler.StreamlitCallbackHandler(...) A callback handler that writes to a Streamlit app. callbacks.streamlit.streamlit_callback_handler.ToolRecord(...) The tool record as a NamedTuple. callbacks.tracers.base.BaseTracer(**kwargs) Base interface for tracers. callbacks.tracers.base.TracerException Base class for exceptions in tracers module. callbacks.tracers.evaluation.EvaluatorCallbackHandler(...) A tracer that runs a run evaluator whenever a run is persisted. callbacks.tracers.langchain.LangChainTracer([...]) An implementation of the SharedTracer that POSTS to the langchain endpoint. callbacks.tracers.langchain_v1.LangChainTracerV1(...) An implementation of the SharedTracer that POSTS to the langchain endpoint. callbacks.tracers.run_collector.RunCollectorCallbackHandler([...]) A tracer that collects all nested runs in a list. callbacks.tracers.schemas.BaseRun Base class for Run. callbacks.tracers.schemas.ChainRun Class for ChainRun. callbacks.tracers.schemas.LLMRun Class for LLMRun. callbacks.tracers.schemas.Run Run schema for the V2 API in the Tracer.
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-9
callbacks.tracers.schemas.Run Run schema for the V2 API in the Tracer. callbacks.tracers.schemas.ToolRun Class for ToolRun. callbacks.tracers.schemas.TracerSession TracerSessionV1 schema for the V2 API. callbacks.tracers.schemas.TracerSessionBase Base class for TracerSession. callbacks.tracers.schemas.TracerSessionV1 TracerSessionV1 schema. callbacks.tracers.schemas.TracerSessionV1Base Base class for TracerSessionV1. callbacks.tracers.schemas.TracerSessionV1Create Create class for TracerSessionV1. callbacks.tracers.stdout.ConsoleCallbackHandler(...) Tracer that prints to the console. callbacks.tracers.stdout.FunctionCallbackHandler(...) Tracer that calls a function with a single str parameter. callbacks.tracers.wandb.WandbRunArgs Arguments for the WandbTracer. callbacks.tracers.wandb.WandbTracer([run_args]) Callback Handler that logs to Weights and Biases. callbacks.wandb_callback.WandbCallbackHandler([...]) Callback Handler that logs to Weights and Biases. callbacks.whylabs_callback.WhyLabsCallbackHandler(...) Callback Handler for logging to WhyLabs. Functions¶ callbacks.aim_callback.import_aim() Import the aim python package and raise an error if it is not installed. callbacks.clearml_callback.import_clearml() Import the clearml python package and raise an error if it is not installed. callbacks.comet_ml_callback.import_comet_ml() Import comet_ml and raise an error if it is not installed. callbacks.context_callback.import_context() Import the getcontext package. callbacks.flyte_callback.analyze_text(text) Analyze text using textstat and spacy.
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-10
Analyze text using textstat and spacy. callbacks.flyte_callback.import_flytekit() Import flytekit and flytekitplugins-deck-standard. callbacks.infino_callback.import_infino() Import the infino client. callbacks.manager.atrace_as_chain_group(...) Get an async callback manager for a chain group in a context manager. callbacks.manager.env_var_is_set(env_var) Check if an environment variable is set. callbacks.manager.get_openai_callback() Get the OpenAI callback handler in a context manager. callbacks.manager.trace_as_chain_group(...) Get a callback manager for a chain group in a context manager. callbacks.manager.tracing_enabled([session_name]) Get the Deprecated LangChainTracer in a context manager. callbacks.manager.tracing_v2_enabled([...]) Instruct LangChain to log all runs in context to LangSmith. callbacks.manager.wandb_tracing_enabled([...]) Get the WandbTracer in a context manager. callbacks.mlflow_callback.analyze_text(text) Analyze text using textstat and spacy. callbacks.mlflow_callback.construct_html_from_prompt_and_generation(...) Construct an html element from a prompt and a generation. callbacks.mlflow_callback.import_mlflow() Import the mlflow python package and raise an error if it is not installed. callbacks.openai_info.get_openai_token_cost_for_model(...) Get the cost in USD for a given model and number of tokens. callbacks.openai_info.standardize_model_name(...) Standardize the model name to a format that can be used in the OpenAI API. callbacks.sagemaker_callback.save_json(data, ...) Save dict to local file path. callbacks.streamlit.__init__.StreamlitCallbackHandler(...) Callback Handler that writes to a Streamlit app. callbacks.tracers.evaluation.wait_for_all_evaluators()
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-11
callbacks.tracers.evaluation.wait_for_all_evaluators() Wait for all tracers to finish. callbacks.tracers.langchain.log_error_once(...) Log an error once. callbacks.tracers.langchain.wait_for_all_tracers() Wait for all tracers to finish. callbacks.tracers.langchain_v1.get_headers() Get the headers for the LangChain API. callbacks.tracers.schemas.RunTypeEnum() RunTypeEnum. callbacks.tracers.stdout.elapsed(run) Get the elapsed time of a run. callbacks.tracers.stdout.try_json_stringify(...) Try to stringify an object to JSON. callbacks.utils.flatten_dict(nested_dict[, ...]) Flattens a nested dictionary into a flat dictionary. callbacks.utils.hash_string(s) Hash a string using sha1. callbacks.utils.import_pandas() Import the pandas python package and raise an error if it is not installed. callbacks.utils.import_spacy() Import the spacy python package and raise an error if it is not installed. callbacks.utils.import_textstat() Import the textstat python package and raise an error if it is not installed. callbacks.utils.load_json(json_path) Load json file to a string. callbacks.wandb_callback.analyze_text(text) Analyze text using textstat and spacy. callbacks.wandb_callback.construct_html_from_prompt_and_generation(...) Construct an html element from a prompt and a generation. callbacks.wandb_callback.import_wandb() Import the wandb python package and raise an error if it is not installed. callbacks.wandb_callback.load_json_to_dict(...) Load json file to a dictionary. callbacks.whylabs_callback.import_langkit([...]) Import the langkit python package and raise an error if it is not installed. langchain.chains¶ Chains are easily reusable components linked together.
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-12
langchain.chains¶ Chains are easily reusable components linked together. Chains encode a sequence of calls to components like models, document retrievers, other Chains, etc., and provide a simple interface to this sequence. The Chain interface makes it easy to create apps that are: Stateful: add Memory to any Chain to give it state, Observable: pass Callbacks to a Chain to execute additional functionality, like logging, outside the main sequence of component calls, Composable: combine Chains with other components, including other Chains. Class hierarchy: Chain --> <name>Chain # Examples: LLMChain, MapReduceChain, RouterChain Classes¶ chains.api.base.APIChain Chain that makes API calls and summarizes the responses to answer a question. chains.api.openapi.chain.OpenAPIEndpointChain Chain interacts with an OpenAPI endpoint using natural language. chains.api.openapi.requests_chain.APIRequesterChain Get the request parser. chains.api.openapi.requests_chain.APIRequesterOutputParser Parse the request and error tags. chains.api.openapi.response_chain.APIResponderChain Get the response parser. chains.api.openapi.response_chain.APIResponderOutputParser Parse the response and error tags. chains.base.Chain Abstract base class for creating structured sequences of calls to components. chains.combine_documents.base.AnalyzeDocumentChain Chain that splits documents, then analyzes it in pieces. chains.combine_documents.base.BaseCombineDocumentsChain Base interface for chains combining documents. chains.combine_documents.map_reduce.MapReduceDocumentsChain Combining documents by mapping a chain over them, then combining results. chains.combine_documents.map_rerank.MapRerankDocumentsChain Combining documents by mapping a chain over them, then reranking results. chains.combine_documents.reduce.AsyncCombineDocsProtocol(...) Interface for the combine_docs method. chains.combine_documents.reduce.CombineDocsProtocol(...) Interface for the combine_docs method.
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-13
chains.combine_documents.reduce.CombineDocsProtocol(...) Interface for the combine_docs method. chains.combine_documents.reduce.ReduceDocumentsChain Combine documents by recursively reducing them. chains.combine_documents.refine.RefineDocumentsChain Combine documents by doing a first pass and then refining on more documents. chains.combine_documents.stuff.StuffDocumentsChain Chain that combines documents by stuffing into context. chains.constitutional_ai.base.ConstitutionalChain Chain for applying constitutional principles. chains.constitutional_ai.models.ConstitutionalPrinciple Class for a constitutional principle. chains.conversation.base.ConversationChain Chain to have a conversation and load context from memory. chains.conversational_retrieval.base.BaseConversationalRetrievalChain Chain for chatting with an index. chains.conversational_retrieval.base.ChatVectorDBChain Chain for chatting with a vector database. chains.conversational_retrieval.base.ConversationalRetrievalChain Chain for having a conversation based on retrieved documents. chains.elasticsearch_database.base.ElasticsearchDatabaseChain Chain for interacting with Elasticsearch Database. chains.flare.base.FlareChain Chain that combines a retriever, a question generator, and a response generator. chains.flare.base.QuestionGeneratorChain Chain that generates questions from uncertain spans. chains.flare.prompts.FinishedOutputParser Output parser that checks if the output is finished. chains.graph_qa.arangodb.ArangoGraphQAChain Chain for question-answering against a graph by generating AQL statements. chains.graph_qa.base.GraphQAChain Chain for question-answering against a graph. chains.graph_qa.cypher.GraphCypherQAChain Chain for question-answering against a graph by generating Cypher statements. chains.graph_qa.hugegraph.HugeGraphQAChain
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-14
chains.graph_qa.hugegraph.HugeGraphQAChain Chain for question-answering against a graph by generating gremlin statements. chains.graph_qa.kuzu.KuzuQAChain Chain for question-answering against a graph by generating Cypher statements for Kùzu. chains.graph_qa.nebulagraph.NebulaGraphQAChain Chain for question-answering against a graph by generating nGQL statements. chains.graph_qa.neptune_cypher.NeptuneOpenCypherQAChain Chain for question-answering against a Neptune graph by generating openCypher statements. chains.graph_qa.sparql.GraphSparqlQAChain Chain for question-answering against an RDF or OWL graph by generating SPARQL statements. chains.hyde.base.HypotheticalDocumentEmbedder Generate hypothetical document for query, and then embed that. chains.llm.LLMChain Chain to run queries against LLMs. chains.llm_bash.base.LLMBashChain Chain that interprets a prompt and executes bash operations. chains.llm_bash.prompt.BashOutputParser Parser for bash output. chains.llm_checker.base.LLMCheckerChain Chain for question-answering with self-verification. chains.llm_math.base.LLMMathChain Chain that interprets a prompt and executes python code to do math. chains.llm_requests.LLMRequestsChain Chain that requests a URL and then uses an LLM to parse results. chains.llm_summarization_checker.base.LLMSummarizationCheckerChain Chain for question-answering with self-verification. chains.llm_symbolic_math.base.LLMSymbolicMathChain Chain that interprets a prompt and executes python code to do symbolic math. chains.mapreduce.MapReduceChain Map-reduce chain.
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-15
chains.mapreduce.MapReduceChain Map-reduce chain. chains.moderation.OpenAIModerationChain Pass input through a moderation endpoint. chains.natbot.base.NatBotChain Implement an LLM driven browser. chains.natbot.crawler.ElementInViewPort A typed dictionary containing information about elements in the viewport. chains.openai_functions.citation_fuzzy_match.FactWithEvidence Class representing a single statement. chains.openai_functions.citation_fuzzy_match.QuestionAnswer A question and its answer as a list of facts each one should have a source. chains.openai_functions.openapi.SimpleRequestChain Chain for making a simple request to an API endpoint. chains.openai_functions.qa_with_structure.AnswerWithSources An answer to the question, with sources. chains.prompt_selector.BasePromptSelector Base class for prompt selectors. chains.prompt_selector.ConditionalPromptSelector Prompt collection that goes through conditionals. chains.qa_generation.base.QAGenerationChain Base class for question-answer generation chains. chains.qa_with_sources.base.BaseQAWithSourcesChain Question answering chain with sources over documents. chains.qa_with_sources.base.QAWithSourcesChain Question answering with sources over documents. chains.qa_with_sources.loading.LoadingCallable(...) Interface for loading the combine documents chain. chains.qa_with_sources.retrieval.RetrievalQAWithSourcesChain Question-answering with sources over an index. chains.qa_with_sources.vector_db.VectorDBQAWithSourcesChain Question-answering with sources over a vector database. chains.query_constructor.base.StructuredQueryOutputParser Output parser that parses a structured query. chains.query_constructor.ir.Comparator(value) Enumerator of the comparison operators. chains.query_constructor.ir.Comparison A comparison to a value. chains.query_constructor.ir.Expr Base class for all expressions. chains.query_constructor.ir.FilterDirective
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-16
chains.query_constructor.ir.Expr Base class for all expressions. chains.query_constructor.ir.FilterDirective A filtering expression. chains.query_constructor.ir.Operation A logical operation over other directives. chains.query_constructor.ir.Operator(value) Enumerator of the operations. chains.query_constructor.ir.StructuredQuery A structured query. chains.query_constructor.ir.Visitor() Defines interface for IR translation using visitor pattern. chains.query_constructor.parser.QueryTransformer chains.query_constructor.schema.AttributeInfo Information about a data source attribute. chains.question_answering.__init__.LoadingCallable(...) Interface for loading the combine documents chain. chains.retrieval_qa.base.BaseRetrievalQA Base class for question-answering chains. chains.retrieval_qa.base.RetrievalQA Chain for question-answering against an index. chains.retrieval_qa.base.VectorDBQA Chain for question-answering against a vector database. chains.router.base.MultiRouteChain Use a single chain to route an input to one of multiple candidate chains. chains.router.base.Route(destination, ...) Create new instance of Route(destination, next_inputs) chains.router.base.RouterChain Chain that outputs the name of a destination chain and the inputs to it. chains.router.embedding_router.EmbeddingRouterChain Chain that uses embeddings to route between options. chains.router.llm_router.LLMRouterChain A router chain that uses an LLM chain to perform routing. chains.router.llm_router.RouterOutputParser Parser for output of router chain int he multi-prompt chain. chains.router.multi_prompt.MultiPromptChain A multi-route chain that uses an LLM router chain to choose amongst prompts. chains.router.multi_retrieval_qa.MultiRetrievalQAChain A multi-route chain that uses an LLM router chain to choose amongst retrieval qa chains. chains.sequential.SequentialChain
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-17
chains.sequential.SequentialChain Chain where the outputs of one chain feed directly into next. chains.sequential.SimpleSequentialChain Simple chain where the outputs of one step feed directly into next. chains.sql_database.query.SQLInput Input for a SQL Chain. chains.sql_database.query.SQLInputWithTables Input for a SQL Chain. chains.summarize.__init__.LoadingCallable(...) Interface for loading the combine documents chain. chains.transform.TransformChain Chain that transforms the chain output. Functions¶ chains.example_generator.generate_example(...) Return another example given a list of examples for a prompt. chains.graph_qa.cypher.extract_cypher(text) Extract Cypher code from a text. chains.graph_qa.neptune_cypher.extract_cypher(text) Extract Cypher code from text using Regex. chains.loading.load_chain(path, **kwargs) Unified method for loading a chain from LangChainHub or local fs. chains.loading.load_chain_from_config(...) Load chain from Config Dict. chains.openai_functions.base.convert_python_function_to_openai_function(...) Convert a Python function to an OpenAI function-calling API compatible dict. chains.openai_functions.base.convert_to_openai_function(...) Convert a raw function/class to an OpenAI function. chains.openai_functions.base.create_openai_fn_chain(...) Create an LLM chain that uses OpenAI functions. chains.openai_functions.base.create_structured_output_chain(...) Create an LLMChain that uses an OpenAI function to get a structured output. chains.openai_functions.citation_fuzzy_match.create_citation_fuzzy_match_chain(llm) Create a citation fuzzy match chain. chains.openai_functions.extraction.create_extraction_chain(...) Creates a chain that extracts information from a passage. chains.openai_functions.extraction.create_extraction_chain_pydantic(...)
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-18
chains.openai_functions.extraction.create_extraction_chain_pydantic(...) Creates a chain that extracts information from a passage using pydantic schema. chains.openai_functions.openapi.get_openapi_chain(spec) Create a chain for querying an API from a OpenAPI spec. chains.openai_functions.openapi.openapi_spec_to_openai_fn(spec) Convert a valid OpenAPI spec to the JSON Schema format expected for OpenAI chains.openai_functions.qa_with_structure.create_qa_with_sources_chain(...) Create a question answering chain that returns an answer with sources. chains.openai_functions.qa_with_structure.create_qa_with_structure_chain(...) Create a question answering chain that returns an answer with sources chains.openai_functions.tagging.create_tagging_chain(...) Creates a chain that extracts information from a passage chains.openai_functions.tagging.create_tagging_chain_pydantic(...) Creates a chain that extracts information from a passage chains.openai_functions.utils.get_llm_kwargs(...) Returns the kwargs for the LLMChain constructor. chains.prompt_selector.is_chat_model(llm) Check if the language model is a chat model. chains.prompt_selector.is_llm(llm) Check if the language model is a LLM. chains.qa_with_sources.loading.load_qa_with_sources_chain(llm) Load a question answering with sources chain. chains.query_constructor.base.load_query_constructor_chain(...) Load a query constructor chain. chains.query_constructor.parser.get_parser([...]) Returns a parser for the query language. chains.question_answering.__init__.load_qa_chain(llm) Load question answering chain. chains.sql_database.query.create_sql_query_chain(llm, db) Create a chain that generates SQL queries. chains.summarize.__init__.load_summarize_chain(llm) Load summarizing chain. langchain.chat_models¶ Chat Models are a variation on language models.
