id
stringlengths 14
15
| text
stringlengths 22
2.51k
| source
stringlengths 61
160
|
---|---|---|
510458d00d6c-3 | Call apply and then parse the results.
async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False) → Dict[str, Any]¶
Asynchronously execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
async agenerate(input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None) → LLMResult¶
Generate LLM result from inputs.
async ainvoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None) → Dict[str, Any]¶ | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html |
510458d00d6c-4 | apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶
Utilize the LLM generate method for speed gains.
apply_and_parse(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → Sequence[Union[str, List[str], Dict[str, str]]]¶
Call apply and then parse the results.
async apredict(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶
Format prompt with kwargs and pass to LLM.
Parameters
callbacks – Callbacks to pass to LLMChain
**kwargs – Keys to pass to prompt template.
Returns
Completion from LLM.
Example
completion = llm.predict(adjective="funny")
async apredict_and_parse(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[str, List[str], Dict[str, str]]¶
Call apredict and then parse the results.
async aprep_prompts(input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None) → Tuple[List[PromptValue], Optional[List[str]]]¶
Prepare prompts from inputs.
async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Convenience method for executing chain.
The main difference between this method and Chain.__call__ is that this
method expects inputs to be passed directly in as positional arguments or | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html |
510458d00d6c-5 | method expects inputs to be passed directly in as positional arguments or
keyword arguments, whereas Chain.__call__ expects a single input dictionary
with all the inputs
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output.
Example
# Suppose we have a single-input chain that takes a 'question' string:
await chain.arun("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
await chain.arun(question=question, context=context)
# -> "The temperature in Boise is..."
create_outputs(llm_result: LLMResult) → List[Dict[str, Any]]¶
Create outputs from response.
dict(**kwargs: Any) → Dict¶
Dictionary representation of chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
**kwargs – Keyword arguments passed to default pydantic.BaseModel.dict
method.
Returns
A dictionary representation of the chain.
Example
..code-block:: python | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html |
510458d00d6c-6 | Returns
A dictionary representation of the chain.
Example
..code-block:: python
chain.dict(exclude_unset=True)
# -> {“_type”: “foo”, “verbose”: False, …}
classmethod from_llm(llm: BaseLanguageModel, verbose: bool = True) → LLMChain[source]¶
Get the response parser.
classmethod from_string(llm: BaseLanguageModel, template: str) → LLMChain¶
Create LLMChain from LLM and template.
generate(input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None) → LLMResult¶
Generate LLM result from inputs.
invoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None) → Dict[str, Any]¶
predict(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶
Format prompt with kwargs and pass to LLM.
Parameters
callbacks – Callbacks to pass to LLMChain
**kwargs – Keys to pass to prompt template.
Returns
Completion from LLM.
Example
completion = llm.predict(adjective="funny")
predict_and_parse(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[str, List[str], Dict[str, Any]]¶
Call predict and then parse the results.
prep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶
Validate and prepare chain inputs, including adding inputs from memory.
Parameters
inputs – Dictionary of raw inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
Returns | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html |
510458d00d6c-7 | Chain.input_keys except for inputs that will be set by the chain’s
memory.
Returns
A dictionary of all inputs, including those added by the chain’s memory.
prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) → Dict[str, str]¶
Validate and prepare chain outputs, and save info about this run to memory.
Parameters
inputs – Dictionary of chain inputs, including any inputs added by chain
memory.
outputs – Dictionary of initial chain outputs.
return_only_outputs – Whether to only return the chain outputs. If False,
inputs are also added to the final outputs.
Returns
A dict of the final chain outputs.
prep_prompts(input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None) → Tuple[List[PromptValue], Optional[List[str]]]¶
Prepare prompts from inputs.
validator raise_callback_manager_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Convenience method for executing chain.
The main difference between this method and Chain.__call__ is that this
method expects inputs to be passed directly in as positional arguments or
keyword arguments, whereas Chain.__call__ expects a single input dictionary
with all the inputs
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects. | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html |
510458d00d6c-8 | these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output.
Example
# Suppose we have a single-input chain that takes a 'question' string:
chain.run("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
chain.run(question=question, context=context)
# -> "The temperature in Boise is..."
save(file_path: Union[Path, str]) → None¶
Save the chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
file_path – Path to file to save the chain to.
Example
chain.save(file_path="path/chain.yaml")
validator set_verbose » verbose¶
Set the chain verbosity.
Defaults to the global setting if not specified by the user.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”] | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html |
510458d00d6c-9 | eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶ | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_creation.TaskCreationChain.html |
099bea4505b2-0 | langchain_experimental.autonomous_agents.autogpt.prompt_generator.get_prompt¶
langchain_experimental.autonomous_agents.autogpt.prompt_generator.get_prompt(tools: List[BaseTool]) → str[source]¶
Generates a prompt string.
It includes various constraints, commands, resources, and performance evaluations.
Returns
The generated prompt string.
Return type
str | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.prompt_generator.get_prompt.html |
b6adab952a35-0 | langchain_experimental.autonomous_agents.hugginggpt.task_planner.PlanningOutputParser¶
class langchain_experimental.autonomous_agents.hugginggpt.task_planner.PlanningOutputParser[source]¶
Bases: BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
parse(text: str, hf_tools: List[BaseTool]) → Plan[source]¶ | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.PlanningOutputParser.html |
eb29952ccacb-0 | langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain¶
class langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain(*, memory: Optional[BaseMemory] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, verbose: bool = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, prompt: BasePromptTemplate, llm: BaseLanguageModel, output_key: str = 'text', output_parser: BaseLLMOutputParser = None, return_final_only: bool = True, llm_kwargs: dict = None)[source]¶
Bases: LLMChain
Chain to execute tasks.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated, use callbacks instead.
param callbacks: Callbacks = None¶
Optional list of callback handlers (or callback manager). Defaults to None.