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-19
langchain.chat_models¶ Chat Models are a variation on language models. While Chat Models use language models under the hood, the interface they expose is a bit different. Rather than expose a “text in, text out” API, they expose an interface where “chat messages” are the inputs and outputs. Class hierarchy: BaseLanguageModel --> BaseChatModel --> <name> # Examples: ChatOpenAI, ChatGooglePalm Main helpers: AIMessage, BaseMessage, HumanMessage Classes¶ chat_models.anthropic.ChatAnthropic Anthropic's large language chat model. chat_models.azure_openai.AzureChatOpenAI Wrapper around Azure OpenAI Chat Completion API. chat_models.azureml_endpoint.AzureMLChatOnlineEndpoint Azure ML Chat Online Endpoint models. chat_models.azureml_endpoint.LlamaContentFormatter() Content formatter for LLaMa chat_models.base.BaseChatModel Create a new model by parsing and validating input data from keyword arguments. chat_models.base.SimpleChatModel Simple Chat Model. chat_models.fake.FakeListChatModel Fake ChatModel for testing purposes. chat_models.google_palm.ChatGooglePalm Wrapper around Google's PaLM Chat API. chat_models.google_palm.ChatGooglePalmError Error raised when there is an issue with the Google PaLM API. chat_models.human.HumanInputChatModel ChatModel which returns user input as the response. chat_models.jinachat.JinaChat Wrapper for Jina AI's LLM service, providing cost-effective image chat capabilities. chat_models.mlflow_ai_gateway.ChatMLflowAIGateway Wrapper around chat LLMs in the MLflow AI Gateway. chat_models.mlflow_ai_gateway.ChatParams Parameters for the MLflow AI Gateway LLM. chat_models.openai.ChatOpenAI Wrapper around OpenAI Chat large language models.
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-20
chat_models.openai.ChatOpenAI Wrapper around OpenAI Chat large language models. chat_models.promptlayer_openai.PromptLayerChatOpenAI Wrapper around OpenAI Chat large language models and PromptLayer. chat_models.vertexai.ChatVertexAI Wrapper around Vertex AI large language models. Functions¶ chat_models.google_palm.achat_with_retry(...) Use tenacity to retry the async completion call. chat_models.google_palm.chat_with_retry(llm, ...) Use tenacity to retry the completion call. chat_models.jinachat.acompletion_with_retry(...) Use tenacity to retry the async completion call. chat_models.openai.acompletion_with_retry(llm) Use tenacity to retry the async completion call. chat_models.openai.convert_openai_messages(...) Convert dictionaries representing OpenAI messages to LangChain format. langchain.docstore¶ Docstores are classes to store and load Documents. The Docstore is a simplified version of the Document Loader. Class hierarchy: Docstore --> <name> # Examples: InMemoryDocstore, Wikipedia Main helpers: Document, AddableMixin Classes¶ docstore.arbitrary_fn.DocstoreFn(lookup_fn) Langchain Docstore via arbitrary lookup function. docstore.base.AddableMixin() Mixin class that supports adding texts. docstore.base.Docstore() Interface to access to place that stores documents. docstore.in_memory.InMemoryDocstore([_dict]) Simple in memory docstore in the form of a dict. docstore.wikipedia.Wikipedia() Wrapper around wikipedia API. langchain.document_loaders¶ Document Loaders are classes to load Documents. Document Loaders are usually used to load a lot of Documents in a single run. Class hierarchy: BaseLoader --> <name>Loader # Examples: TextLoader, UnstructuredFileLoader Main helpers:
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-21
Main helpers: Document, <name>TextSplitter Classes¶ document_loaders.acreom.AcreomLoader(path[, ...]) Loader that loads acreom vault from a directory. document_loaders.airbyte_json.AirbyteJSONLoader(...) Loads local airbyte json files. document_loaders.airtable.AirtableLoader(...) Loader for Airtable tables. document_loaders.apify_dataset.ApifyDatasetLoader Loads datasets from Apify-a web scraping, crawling, and data extraction platform. document_loaders.arxiv.ArxivLoader(query[, ...]) Loads a query result from arxiv.org into a list of Documents. document_loaders.async_html.AsyncHtmlLoader(...) Loads HTML asynchronously. document_loaders.azlyrics.AZLyricsLoader(...) Loads AZLyrics webpages. document_loaders.azure_blob_storage_container.AzureBlobStorageContainerLoader(...) Loading Documents from Azure Blob Storage. document_loaders.azure_blob_storage_file.AzureBlobStorageFileLoader(...) Loading Documents from Azure Blob Storage. document_loaders.base.BaseBlobParser() Abstract interface for blob parsers. document_loaders.base.BaseLoader() Interface for loading Documents. document_loaders.bibtex.BibtexLoader(...[, ...]) Loads a bibtex file into a list of Documents. document_loaders.bigquery.BigQueryLoader(query) Loads a query result from BigQuery into a list of documents. document_loaders.bilibili.BiliBiliLoader(...) Loads bilibili transcripts. document_loaders.blackboard.BlackboardLoader(...) Loads all documents from a Blackboard course. document_loaders.blob_loaders.file_system.FileSystemBlobLoader(path, *) Blob loader for the local file system. document_loaders.blob_loaders.schema.Blob A blob is used to represent raw data by either reference or value.
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-22
A blob is used to represent raw data by either reference or value. document_loaders.blob_loaders.schema.BlobLoader() Abstract interface for blob loaders implementation. document_loaders.blob_loaders.youtube_audio.YoutubeAudioLoader(...) Load YouTube urls as audio file(s). document_loaders.blockchain.BlockchainDocumentLoader(...) Loads elements from a blockchain smart contract into Langchain documents. document_loaders.blockchain.BlockchainType(value) Enumerator of the supported blockchains. document_loaders.brave_search.BraveSearchLoader(...) Loads a query result from Brave Search engine into a list of Documents. document_loaders.browserless.BrowserlessLoader(...) Loads the content of webpages using Browserless' /content endpoint document_loaders.chatgpt.ChatGPTLoader(log_file) Load conversations from exported ChatGPT data. document_loaders.college_confidential.CollegeConfidentialLoader(...) Loads College Confidential webpages. document_loaders.concurrent.ConcurrentLoader(...) A generic document loader that loads and parses documents concurrently. document_loaders.confluence.ConfluenceLoader(url) Load Confluence pages. document_loaders.confluence.ContentFormat(value) Enumerator of the content formats of Confluence page. document_loaders.conllu.CoNLLULoader(file_path) Load CoNLL-U files. document_loaders.csv_loader.CSVLoader(file_path) Loads a CSV file into a list of documents. document_loaders.csv_loader.UnstructuredCSVLoader(...) Loader that uses unstructured to load CSV files. document_loaders.cube_semantic.CubeSemanticLoader(...) Load Cube semantic layer metadata. document_loaders.datadog_logs.DatadogLogsLoader(...) Loads a query result from Datadog into a list of documents. document_loaders.dataframe.DataFrameLoader(...) Load Pandas DataFrame. document_loaders.diffbot.DiffbotLoader(...)
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-23
Load Pandas DataFrame. document_loaders.diffbot.DiffbotLoader(...) Loads Diffbot file json. document_loaders.directory.DirectoryLoader(...) Load documents from a directory. document_loaders.discord.DiscordChatLoader(...) Load Discord chat logs. document_loaders.docugami.DocugamiLoader Loads processed docs from Docugami. document_loaders.dropbox.DropboxLoader Loads files from Dropbox. document_loaders.duckdb_loader.DuckDBLoader(query) Loads a query result from DuckDB into a list of documents. document_loaders.email.OutlookMessageLoader(...) Loads Outlook Message files using extract_msg. document_loaders.email.UnstructuredEmailLoader(...) Loader that uses unstructured to load email files. document_loaders.embaas.BaseEmbaasLoader Base class for embedding a model into an Embaas document extraction API. document_loaders.embaas.EmbaasBlobLoader Embaas's document byte loader. document_loaders.embaas.EmbaasDocumentExtractionParameters Parameters for the embaas document extraction API. document_loaders.embaas.EmbaasDocumentExtractionPayload Payload for the Embaas document extraction API. document_loaders.embaas.EmbaasLoader Embaas's document loader. document_loaders.epub.UnstructuredEPubLoader(...) Loader that uses Unstructured to load EPUB files. document_loaders.etherscan.EtherscanLoader(...) Load transactions from an account on Ethereum mainnet. document_loaders.evernote.EverNoteLoader(...) EverNote Loader. document_loaders.excel.UnstructuredExcelLoader(...) Loader that uses unstructured to load Excel files. document_loaders.facebook_chat.FacebookChatLoader(path) Loads Facebook messages json directory dump.
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-24
document_loaders.facebook_chat.FacebookChatLoader(path) Loads Facebook messages json directory dump. document_loaders.fauna.FaunaLoader(query, ...) FaunaDB Loader. document_loaders.figma.FigmaFileLoader(...) Loads Figma file json. document_loaders.gcs_directory.GCSDirectoryLoader(...) Loads Documents from GCS. document_loaders.gcs_file.GCSFileLoader(...) Load Documents from a GCS file. document_loaders.generic.GenericLoader(...) A generic document loader. document_loaders.geodataframe.GeoDataFrameLoader(...) Load geopandas Dataframe. document_loaders.git.GitLoader(repo_path[, ...]) Loads files from a Git repository into a list of documents. document_loaders.gitbook.GitbookLoader(web_page) Load GitBook data. document_loaders.github.BaseGitHubLoader Load issues of a GitHub repository. document_loaders.github.GitHubIssuesLoader Load issues of a GitHub repository. document_loaders.googledrive.GoogleDriveLoader Loads Google Docs from Google Drive. document_loaders.gutenberg.GutenbergLoader(...) Loader that uses urllib to load .txt web files. document_loaders.helpers.FileEncoding(...) A file encoding as the NamedTuple. document_loaders.hn.HNLoader(web_path[, ...]) Load Hacker News data from either main page results or the comments page. document_loaders.html.UnstructuredHTMLLoader(...) Loader that uses Unstructured to load HTML files. document_loaders.html_bs.BSHTMLLoader(file_path) Loader that uses beautiful soup to parse HTML files. document_loaders.hugging_face_dataset.HuggingFaceDatasetLoader(path) Load Documents from the Hugging Face Hub. document_loaders.ifixit.IFixitLoader(web_path) Load iFixit repair guides, device wikis and answers.
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-25
Load iFixit repair guides, device wikis and answers. document_loaders.image.UnstructuredImageLoader(...) Loader that uses Unstructured to load PNG and JPG files. document_loaders.image_captions.ImageCaptionLoader(...) Loads the captions of an image document_loaders.imsdb.IMSDbLoader(web_path) Loads IMSDb webpages. document_loaders.iugu.IuguLoader(resource[, ...]) Loader that fetches data from IUGU. document_loaders.joplin.JoplinLoader([...]) Loader that fetches notes from Joplin. document_loaders.json_loader.JSONLoader(...) Loads a JSON file using a jq schema. document_loaders.larksuite.LarkSuiteDocLoader(...) Loads LarkSuite (FeiShu) document. document_loaders.markdown.UnstructuredMarkdownLoader(...) Loader that uses Unstructured to load markdown files. document_loaders.mastodon.MastodonTootsLoader(...) Mastodon toots loader. document_loaders.max_compute.MaxComputeLoader(...) Loads a query result from Alibaba Cloud MaxCompute table into documents. document_loaders.mediawikidump.MWDumpLoader(...) Load MediaWiki dump from XML file . document_loaders.merge.MergedDataLoader(loaders) Merge documents from a list of loaders document_loaders.mhtml.MHTMLLoader(file_path) Loader that uses beautiful soup to parse HTML files. document_loaders.modern_treasury.ModernTreasuryLoader(...) Loader that fetches data from Modern Treasury. document_loaders.notebook.NotebookLoader(path) Loads .ipynb notebook files. document_loaders.notion.NotionDirectoryLoader(path) Loads Notion directory dump. document_loaders.notiondb.NotionDBLoader(...) Notion DB Loader. document_loaders.obs_directory.OBSDirectoryLoader(...)
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-26
Notion DB Loader. document_loaders.obs_directory.OBSDirectoryLoader(...) Loading logic for loading documents from Huawei OBS. document_loaders.obs_file.OBSFileLoader(...) Loader for Huawei OBS file. document_loaders.obsidian.ObsidianLoader(path) Loads Obsidian files from disk. document_loaders.odt.UnstructuredODTLoader(...) Loader that uses unstructured to load OpenOffice ODT files. document_loaders.onedrive.OneDriveLoader Loads data from OneDrive. document_loaders.onedrive_file.OneDriveFileLoader Loads a file from OneDrive. document_loaders.open_city_data.OpenCityDataLoader(...) Loads Open City data. document_loaders.org_mode.UnstructuredOrgModeLoader(...) Loader that uses unstructured to load Org-Mode files. document_loaders.parsers.audio.OpenAIWhisperParser([...]) Transcribe and parse audio files. document_loaders.parsers.generic.MimeTypeBasedParser(...) A parser that uses mime-types to determine how to parse a blob. document_loaders.parsers.grobid.GrobidParser(...) Loader that uses Grobid to load article PDF files. document_loaders.parsers.grobid.ServerUnavailableException Exception raised when the GROBID server is unavailable. document_loaders.parsers.html.bs4.BS4HTMLParser(*) Parser that uses beautiful soup to parse HTML files. document_loaders.parsers.language.code_segmenter.CodeSegmenter(code) The abstract class for the code segmenter. document_loaders.parsers.language.javascript.JavaScriptSegmenter(code) The code segmenter for JavaScript. document_loaders.parsers.language.language_parser.LanguageParser([...]) Language parser that split code using the respective language syntax. document_loaders.parsers.language.python.PythonSegmenter(code) The code segmenter for Python. document_loaders.parsers.pdf.PDFMinerParser()
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-27
The code segmenter for Python. document_loaders.parsers.pdf.PDFMinerParser() Parse PDFs with PDFMiner. document_loaders.parsers.pdf.PDFPlumberParser([...]) Parse PDFs with PDFPlumber. document_loaders.parsers.pdf.PyMuPDFParser([...]) Parse PDFs with PyMuPDF. document_loaders.parsers.pdf.PyPDFParser([...]) Loads a PDF with pypdf and chunks at character level. document_loaders.parsers.pdf.PyPDFium2Parser() Parse PDFs with PyPDFium2. document_loaders.parsers.txt.TextParser() Parser for text blobs. document_loaders.pdf.BasePDFLoader(file_path) Base loader class for PDF files. document_loaders.pdf.MathpixPDFLoader(file_path) This class uses Mathpix service to load PDF files. document_loaders.pdf.OnlinePDFLoader(file_path) Loads online PDFs. document_loaders.pdf.PDFMinerLoader(file_path) Loader that uses PDFMiner to load PDF files. document_loaders.pdf.PDFMinerPDFasHTMLLoader(...) Loader that uses PDFMiner to load PDF files as HTML content. document_loaders.pdf.PDFPlumberLoader(file_path) Loader that uses pdfplumber to load PDF files. document_loaders.pdf.PyMuPDFLoader(file_path) Loader that uses PyMuPDF to load PDF files. document_loaders.pdf.PyPDFDirectoryLoader(path) Loads a directory with PDF files with pypdf and chunks at character level. document_loaders.pdf.PyPDFLoader(file_path) Loads a PDF with pypdf and chunks at character level. document_loaders.pdf.PyPDFium2Loader(file_path) Loads a PDF with pypdfium2 and chunks at character level. document_loaders.pdf.UnstructuredPDFLoader(...)
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-28
document_loaders.pdf.UnstructuredPDFLoader(...) Loader that uses unstructured to load PDF files. document_loaders.powerpoint.UnstructuredPowerPointLoader(...) Loader that uses unstructured to load PowerPoint files. document_loaders.psychic.PsychicLoader(...) Loads documents from Psychic.dev. document_loaders.pyspark_dataframe.PySparkDataFrameLoader([...]) Load PySpark DataFrames document_loaders.python.PythonLoader(file_path) Load Python files, respecting any non-default encoding if specified. document_loaders.readthedocs.ReadTheDocsLoader(path) Loads ReadTheDocs documentation directory dump. document_loaders.recursive_url_loader.RecursiveUrlLoader(url) Loads all child links from a given url. document_loaders.reddit.RedditPostsLoader(...) Reddit posts loader. document_loaders.roam.RoamLoader(path) Loads Roam files from disk. document_loaders.rocksetdb.ColumnNotFoundError(...) Column not found error. document_loaders.rocksetdb.RocksetLoader(...) Wrapper around Rockset db document_loaders.rst.UnstructuredRSTLoader(...) Loader that uses unstructured to load RST files. document_loaders.rtf.UnstructuredRTFLoader(...) Loader that uses unstructured to load RTF files. document_loaders.s3_directory.S3DirectoryLoader(bucket) Loading logic for loading documents from an AWS S3. document_loaders.s3_file.S3FileLoader(...) Loading logic for loading documents from an AWS S3 file. document_loaders.sitemap.SitemapLoader(web_path) Loader that fetches a sitemap and loads those URLs. document_loaders.slack_directory.SlackDirectoryLoader(...) Loads documents from a Slack directory dump. document_loaders.snowflake_loader.SnowflakeLoader(...) Loads a query result from Snowflake into a list of documents.
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-29
Loads a query result from Snowflake into a list of documents. document_loaders.spreedly.SpreedlyLoader(...) Loader that fetches data from Spreedly API. document_loaders.srt.SRTLoader(file_path) Loader for .srt (subtitle) files. document_loaders.stripe.StripeLoader(resource) Loader that fetches data from Stripe. document_loaders.telegram.TelegramChatApiLoader([...]) Loads Telegram chat json directory dump. document_loaders.telegram.TelegramChatFileLoader(path) Loads Telegram chat json directory dump. document_loaders.tencent_cos_directory.TencentCOSDirectoryLoader(...) Loader for Tencent Cloud COS directory. document_loaders.tencent_cos_file.TencentCOSFileLoader(...) Loader for Tencent Cloud COS file. document_loaders.text.TextLoader(file_path) Load text files. document_loaders.tomarkdown.ToMarkdownLoader(...) Loads HTML to markdown using 2markdown. document_loaders.toml.TomlLoader(source) A TOML document loader that inherits from the BaseLoader class. document_loaders.trello.TrelloLoader(client, ...) Trello loader. document_loaders.tsv.UnstructuredTSVLoader(...) Loader that uses unstructured to load TSV files. document_loaders.twitter.TwitterTweetLoader(...) Twitter tweets loader. document_loaders.unstructured.UnstructuredAPIFileIOLoader(file) Loader that uses the Unstructured API to load files. document_loaders.unstructured.UnstructuredAPIFileLoader([...]) Loader that uses the Unstructured API to load files. document_loaders.unstructured.UnstructuredBaseLoader([...]) Loader that uses Unstructured to load files. document_loaders.unstructured.UnstructuredFileIOLoader(file) Loader that uses Unstructured to load files. document_loaders.unstructured.UnstructuredFileLoader(...)
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-30
document_loaders.unstructured.UnstructuredFileLoader(...) Loader that uses Unstructured to load files. document_loaders.url.UnstructuredURLLoader(urls) Loader that use Unstructured to load files from remote URLs. document_loaders.url_playwright.PlaywrightURLLoader(urls) Loader that uses Playwright and to load a page and unstructured to load the html. document_loaders.url_selenium.SeleniumURLLoader(urls) Loader that uses Selenium and to load a page and unstructured to load the html. document_loaders.weather.WeatherDataLoader(...) Weather Reader. document_loaders.web_base.WebBaseLoader(web_path) Loader that uses urllib and beautiful soup to load webpages. document_loaders.whatsapp_chat.WhatsAppChatLoader(path) Loads WhatsApp messages text file. document_loaders.wikipedia.WikipediaLoader(query) Loads a query result from www.wikipedia.org into a list of Documents. document_loaders.word_document.Docx2txtLoader(...) Loads a DOCX with docx2txt and chunks at character level. document_loaders.word_document.UnstructuredWordDocumentLoader(...) Loader that uses unstructured to load word documents. document_loaders.xml.UnstructuredXMLLoader(...) Loader that uses unstructured to load XML files. document_loaders.xorbits.XorbitsLoader(...) Load Xorbits DataFrame. document_loaders.youtube.GoogleApiYoutubeLoader(...) Loads all Videos from a Channel document_loaders.youtube.YoutubeLoader(video_id) Loads Youtube transcripts. Functions¶ document_loaders.chatgpt.concatenate_rows(...) Combine message information in a readable format ready to be used. document_loaders.facebook_chat.concatenate_rows(row) Combine message information in a readable format ready to be used. document_loaders.helpers.detect_file_encodings(...) Try to detect the file encoding. document_loaders.notebook.concatenate_cells(...)
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-31
Try to detect the file encoding. document_loaders.notebook.concatenate_cells(...) Combine cells information in a readable format ready to be used. document_loaders.notebook.remove_newlines(x) Recursively removes newlines, no matter the data structure they are stored in. document_loaders.parsers.registry.get_parser(...) Get a parser by parser name. document_loaders.rocksetdb.default_joiner(docs) Default joiner for content columns. document_loaders.telegram.concatenate_rows(row) Combine message information in a readable format ready to be used. document_loaders.telegram.text_to_docs(text) Converts a string or list of strings to a list of Documents with metadata. document_loaders.unstructured.get_elements_from_api([...]) Retrieves a list of elements from the Unstructured API. document_loaders.unstructured.satisfies_min_unstructured_version(...) Checks to see if the installed unstructured version exceeds the minimum version for the feature in question. document_loaders.unstructured.validate_unstructured_version(...) Raises an error if the unstructured version does not exceed the specified minimum. document_loaders.whatsapp_chat.concatenate_rows(...) Combine message information in a readable format ready to be used. langchain.document_transformers¶ Document Transformers are classes to transform Documents. Document Transformers usually used to transform a lot of Documents in a single run. Class hierarchy: BaseDocumentTransformer --> <name> # Examples: DoctranQATransformer, DoctranTextTranslator Main helpers: Document Classes¶ document_transformers.doctran_text_extract.DoctranPropertyExtractor(...) Extract properties from text documents using doctran. document_transformers.doctran_text_qa.DoctranQATransformer([...]) Extract QA from text documents using doctran. document_transformers.doctran_text_translate.DoctranTextTranslator([...])
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-32
document_transformers.doctran_text_translate.DoctranTextTranslator([...]) Translate text documents using doctran. document_transformers.embeddings_redundant_filter.EmbeddingsClusteringFilter Perform K-means clustering on document vectors. document_transformers.embeddings_redundant_filter.EmbeddingsRedundantFilter Filter that drops redundant documents by comparing their embeddings. document_transformers.html2text.Html2TextTransformer() Replace occurrences of a particular search pattern with a replacement string . document_transformers.long_context_reorder.LongContextReorder Lost in the middle: Performance degrades when models must access relevant information in the middle of long contexts. document_transformers.openai_functions.OpenAIMetadataTagger Extract metadata tags from document contents using OpenAI functions. Functions¶ document_transformers.embeddings_redundant_filter.get_stateful_documents(...) Convert a list of documents to a list of documents with state. document_transformers.openai_functions.create_metadata_tagger(...) Create a DocumentTransformer that uses an OpenAI function chain to automatically langchain.embeddings¶ Embedding models are wrappers around embedding models from different APIs and services. Embedding models can be LLMs or not. Class hierarchy: Embeddings --> <name>Embeddings # Examples: OpenAIEmbeddings, HuggingFaceEmbeddings Classes¶ embeddings.aleph_alpha.AlephAlphaAsymmetricSemanticEmbedding Aleph Alpha's asymmetric semantic embedding. embeddings.aleph_alpha.AlephAlphaSymmetricSemanticEmbedding The symmetric version of the Aleph Alpha's semantic embeddings. embeddings.awa.AwaEmbeddings Create a new model by parsing and validating input data from keyword arguments. embeddings.base.Embeddings() Interface for embedding models. embeddings.bedrock.BedrockEmbeddings Bedrock embedding models.
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-33
embeddings.bedrock.BedrockEmbeddings Bedrock embedding models. embeddings.clarifai.ClarifaiEmbeddings Clarifai embedding models. embeddings.cohere.CohereEmbeddings Cohere embedding models. embeddings.dashscope.DashScopeEmbeddings DashScope embedding models. embeddings.deepinfra.DeepInfraEmbeddings Deep Infra's embedding inference service. embeddings.elasticsearch.ElasticsearchEmbeddings(...) Elasticsearch embedding models. embeddings.embaas.EmbaasEmbeddings Embaas's embedding service. embeddings.embaas.EmbaasEmbeddingsPayload Payload for the embaas embeddings API. embeddings.fake.FakeEmbeddings Fake embedding model. embeddings.google_palm.GooglePalmEmbeddings Google's PaLM Embeddings APIs. embeddings.gpt4all.GPT4AllEmbeddings GPT4All embedding models. embeddings.huggingface.HuggingFaceEmbeddings HuggingFace sentence_transformers embedding models. embeddings.huggingface.HuggingFaceInstructEmbeddings Wrapper around sentence_transformers embedding models. embeddings.huggingface_hub.HuggingFaceHubEmbeddings HuggingFaceHub embedding models. embeddings.jina.JinaEmbeddings Jina embedding models. embeddings.llamacpp.LlamaCppEmbeddings llama.cpp embedding models. embeddings.localai.LocalAIEmbeddings LocalAI embedding models. embeddings.minimax.MiniMaxEmbeddings MiniMax's embedding service. embeddings.mlflow_gateway.MlflowAIGatewayEmbeddings Wrapper around embeddings LLMs in the MLflow AI Gateway. embeddings.modelscope_hub.ModelScopeEmbeddings ModelScopeHub embedding models. embeddings.mosaicml.MosaicMLInstructorEmbeddings MosaicML embedding service.
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-34
embeddings.mosaicml.MosaicMLInstructorEmbeddings MosaicML embedding service. embeddings.nlpcloud.NLPCloudEmbeddings NLP Cloud embedding models. embeddings.octoai_embeddings.OctoAIEmbeddings OctoAI Compute Service embedding models. embeddings.openai.OpenAIEmbeddings OpenAI embedding models. embeddings.sagemaker_endpoint.EmbeddingsContentHandler() Content handler for LLM class. embeddings.sagemaker_endpoint.SagemakerEndpointEmbeddings Custom Sagemaker Inference Endpoints. embeddings.self_hosted.SelfHostedEmbeddings Custom embedding models on self-hosted remote hardware. embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceEmbeddings HuggingFace embedding models on self-hosted remote hardware. embeddings.self_hosted_hugging_face.SelfHostedHuggingFaceInstructEmbeddings HuggingFace InstructEmbedding models on self-hosted remote hardware. embeddings.spacy_embeddings.SpacyEmbeddings Embeddings by SpaCy models. embeddings.tensorflow_hub.TensorflowHubEmbeddings TensorflowHub embedding models. embeddings.vertexai.VertexAIEmbeddings Google Cloud VertexAI embedding models. embeddings.xinference.XinferenceEmbeddings([...]) Wrapper around xinference embedding models. Functions¶ embeddings.dashscope.embed_with_retry(...) Use tenacity to retry the embedding call. embeddings.google_palm.embed_with_retry(...) Use tenacity to retry the completion call. embeddings.localai.async_embed_with_retry(...) Use tenacity to retry the embedding call. embeddings.localai.embed_with_retry(...) Use tenacity to retry the embedding call. embeddings.minimax.embed_with_retry(...) Use tenacity to retry the completion call. embeddings.openai.async_embed_with_retry(...)
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-35
Use tenacity to retry the completion call. embeddings.openai.async_embed_with_retry(...) Use tenacity to retry the embedding call. embeddings.openai.embed_with_retry(...) Use tenacity to retry the embedding call. embeddings.self_hosted_hugging_face.load_embedding_model(...) Load the embedding model. langchain.env¶ Functions¶ env.get_runtime_environment() Get information about the LangChain runtime environment. langchain.evaluation¶ Evaluation chains for grading LLM and Chain outputs. This module contains off-the-shelf evaluation chains for grading the output of LangChain primitives such as language models and chains. Loading an evaluator To load an evaluator, you can use the load_evaluators or load_evaluator functions with the names of the evaluators to load. from langchain.evaluation import load_evaluator evaluator = load_evaluator("qa") evaluator.evaluate_strings( prediction="We sold more than 40,000 units last week", input="How many units did we sell last week?", reference="We sold 32,378 units", ) The evaluator must be one of EvaluatorType. Datasets To load one of the LangChain HuggingFace datasets, you can use the load_dataset function with the name of the dataset to load. from langchain.evaluation import load_dataset ds = load_dataset("llm-math") Some common use cases for evaluation include: Grading the accuracy of a response against ground truth answers: QAEvalChain Comparing the output of two models: PairwiseStringEvalChain or LabeledPairwiseStringEvalChain when there is additionally a reference label. Judging the efficacy of an agent’s tool usage: TrajectoryEvalChain
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-36
Judging the efficacy of an agent’s tool usage: TrajectoryEvalChain Checking whether an output complies with a set of criteria: CriteriaEvalChain or LabeledCriteriaEvalChain when there is additionally a reference label. Computing semantic difference between a prediction and reference: EmbeddingDistanceEvalChain or between two predictions: PairwiseEmbeddingDistanceEvalChain Measuring the string distance between a prediction and reference StringDistanceEvalChain or between two predictions PairwiseStringDistanceEvalChain Low-level API These evaluators implement one of the following interfaces: StringEvaluator: Evaluate a prediction string against a reference label and/or input context. PairwiseStringEvaluator: Evaluate two prediction strings against each other. Useful for scoring preferences, measuring similarity between two chain or llm agents, or comparing outputs on similar inputs. AgentTrajectoryEvaluator Evaluate the full sequence of actions taken by an agent. These interfaces enable easier composability and usage within a higher level evaluation framework. Classes¶ evaluation.agents.trajectory_eval_chain.TrajectoryEval A named tuple containing the score and reasoning for a trajectory. evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain A chain for evaluating ReAct style agents. evaluation.agents.trajectory_eval_chain.TrajectoryOutputParser Trajectory output parser. evaluation.comparison.eval_chain.LabeledPairwiseStringEvalChain A chain for comparing two outputs, such as the outputs evaluation.comparison.eval_chain.PairwiseStringEvalChain A chain for comparing two outputs, such as the outputs evaluation.comparison.eval_chain.PairwiseStringResultOutputParser A parser for the output of the PairwiseStringEvalChain. evaluation.criteria.eval_chain.Criteria(value) A Criteria to evaluate. evaluation.criteria.eval_chain.CriteriaEvalChain LLM Chain for evaluating runs against criteria. evaluation.criteria.eval_chain.CriteriaResultOutputParser A parser for the output of the CriteriaEvalChain.