Callback handlers are called throughout the lifecycle of a call to a chain,
starting with on_chain_start, ending with on_chain_end or on_chain_error.
Each custom chain can optionally call additional callback methods, see Callback docs
for full details.
param llm: BaseLanguageModel [Required]¶
Language model to call.
param llm_kwargs: dict [Optional]¶
param memory: Optional[BaseMemory] = None¶
Optional memory object. Defaults to None.
Memory is a class that gets called at the start
and at the end of every chain. At the start, memory loads variables and passes
them along in the chain. At the end, it saves any returned variables. | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html |
eb29952ccacb-1 | them along in the chain. At the end, it saves any returned variables.
There are many different types of memory - please see memory docs
for the full catalog.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the chain. Defaults to None.
This metadata will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param output_key: str = 'text'¶
param output_parser: BaseLLMOutputParser [Optional]¶
Output parser to use.
Defaults to one that takes the most likely string but does not change it
otherwise.
param prompt: BasePromptTemplate [Required]¶
Prompt object to use.
param return_final_only: bool = True¶
Whether to return only the final parsed result. Defaults to True.
If false, will return a bunch of extra information about the generation.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the chain. Defaults to None.
These tags will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param verbose: bool [Optional]¶
Whether or not run in verbose mode. In verbose mode, some intermediate logs
will be printed to the console. Defaults to langchain.verbose value.
__call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False) → Dict[str, Any]¶ | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html |
eb29952ccacb-2 | Execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
async aapply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶
Utilize the LLM generate method for speed gains.
async aapply_and_parse(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → Sequence[Union[str, List[str], Dict[str, str]]]¶
Call apply and then parse the results. | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html |
eb29952ccacb-3 | Call apply and then parse the results.
async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False) → Dict[str, Any]¶
Asynchronously execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
async agenerate(input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None) → LLMResult¶
Generate LLM result from inputs.
async ainvoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None) → Dict[str, Any]¶ | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html |
eb29952ccacb-4 | apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶
Utilize the LLM generate method for speed gains.
apply_and_parse(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → Sequence[Union[str, List[str], Dict[str, str]]]¶
Call apply and then parse the results.
async apredict(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶
Format prompt with kwargs and pass to LLM.
Parameters
callbacks – Callbacks to pass to LLMChain
**kwargs – Keys to pass to prompt template.
Returns
Completion from LLM.
Example
completion = llm.predict(adjective="funny")
async apredict_and_parse(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[str, List[str], Dict[str, str]]¶
Call apredict and then parse the results.
async aprep_prompts(input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None) → Tuple[List[PromptValue], Optional[List[str]]]¶
Prepare prompts from inputs.
async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Convenience method for executing chain.
The main difference between this method and Chain.__call__ is that this
method expects inputs to be passed directly in as positional arguments or | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html |
eb29952ccacb-5 | method expects inputs to be passed directly in as positional arguments or
keyword arguments, whereas Chain.__call__ expects a single input dictionary
with all the inputs
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output.
Example
# Suppose we have a single-input chain that takes a 'question' string:
await chain.arun("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
await chain.arun(question=question, context=context)
# -> "The temperature in Boise is..."
create_outputs(llm_result: LLMResult) → List[Dict[str, Any]]¶
Create outputs from response.
dict(**kwargs: Any) → Dict¶
Dictionary representation of chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
**kwargs – Keyword arguments passed to default pydantic.BaseModel.dict
method.
Returns
A dictionary representation of the chain.
Example
..code-block:: python | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html |
eb29952ccacb-6 | Returns
A dictionary representation of the chain.
Example
..code-block:: python
chain.dict(exclude_unset=True)
# -> {“_type”: “foo”, “verbose”: False, …} | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html |
eb29952ccacb-7 | # -> {“_type”: “foo”, “verbose”: False, …}
classmethod from_llm(llm: BaseLanguageModel, demos: List[Dict] = [{'role': 'user', 'content': "please show me a video and an image of (based on the text) 'a boy is running' and dub it"}, {'role': 'assistant', 'content': '[{{"task": "video_generator", "id": 0, "dep": [-1], "args": {{"prompt": "a boy is running" }}}}, {{"task": "text_reader", "id": 1, "dep": [-1], "args": {{"text": "a boy is running" }}}}, {{"task": "image_generator", "id": 2, "dep": [-1], "args": {{"prompt": "a boy is running" }}}}]'}, {'role': 'user', 'content': 'Give you some pictures e1.jpg, e2.png, e3.jpg, help me count the number of sheep?'}, {'role': 'assistant', 'content': '[ {{"task": "image_qa", "id": 0, "dep": [-1], "args": {{"image": "e1.jpg", "question": "How many sheep in the picture"}}}}, {{"task": "image_qa", "id": 1, "dep": [-1], "args": {{"image": "e2.jpg", "question": "How many sheep in the picture"}}}}, {{"task": "image_qa", "id": 2, "dep": [-1], "args": {{"image": "e3.jpg", "question": "How many sheep in the picture"}}}}]'}], verbose: bool = True) → LLMChain[source]¶
Get the response parser. | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html |
eb29952ccacb-8 | Get the response parser.
classmethod from_string(llm: BaseLanguageModel, template: str) → LLMChain¶
Create LLMChain from LLM and template.
generate(input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None) → LLMResult¶
Generate LLM result from inputs.
invoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None) → Dict[str, Any]¶
predict(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶
Format prompt with kwargs and pass to LLM.
Parameters
callbacks – Callbacks to pass to LLMChain
**kwargs – Keys to pass to prompt template.
Returns
Completion from LLM.