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-37
A parser for the output of the CriteriaEvalChain. evaluation.criteria.eval_chain.LabeledCriteriaEvalChain Criteria evaluation chain that requires references. evaluation.embedding_distance.base.EmbeddingDistance(value) Embedding Distance Metric. evaluation.embedding_distance.base.EmbeddingDistanceEvalChain Use embedding distances to score semantic difference between a prediction and reference. evaluation.embedding_distance.base.PairwiseEmbeddingDistanceEvalChain Use embedding distances to score semantic difference between two predictions. evaluation.qa.eval_chain.ContextQAEvalChain LLM Chain for evaluating QA w/o GT based on context evaluation.qa.eval_chain.CotQAEvalChain LLM Chain for evaluating QA using chain of thought reasoning. evaluation.qa.eval_chain.QAEvalChain LLM Chain for evaluating question answering. evaluation.qa.generate_chain.QAGenerateChain LLM Chain for generating examples for question answering. evaluation.schema.AgentTrajectoryEvaluator() Interface for evaluating agent trajectories. evaluation.schema.EvaluatorType(value[, ...]) The types of the evaluators. evaluation.schema.LLMEvalChain A base class for evaluators that use an LLM. evaluation.schema.PairwiseStringEvaluator() Compare the output of two models (or two outputs of the same model). evaluation.schema.StringEvaluator() Grade, tag, or otherwise evaluate predictions relative to their inputs and/or reference labels. evaluation.string_distance.base.PairwiseStringDistanceEvalChain Compute string edit distances between two predictions. evaluation.string_distance.base.StringDistance(value) Distance metric to use. evaluation.string_distance.base.StringDistanceEvalChain Compute string distances between the prediction and the reference. Functions¶ evaluation.comparison.eval_chain.resolve_pairwise_criteria(...) Resolve the criteria for the pairwise evaluator. evaluation.criteria.eval_chain.resolve_criteria(...) Resolve the criteria to evaluate. evaluation.loading.load_dataset(uri)
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-38
Resolve the criteria to evaluate. evaluation.loading.load_dataset(uri) Load a dataset from the LangChainDatasets HuggingFace org. evaluation.loading.load_evaluator(evaluator, *) Load the requested evaluation chain specified by a string. evaluation.loading.load_evaluators(evaluators, *) Load evaluators specified by a list of evaluator types. langchain.graphs¶ Graphs provide a natural language interface to graph databases. Classes¶ graphs.neptune_graph.NeptuneQueryException(...) A class to handle queries that fail to execute graphs.networkx_graph.KnowledgeTriple(...) A triple in the graph. Functions¶ graphs.arangodb_graph.get_arangodb_client([...]) Get the Arango DB client from credentials. graphs.networkx_graph.get_entities(entity_str) Extract entities from entity string. graphs.networkx_graph.parse_triples(...) Parse knowledge triples from the knowledge string. langchain.indexes¶ Index utilities. Classes¶ indexes.graph.GraphIndexCreator Functionality to create graph index. indexes.vectorstore.VectorStoreIndexWrapper Wrapper around a vectorstore for easy access. indexes.vectorstore.VectorstoreIndexCreator Logic for creating indexes. langchain.llms¶ LLM classes provide access to the large language model (LLM) APIs and services. Class hierarchy: BaseLanguageModel --> BaseLLM --> LLM --> <name> # Examples: AI21, HuggingFaceHub, OpenAI Main helpers: LLMResult, PromptValue, CallbackManagerForLLMRun, AsyncCallbackManagerForLLMRun, CallbackManager, AsyncCallbackManager, AIMessage, BaseMessage Classes¶ llms.ai21.AI21 AI21 large language models. llms.ai21.AI21PenaltyData Parameters for AI21 penalty data. llms.aleph_alpha.AlephAlpha
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-39
Parameters for AI21 penalty data. llms.aleph_alpha.AlephAlpha Aleph Alpha large language models. llms.amazon_api_gateway.AmazonAPIGateway Amazon API Gateway to access LLM models hosted on AWS. llms.anthropic.Anthropic Anthropic large language models. llms.anyscale.Anyscale Anyscale Service models. llms.aviary.Aviary Aviary hosted models. llms.azureml_endpoint.AzureMLEndpointClient(...) AzureML Managed Endpoint client. llms.azureml_endpoint.AzureMLOnlineEndpoint Azure ML Online Endpoint models. llms.azureml_endpoint.DollyContentFormatter() Content handler for the Dolly-v2-12b model llms.azureml_endpoint.GPT2ContentFormatter() Content handler for GPT2 llms.azureml_endpoint.HFContentFormatter() Content handler for LLMs from the HuggingFace catalog. llms.azureml_endpoint.LlamaContentFormatter() Content formatter for LLaMa llms.azureml_endpoint.OSSContentFormatter() Deprecated: Kept for backwards compatibility llms.bananadev.Banana Banana large language models. llms.base.BaseLLM Base LLM abstract interface. llms.base.LLM Base LLM abstract class. llms.baseten.Baseten Baseten models. llms.beam.Beam Beam API for gpt2 large language model. llms.bedrock.Bedrock Bedrock models. llms.cerebriumai.CerebriumAI CerebriumAI large language models. llms.chatglm.ChatGLM ChatGLM LLM service. llms.clarifai.Clarifai Clarifai large language models. llms.cohere.Cohere
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-40
Clarifai large language models. llms.cohere.Cohere Cohere large language models. llms.ctransformers.CTransformers C Transformers LLM models. llms.databricks.Databricks Databricks serving endpoint or a cluster driver proxy app for LLM. llms.deepinfra.DeepInfra DeepInfra models. llms.fake.FakeListLLM Fake LLM for testing purposes. llms.forefrontai.ForefrontAI ForefrontAI large language models. llms.google_palm.GooglePalm Google PaLM models. llms.gooseai.GooseAI GooseAI large language models. llms.gpt4all.GPT4All GPT4All language models. llms.huggingface_endpoint.HuggingFaceEndpoint HuggingFace Endpoint models. llms.huggingface_hub.HuggingFaceHub HuggingFaceHub models. llms.huggingface_pipeline.HuggingFacePipeline HuggingFace Pipeline API. llms.huggingface_text_gen_inference.HuggingFaceTextGenInference HuggingFace text generation API. llms.human.HumanInputLLM It returns user input as the response. llms.koboldai.KoboldApiLLM Kobold API language model. llms.llamacpp.LlamaCpp llama.cpp model. llms.manifest.ManifestWrapper HazyResearch's Manifest library. llms.minimax.Minimax Wrapper around Minimax large language models. llms.mlflow_ai_gateway.MlflowAIGateway Wrapper around completions LLMs in the MLflow AI Gateway. llms.mlflow_ai_gateway.Params Parameters for the MLflow AI Gateway LLM. llms.modal.Modal Modal large language models. llms.mosaicml.MosaicML
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-41
Modal large language models. llms.mosaicml.MosaicML MosaicML LLM service. llms.nlpcloud.NLPCloud NLPCloud large language models. llms.octoai_endpoint.OctoAIEndpoint OctoAI LLM Endpoints. llms.openai.AzureOpenAI Azure-specific OpenAI large language models. llms.openai.BaseOpenAI Base OpenAI large language model class. llms.openai.OpenAI OpenAI large language models. llms.openai.OpenAIChat OpenAI Chat large language models. llms.openllm.IdentifyingParams Parameters for identifying a model as a typed dict. llms.openllm.OpenLLM OpenLLM, supporting both in-process model instance and remote OpenLLM servers. llms.openlm.OpenLM OpenLM models. llms.petals.Petals Petals Bloom models. llms.pipelineai.PipelineAI PipelineAI large language models. llms.predibase.Predibase Use your Predibase models with Langchain. llms.predictionguard.PredictionGuard Prediction Guard large language models. llms.promptlayer_openai.PromptLayerOpenAI PromptLayer OpenAI large language models. llms.promptlayer_openai.PromptLayerOpenAIChat Wrapper around OpenAI large language models. llms.replicate.Replicate Replicate models. llms.rwkv.RWKV RWKV language models. llms.sagemaker_endpoint.ContentHandlerBase() A handler class to transform input from LLM to a format that SageMaker endpoint expects. llms.sagemaker_endpoint.LLMContentHandler() Content handler for LLM class. llms.sagemaker_endpoint.SagemakerEndpoint Sagemaker Inference Endpoint models.
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-42
llms.sagemaker_endpoint.SagemakerEndpoint Sagemaker Inference Endpoint models. llms.self_hosted.SelfHostedPipeline Model inference on self-hosted remote hardware. llms.self_hosted_hugging_face.SelfHostedHuggingFaceLLM HuggingFace Pipeline API to run on self-hosted remote hardware. llms.stochasticai.StochasticAI StochasticAI large language models. llms.textgen.TextGen text-generation-webui models. llms.tongyi.Tongyi Tongyi Qwen large language models. llms.vertexai.VertexAI Google Vertex AI large language models. llms.writer.Writer Writer large language models. llms.xinference.Xinference Wrapper for accessing Xinference's large-scale model inference service. Functions¶ llms.aviary.get_completions(model, prompt[, ...]) Get completions from Aviary models. llms.aviary.get_models() List available models llms.base.create_base_retry_decorator(...[, ...]) Create a retry decorator for a given LLM and provided list of error types. llms.base.get_prompts(params, prompts) Get prompts that are already cached. llms.base.update_cache(existing_prompts, ...) Update the cache and get the LLM output. llms.cohere.acompletion_with_retry(llm, **kwargs) Use tenacity to retry the completion call. llms.cohere.completion_with_retry(llm, **kwargs) Use tenacity to retry the completion call. llms.databricks.get_default_api_token() Gets the default Databricks personal access token. llms.databricks.get_default_host() Gets the default Databricks workspace hostname. llms.databricks.get_repl_context()
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-43
Gets the default Databricks workspace hostname. llms.databricks.get_repl_context() Gets the notebook REPL context if running inside a Databricks notebook. llms.google_palm.generate_with_retry(llm, ...) Use tenacity to retry the completion call. llms.koboldai.clean_url(url) Remove trailing slash and /api from url if present. llms.loading.load_llm(file) Load LLM from file. llms.loading.load_llm_from_config(config) Load LLM from Config Dict. llms.openai.acompletion_with_retry(llm[, ...]) Use tenacity to retry the async completion call. llms.openai.completion_with_retry(llm[, ...]) Use tenacity to retry the completion call. llms.openai.update_token_usage(keys, ...) Update token usage. llms.tongyi.generate_with_retry(llm, **kwargs) Use tenacity to retry the completion call. llms.tongyi.stream_generate_with_retry(llm, ...) Use tenacity to retry the completion call. llms.utils.enforce_stop_tokens(text, stop) Cut off the text as soon as any stop words occur. llms.vertexai.completion_with_retry(llm, ...) Use tenacity to retry the completion call. llms.vertexai.is_codey_model(model_name) Returns True if the model name is a Codey model. langchain.load¶ Serialization and deserialization. Classes¶ load.serializable.BaseSerialized Base class for serialized objects. load.serializable.Serializable Serializable base class. load.serializable.SerializedConstructor Serialized constructor. load.serializable.SerializedNotImplemented Serialized not implemented. load.serializable.SerializedSecret Serialized secret. Functions¶ load.dump.default(obj)
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-44
load.serializable.SerializedSecret Serialized secret. Functions¶ load.dump.default(obj) Return a default value for a Serializable object or a SerializedNotImplemented object. load.dump.dumpd(obj) Return a json dict representation of an object. load.dump.dumps(obj, *[, pretty]) Return a json string representation of an object. load.load.loads(text, *[, secrets_map, ...]) Load a JSON object from a string. load.serializable.to_json_not_implemented(obj) Serialize a "not implemented" object. langchain.memory¶ Memory maintains Chain state, incorporating context from past runs. Class hierarchy for Memory: BaseMemory --> BaseChatMemory --> <name>Memory # Examples: ZepMemory, MotorheadMemory Main helpers: BaseChatMessageHistory Chat Message History stores the chat message history in different stores. Class hierarchy for ChatMessageHistory: BaseChatMessageHistory --> <name>ChatMessageHistory # Example: ZepChatMessageHistory Main helpers: AIMessage, BaseMessage, HumanMessage Classes¶ memory.buffer.ConversationBufferMemory Buffer for storing conversation memory. memory.buffer.ConversationStringBufferMemory Buffer for storing conversation memory. memory.buffer_window.ConversationBufferWindowMemory Buffer for storing conversation memory inside a limited size window. memory.chat_memory.BaseChatMemory Abstract base class for chat memory. memory.chat_message_histories.cassandra.CassandraChatMessageHistory(...) Chat message history that stores history in Cassandra. memory.chat_message_histories.cosmos_db.CosmosDBChatMessageHistory(...) Chat message history backed by Azure CosmosDB. memory.chat_message_histories.dynamodb.DynamoDBChatMessageHistory(...) Chat message history that stores history in AWS DynamoDB. memory.chat_message_histories.file.FileChatMessageHistory(...) Chat message history that stores history in a local file.
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-45
Chat message history that stores history in a local file. memory.chat_message_histories.firestore.FirestoreChatMessageHistory(...) Chat message history backed by Google Firestore. memory.chat_message_histories.in_memory.ChatMessageHistory In memory implementation of chat message history. memory.chat_message_histories.momento.MomentoChatMessageHistory(...) Chat message history cache that uses Momento as a backend. memory.chat_message_histories.mongodb.MongoDBChatMessageHistory(...) Chat message history that stores history in MongoDB. memory.chat_message_histories.postgres.PostgresChatMessageHistory(...) Chat message history stored in a Postgres database. memory.chat_message_histories.redis.RedisChatMessageHistory(...) Chat message history stored in a Redis database. memory.chat_message_histories.sql.SQLChatMessageHistory(...) Chat message history stored in an SQL database. memory.chat_message_histories.zep.ZepChatMessageHistory(...) Chat message history that uses Zep as a backend. memory.combined.CombinedMemory Combining multiple memories' data together. memory.entity.BaseEntityStore Abstract base class for Entity store. memory.entity.ConversationEntityMemory Entity extractor & summarizer memory. memory.entity.InMemoryEntityStore In-memory Entity store. memory.entity.RedisEntityStore Redis-backed Entity store. memory.entity.SQLiteEntityStore SQLite-backed Entity store memory.kg.ConversationKGMemory Knowledge graph conversation memory. memory.motorhead_memory.MotorheadMemory Chat message memory backed by Motorhead service. memory.readonly.ReadOnlySharedMemory A memory wrapper that is read-only and cannot be changed. memory.simple.SimpleMemory Simple memory for storing context or other information that shouldn't ever change between prompts. memory.summary.ConversationSummaryMemory Conversation summarizer to chat memory. memory.summary.SummarizerMixin Mixin for summarizer. memory.summary_buffer.ConversationSummaryBufferMemory
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-46
Mixin for summarizer. memory.summary_buffer.ConversationSummaryBufferMemory Buffer with summarizer for storing conversation memory. memory.token_buffer.ConversationTokenBufferMemory Conversation chat memory with token limit. memory.vectorstore.VectorStoreRetrieverMemory VectorStoreRetriever-backed memory. memory.zep_memory.ZepMemory Persist your chain history to the Zep Memory Server. Functions¶ memory.chat_message_histories.sql.create_message_model(...) Create a message model for a given table name. memory.utils.get_prompt_input_key(inputs, ...) Get the prompt input key. langchain.output_parsers¶ OutputParser classes parse the output of an LLM call. Class hierarchy: BaseLLMOutputParser --> BaseOutputParser --> <name>OutputParser # ListOutputParser, PydanticOutputParser Main helpers: Serializable, Generation, PromptValue Classes¶ output_parsers.boolean.BooleanOutputParser Parse the output of an LLM call to a boolean. output_parsers.combining.CombiningOutputParser Combine multiple output parsers into one. output_parsers.datetime.DatetimeOutputParser Parse the output of an LLM call to a datetime. output_parsers.enum.EnumOutputParser Parse an output that is one of a set of values. output_parsers.fix.OutputFixingParser Wraps a parser and tries to fix parsing errors. output_parsers.json.SimpleJsonOutputParser Parse the output of an LLM call to a JSON object. output_parsers.list.CommaSeparatedListOutputParser Parse the output of an LLM call to a comma-separated list. output_parsers.list.ListOutputParser Parse the output of an LLM call to a list. output_parsers.openai_functions.JsonKeyOutputFunctionsParser Parse an output as the element of the Json object. output_parsers.openai_functions.JsonOutputFunctionsParser
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-47
output_parsers.openai_functions.JsonOutputFunctionsParser Parse an output as the Json object. output_parsers.openai_functions.OutputFunctionsParser Parse an output that is one of sets of values. output_parsers.openai_functions.PydanticAttrOutputFunctionsParser Parse an output as an attribute of a pydantic object. output_parsers.openai_functions.PydanticOutputFunctionsParser Parse an output as a pydantic object. output_parsers.pydantic.PydanticOutputParser Parse an output using a pydantic model. output_parsers.rail_parser.GuardrailsOutputParser Parse the output of an LLM call using Guardrails. output_parsers.regex.RegexParser Parse the output of an LLM call using a regex. output_parsers.regex_dict.RegexDictParser Parse the output of an LLM call into a Dictionary using a regex. output_parsers.retry.RetryOutputParser Wraps a parser and tries to fix parsing errors. output_parsers.retry.RetryWithErrorOutputParser Wraps a parser and tries to fix parsing errors. output_parsers.structured.ResponseSchema A schema for a response from a structured output parser. output_parsers.structured.StructuredOutputParser Parse the output of an LLM call to a structured output. Functions¶ output_parsers.json.parse_and_check_json_markdown(...) Parse a JSON string from a Markdown string and check that it contains the expected keys. output_parsers.json.parse_json_markdown(...) Parse a JSON string from a Markdown string. output_parsers.loading.load_output_parser(config) Load an output parser. langchain.prompts¶ Prompt is the input to the model. Prompt is often constructed from multiple components. Prompt classes and functions make constructing and working with prompts easy. Class hierarchy: BasePromptTemplate --> PipelinePromptTemplate
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-48
and working with prompts easy. Class hierarchy: BasePromptTemplate --> PipelinePromptTemplate StringPromptTemplate --> PromptTemplate FewShotPromptTemplate FewShotPromptWithTemplates BaseChatPromptTemplate --> AutoGPTPrompt ChatPromptTemplate --> AgentScratchPadChatPromptTemplate BaseMessagePromptTemplate --> MessagesPlaceholder BaseStringMessagePromptTemplate --> ChatMessagePromptTemplate HumanMessagePromptTemplate AIMessagePromptTemplate SystemMessagePromptTemplate PromptValue --> StringPromptValue ChatPromptValue Classes¶ prompts.base.StringPromptTemplate String prompt that exposes the format method, returning a prompt. prompts.base.StringPromptValue String prompt value. prompts.chat.AIMessagePromptTemplate AI message prompt template. prompts.chat.BaseChatPromptTemplate Base class for chat prompt templates. prompts.chat.BaseMessagePromptTemplate Base class for message prompt templates. prompts.chat.BaseStringMessagePromptTemplate Base class for message prompt templates that use a string prompt template. prompts.chat.ChatMessagePromptTemplate Chat message prompt template. prompts.chat.ChatPromptTemplate A prompt template for chat models. prompts.chat.ChatPromptValue Chat prompt value. prompts.chat.HumanMessagePromptTemplate Human message prompt template. prompts.chat.MessagesPlaceholder Prompt template that assumes variable is already list of messages. prompts.chat.SystemMessagePromptTemplate System message prompt template. prompts.example_selector.base.BaseExampleSelector() Interface for selecting examples to include in prompts. prompts.example_selector.length_based.LengthBasedExampleSelector Select examples based on length. prompts.example_selector.ngram_overlap.NGramOverlapExampleSelector Select and order examples based on ngram overlap score (sentence_bleu score). prompts.example_selector.semantic_similarity.MaxMarginalRelevanceExampleSelector
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-49
prompts.example_selector.semantic_similarity.MaxMarginalRelevanceExampleSelector ExampleSelector that selects examples based on Max Marginal Relevance. prompts.example_selector.semantic_similarity.SemanticSimilarityExampleSelector Example selector that selects examples based on SemanticSimilarity. prompts.few_shot.FewShotChatMessagePromptTemplate Chat prompt template that supports few-shot examples. prompts.few_shot.FewShotPromptTemplate Prompt template that contains few shot examples. prompts.few_shot_with_templates.FewShotPromptWithTemplates Prompt template that contains few shot examples. prompts.pipeline.PipelinePromptTemplate A prompt template for composing multiple prompt templates together. prompts.prompt.PromptTemplate A prompt template for a language model. Functions¶ prompts.base.check_valid_template(template, ...) Check that template string is valid. prompts.base.jinja2_formatter(template, **kwargs) Format a template using jinja2. prompts.base.validate_jinja2(template, ...) Validate that the input variables are valid for the template. prompts.example_selector.ngram_overlap.ngram_overlap_score(...) Compute ngram overlap score of source and example as sentence_bleu score. prompts.example_selector.semantic_similarity.sorted_values(values) Return a list of values in dict sorted by key. prompts.loading.load_prompt(path) Unified method for loading a prompt from LangChainHub or local fs. prompts.loading.load_prompt_from_config(config) Load prompt from Config Dict. langchain.retrievers¶ Retriever class returns Documents given a text query. It is more general than a vector store. A retriever does not need to be able to store documents, only to return (or retrieve) it. Vector stores can be used as the backbone of a retriever, but there are other types of retrievers as well. Class hierarchy:
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-50
Class hierarchy: BaseRetriever --> <name>Retriever # Examples: ArxivRetriever, MergerRetriever Main helpers: Document, Serializable, Callbacks, CallbackManagerForRetrieverRun, AsyncCallbackManagerForRetrieverRun Classes¶ retrievers.arxiv.ArxivRetriever Retriever for Arxiv. retrievers.azure_cognitive_search.AzureCognitiveSearchRetriever Retriever for the Azure Cognitive Search service. retrievers.bm25.BM25Retriever BM25 Retriever without elastic search. retrievers.chaindesk.ChaindeskRetriever Retriever for the Chaindesk API. retrievers.chatgpt_plugin_retriever.ChatGPTPluginRetriever Retrieves documents from a ChatGPT plugin. retrievers.contextual_compression.ContextualCompressionRetriever Retriever that wraps a base retriever and compresses the results. retrievers.databerry.DataberryRetriever Retriever for the Databerry API. retrievers.docarray.DocArrayRetriever Retriever for DocArray Document Indices. retrievers.docarray.SearchType(value[, ...]) Enumerator of the types of search to perform. retrievers.document_compressors.base.BaseDocumentCompressor Base abstraction interface for document compression. retrievers.document_compressors.base.DocumentCompressorPipeline Document compressor that uses a pipeline of transformers. retrievers.document_compressors.chain_extract.LLMChainExtractor DocumentCompressor that uses an LLM chain to extract the relevant parts of documents. retrievers.document_compressors.chain_extract.NoOutputParser Parse outputs that could return a null string of some sort. retrievers.document_compressors.chain_filter.LLMChainFilter
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-51
retrievers.document_compressors.chain_filter.LLMChainFilter Filter that drops documents that aren't relevant to the query. retrievers.document_compressors.cohere_rerank.CohereRerank DocumentCompressor that uses Cohere's rerank API to compress documents. retrievers.document_compressors.embeddings_filter.EmbeddingsFilter Document compressor that uses embeddings to drop documents unrelated to the query. retrievers.elastic_search_bm25.ElasticSearchBM25Retriever Retriever for the Elasticsearch using BM25 as a retrieval method. retrievers.ensemble.EnsembleRetriever This class ensemble the results of multiple retrievers by using rank fusion. retrievers.google_cloud_enterprise_search.GoogleCloudEnterpriseSearchRetriever Retriever for the Google Cloud Enterprise Search Service API. retrievers.kendra.AdditionalResultAttribute An additional result attribute. retrievers.kendra.AdditionalResultAttributeValue The value of an additional result attribute. retrievers.kendra.AmazonKendraRetriever Retriever for the Amazon Kendra Index. retrievers.kendra.DocumentAttribute A document attribute. retrievers.kendra.DocumentAttributeValue The value of a document attribute. retrievers.kendra.Highlight Represents the information that can be used to highlight key words in the excerpt. retrievers.kendra.QueryResult A Query API result. retrievers.kendra.QueryResultItem A Query API result item. retrievers.kendra.ResultItem Abstract class that represents a result item. retrievers.kendra.RetrieveResult A Retrieve API result. retrievers.kendra.RetrieveResultItem A Retrieve API result item. retrievers.kendra.TextWithHighLights Text with highlights. retrievers.knn.KNNRetriever KNN Retriever.
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-52
retrievers.knn.KNNRetriever KNN Retriever. retrievers.llama_index.LlamaIndexGraphRetriever Retriever for question-answering with sources over an LlamaIndex graph data structure. retrievers.llama_index.LlamaIndexRetriever Retriever for the question-answering with sources over an LlamaIndex data structure. retrievers.merger_retriever.MergerRetriever Retriever that merges the results of multiple retrievers. retrievers.metal.MetalRetriever Retriever that uses the Metal API. retrievers.milvus.MilvusRetriever Retriever that uses the Milvus API. retrievers.multi_query.LineList List of lines. retrievers.multi_query.LineListOutputParser Output parser for a list of lines. retrievers.multi_query.MultiQueryRetriever Given a user query, use an LLM to write a set of queries. retrievers.pinecone_hybrid_search.PineconeHybridSearchRetriever Pinecone Hybrid Search Retriever. retrievers.pubmed.PubMedRetriever Retriever for PubMed API. retrievers.remote_retriever.RemoteLangChainRetriever Retriever for remote LangChain API. retrievers.self_query.base.SelfQueryRetriever Retriever that uses a vector store and an LLM to generate the vector store queries. retrievers.self_query.chroma.ChromaTranslator() Translate internal query language elements to valid filters. retrievers.self_query.deeplake.DeepLakeTranslator() Logic for converting internal query language elements to valid filters. retrievers.self_query.myscale.MyScaleTranslator([...])
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-53
retrievers.self_query.myscale.MyScaleTranslator([...]) Translate internal query language elements to valid filters. retrievers.self_query.pinecone.PineconeTranslator() Translate the internal query language elements to valid filters. retrievers.self_query.qdrant.QdrantTranslator(...) Translate the internal query language elements to valid filters. retrievers.self_query.weaviate.WeaviateTranslator() Translate the internal query language elements to valid filters. retrievers.svm.SVMRetriever SVM Retriever. retrievers.tfidf.TFIDFRetriever TF-IDF Retriever. retrievers.time_weighted_retriever.TimeWeightedVectorStoreRetriever Retriever that combines embedding similarity with recency in retrieving values. retrievers.vespa_retriever.VespaRetriever Retriever that uses Vespa. retrievers.weaviate_hybrid_search.WeaviateHybridSearchRetriever Retriever for the Weaviate's hybrid search. retrievers.web_research.LineList List of questions. retrievers.web_research.QuestionListOutputParser Output parser for a list of numbered questions. retrievers.web_research.SearchQueries Search queries to run to research for the user's goal. retrievers.web_research.WebResearchRetriever Retriever for web research based on the Google Search API. retrievers.wikipedia.WikipediaRetriever Retriever for Wikipedia API. retrievers.zep.ZepRetriever Retriever for the Zep long-term memory store. retrievers.zilliz.ZillizRetriever Retriever for the Zilliz API. Functions¶ retrievers.bm25.default_preprocessing_func(text)
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-54
Functions¶ retrievers.bm25.default_preprocessing_func(text) retrievers.document_compressors.chain_extract.default_get_input(...) Return the compression chain input. retrievers.document_compressors.chain_filter.default_get_input(...) Return the compression chain input. retrievers.kendra.clean_excerpt(excerpt) Cleans an excerpt from Kendra. retrievers.kendra.combined_text(title, excerpt) Combines a title and an excerpt into a single string. retrievers.knn.create_index(contexts, embeddings) Create an index of embeddings for a list of contexts. retrievers.milvus.MilvusRetreiver(*args, ...) Deprecated MilvusRetreiver. retrievers.pinecone_hybrid_search.create_index(...) Create a Pinecone index from a list of contexts. retrievers.pinecone_hybrid_search.hash_text(text) Hash a text using SHA256. retrievers.self_query.deeplake.can_cast_to_float(string) Check if a string can be cast to a float. retrievers.self_query.myscale.DEFAULT_COMPOSER(op_name) Default composer for logical operators. retrievers.self_query.myscale.FUNCTION_COMPOSER(op_name) Composer for functions. retrievers.svm.create_index(contexts, embeddings) Create an index of embeddings for a list of contexts. retrievers.zilliz.ZillizRetreiver(*args, ...) Deprecated ZillizRetreiver. langchain.schema¶ Schemas are the LangChain Base Classes and Interfaces. Classes¶ schema.agent.AgentFinish(return_values, log) The final return value of an ActionAgent. schema.document.BaseDocumentTransformer() Abstract base class for document transformation systems. schema.document.Document
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-55
schema.document.BaseDocumentTransformer() Abstract base class for document transformation systems. schema.document.Document Class for storing a piece of text and associated metadata. schema.language_model.BaseLanguageModel Abstract base class for interfacing with language models. schema.memory.BaseChatMessageHistory() Abstract base class for storing chat message history. schema.memory.BaseMemory Abstract base class for memory in Chains. schema.messages.AIMessage A Message from an AI. schema.messages.AIMessageChunk Create a new model by parsing and validating input data from keyword arguments. schema.messages.BaseMessage The base abstract Message class. schema.messages.BaseMessageChunk Create a new model by parsing and validating input data from keyword arguments. schema.messages.ChatMessage A Message that can be assigned an arbitrary speaker (i.e. schema.messages.ChatMessageChunk Create a new model by parsing and validating input data from keyword arguments. schema.messages.FunctionMessage A Message for passing the result of executing a function back to a model. schema.messages.FunctionMessageChunk Create a new model by parsing and validating input data from keyword arguments. schema.messages.HumanMessage A Message from a human. schema.messages.HumanMessageChunk Create a new model by parsing and validating input data from keyword arguments. schema.messages.SystemMessage A Message for priming AI behavior, usually passed in as the first of a sequence of input messages. schema.messages.SystemMessageChunk Create a new model by parsing and validating input data from keyword arguments. schema.output.ChatGeneration A single chat generation output. schema.output.ChatGenerationChunk Create a new model by parsing and validating input data from keyword arguments. schema.output.ChatResult Class that contains all results for a single chat model call. schema.output.Generation A single text generation output. schema.output.GenerationChunk Create a new model by parsing and validating input data from keyword arguments.
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-56
schema.output.GenerationChunk Create a new model by parsing and validating input data from keyword arguments. schema.output.LLMResult Class that contains all results for a batched LLM call. schema.output.RunInfo Class that contains metadata for a single execution of a Chain or model. schema.output_parser.BaseGenerationOutputParser Create a new model by parsing and validating input data from keyword arguments. schema.output_parser.BaseLLMOutputParser Abstract base class for parsing the outputs of a model. schema.output_parser.BaseOutputParser Base class to parse the output of an LLM call. schema.output_parser.OutputParserException(error) Exception that output parsers should raise to signify a parsing error. schema.output_parser.StrOutputParser OutputParser that parses LLMResult into the top likely string.. schema.prompt.PromptValue Base abstract class for inputs to any language model. schema.prompt_template.BasePromptTemplate Base class for all prompt templates, returning a prompt. schema.retriever.BaseRetriever Abstract base class for a Document retrieval system. schema.runnable.RouterInput schema.runnable.RouterRunnable Create a new model by parsing and validating input data from keyword arguments. schema.runnable.Runnable() schema.runnable.RunnableBinding Create a new model by parsing and validating input data from keyword arguments. schema.runnable.RunnableConfig schema.runnable.RunnableLambda(func) schema.runnable.RunnableMap Create a new model by parsing and validating input data from keyword arguments. schema.runnable.RunnablePassthrough Create a new model by parsing and validating input data from keyword arguments. schema.runnable.RunnableSequence Create a new model by parsing and validating input data from keyword arguments. Functions¶ schema.messages.get_buffer_string(messages) Convert sequence of Messages to strings and concatenate them into one string. schema.messages.messages_from_dict(messages)
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-57
schema.messages.messages_from_dict(messages) Convert a sequence of messages from dicts to Message objects. schema.messages.messages_to_dict(messages) Convert a sequence of Messages to a list of dictionaries. schema.prompt_template.format_document(doc, ...) Format a document into a string based on a prompt template. langchain.server¶ Script to run langchain-server locally using docker-compose. Functions¶ server.main() Run the langchain server locally. langchain.smith¶ LangSmith utilities. This module provides utilities for connecting to LangSmith. For more information on LangSmith, see the LangSmith documentation. Evaluation LangSmith helps you evaluate Chains and other language model application components using a number of LangChain evaluators. An example of this is shown below, assuming you’ve created a LangSmith dataset called <my_dataset_name>: from langsmith import Client from langchain.chat_models import ChatOpenAI from langchain.chains import LLMChain from langchain.smith import RunEvalConfig, run_on_dataset # Chains may have memory. Passing in a constructor function lets the # evaluation framework avoid cross-contamination between runs. def construct_chain(): llm = ChatOpenAI(temperature=0) chain = LLMChain.from_string( llm, "What's the answer to {your_input_key}" ) return chain # Load off-the-shelf evaluators via config or the EvaluatorType (string or enum) evaluation_config = RunEvalConfig( evaluators=[ "qa", # "Correctness" against a reference answer "embedding_distance", RunEvalConfig.Criteria("helpfulness"), RunEvalConfig.Criteria({ "fifth-grader-score": "Do you have to be smarter than a fifth grader to answer this question?" }), ]
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-58
}), ] ) client = Client() run_on_dataset( client, "<my_dataset_name>", construct_chain, evaluation=evaluation_config, ) You can also create custom evaluators by subclassing the StringEvaluator or LangSmith’s RunEvaluator classes. from typing import Optional from langchain.evaluation import StringEvaluator class MyStringEvaluator(StringEvaluator): @property def requires_input(self) -> bool: return False @property def requires_reference(self) -> bool: return True @property def evaluation_name(self) -> str: return "exact_match" def _evaluate_strings(self, prediction, reference=None, input=None, **kwargs) -> dict: return {"score": prediction == reference} evaluation_config = RunEvalConfig( custom_evaluators = [MyStringEvaluator()], ) run_on_dataset( client, "<my_dataset_name>", construct_chain, evaluation=evaluation_config, ) Primary Functions arun_on_dataset: Asynchronous function to evaluate a chain, agent, or other LangChain component over a dataset. run_on_dataset: Function to evaluate a chain, agent, or other LangChain component over a dataset. RunEvalConfig: Class representing the configuration for running evaluation. You can select evaluators by EvaluatorType or config, or you can pass in custom_evaluators Classes¶ smith.evaluation.config.EvalConfig Configuration for a given run evaluator. smith.evaluation.config.RunEvalConfig Configuration for a run evaluation. smith.evaluation.runner_utils.InputFormatError Raised when the input format is invalid. smith.evaluation.string_run_evaluator.ChainStringRunMapper Extract items to evaluate from the run object from a chain.
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-59
Extract items to evaluate from the run object from a chain. smith.evaluation.string_run_evaluator.LLMStringRunMapper Extract items to evaluate from the run object. smith.evaluation.string_run_evaluator.StringExampleMapper Map an example, or row in the dataset, to the inputs of an evaluation. smith.evaluation.string_run_evaluator.StringRunEvaluatorChain Evaluate Run and optional examples. smith.evaluation.string_run_evaluator.StringRunMapper Extract items to evaluate from the run object. smith.evaluation.string_run_evaluator.ToolStringRunMapper Map an input to the tool. Functions¶ smith.evaluation.runner_utils.arun_on_dataset(...) Asynchronously run the Chain or language model on a dataset and store traces to the specified project name. smith.evaluation.runner_utils.run_on_dataset(...) Run the Chain or language model on a dataset and store traces to the specified project name. langchain.text_splitter¶ Text Splitters are classes for splitting text. Class hierarchy: BaseDocumentTransformer --> TextSplitter --> <name>TextSplitter # Example: CharacterTextSplitter RecursiveCharacterTextSplitter --> <name>TextSplitter Note: MarkdownHeaderTextSplitter does not derive from TextSplitter. Main helpers: Document, Tokenizer, Language, LineType, HeaderType Classes¶ text_splitter.CharacterTextSplitter([separator]) Splitting text that looks at characters. text_splitter.HeaderType Header type as typed dict. text_splitter.Language(value[, names, ...]) Enum of the programming languages. text_splitter.LatexTextSplitter(**kwargs) Attempts to split the text along Latex-formatted layout elements. text_splitter.LineType Line type as typed dict. text_splitter.MarkdownTextSplitter(**kwargs) Attempts to split the text along Markdown-formatted headings.