Example
completion = llm.predict(adjective="funny")
predict_and_parse(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[str, List[str], Dict[str, Any]]¶
Call predict and then parse the results.
prep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶
Validate and prepare chain inputs, including adding inputs from memory.
Parameters
inputs – Dictionary of raw inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
Returns
A dictionary of all inputs, including those added by the chain’s memory.
prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) → Dict[str, str]¶
Validate and prepare chain outputs, and save info about this run to memory.
Parameters
inputs – Dictionary of chain inputs, including any inputs added by chain | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html |
eb29952ccacb-9 | Parameters
inputs – Dictionary of chain inputs, including any inputs added by chain
memory.
outputs – Dictionary of initial chain outputs.
return_only_outputs – Whether to only return the chain outputs. If False,
inputs are also added to the final outputs.
Returns
A dict of the final chain outputs.
prep_prompts(input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None) → Tuple[List[PromptValue], Optional[List[str]]]¶
Prepare prompts from inputs.
validator raise_callback_manager_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Convenience method for executing chain.
The main difference between this method and Chain.__call__ is that this
method expects inputs to be passed directly in as positional arguments or
keyword arguments, whereas Chain.__call__ expects a single input dictionary
with all the inputs
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output.
Example | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html |
eb29952ccacb-10 | directly as keyword arguments.
Returns
The chain output.
Example
# Suppose we have a single-input chain that takes a 'question' string:
chain.run("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
chain.run(question=question, context=context)
# -> "The temperature in Boise is..."
save(file_path: Union[Path, str]) → None¶
Save the chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
file_path – Path to file to save the chain to.
Example
chain.save(file_path="path/chain.yaml")
validator set_verbose » verbose¶
Set the chain verbosity.
Defaults to the global setting if not specified by the user.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
model Config¶
Bases: object
Configuration for this pydantic object. | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html |
eb29952ccacb-11 | model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶ | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlaningChain.html |
6c95e0792813-0 | langchain_experimental.autonomous_agents.baby_agi.baby_agi.BabyAGI¶
class langchain_experimental.autonomous_agents.baby_agi.baby_agi.BabyAGI(*, memory: Optional[BaseMemory] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, verbose: bool = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, task_list: deque = None, task_creation_chain: Chain, task_prioritization_chain: Chain, execution_chain: Chain, task_id_counter: int = 1, vectorstore: VectorStore, max_iterations: Optional[int] = None)[source]¶
Bases: Chain, BaseModel
Controller model for the BabyAGI agent.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated, use callbacks instead.
param callbacks: Callbacks = None¶
Optional list of callback handlers (or callback manager). Defaults to None.
Callback handlers are called throughout the lifecycle of a call to a chain,
starting with on_chain_start, ending with on_chain_end or on_chain_error.
Each custom chain can optionally call additional callback methods, see Callback docs
for full details.
param execution_chain: langchain.chains.base.Chain [Required]¶
param max_iterations: Optional[int] = None¶
param memory: Optional[BaseMemory] = None¶
Optional memory object. Defaults to None.
Memory is a class that gets called at the start
and at the end of every chain. At the start, memory loads variables and passes
them along in the chain. At the end, it saves any returned variables. | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.baby_agi.BabyAGI.html |
6c95e0792813-1 | them along in the chain. At the end, it saves any returned variables.
There are many different types of memory - please see memory docs
for the full catalog.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the chain. Defaults to None.
This metadata will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the chain. Defaults to None.
These tags will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param task_creation_chain: langchain.chains.base.Chain [Required]¶
param task_id_counter: int = 1¶
param task_list: collections.deque [Optional]¶
param task_prioritization_chain: langchain.chains.base.Chain [Required]¶
param vectorstore: langchain.vectorstores.base.VectorStore [Required]¶
param verbose: bool [Optional]¶
Whether or not run in verbose mode. In verbose mode, some intermediate logs
will be printed to the console. Defaults to langchain.verbose value.
__call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False) → Dict[str, Any]¶
Execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.baby_agi.BabyAGI.html |
6c95e0792813-2 | only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False) → Dict[str, Any]¶
Asynchronously execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False. | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.baby_agi.BabyAGI.html |
6c95e0792813-3 | chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
add_task(task: Dict) → None[source]¶
async ainvoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None) → Dict[str, Any]¶
apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶
Call the chain on all inputs in the list.
async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Convenience method for executing chain.
The main difference between this method and Chain.__call__ is that this
method expects inputs to be passed directly in as positional arguments or
keyword arguments, whereas Chain.__call__ expects a single input dictionary
with all the inputs
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.baby_agi.BabyAGI.html |
6c95e0792813-4 | callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output.
Example
# Suppose we have a single-input chain that takes a 'question' string:
await chain.arun("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
await chain.arun(question=question, context=context)
# -> "The temperature in Boise is..."
dict(**kwargs: Any) → Dict¶
Dictionary representation of chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
**kwargs – Keyword arguments passed to default pydantic.BaseModel.dict
method.
Returns
A dictionary representation of the chain.
Example
..code-block:: python
chain.dict(exclude_unset=True)
# -> {“_type”: “foo”, “verbose”: False, …}
execute_task(objective: str, task: str, k: int = 5, **kwargs: Any) → str[source]¶
Execute a task. | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.baby_agi.BabyAGI.html |
6c95e0792813-5 | Execute a task.
classmethod from_llm(llm: BaseLanguageModel, vectorstore: VectorStore, verbose: bool = False, task_execution_chain: Optional[Chain] = None, **kwargs: Dict[str, Any]) → BabyAGI[source]¶
Initialize the BabyAGI Controller.
get_next_task(result: str, task_description: str, objective: str, **kwargs: Any) → List[Dict][source]¶
Get the next task.
invoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None) → Dict[str, Any]¶
prep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶
Validate and prepare chain inputs, including adding inputs from memory.