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-60
Attempts to split the text along Markdown-formatted headings. text_splitter.NLTKTextSplitter([separator]) Splitting text using NLTK package. text_splitter.PythonCodeTextSplitter(**kwargs) Attempts to split the text along Python syntax. text_splitter.RecursiveCharacterTextSplitter([...]) Splitting text by recursively look at characters. text_splitter.SentenceTransformersTokenTextSplitter([...]) Splitting text to tokens using sentence model tokenizer. text_splitter.SpacyTextSplitter([separator, ...]) Splitting text using Spacy package. text_splitter.TextSplitter(chunk_size, ...) Interface for splitting text into chunks. text_splitter.TokenTextSplitter([...]) Splitting text to tokens using model tokenizer. Functions¶ text_splitter.split_text_on_tokens(*, text, ...) Split incoming text and return chunks using tokenizer. langchain.tools¶ Tools are classes that an Agent uses to interact with the world. Each tool has a description. Agent uses the description to choose the right tool for the job. Class hierarchy: ToolMetaclass --> BaseTool --> <name>Tool # Examples: AIPluginTool, BaseGraphQLTool <name> # Examples: BraveSearch, HumanInputRun Main helpers: CallbackManagerForToolRun, AsyncCallbackManagerForToolRun Classes¶ tools.amadeus.base.AmadeusBaseTool Base Tool for Amadeus. tools.amadeus.closest_airport.AmadeusClosestAirport Tool for finding the closest airport to a particular location. tools.amadeus.closest_airport.ClosestAirportSchema Schema for the AmadeusClosestAirport tool. tools.amadeus.flight_search.AmadeusFlightSearch Tool for searching for a single flight between two airports.
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-61
Tool for searching for a single flight between two airports. tools.amadeus.flight_search.FlightSearchSchema Schema for the AmadeusFlightSearch tool. tools.arxiv.tool.ArxivQueryRun Tool that searches the Arxiv API. tools.azure_cognitive_services.form_recognizer.AzureCogsFormRecognizerTool Tool that queries the Azure Cognitive Services Form Recognizer API. tools.azure_cognitive_services.image_analysis.AzureCogsImageAnalysisTool Tool that queries the Azure Cognitive Services Image Analysis API. tools.azure_cognitive_services.speech2text.AzureCogsSpeech2TextTool Tool that queries the Azure Cognitive Services Speech2Text API. tools.azure_cognitive_services.text2speech.AzureCogsText2SpeechTool Tool that queries the Azure Cognitive Services Text2Speech API. tools.base.BaseTool Interface LangChain tools must implement. tools.base.SchemaAnnotationError Raised when 'args_schema' is missing or has an incorrect type annotation. tools.base.StructuredTool Tool that can operate on any number of inputs. tools.base.Tool Tool that takes in function or coroutine directly. tools.base.ToolException An optional exception that tool throws when execution error occurs. tools.base.ToolMetaclass(name, bases, dct) Metaclass for BaseTool to ensure the provided args_schema tools.bing_search.tool.BingSearchResults Tool that queries the Bing Search API and gets back json. tools.bing_search.tool.BingSearchRun Tool that queries the Bing search API. tools.brave_search.tool.BraveSearch Tool that queries the BraveSearch. tools.convert_to_openai.FunctionDescription Representation of a callable function to the OpenAI API. tools.dataforseo_api_search.tool.DataForSeoAPISearchResults Tool that queries the DataForSeo Google Search API and get back json.
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-62
Tool that queries the DataForSeo Google Search API and get back json. tools.dataforseo_api_search.tool.DataForSeoAPISearchRun Tool that queries the DataForSeo Google search API. tools.ddg_search.tool.DuckDuckGoSearchResults Tool that queries the DuckDuckGo search API and gets back json. tools.ddg_search.tool.DuckDuckGoSearchRun Tool that queries the DuckDuckGo search API. tools.file_management.copy.CopyFileTool Tool that copies a file. tools.file_management.copy.FileCopyInput Input for CopyFileTool. tools.file_management.delete.DeleteFileTool Tool that deletes a file. tools.file_management.delete.FileDeleteInput Input for DeleteFileTool. tools.file_management.file_search.FileSearchInput Input for FileSearchTool. tools.file_management.file_search.FileSearchTool Tool that searches for files in a subdirectory that match a regex pattern. tools.file_management.list_dir.DirectoryListingInput Input for ListDirectoryTool. tools.file_management.list_dir.ListDirectoryTool Tool that lists files and directories in a specified folder. tools.file_management.move.FileMoveInput Input for MoveFileTool. tools.file_management.move.MoveFileTool Tool that moves a file. tools.file_management.read.ReadFileInput Input for ReadFileTool. tools.file_management.read.ReadFileTool Tool that reads a file. tools.file_management.utils.BaseFileToolMixin Mixin for file system tools. tools.file_management.utils.FileValidationError Error for paths outside the root directory. tools.file_management.write.WriteFileInput Input for WriteFileTool. tools.file_management.write.WriteFileTool Tool that writes a file to disk. tools.github.tool.GitHubAction Tool for interacting with the GitHub API. tools.gmail.base.GmailBaseTool Base class for Gmail tools. tools.gmail.create_draft.CreateDraftSchema
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-63
Base class for Gmail tools. tools.gmail.create_draft.CreateDraftSchema Input for CreateDraftTool. tools.gmail.create_draft.GmailCreateDraft Tool that creates a draft email for Gmail. tools.gmail.get_message.GmailGetMessage Tool that gets a message by ID from Gmail. tools.gmail.get_message.SearchArgsSchema Input for GetMessageTool. tools.gmail.get_thread.GetThreadSchema Input for GetMessageTool. tools.gmail.get_thread.GmailGetThread Tool that gets a thread by ID from Gmail. tools.gmail.search.GmailSearch Tool that searches for messages or threads in Gmail. tools.gmail.search.Resource(value[, names, ...]) Enumerator of Resources to search. tools.gmail.search.SearchArgsSchema Input for SearchGmailTool. tools.gmail.send_message.GmailSendMessage Tool that sends a message to Gmail. tools.gmail.send_message.SendMessageSchema Input for SendMessageTool. tools.golden_query.tool.GoldenQueryRun Tool that adds the capability to query using the Golden API and get back JSON. tools.google_places.tool.GooglePlacesSchema Input for GooglePlacesTool. tools.google_places.tool.GooglePlacesTool Tool that queries the Google places API. tools.google_search.tool.GoogleSearchResults Tool that queries the Google Search API and gets back json. tools.google_search.tool.GoogleSearchRun Tool that queries the Google search API. tools.google_serper.tool.GoogleSerperResults Tool that queries the Serper.dev Google Search API and get back json. tools.google_serper.tool.GoogleSerperRun Tool that queries the Serper.dev Google search API. tools.graphql.tool.BaseGraphQLTool Base tool for querying a GraphQL API. tools.human.tool.HumanInputRun Tool that asks user for input. tools.ifttt.IFTTTWebhook IFTTT Webhook. tools.jira.tool.JiraAction
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-64
IFTTT Webhook. tools.jira.tool.JiraAction Tool that queries the Atlassian Jira API. tools.json.tool.JsonGetValueTool Tool for getting a value in a JSON spec. tools.json.tool.JsonListKeysTool Tool for listing keys in a JSON spec. tools.json.tool.JsonSpec Base class for JSON spec. tools.metaphor_search.tool.MetaphorSearchResults Tool that queries the Metaphor Search API and gets back json. tools.multion.tool.MultionClientTool Simulates a Browser interacting agent. tools.office365.base.O365BaseTool Base class for the Office 365 tools. tools.office365.create_draft_message.CreateDraftMessageSchema Input for SendMessageTool. tools.office365.create_draft_message.O365CreateDraftMessage Tool for creating a draft email in Office 365. tools.office365.events_search.O365SearchEvents Class for searching calendar events in Office 365 tools.office365.events_search.SearchEventsInput Input for SearchEmails Tool. tools.office365.messages_search.O365SearchEmails Class for searching email messages in Office 365 tools.office365.messages_search.SearchEmailsInput Input for SearchEmails Tool. tools.office365.send_event.O365SendEvent Tool for sending calendar events in Office 365. tools.office365.send_event.SendEventSchema Input for CreateEvent Tool. tools.office365.send_message.O365SendMessage Tool for sending an email in Office 365. tools.office365.send_message.SendMessageSchema Input for SendMessageTool. tools.openapi.utils.api_models.APIOperation A model for a single API operation. tools.openapi.utils.api_models.APIProperty A model for a property in the query, path, header, or cookie params. tools.openapi.utils.api_models.APIPropertyBase Base model for an API property. tools.openapi.utils.api_models.APIPropertyLocation(value)
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-65
Base model for an API property. tools.openapi.utils.api_models.APIPropertyLocation(value) The location of the property. tools.openapi.utils.api_models.APIRequestBody A model for a request body. tools.openapi.utils.api_models.APIRequestBodyProperty A model for a request body property. tools.openweathermap.tool.OpenWeatherMapQueryRun Tool that queries the OpenWeatherMap API. tools.playwright.base.BaseBrowserTool Base class for browser tools. tools.playwright.click.ClickTool Tool for clicking on an element with the given CSS selector. tools.playwright.click.ClickToolInput Input for ClickTool. tools.playwright.current_page.CurrentWebPageTool Tool for getting the URL of the current webpage. tools.playwright.extract_hyperlinks.ExtractHyperlinksTool Extract all hyperlinks on the page. tools.playwright.extract_hyperlinks.ExtractHyperlinksToolInput Input for ExtractHyperlinksTool. tools.playwright.extract_text.ExtractTextTool Tool for extracting all the text on the current webpage. tools.playwright.get_elements.GetElementsTool Tool for getting elements in the current web page matching a CSS selector. tools.playwright.get_elements.GetElementsToolInput Input for GetElementsTool. tools.playwright.navigate.NavigateTool Tool for navigating a browser to a URL. tools.playwright.navigate.NavigateToolInput Input for NavigateToolInput. tools.playwright.navigate_back.NavigateBackTool Navigate back to the previous page in the browser history. tools.plugin.AIPlugin AI Plugin Definition. tools.plugin.AIPluginTool Tool for getting the OpenAPI spec for an AI Plugin. tools.plugin.AIPluginToolSchema Schema for AIPluginTool. tools.plugin.ApiConfig API Configuration. tools.powerbi.tool.InfoPowerBITool Tool for getting metadata about a PowerBI Dataset. tools.powerbi.tool.ListPowerBITool Tool for getting tables names.
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-66
tools.powerbi.tool.ListPowerBITool Tool for getting tables names. tools.powerbi.tool.QueryPowerBITool Tool for querying a Power BI Dataset. tools.pubmed.tool.PubmedQueryRun Tool that searches the PubMed API. tools.python.tool.PythonAstREPLTool A tool for running python code in a REPL. tools.python.tool.PythonREPLTool A tool for running python code in a REPL. tools.requests.tool.BaseRequestsTool Base class for requests tools. tools.requests.tool.RequestsDeleteTool Tool for making a DELETE request to an API endpoint. tools.requests.tool.RequestsGetTool Tool for making a GET request to an API endpoint. tools.requests.tool.RequestsPatchTool Tool for making a PATCH request to an API endpoint. tools.requests.tool.RequestsPostTool Tool for making a POST request to an API endpoint. tools.requests.tool.RequestsPutTool Tool for making a PUT request to an API endpoint. tools.scenexplain.tool.SceneXplainInput Input for SceneXplain. tools.scenexplain.tool.SceneXplainTool Tool that explains images. tools.searx_search.tool.SearxSearchResults Tool that queries a Searx instance and gets back json. tools.searx_search.tool.SearxSearchRun Tool that queries a Searx instance. tools.shell.tool.ShellInput Commands for the Bash Shell tool. tools.shell.tool.ShellTool Tool to run shell commands. tools.sleep.tool.SleepInput Input for CopyFileTool. tools.sleep.tool.SleepTool Tool that adds the capability to sleep. tools.spark_sql.tool.BaseSparkSQLTool Base tool for interacting with Spark SQL. tools.spark_sql.tool.InfoSparkSQLTool Tool for getting metadata about a Spark SQL. tools.spark_sql.tool.ListSparkSQLTool Tool for getting tables names.
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-67
tools.spark_sql.tool.ListSparkSQLTool Tool for getting tables names. tools.spark_sql.tool.QueryCheckerTool Use an LLM to check if a query is correct. tools.spark_sql.tool.QuerySparkSQLTool Tool for querying a Spark SQL. tools.sql_database.tool.BaseSQLDatabaseTool Base tool for interacting with a SQL database. tools.sql_database.tool.InfoSQLDatabaseTool Tool for getting metadata about a SQL database. tools.sql_database.tool.ListSQLDatabaseTool Tool for getting tables names. tools.sql_database.tool.QuerySQLCheckerTool Use an LLM to check if a query is correct. tools.sql_database.tool.QuerySQLDataBaseTool Tool for querying a SQL database. tools.steamship_image_generation.tool.ModelName(value) Supported Image Models for generation. tools.steamship_image_generation.tool.SteamshipImageGenerationTool Tool used to generate images from a text-prompt. tools.vectorstore.tool.BaseVectorStoreTool Base class for tools that use a VectorStore. tools.vectorstore.tool.VectorStoreQATool Tool for the VectorDBQA chain. tools.vectorstore.tool.VectorStoreQAWithSourcesTool Tool for the VectorDBQAWithSources chain. tools.wikipedia.tool.WikipediaQueryRun Tool that searches the Wikipedia API. tools.wolfram_alpha.tool.WolframAlphaQueryRun Tool that queries using the Wolfram Alpha SDK. tools.youtube.search.YouTubeSearchTool Tool that queries YouTube. tools.zapier.tool.ZapierNLAListActions Returns a list of all exposed (enabled) actions associated with tools.zapier.tool.ZapierNLARunAction Executes an action that is identified by action_id, must be exposed Functions¶ tools.amadeus.utils.authenticate() Authenticate using the Amadeus API tools.azure_cognitive_services.utils.detect_file_src_type(...)
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-68
Authenticate using the Amadeus API tools.azure_cognitive_services.utils.detect_file_src_type(...) Detect if the file is local or remote. tools.azure_cognitive_services.utils.download_audio_from_url(...) Download audio from url to local. tools.base.create_schema_from_function(...) Create a pydantic schema from a function's signature. tools.base.tool(*args[, return_direct, ...]) Make tools out of functions, can be used with or without arguments. tools.convert_to_openai.format_tool_to_openai_function(tool) Format tool into the OpenAI function API. tools.ddg_search.tool.DuckDuckGoSearchTool(...) Deprecated. tools.file_management.utils.get_validated_relative_path(...) Resolve a relative path, raising an error if not within the root directory. tools.file_management.utils.is_relative_to(...) Check if path is relative to root. tools.gmail.utils.build_resource_service([...]) Build a Gmail service. tools.gmail.utils.clean_email_body(body) Clean email body. tools.gmail.utils.get_gmail_credentials([...]) Get credentials. tools.gmail.utils.import_google() Import google libraries. tools.gmail.utils.import_googleapiclient_resource_builder() Import googleapiclient.discovery.build function. tools.gmail.utils.import_installed_app_flow() Import InstalledAppFlow class. tools.interaction.tool.StdInInquireTool(...) Tool for asking the user for input. tools.office365.utils.authenticate() Authenticate using the Microsoft Grah API tools.office365.utils.clean_body(body) Clean body of a message or event. tools.playwright.base.lazy_import_playwright_browsers() Lazy import playwright browsers. tools.playwright.utils.aget_current_page(browser) Asynchronously get the current page of the browser. tools.playwright.utils.create_async_playwright_browser([...]) Create an async playwright browser.
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-69
tools.playwright.utils.create_async_playwright_browser([...]) Create an async playwright browser. tools.playwright.utils.create_sync_playwright_browser([...]) Create a playwright browser. tools.playwright.utils.get_current_page(browser) Get the current page of the browser. tools.playwright.utils.run_async(coro) Run an async coroutine. tools.plugin.marshal_spec(txt) Convert the yaml or json serialized spec to a dict. tools.python.tool.sanitize_input(query) Sanitize input to the python REPL. tools.steamship_image_generation.utils.make_image_public(...) Upload a block to a signed URL and return the public URL. langchain.utilities¶ Utilities are the integrations with third-part systems and packages. Other LangChain classes use Utilities to interact with third-part systems and packages. Classes¶ utilities.arxiv.ArxivAPIWrapper Wrapper around ArxivAPI. utilities.awslambda.LambdaWrapper Wrapper for AWS Lambda SDK. utilities.bibtex.BibtexparserWrapper Wrapper around bibtexparser. utilities.bing_search.BingSearchAPIWrapper Wrapper for Bing Search API. utilities.brave_search.BraveSearchWrapper Wrapper around the Brave search engine. utilities.dataforseo_api_search.DataForSeoAPIWrapper Wrapper around the DataForSeo API. utilities.duckduckgo_search.DuckDuckGoSearchAPIWrapper Wrapper for DuckDuckGo Search API. utilities.github.GitHubAPIWrapper Wrapper for GitHub API. utilities.golden_query.GoldenQueryAPIWrapper Wrapper for Golden. utilities.google_places_api.GooglePlacesAPIWrapper Wrapper around Google Places API. utilities.google_search.GoogleSearchAPIWrapper Wrapper for Google Search API. utilities.google_serper.GoogleSerperAPIWrapper Wrapper around the Serper.dev Google Search API. utilities.graphql.GraphQLAPIWrapper
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-70
Wrapper around the Serper.dev Google Search API. utilities.graphql.GraphQLAPIWrapper Wrapper around GraphQL API. utilities.jira.JiraAPIWrapper Wrapper for Jira API. utilities.metaphor_search.MetaphorSearchAPIWrapper Wrapper for Metaphor Search API. utilities.multion.MultionClientAPIWrapper Wrapper for Multion Client API. utilities.openapi.HTTPVerb(value[, names, ...]) Enumerator of the HTTP verbs. utilities.openapi.OpenAPISpec OpenAPI Model that removes misformatted parts of the spec. utilities.openweathermap.OpenWeatherMapAPIWrapper Wrapper for OpenWeatherMap API using PyOWM. utilities.powerbi.PowerBIDataset Create PowerBI engine from dataset ID and credential or token. utilities.pupmed.PubMedAPIWrapper Wrapper around PubMed API. utilities.python.PythonREPL Simulates a standalone Python REPL. utilities.requests.Requests Wrapper around requests to handle auth and async. utilities.requests.TextRequestsWrapper Lightweight wrapper around requests library. utilities.scenexplain.SceneXplainAPIWrapper Wrapper for SceneXplain API. utilities.searx_search.SearxResults(data) Dict like wrapper around search api results. utilities.searx_search.SearxSearchWrapper Wrapper for Searx API. utilities.serpapi.SerpAPIWrapper Wrapper around SerpAPI. utilities.twilio.TwilioAPIWrapper Messaging Client using Twilio. utilities.wikipedia.WikipediaAPIWrapper Wrapper around WikipediaAPI. utilities.wolfram_alpha.WolframAlphaAPIWrapper Wrapper for Wolfram Alpha. utilities.zapier.ZapierNLAWrapper Wrapper for Zapier NLA. Functions¶ utilities.loading.try_load_from_hub(path, ...) Load configuration from hub. utilities.powerbi.fix_table_name(table)
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-71
Load configuration from hub. utilities.powerbi.fix_table_name(table) Add single quotes around table names that contain spaces. utilities.powerbi.json_to_md(json_contents) Converts a JSON object to a markdown table. utilities.python.warn_once() Warn once about the dangers of PythonREPL. utilities.redis.get_client(redis_url, **kwargs) Get a redis client from the connection url given. utilities.sql_database.truncate_word(...[, ...]) Truncate a string to a certain number of words, based on the max string length. utilities.vertexai.init_vertexai([project, ...]) Init vertexai. utilities.vertexai.raise_vertex_import_error() Raise ImportError related to Vertex SDK being not available. langchain.utils¶ Utility functions for LangChain. These functions do not depend on any other LangChain module. Classes¶ utils.formatting.StrictFormatter() A subclass of formatter that checks for extra keys. Functions¶ utils.env.get_from_dict_or_env(data, key, ...) Get a value from a dictionary or an environment variable. utils.env.get_from_env(key, env_key[, default]) Get a value from a dictionary or an environment variable. utils.input.get_bolded_text(text) Get bolded text. utils.input.get_color_mapping(items[, ...]) Get mapping for items to a support color. utils.input.get_colored_text(text, color) Get colored text. utils.input.print_text(text[, color, end, file]) Print text with highlighting and no end characters. utils.math.cosine_similarity(X, Y) Row-wise cosine similarity between two equal-width matrices. utils.math.cosine_similarity_top_k(X, Y[, ...]) Row-wise cosine similarity with optional top-k and score threshold filtering. utils.strings.comma_list(items)
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-72
utils.strings.comma_list(items) Convert a list to a comma-separated string. utils.strings.stringify_dict(data) Stringify a dictionary. utils.strings.stringify_value(val) Stringify a value. utils.utils.check_package_version(package[, ...]) Check the version of a package. utils.utils.get_pydantic_field_names(...) Get field names, including aliases, for a pydantic class. utils.utils.guard_import(module_name, *[, ...]) Dynamically imports a module and raises a helpful exception if the module is not installed. utils.utils.mock_now(dt_value) Context manager for mocking out datetime.now() in unit tests. utils.utils.raise_for_status_with_text(response) Raise an error with the response text. utils.utils.xor_args(*arg_groups) Validate specified keyword args are mutually exclusive. langchain.vectorstores¶ Vector store stores embedded data and performs vector search. One of the most common ways to store and search over unstructured data is to embed it and store the resulting embedding vectors, and then query the store and retrieve the data that are ‘most similar’ to the embedded query. Class hierarchy: VectorStore --> <name> # Examples: Annoy, FAISS, Milvus BaseRetriever --> VectorStoreRetriever --> <name>Retriever # Example: VespaRetriever Main helpers: Embeddings, Document Classes¶ vectorstores.alibabacloud_opensearch.AlibabaCloudOpenSearch(...) Alibaba Cloud OpenSearch Vector Store vectorstores.analyticdb.AnalyticDB(...[, ...]) VectorStore implementation using AnalyticDB. vectorstores.annoy.Annoy(embedding_function, ...) Wrapper around Annoy vector database. vectorstores.atlas.AtlasDB(name[, ...])
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-73
vectorstores.atlas.AtlasDB(name[, ...]) Wrapper around Atlas: Nomic's neural database and rhizomatic instrument. vectorstores.awadb.AwaDB([table_name, ...]) Interface implemented by AwaDB vector stores. vectorstores.azuresearch.AzureSearch(...[, ...]) Azure Cognitive Search vector store. vectorstores.azuresearch.AzureSearchVectorStoreRetriever Retriever that uses Azure Search to find similar documents. vectorstores.base.VectorStore() Interface for vector stores. vectorstores.base.VectorStoreRetriever Retriever class for VectorStore. vectorstores.cassandra.Cassandra(embedding, ...) Wrapper around Cassandra embeddings platform. vectorstores.chroma.Chroma([...]) Wrapper around ChromaDB embeddings platform. vectorstores.clarifai.Clarifai([user_id, ...]) Wrapper around Clarifai AI platform's vector store. vectorstores.clickhouse.Clickhouse(embedding) Wrapper around ClickHouse vector database vectorstores.clickhouse.ClickhouseSettings ClickHouse Client Configuration vectorstores.deeplake.DeepLake([...]) Wrapper around Deep Lake, a data lake for deep learning applications. vectorstores.docarray.base.DocArrayIndex(...) Initialize a vector store from DocArray's DocIndex. vectorstores.docarray.hnsw.DocArrayHnswSearch(...) Wrapper around HnswLib storage. vectorstores.docarray.in_memory.DocArrayInMemorySearch(...) Wrapper around in-memory storage for exact search. vectorstores.elastic_vector_search.ElasticKnnSearch(...) ElasticKnnSearch is a class for performing k-nearest neighbor (k-NN) searches on text data using Elasticsearch. vectorstores.elastic_vector_search.ElasticVectorSearch(...) Wrapper around Elasticsearch as a vector database. vectorstores.faiss.FAISS(embedding_function, ...)
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-74
vectorstores.faiss.FAISS(embedding_function, ...) Wrapper around FAISS vector database. vectorstores.hologres.Hologres(...[, ndims, ...]) VectorStore implementation using Hologres. vectorstores.lancedb.LanceDB(connection, ...) Wrapper around LanceDB vector database. vectorstores.marqo.Marqo(client, index_name) Wrapper around Marqo database. vectorstores.matching_engine.MatchingEngine(...) Vertex Matching Engine implementation of the vector store. vectorstores.meilisearch.Meilisearch(embedding) Initialize wrapper around Meilisearch vector database. vectorstores.milvus.Milvus(embedding_function) Initialize wrapper around the milvus vector database. vectorstores.mongodb_atlas.MongoDBAtlasVectorSearch(...) Wrapper around MongoDB Atlas Vector Search. vectorstores.myscale.MyScale(embedding[, config]) Wrapper around MyScale vector database vectorstores.myscale.MyScaleSettings MyScale Client Configuration vectorstores.opensearch_vector_search.OpenSearchVectorSearch(...) Wrapper around OpenSearch as a vector database. vectorstores.pgembedding.BaseModel(**kwargs) A simple constructor that allows initialization from kwargs. vectorstores.pgembedding.CollectionStore(...) A simple constructor that allows initialization from kwargs. vectorstores.pgembedding.EmbeddingStore(**kwargs) A simple constructor that allows initialization from kwargs. vectorstores.pgembedding.PGEmbedding(...[, ...]) VectorStore implementation using Postgres and the pg_embedding extension. vectorstores.pgvector.BaseModel(**kwargs) A simple constructor that allows initialization from kwargs. vectorstores.pgvector.DistanceStrategy(value) Enumerator of the Distance strategies. vectorstores.pgvector.PGVector(...[, ...]) VectorStore implementation using Postgres and pgvector.
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-75
VectorStore implementation using Postgres and pgvector. vectorstores.pinecone.Pinecone(index, ...[, ...]) Wrapper around Pinecone vector database. vectorstores.qdrant.Qdrant(client, ...[, ...]) Wrapper around Qdrant vector database. vectorstores.qdrant.QdrantException Base class for all the Qdrant related exceptions vectorstores.redis.Redis(redis_url, ...[, ...]) Wrapper around Redis vector database. vectorstores.redis.RedisVectorStoreRetriever Retriever for Redis VectorStore. vectorstores.rocksetdb.Rockset(client, ...) Wrapper arpund Rockset vector database. vectorstores.singlestoredb.SingleStoreDB(...) This class serves as a Pythonic interface to the SingleStore DB database. vectorstores.singlestoredb.SingleStoreDBRetriever Retriever for SingleStoreDB vector stores. vectorstores.sklearn.BaseSerializer(persist_path) Abstract base class for saving and loading data. vectorstores.sklearn.BsonSerializer(persist_path) Serializes data in binary json using the bson python package. vectorstores.sklearn.JsonSerializer(persist_path) Serializes data in json using the json package from python standard library. vectorstores.sklearn.ParquetSerializer(...) Serializes data in Apache Parquet format using the pyarrow package. vectorstores.sklearn.SKLearnVectorStore(...) A simple in-memory vector store based on the scikit-learn library NearestNeighbors implementation. vectorstores.sklearn.SKLearnVectorStoreException Exception raised by SKLearnVectorStore. vectorstores.starrocks.StarRocks(embedding) Wrapper around StarRocks vector database vectorstores.starrocks.StarRocksSettings StarRocks Client Configuration vectorstores.supabase.SupabaseVectorStore(...)
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-76
StarRocks Client Configuration vectorstores.supabase.SupabaseVectorStore(...) VectorStore for a Supabase postgres database. vectorstores.tair.Tair(embedding_function, ...) Wrapper around Tair Vector store. vectorstores.tigris.Tigris(client, ...) Initialize Tigris vector store vectorstores.typesense.Typesense(...[, ...]) Wrapper around Typesense vector search. vectorstores.utils.DistanceStrategy(value[, ...]) Enumerator of the Distance strategies for calculating distances between vectors. vectorstores.vectara.Vectara([...]) Implementation of Vector Store using Vectara. vectorstores.vectara.VectaraRetriever Retriever class for Vectara. vectorstores.weaviate.Weaviate(client, ...) Wrapper around Weaviate vector database. vectorstores.zilliz.Zilliz(embedding_function) Initialize wrapper around the Zilliz vector database. Functions¶ vectorstores.alibabacloud_opensearch.create_metadata(fields) Create metadata from fields. vectorstores.annoy.dependable_annoy_import() Import annoy if available, otherwise raise error. vectorstores.clickhouse.has_mul_sub_str(s, *args) Check if a string contains multiple substrings. vectorstores.faiss.dependable_faiss_import([...]) Import faiss if available, otherwise raise error. vectorstores.myscale.has_mul_sub_str(s, *args) Check if a string contains multiple substrings. vectorstores.qdrant.sync_call_fallback(method) Decorator to call the synchronous method of the class if the async method is not implemented. vectorstores.starrocks.debug_output(s) Print a debug message if DEBUG is True. vectorstores.starrocks.get_named_result(...) Get a named result from a query.
https://api.python.langchain.com/en/latest/api_reference.html
b2499a3c04c8-77
vectorstores.starrocks.get_named_result(...) Get a named result from a query. vectorstores.starrocks.has_mul_sub_str(s, *args) Check if a string has multiple substrings. vectorstores.utils.maximal_marginal_relevance(...) Calculate maximal marginal relevance.
https://api.python.langchain.com/en/latest/api_reference.html
a9cc6dfdfc9e-0
langchain_experimental API Reference¶ langchain_experimental.autonomous_agents¶ Classes¶ autonomous_agents.autogpt.memory.AutoGPTMemory Memory for AutoGPT. autonomous_agents.autogpt.output_parser.AutoGPTAction(...) Action returned by AutoGPTOutputParser. autonomous_agents.autogpt.output_parser.AutoGPTOutputParser Output parser for AutoGPT. autonomous_agents.autogpt.output_parser.BaseAutoGPTOutputParser Base Output parser for AutoGPT. autonomous_agents.autogpt.prompt.AutoGPTPrompt Prompt for AutoGPT. autonomous_agents.baby_agi.baby_agi.BabyAGI Controller model for the BabyAGI agent. autonomous_agents.baby_agi.task_creation.TaskCreationChain Chain generating tasks. autonomous_agents.baby_agi.task_execution.TaskExecutionChain Chain to execute tasks. autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain Chain to prioritize tasks. autonomous_agents.hugginggpt.repsonse_generator.ResponseGenerationChain Chain to execute tasks. autonomous_agents.hugginggpt.task_planner.BasePlanner Create a new model by parsing and validating input data from keyword arguments. autonomous_agents.hugginggpt.task_planner.PlanningOutputParser Create a new model by parsing and validating input data from keyword arguments. autonomous_agents.hugginggpt.task_planner.TaskPlaningChain Chain to execute tasks. autonomous_agents.hugginggpt.task_planner.TaskPlanner Create a new model by parsing and validating input data from keyword arguments. Functions¶ autonomous_agents.autogpt.output_parser.preprocess_json_input(...) Preprocesses a string to be parsed as json. autonomous_agents.autogpt.prompt_generator.get_prompt(tools) Generates a prompt string.
https://api.python.langchain.com/en/latest/experimental_api_reference.html
a9cc6dfdfc9e-1
Generates a prompt string. autonomous_agents.hugginggpt.repsonse_generator.load_response_generator(llm) autonomous_agents.hugginggpt.task_planner.load_chat_planner(llm) langchain_experimental.cpal¶ Classes¶ cpal.constants.Constant(value[, names, ...]) Enum for constants used in the CPAL. langchain_experimental.generative_agents¶ Generative Agents primitives. Classes¶ generative_agents.generative_agent.GenerativeAgent An Agent as a character with memory and innate characteristics. generative_agents.memory.GenerativeAgentMemory Memory for the generative agent. langchain_experimental.llms¶ Experimental LLM wrappers. Classes¶ llms.anthropic_functions.AnthropicFunctions Create a new model by parsing and validating input data from keyword arguments. llms.anthropic_functions.TagParser() A heavy-handed solution, but it's fast for prototyping. llms.jsonformer_decoder.JsonFormer Jsonformer wrapped LLM using HuggingFace Pipeline API. llms.llamaapi.ChatLlamaAPI Create a new model by parsing and validating input data from keyword arguments. llms.rellm_decoder.RELLM RELLM wrapped LLM using HuggingFace Pipeline API. Functions¶ llms.jsonformer_decoder.import_jsonformer() Lazily import jsonformer. llms.rellm_decoder.import_rellm() Lazily import rellm. langchain_experimental.pal_chain¶ Implements Program-Aided Language Models. As in https://arxiv.org/pdf/2211.10435.pdf. This is vulnerable to arbitrary code execution: https://github.com/hwchase17/langchain/issues/5872 Classes¶ pal_chain.base.PALChain Implements Program-Aided Language Models (PAL). Functions¶
https://api.python.langchain.com/en/latest/experimental_api_reference.html
a9cc6dfdfc9e-2
Implements Program-Aided Language Models (PAL). Functions¶ langchain_experimental.plan_and_execute¶ Classes¶ plan_and_execute.agent_executor.PlanAndExecute Plan and execute a chain of steps. plan_and_execute.executors.base.BaseExecutor Base executor. plan_and_execute.executors.base.ChainExecutor Chain executor. plan_and_execute.planners.base.BasePlanner Base planner. plan_and_execute.planners.base.LLMPlanner LLM planner. plan_and_execute.planners.chat_planner.PlanningOutputParser Planning output parser. plan_and_execute.schema.BaseStepContainer Base step container. plan_and_execute.schema.ListStepContainer List step container. plan_and_execute.schema.Plan Plan. plan_and_execute.schema.PlanOutputParser Plan output parser. plan_and_execute.schema.Step Step. plan_and_execute.schema.StepResponse Step response. Functions¶ plan_and_execute.executors.agent_executor.load_agent_executor(...) Load an agent executor. plan_and_execute.planners.chat_planner.load_chat_planner(llm) Load a chat planner. langchain_experimental.prompts¶ Functions¶ langchain_experimental.sql¶ Chain for interacting with SQL Database. Classes¶ sql.base.SQLDatabaseChain Chain for interacting with SQL Database. sql.base.SQLDatabaseSequentialChain Chain for querying SQL database that is a sequential chain. langchain_experimental.tot¶ Classes¶ tot.base.ToTChain A Chain implementing the Tree of Thought (ToT). tot.checker.ToTChecker Tree of Thought (ToT) checker. tot.prompts.CheckerOutputParser Create a new model by parsing and validating input data from keyword arguments. tot.prompts.JSONListOutputParser Class to parse the output of a PROPOSE_PROMPT response. tot.thought.Thought
https://api.python.langchain.com/en/latest/experimental_api_reference.html
a9cc6dfdfc9e-3
Class to parse the output of a PROPOSE_PROMPT response. tot.thought.Thought Create a new model by parsing and validating input data from keyword arguments. tot.thought.ThoughtValidity(value[, names, ...]) tot.thought_generation.BaseThoughtGenerationStrategy Base class for a thought generation strategy. tot.thought_generation.ProposePromptStrategy Propose thoughts sequentially using a "propose prompt". tot.thought_generation.SampleCoTStrategy Sample thoughts from a Chain-of-Thought (CoT) prompt.