Parameters
inputs – Dictionary of raw inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
Returns
A dictionary of all inputs, including those added by the chain’s memory.
prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) → Dict[str, str]¶
Validate and prepare chain outputs, and save info about this run to memory.
Parameters
inputs – Dictionary of chain inputs, including any inputs added by chain
memory.
outputs – Dictionary of initial chain outputs.
return_only_outputs – Whether to only return the chain outputs. If False,
inputs are also added to the final outputs.
Returns
A dict of the final chain outputs.
print_next_task(task: Dict) → None[source]¶
print_task_list() → None[source]¶
print_task_result(result: str) → None[source]¶
prioritize_tasks(this_task_id: int, objective: str, **kwargs: Any) → List[Dict][source]¶ | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.baby_agi.BabyAGI.html |
6c95e0792813-6 | Prioritize tasks.
validator raise_callback_manager_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Convenience method for executing chain.
The main difference between this method and Chain.__call__ is that this
method expects inputs to be passed directly in as positional arguments or
keyword arguments, whereas Chain.__call__ expects a single input dictionary
with all the inputs
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output.
Example
# Suppose we have a single-input chain that takes a 'question' string:
chain.run("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
chain.run(question=question, context=context)
# -> "The temperature in Boise is..." | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.baby_agi.BabyAGI.html |
6c95e0792813-7 | chain.run(question=question, context=context)
# -> "The temperature in Boise is..."
save(file_path: Union[Path, str]) → None¶
Save the chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
file_path – Path to file to save the chain to.
Example
chain.save(file_path="path/chain.yaml")
validator set_verbose » verbose¶
Set the chain verbosity.
Defaults to the global setting if not specified by the user.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
property input_keys: List[str]¶
Keys expected to be in the chain input.
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
property output_keys: List[str]¶
Keys expected to be in the chain output.
model Config[source]¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶ | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.baby_agi.BabyAGI.html |
0a9a47bc0a67-0 | langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlanner¶
class langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlanner(*, llm_chain: LLMChain, output_parser: PlanningOutputParser, stop: Optional[List] = None)[source]¶
Bases: BasePlanner
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param llm_chain: langchain.chains.llm.LLMChain [Required]¶
param output_parser: langchain_experimental.autonomous_agents.hugginggpt.task_planner.PlanningOutputParser [Required]¶
param stop: Optional[List] = None¶
async aplan(inputs: dict, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Plan[source]¶
Given input, decided what to do.
plan(inputs: dict, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Plan[source]¶
Given input, decided what to do. | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.TaskPlanner.html |
c1a8cd55c943-0 | langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTAction¶
class langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTAction(name: str, args: Dict)[source]¶
Bases: NamedTuple
Action returned by AutoGPTOutputParser.
Create new instance of AutoGPTAction(name, args)
Methods
__init__()
count(value, /)
Return number of occurrences of value.
index(value[, start, stop])
Return first index of value.
Attributes
args
Alias for field number 1
name
Alias for field number 0
count(value, /)¶
Return number of occurrences of value.
index(value, start=0, stop=9223372036854775807, /)¶
Return first index of value.
Raises ValueError if the value is not present.
args: Dict¶
Alias for field number 1
name: str¶
Alias for field number 0 | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.AutoGPTAction.html |
304248d4eb93-0 | langchain_experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt¶
class langchain_experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt(*, input_variables: List[str], output_parser: Optional[BaseOutputParser] = None, partial_variables: Mapping[str, Union[str, Callable[[], str]]] = None, ai_name: str, ai_role: str, tools: List[BaseTool], token_counter: Callable[[str], int], send_token_limit: int = 4196)[source]¶
Bases: BaseChatPromptTemplate, BaseModel
Prompt for AutoGPT.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param ai_name: str [Required]¶
param ai_role: str [Required]¶
param input_variables: List[str] [Required]¶
A list of the names of the variables the prompt template expects.
param output_parser: Optional[BaseOutputParser] = None¶
How to parse the output of calling an LLM on this formatted prompt.
param partial_variables: Mapping[str, Union[str, Callable[[], str]]] [Optional]¶
param send_token_limit: int = 4196¶
param token_counter: Callable[[str], int] [Required]¶
param tools: List[langchain.tools.base.BaseTool] [Required]¶
construct_full_prompt(goals: List[str]) → str[source]¶
dict(**kwargs: Any) → Dict¶
Return dictionary representation of prompt.
format(**kwargs: Any) → str¶
Format the chat template into a string.
Parameters
**kwargs – keyword arguments to use for filling in template variables
in all the template messages in this chat template.
Returns
formatted string
format_messages(**kwargs: Any) → List[BaseMessage][source]¶ | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt.html |
304248d4eb93-1 | formatted string
format_messages(**kwargs: Any) → List[BaseMessage][source]¶
Format kwargs into a list of messages.
format_prompt(**kwargs: Any) → PromptValue¶
Format prompt. Should return a PromptValue.
:param **kwargs: Keyword arguments to use for formatting.
Returns
PromptValue.
invoke(input: Dict, config: langchain.schema.runnable.RunnableConfig | None = None) → PromptValue¶
partial(**kwargs: Union[str, Callable[[], str]]) → BasePromptTemplate¶
Return a partial of the prompt template.
save(file_path: Union[Path, str]) → None¶
Save the prompt.
Parameters
file_path – Path to directory to save prompt to.
Example:
.. code-block:: python
prompt.save(file_path=”path/prompt.yaml”)
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
validator validate_variable_names » all fields¶
Validate variable names do not include restricted names.
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶ | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.prompt.AutoGPTPrompt.html |
bcef8f1142d8-0 | langchain_experimental.autonomous_agents.hugginggpt.repsonse_generator.load_response_generator¶
langchain_experimental.autonomous_agents.hugginggpt.repsonse_generator.load_response_generator(llm: BaseLanguageModel) → ResponseGenerator[source]¶ | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.repsonse_generator.load_response_generator.html |
6812fee813b8-0 | langchain_experimental.autonomous_agents.hugginggpt.repsonse_generator.ResponseGenerationChain¶
class langchain_experimental.autonomous_agents.hugginggpt.repsonse_generator.ResponseGenerationChain(*, memory: Optional[BaseMemory] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, verbose: bool = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, prompt: BasePromptTemplate, llm: BaseLanguageModel, output_key: str = 'text', output_parser: BaseLLMOutputParser = None, return_final_only: bool = True, llm_kwargs: dict = None)[source]¶
Bases: LLMChain
Chain to execute tasks.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated, use callbacks instead.
param callbacks: Callbacks = None¶
Optional list of callback handlers (or callback manager). Defaults to None.
Callback handlers are called throughout the lifecycle of a call to a chain,
starting with on_chain_start, ending with on_chain_end or on_chain_error.
Each custom chain can optionally call additional callback methods, see Callback docs
for full details.
param llm: BaseLanguageModel [Required]¶
Language model to call.
param llm_kwargs: dict [Optional]¶
param memory: Optional[BaseMemory] = None¶
Optional memory object. Defaults to None.
Memory is a class that gets called at the start
and at the end of every chain. At the start, memory loads variables and passes
them along in the chain. At the end, it saves any returned variables. | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.repsonse_generator.ResponseGenerationChain.html |
6812fee813b8-1 | them along in the chain. At the end, it saves any returned variables.
There are many different types of memory - please see memory docs
for the full catalog.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the chain. Defaults to None.
This metadata will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param output_key: str = 'text'¶
param output_parser: BaseLLMOutputParser [Optional]¶
Output parser to use.
Defaults to one that takes the most likely string but does not change it
otherwise.
param prompt: BasePromptTemplate [Required]¶
Prompt object to use.
param return_final_only: bool = True¶
Whether to return only the final parsed result. Defaults to True.
If false, will return a bunch of extra information about the generation.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the chain. Defaults to None.
These tags will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param verbose: bool [Optional]¶
Whether or not run in verbose mode. In verbose mode, some intermediate logs
will be printed to the console. Defaults to langchain.verbose value.
__call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False) → Dict[str, Any]¶ | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.repsonse_generator.ResponseGenerationChain.html |
6812fee813b8-2 | Execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
async aapply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶
Utilize the LLM generate method for speed gains.
async aapply_and_parse(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → Sequence[Union[str, List[str], Dict[str, str]]]¶
Call apply and then parse the results. | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.repsonse_generator.ResponseGenerationChain.html |
6812fee813b8-3 | Call apply and then parse the results.
async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False) → Dict[str, Any]¶
Asynchronously execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
async agenerate(input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None) → LLMResult¶
Generate LLM result from inputs.
async ainvoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None) → Dict[str, Any]¶ | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.repsonse_generator.ResponseGenerationChain.html |
6812fee813b8-4 | apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶
Utilize the LLM generate method for speed gains.
apply_and_parse(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → Sequence[Union[str, List[str], Dict[str, str]]]¶
Call apply and then parse the results.
async apredict(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶
Format prompt with kwargs and pass to LLM.
Parameters
callbacks – Callbacks to pass to LLMChain
**kwargs – Keys to pass to prompt template.
Returns
Completion from LLM.
Example
completion = llm.predict(adjective="funny")
async apredict_and_parse(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[str, List[str], Dict[str, str]]¶
Call apredict and then parse the results.
async aprep_prompts(input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None) → Tuple[List[PromptValue], Optional[List[str]]]¶
Prepare prompts from inputs.
async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Convenience method for executing chain.
The main difference between this method and Chain.__call__ is that this
method expects inputs to be passed directly in as positional arguments or | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.repsonse_generator.ResponseGenerationChain.html |
6812fee813b8-5 | method expects inputs to be passed directly in as positional arguments or
keyword arguments, whereas Chain.__call__ expects a single input dictionary
with all the inputs
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output.
Example
# Suppose we have a single-input chain that takes a 'question' string:
await chain.arun("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
await chain.arun(question=question, context=context)
# -> "The temperature in Boise is..."
create_outputs(llm_result: LLMResult) → List[Dict[str, Any]]¶
Create outputs from response.
dict(**kwargs: Any) → Dict¶
Dictionary representation of chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
**kwargs – Keyword arguments passed to default pydantic.BaseModel.dict
method.
Returns
A dictionary representation of the chain.
Example
..code-block:: python | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.repsonse_generator.ResponseGenerationChain.html |
6812fee813b8-6 | Returns
A dictionary representation of the chain.
Example
..code-block:: python
chain.dict(exclude_unset=True)
# -> {“_type”: “foo”, “verbose”: False, …}
classmethod from_llm(llm: BaseLanguageModel, verbose: bool = True) → LLMChain[source]¶
classmethod from_string(llm: BaseLanguageModel, template: str) → LLMChain¶
Create LLMChain from LLM and template.
generate(input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None) → LLMResult¶
Generate LLM result from inputs.
invoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None) → Dict[str, Any]¶
predict(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶
Format prompt with kwargs and pass to LLM.
Parameters
callbacks – Callbacks to pass to LLMChain
**kwargs – Keys to pass to prompt template.
Returns
Completion from LLM.
Example
completion = llm.predict(adjective="funny")
predict_and_parse(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[str, List[str], Dict[str, Any]]¶
Call predict and then parse the results.
prep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶
Validate and prepare chain inputs, including adding inputs from memory.