https://api.python.langchain.com/en/latest/experimental_api_reference.html
3277559fb4d4-0
langchain_experimental.autonomous_agents.autogpt.output_parser.preprocess_json_input¶ langchain_experimental.autonomous_agents.autogpt.output_parser.preprocess_json_input(input_str: str) → str[source]¶ Preprocesses a string to be parsed as json. Replace single backslashes with double backslashes, while leaving already escaped ones intact. Parameters input_str – String to be preprocessed Returns Preprocessed string
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.preprocess_json_input.html
049d85f7f584-0
langchain_experimental.autonomous_agents.autogpt.memory.AutoGPTMemory¶ class langchain_experimental.autonomous_agents.autogpt.memory.AutoGPTMemory(*, chat_memory: BaseChatMessageHistory = None, output_key: Optional[str] = None, input_key: Optional[str] = None, return_messages: bool = False, retriever: VectorStoreRetriever)[source]¶ Bases: BaseChatMemory Memory for AutoGPT. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param chat_memory: BaseChatMessageHistory [Optional]¶ param input_key: Optional[str] = None¶ param output_key: Optional[str] = None¶ param retriever: langchain.vectorstores.base.VectorStoreRetriever [Required]¶ VectorStoreRetriever object to connect to. param return_messages: bool = False¶ clear() → None¶ Clear memory contents. load_memory_variables(inputs: Dict[str, Any]) → Dict[str, Any][source]¶ Return key-value pairs given the text input to the chain. save_context(inputs: Dict[str, Any], outputs: Dict[str, str]) → None¶ Save context from this conversation to buffer. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids.
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.memory.AutoGPTMemory.html
049d85f7f584-1
Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. property memory_variables: List[str]¶ The string keys this memory class will add to chain inputs. model Config¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.memory.AutoGPTMemory.html
1fe8d1421e59-0
langchain_experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain¶ class langchain_experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain(*, memory: Optional[BaseMemory] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, verbose: bool = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, prompt: BasePromptTemplate, llm: BaseLanguageModel, output_key: str = 'text', output_parser: BaseLLMOutputParser = None, return_final_only: bool = True, llm_kwargs: dict = None)[source]¶ Bases: LLMChain Chain to execute tasks. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param callback_manager: Optional[BaseCallbackManager] = None¶ Deprecated, use callbacks instead. param callbacks: Callbacks = None¶ Optional list of callback handlers (or callback manager). Defaults to None. Callback handlers are called throughout the lifecycle of a call to a chain, starting with on_chain_start, ending with on_chain_end or on_chain_error. Each custom chain can optionally call additional callback methods, see Callback docs for full details. param llm: BaseLanguageModel [Required]¶ Language model to call. param llm_kwargs: dict [Optional]¶ param memory: Optional[BaseMemory] = None¶ Optional memory object. Defaults to None. Memory is a class that gets called at the start and at the end of every chain. At the start, memory loads variables and passes them along in the chain. At the end, it saves any returned variables.
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain.html
1fe8d1421e59-1
them along in the chain. At the end, it saves any returned variables. There are many different types of memory - please see memory docs for the full catalog. param metadata: Optional[Dict[str, Any]] = None¶ Optional metadata associated with the chain. Defaults to None. This metadata will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. param output_key: str = 'text'¶ param output_parser: BaseLLMOutputParser [Optional]¶ Output parser to use. Defaults to one that takes the most likely string but does not change it otherwise. param prompt: BasePromptTemplate [Required]¶ Prompt object to use. param return_final_only: bool = True¶ Whether to return only the final parsed result. Defaults to True. If false, will return a bunch of extra information about the generation. param tags: Optional[List[str]] = None¶ Optional list of tags associated with the chain. Defaults to None. These tags will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. param verbose: bool [Optional]¶ Whether or not run in verbose mode. In verbose mode, some intermediate logs will be printed to the console. Defaults to langchain.verbose value. __call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False) → Dict[str, Any]¶
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain.html
1fe8d1421e59-2
Execute the chain. Parameters inputs – Dictionary of inputs, or single input if chain expects only one param. Should contain all inputs specified in Chain.input_keys except for inputs that will be set by the chain’s memory. return_only_outputs – Whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks – Callbacks to use for this chain run. These will be called in addition to callbacks passed to the chain during construction, but only these runtime callbacks will propagate to calls to other objects. tags – List of string tags to pass to all callbacks. These will be passed in addition to tags passed to the chain during construction, but only these runtime tags will propagate to calls to other objects. metadata – Optional metadata associated with the chain. Defaults to None include_run_info – Whether to include run info in the response. Defaults to False. Returns A dict of named outputs. Should contain all outputs specified inChain.output_keys. async aapply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶ Utilize the LLM generate method for speed gains. async aapply_and_parse(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → Sequence[Union[str, List[str], Dict[str, str]]]¶ Call apply and then parse the results.
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain.html
1fe8d1421e59-3
Call apply and then parse the results. async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False) → Dict[str, Any]¶ Asynchronously execute the chain. Parameters inputs – Dictionary of inputs, or single input if chain expects only one param. Should contain all inputs specified in Chain.input_keys except for inputs that will be set by the chain’s memory. return_only_outputs – Whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks – Callbacks to use for this chain run. These will be called in addition to callbacks passed to the chain during construction, but only these runtime callbacks will propagate to calls to other objects. tags – List of string tags to pass to all callbacks. These will be passed in addition to tags passed to the chain during construction, but only these runtime tags will propagate to calls to other objects. metadata – Optional metadata associated with the chain. Defaults to None include_run_info – Whether to include run info in the response. Defaults to False. Returns A dict of named outputs. Should contain all outputs specified inChain.output_keys. async agenerate(input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None) → LLMResult¶ Generate LLM result from inputs. async ainvoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None) → Dict[str, Any]¶
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain.html
1fe8d1421e59-4
apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶ Utilize the LLM generate method for speed gains. apply_and_parse(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → Sequence[Union[str, List[str], Dict[str, str]]]¶ Call apply and then parse the results. async apredict(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Format prompt with kwargs and pass to LLM. Parameters callbacks – Callbacks to pass to LLMChain **kwargs – Keys to pass to prompt template. Returns Completion from LLM. Example completion = llm.predict(adjective="funny") async apredict_and_parse(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[str, List[str], Dict[str, str]]¶ Call apredict and then parse the results. async aprep_prompts(input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None) → Tuple[List[PromptValue], Optional[List[str]]]¶ Prepare prompts from inputs. async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Convenience method for executing chain. The main difference between this method and Chain.__call__ is that this method expects inputs to be passed directly in as positional arguments or
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain.html
1fe8d1421e59-5
method expects inputs to be passed directly in as positional arguments or keyword arguments, whereas Chain.__call__ expects a single input dictionary with all the inputs Parameters *args – If the chain expects a single input, it can be passed in as the sole positional argument. callbacks – Callbacks to use for this chain run. These will be called in addition to callbacks passed to the chain during construction, but only these runtime callbacks will propagate to calls to other objects. tags – List of string tags to pass to all callbacks. These will be passed in addition to tags passed to the chain during construction, but only these runtime tags will propagate to calls to other objects. **kwargs – If the chain expects multiple inputs, they can be passed in directly as keyword arguments. Returns The chain output. Example # Suppose we have a single-input chain that takes a 'question' string: await chain.arun("What's the temperature in Boise, Idaho?") # -> "The temperature in Boise is..." # Suppose we have a multi-input chain that takes a 'question' string # and 'context' string: question = "What's the temperature in Boise, Idaho?" context = "Weather report for Boise, Idaho on 07/03/23..." await chain.arun(question=question, context=context) # -> "The temperature in Boise is..." create_outputs(llm_result: LLMResult) → List[Dict[str, Any]]¶ Create outputs from response. dict(**kwargs: Any) → Dict¶ Dictionary representation of chain. Expects Chain._chain_type property to be implemented and for memory to benull. Parameters **kwargs – Keyword arguments passed to default pydantic.BaseModel.dict method. Returns A dictionary representation of the chain. Example ..code-block:: python
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain.html
1fe8d1421e59-6
Returns A dictionary representation of the chain. Example ..code-block:: python chain.dict(exclude_unset=True) # -> {“_type”: “foo”, “verbose”: False, …} classmethod from_llm(llm: BaseLanguageModel, verbose: bool = True) → LLMChain[source]¶ Get the response parser. classmethod from_string(llm: BaseLanguageModel, template: str) → LLMChain¶ Create LLMChain from LLM and template. generate(input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None) → LLMResult¶ Generate LLM result from inputs. invoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None) → Dict[str, Any]¶ predict(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶ Format prompt with kwargs and pass to LLM. Parameters callbacks – Callbacks to pass to LLMChain **kwargs – Keys to pass to prompt template. Returns Completion from LLM. Example completion = llm.predict(adjective="funny") predict_and_parse(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[str, List[str], Dict[str, Any]]¶ Call predict and then parse the results. prep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶ Validate and prepare chain inputs, including adding inputs from memory. Parameters inputs – Dictionary of raw inputs, or single input if chain expects only one param. Should contain all inputs specified in Chain.input_keys except for inputs that will be set by the chain’s memory. Returns
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain.html
1fe8d1421e59-7
Chain.input_keys except for inputs that will be set by the chain’s memory. Returns A dictionary of all inputs, including those added by the chain’s memory. prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) → Dict[str, str]¶ Validate and prepare chain outputs, and save info about this run to memory. Parameters inputs – Dictionary of chain inputs, including any inputs added by chain memory. outputs – Dictionary of initial chain outputs. return_only_outputs – Whether to only return the chain outputs. If False, inputs are also added to the final outputs. Returns A dict of the final chain outputs. prep_prompts(input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None) → Tuple[List[PromptValue], Optional[List[str]]]¶ Prepare prompts from inputs. validator raise_callback_manager_deprecation  »  all fields¶ Raise deprecation warning if callback_manager is used. run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Convenience method for executing chain. The main difference between this method and Chain.__call__ is that this method expects inputs to be passed directly in as positional arguments or keyword arguments, whereas Chain.__call__ expects a single input dictionary with all the inputs Parameters *args – If the chain expects a single input, it can be passed in as the sole positional argument. callbacks – Callbacks to use for this chain run. These will be called in addition to callbacks passed to the chain during construction, but only these runtime callbacks will propagate to calls to other objects.
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain.html
1fe8d1421e59-8
these runtime callbacks will propagate to calls to other objects. tags – List of string tags to pass to all callbacks. These will be passed in addition to tags passed to the chain during construction, but only these runtime tags will propagate to calls to other objects. **kwargs – If the chain expects multiple inputs, they can be passed in directly as keyword arguments. Returns The chain output. Example # Suppose we have a single-input chain that takes a 'question' string: chain.run("What's the temperature in Boise, Idaho?") # -> "The temperature in Boise is..." # Suppose we have a multi-input chain that takes a 'question' string # and 'context' string: question = "What's the temperature in Boise, Idaho?" context = "Weather report for Boise, Idaho on 07/03/23..." chain.run(question=question, context=context) # -> "The temperature in Boise is..." save(file_path: Union[Path, str]) → None¶ Save the chain. Expects Chain._chain_type property to be implemented and for memory to benull. Parameters file_path – Path to file to save the chain to. Example chain.save(file_path="path/chain.yaml") validator set_verbose  »  verbose¶ Set the chain verbosity. Defaults to the global setting if not specified by the user. to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”]
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain.html
1fe8d1421e59-9
eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶ extra = 'forbid'¶
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain.html
037090486a45-0
langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser¶ class langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser[source]¶ Bases: BaseAutoGPTOutputParser Output parser for AutoGPT. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. dict(**kwargs: Any) → Dict¶ Return dictionary representation of output parser. get_format_instructions() → str¶ Instructions on how the LLM output should be formatted. invoke(input: str | langchain.schema.messages.BaseMessage, config: langchain.schema.runnable.RunnableConfig | None = None) → T¶ parse(text: str) → AutoGPTAction[source]¶ Return AutoGPTAction parse_result(result: List[Generation]) → T¶ Parse a list of candidate model Generations into a specific format. The return value is parsed from only the first Generation in the result, whichis assumed to be the highest-likelihood Generation. Parameters result – A list of Generations to be parsed. The Generations are assumed to be different candidate outputs for a single model input. Returns Structured output. parse_with_prompt(completion: str, prompt: PromptValue) → Any¶ Parse the output of an LLM call with the input prompt for context. The prompt is largely provided in the event the OutputParser wants to retry or fix the output in some way, and needs information from the prompt to do so. Parameters completion – String output of a language model. prompt – Input PromptValue. Returns Structured output to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ property lc_attributes: Dict¶
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser.html
037090486a45-1
to_json_not_implemented() → SerializedNotImplemented¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config¶ Bases: object extra = 'ignore'¶
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTOutputParser.html
510458d00d6c-0
langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain¶ class langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain(*, memory: Optional[BaseMemory] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, verbose: bool = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, prompt: BasePromptTemplate, llm: BaseLanguageModel, output_key: str = 'text', output_parser: BaseLLMOutputParser = None, return_final_only: bool = True, llm_kwargs: dict = None)[source]¶ Bases: LLMChain Chain generating tasks. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param callback_manager: Optional[BaseCallbackManager] = None¶ Deprecated, use callbacks instead. param callbacks: Callbacks = None¶ Optional list of callback handlers (or callback manager). Defaults to None. Callback handlers are called throughout the lifecycle of a call to a chain, starting with on_chain_start, ending with on_chain_end or on_chain_error. Each custom chain can optionally call additional callback methods, see Callback docs for full details. param llm: BaseLanguageModel [Required]¶ Language model to call. param llm_kwargs: dict [Optional]¶ param memory: Optional[BaseMemory] = None¶ Optional memory object. Defaults to None. Memory is a class that gets called at the start and at the end of every chain. At the start, memory loads variables and passes them along in the chain. At the end, it saves any returned variables.
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
510458d00d6c-1
them along in the chain. At the end, it saves any returned variables. There are many different types of memory - please see memory docs for the full catalog. param metadata: Optional[Dict[str, Any]] = None¶ Optional metadata associated with the chain. Defaults to None. This metadata will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. param output_key: str = 'text'¶ param output_parser: BaseLLMOutputParser [Optional]¶ Output parser to use. Defaults to one that takes the most likely string but does not change it otherwise. param prompt: BasePromptTemplate [Required]¶ Prompt object to use. param return_final_only: bool = True¶ Whether to return only the final parsed result. Defaults to True. If false, will return a bunch of extra information about the generation. param tags: Optional[List[str]] = None¶ Optional list of tags associated with the chain. Defaults to None. These tags will be associated with each call to this chain, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a chain with its use case. param verbose: bool [Optional]¶ Whether or not run in verbose mode. In verbose mode, some intermediate logs will be printed to the console. Defaults to langchain.verbose value. __call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False) → Dict[str, Any]¶
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
510458d00d6c-2
Execute the chain. Parameters inputs – Dictionary of inputs, or single input if chain expects only one param. Should contain all inputs specified in Chain.input_keys except for inputs that will be set by the chain’s memory. return_only_outputs – Whether to return only outputs in the response. If True, only new keys generated by this chain will be returned. If False, both input keys and new keys generated by this chain will be returned. Defaults to False. callbacks – Callbacks to use for this chain run. These will be called in addition to callbacks passed to the chain during construction, but only these runtime callbacks will propagate to calls to other objects. tags – List of string tags to pass to all callbacks. These will be passed in addition to tags passed to the chain during construction, but only these runtime tags will propagate to calls to other objects. metadata – Optional metadata associated with the chain. Defaults to None include_run_info – Whether to include run info in the response. Defaults to False. Returns A dict of named outputs. Should contain all outputs specified inChain.output_keys. async aapply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶ Utilize the LLM generate method for speed gains. async aapply_and_parse(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → Sequence[Union[str, List[str], Dict[str, str]]]¶ Call apply and then parse the results.
https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html
End of preview. Expand in Data Studio

No dataset card yet

Downloads last month
8