Parameters
inputs – Dictionary of raw inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
Returns
A dictionary of all inputs, including those added by the chain’s memory. | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.repsonse_generator.ResponseGenerationChain.html |
6812fee813b8-7 | Returns
A dictionary of all inputs, including those added by the chain’s memory.
prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) → Dict[str, str]¶
Validate and prepare chain outputs, and save info about this run to memory.
Parameters
inputs – Dictionary of chain inputs, including any inputs added by chain
memory.
outputs – Dictionary of initial chain outputs.
return_only_outputs – Whether to only return the chain outputs. If False,
inputs are also added to the final outputs.
Returns
A dict of the final chain outputs.
prep_prompts(input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None) → Tuple[List[PromptValue], Optional[List[str]]]¶
Prepare prompts from inputs.
validator raise_callback_manager_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Convenience method for executing chain.
The main difference between this method and Chain.__call__ is that this
method expects inputs to be passed directly in as positional arguments or
keyword arguments, whereas Chain.__call__ expects a single input dictionary
with all the inputs
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.repsonse_generator.ResponseGenerationChain.html |
6812fee813b8-8 | tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output.
Example
# Suppose we have a single-input chain that takes a 'question' string:
chain.run("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
chain.run(question=question, context=context)
# -> "The temperature in Boise is..."
save(file_path: Union[Path, str]) → None¶
Save the chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
file_path – Path to file to save the chain to.
Example
chain.save(file_path="path/chain.yaml")
validator set_verbose » verbose¶
Set the chain verbosity.
Defaults to the global setting if not specified by the user.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶ | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.repsonse_generator.ResponseGenerationChain.html |
6812fee813b8-9 | property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶ | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.repsonse_generator.ResponseGenerationChain.html |
4d63c902a359-0 | langchain_experimental.autonomous_agents.hugginggpt.task_planner.load_chat_planner¶
langchain_experimental.autonomous_agents.hugginggpt.task_planner.load_chat_planner(llm: BaseLanguageModel) → TaskPlanner[source]¶ | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.load_chat_planner.html |
3f18a3a3d7b3-0 | langchain_experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain¶
class langchain_experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain(*, memory: Optional[BaseMemory] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, verbose: bool = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, prompt: BasePromptTemplate, llm: BaseLanguageModel, output_key: str = 'text', output_parser: BaseLLMOutputParser = None, return_final_only: bool = True, llm_kwargs: dict = None)[source]¶
Bases: LLMChain
Chain to prioritize tasks.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated, use callbacks instead.
param callbacks: Callbacks = None¶
Optional list of callback handlers (or callback manager). Defaults to None.
Callback handlers are called throughout the lifecycle of a call to a chain,
starting with on_chain_start, ending with on_chain_end or on_chain_error.
Each custom chain can optionally call additional callback methods, see Callback docs
for full details.
param llm: BaseLanguageModel [Required]¶
Language model to call.
param llm_kwargs: dict [Optional]¶
param memory: Optional[BaseMemory] = None¶
Optional memory object. Defaults to None.
Memory is a class that gets called at the start
and at the end of every chain. At the start, memory loads variables and passes
them along in the chain. At the end, it saves any returned variables. | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain.html |
3f18a3a3d7b3-1 | them along in the chain. At the end, it saves any returned variables.
There are many different types of memory - please see memory docs
for the full catalog.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the chain. Defaults to None.
This metadata will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param output_key: str = 'text'¶
param output_parser: BaseLLMOutputParser [Optional]¶
Output parser to use.
Defaults to one that takes the most likely string but does not change it
otherwise.
param prompt: BasePromptTemplate [Required]¶
Prompt object to use.
param return_final_only: bool = True¶
Whether to return only the final parsed result. Defaults to True.
If false, will return a bunch of extra information about the generation.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the chain. Defaults to None.
These tags will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param verbose: bool [Optional]¶
Whether or not run in verbose mode. In verbose mode, some intermediate logs
will be printed to the console. Defaults to langchain.verbose value.
__call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False) → Dict[str, Any]¶ | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain.html |
3f18a3a3d7b3-2 | Execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
async aapply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶
Utilize the LLM generate method for speed gains.
async aapply_and_parse(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → Sequence[Union[str, List[str], Dict[str, str]]]¶
Call apply and then parse the results. | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain.html |
3f18a3a3d7b3-3 | Call apply and then parse the results.
async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False) → Dict[str, Any]¶
Asynchronously execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
async agenerate(input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None) → LLMResult¶
Generate LLM result from inputs.
async ainvoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None) → Dict[str, Any]¶ | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain.html |
3f18a3a3d7b3-4 | apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶
Utilize the LLM generate method for speed gains.
apply_and_parse(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → Sequence[Union[str, List[str], Dict[str, str]]]¶
Call apply and then parse the results.
async apredict(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶
Format prompt with kwargs and pass to LLM.
Parameters
callbacks – Callbacks to pass to LLMChain
**kwargs – Keys to pass to prompt template.
Returns
Completion from LLM.
Example
completion = llm.predict(adjective="funny")
async apredict_and_parse(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[str, List[str], Dict[str, str]]¶
Call apredict and then parse the results.
async aprep_prompts(input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None) → Tuple[List[PromptValue], Optional[List[str]]]¶
Prepare prompts from inputs.
async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Convenience method for executing chain.
The main difference between this method and Chain.__call__ is that this
method expects inputs to be passed directly in as positional arguments or | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain.html |
3f18a3a3d7b3-5 | method expects inputs to be passed directly in as positional arguments or
keyword arguments, whereas Chain.__call__ expects a single input dictionary
with all the inputs
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output.
Example
# Suppose we have a single-input chain that takes a 'question' string:
await chain.arun("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
await chain.arun(question=question, context=context)
# -> "The temperature in Boise is..."
create_outputs(llm_result: LLMResult) → List[Dict[str, Any]]¶
Create outputs from response.
dict(**kwargs: Any) → Dict¶
Dictionary representation of chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
**kwargs – Keyword arguments passed to default pydantic.BaseModel.dict
method.
Returns
A dictionary representation of the chain.
Example
..code-block:: python | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain.html |
3f18a3a3d7b3-6 | Returns
A dictionary representation of the chain.
Example
..code-block:: python
chain.dict(exclude_unset=True)
# -> {“_type”: “foo”, “verbose”: False, …}
classmethod from_llm(llm: BaseLanguageModel, verbose: bool = True) → LLMChain[source]¶
Get the response parser.
classmethod from_string(llm: BaseLanguageModel, template: str) → LLMChain¶
Create LLMChain from LLM and template.
generate(input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None) → LLMResult¶
Generate LLM result from inputs.
invoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None) → Dict[str, Any]¶
predict(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶
Format prompt with kwargs and pass to LLM.
Parameters
callbacks – Callbacks to pass to LLMChain
**kwargs – Keys to pass to prompt template.
Returns
Completion from LLM.
Example
completion = llm.predict(adjective="funny")
predict_and_parse(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[str, List[str], Dict[str, Any]]¶
Call predict and then parse the results.
prep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶
Validate and prepare chain inputs, including adding inputs from memory.
Parameters
inputs – Dictionary of raw inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
Returns | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain.html |
3f18a3a3d7b3-7 | Chain.input_keys except for inputs that will be set by the chain’s
memory.
Returns
A dictionary of all inputs, including those added by the chain’s memory.
prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) → Dict[str, str]¶
Validate and prepare chain outputs, and save info about this run to memory.
Parameters
inputs – Dictionary of chain inputs, including any inputs added by chain
memory.
outputs – Dictionary of initial chain outputs.
return_only_outputs – Whether to only return the chain outputs. If False,
inputs are also added to the final outputs.
Returns
A dict of the final chain outputs.
prep_prompts(input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None) → Tuple[List[PromptValue], Optional[List[str]]]¶
Prepare prompts from inputs.
validator raise_callback_manager_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Convenience method for executing chain.
The main difference between this method and Chain.__call__ is that this
method expects inputs to be passed directly in as positional arguments or
keyword arguments, whereas Chain.__call__ expects a single input dictionary
with all the inputs
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects. | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain.html |
3f18a3a3d7b3-8 | these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output.
Example
# Suppose we have a single-input chain that takes a 'question' string:
chain.run("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
chain.run(question=question, context=context)
# -> "The temperature in Boise is..."
save(file_path: Union[Path, str]) → None¶
Save the chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
file_path – Path to file to save the chain to.
Example
chain.save(file_path="path/chain.yaml")
validator set_verbose » verbose¶
Set the chain verbosity.
Defaults to the global setting if not specified by the user.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”] | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain.html |
3f18a3a3d7b3-9 | eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶ | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain.html |
4564dd19b8be-0 | langchain_experimental.autonomous_agents.hugginggpt.task_planner.BasePlanner¶
class langchain_experimental.autonomous_agents.hugginggpt.task_planner.BasePlanner[source]¶
Bases: BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
abstract async aplan(inputs: dict, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Plan[source]¶
Given input, decide what to do.
abstract plan(inputs: dict, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Plan[source]¶
Given input, decide what to do. | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.hugginggpt.task_planner.BasePlanner.html |
c666e2e74c6f-0 | langchain_experimental.autonomous_agents.autogpt.output_parser.BaseAutoGPTOutputParser¶
class langchain_experimental.autonomous_agents.autogpt.output_parser.BaseAutoGPTOutputParser[source]¶
Bases: BaseOutputParser
Base Output parser for AutoGPT.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
dict(**kwargs: Any) → Dict¶
Return dictionary representation of output parser.
get_format_instructions() → str¶
Instructions on how the LLM output should be formatted.
invoke(input: str | langchain.schema.messages.BaseMessage, config: langchain.schema.runnable.RunnableConfig | None = None) → T¶
abstract parse(text: str) → AutoGPTAction[source]¶
Return AutoGPTAction
parse_result(result: List[Generation]) → T¶
Parse a list of candidate model Generations into a specific format.
The return value is parsed from only the first Generation in the result, whichis assumed to be the highest-likelihood Generation.
Parameters
result – A list of Generations to be parsed. The Generations are assumed
to be different candidate outputs for a single model input.
Returns
Structured output.
parse_with_prompt(completion: str, prompt: PromptValue) → Any¶
Parse the output of an LLM call with the input prompt for context.
The prompt is largely provided in the event the OutputParser wants
to retry or fix the output in some way, and needs information from
the prompt to do so.
Parameters
completion – String output of a language model.
prompt – Input PromptValue.
Returns
Structured output
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
property lc_attributes: Dict¶ | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.BaseAutoGPTOutputParser.html |
c666e2e74c6f-1 | to_json_not_implemented() → SerializedNotImplemented¶
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
model Config¶
Bases: object
extra = 'ignore'¶ | https://api.python.langchain.com/en/latest/autonomous_agents/langchain_experimental.autonomous_agents.autogpt.output_parser.BaseAutoGPTOutputParser.html |
3de4981cff5c-0 | langchain.indexes.vectorstore.VectorstoreIndexCreator¶
class langchain.indexes.vectorstore.VectorstoreIndexCreator(*, vectorstore_cls: ~typing.Type[~langchain.vectorstores.base.VectorStore] = <class 'langchain.vectorstores.chroma.Chroma'>, embedding: ~langchain.embeddings.base.Embeddings = None, text_splitter: ~langchain.text_splitter.TextSplitter = None, vectorstore_kwargs: dict = None)[source]¶
Bases: BaseModel
Logic for creating indexes.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param embedding: langchain.embeddings.base.Embeddings [Optional]¶
param text_splitter: langchain.text_splitter.TextSplitter [Optional]¶
param vectorstore_cls: Type[langchain.vectorstores.base.VectorStore] = <class 'langchain.vectorstores.chroma.Chroma'>¶
param vectorstore_kwargs: dict [Optional]¶
from_documents(documents: List[Document]) → VectorStoreIndexWrapper[source]¶
Create a vectorstore index from documents.
from_loaders(loaders: List[BaseLoader]) → VectorStoreIndexWrapper[source]¶
Create a vectorstore index from loaders.
model Config[source]¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶
Examples using VectorstoreIndexCreator¶
Apify
HuggingFace dataset
Spreedly
Image captions
Figma
Apify Dataset
Iugu
Stripe
Modern Treasury
Question Answering Benchmarking: State of the Union Address
Question Answering Benchmarking: Paul Graham Essay
Agent VectorDB Question Answering Benchmarking
QA over Documents | https://api.python.langchain.com/en/latest/indexes/langchain.indexes.vectorstore.VectorstoreIndexCreator.html |
6be3d60bc3dc-0 | langchain.indexes.vectorstore.VectorStoreIndexWrapper¶
class langchain.indexes.vectorstore.VectorStoreIndexWrapper(*, vectorstore: VectorStore)[source]¶
Bases: BaseModel
Wrapper around a vectorstore for easy access.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param vectorstore: langchain.vectorstores.base.VectorStore [Required]¶
query(question: str, llm: Optional[BaseLanguageModel] = None, **kwargs: Any) → str[source]¶
Query the vectorstore.
query_with_sources(question: str, llm: Optional[BaseLanguageModel] = None, **kwargs: Any) → dict[source]¶
Query the vectorstore and get back sources.
model Config[source]¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶ | https://api.python.langchain.com/en/latest/indexes/langchain.indexes.vectorstore.VectorStoreIndexWrapper.html |
3916f40ffeeb-0 | langchain.indexes.graph.GraphIndexCreator¶
class langchain.indexes.graph.GraphIndexCreator(*, llm: ~typing.Optional[~langchain.schema.language_model.BaseLanguageModel] = None, graph_type: ~typing.Type[~langchain.graphs.networkx_graph.NetworkxEntityGraph] = <class 'langchain.graphs.networkx_graph.NetworkxEntityGraph'>)[source]¶
Bases: BaseModel
Functionality to create graph index.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param graph_type: Type[langchain.graphs.networkx_graph.NetworkxEntityGraph] = <class 'langchain.graphs.networkx_graph.NetworkxEntityGraph'>¶
param llm: Optional[langchain.schema.language_model.BaseLanguageModel] = None¶ | https://api.python.langchain.com/en/latest/indexes/langchain.indexes.graph.GraphIndexCreator.html |
3916f40ffeeb-1 | param llm: Optional[langchain.schema.language_model.BaseLanguageModel] = None¶
async afrom_text(text: str, prompt: BasePromptTemplate = PromptTemplate(input_variables=['text'], output_parser=None, partial_variables={}, template="You are a networked intelligence helping a human track knowledge triples about all relevant people, things, concepts, etc. and integrating them with your knowledge stored within your weights as well as that stored in a knowledge graph. Extract all of the knowledge triples from the text. A knowledge triple is a clause that contains a subject, a predicate, and an object. The subject is the entity being described, the predicate is the property of the subject that is being described, and the object is the value of the property.\n\nEXAMPLE\nIt's a state in the US. It's also the number 1 producer of gold in the US.\n\nOutput: (Nevada, is a, state)<|>(Nevada, is in, US)<|>(Nevada, is the number 1 producer of, gold)\nEND OF EXAMPLE\n\nEXAMPLE\nI'm going to the store.\n\nOutput: NONE\nEND OF EXAMPLE\n\nEXAMPLE\nOh huh. I know Descartes likes to drive antique scooters and play the mandolin.\nOutput: (Descartes, likes to drive, antique scooters)<|>(Descartes, plays, mandolin)\nEND OF EXAMPLE\n\nEXAMPLE\n{text}Output:", template_format='f-string', validate_template=True)) → NetworkxEntityGraph[source]¶
Create graph index from text asynchronously. | https://api.python.langchain.com/en/latest/indexes/langchain.indexes.graph.GraphIndexCreator.html |
3916f40ffeeb-2 | Create graph index from text asynchronously.
from_text(text: str, prompt: BasePromptTemplate = PromptTemplate(input_variables=['text'], output_parser=None, partial_variables={}, template="You are a networked intelligence helping a human track knowledge triples about all relevant people, things, concepts, etc. and integrating them with your knowledge stored within your weights as well as that stored in a knowledge graph. Extract all of the knowledge triples from the text. A knowledge triple is a clause that contains a subject, a predicate, and an object. The subject is the entity being described, the predicate is the property of the subject that is being described, and the object is the value of the property.\n\nEXAMPLE\nIt's a state in the US. It's also the number 1 producer of gold in the US.\n\nOutput: (Nevada, is a, state)<|>(Nevada, is in, US)<|>(Nevada, is the number 1 producer of, gold)\nEND OF EXAMPLE\n\nEXAMPLE\nI'm going to the store.\n\nOutput: NONE\nEND OF EXAMPLE\n\nEXAMPLE\nOh huh. I know Descartes likes to drive antique scooters and play the mandolin.\nOutput: (Descartes, likes to drive, antique scooters)<|>(Descartes, plays, mandolin)\nEND OF EXAMPLE\n\nEXAMPLE\n{text}Output:", template_format='f-string', validate_template=True)) → NetworkxEntityGraph[source]¶
Create graph index from text.
Examples using GraphIndexCreator¶
Graph QA | https://api.python.langchain.com/en/latest/indexes/langchain.indexes.graph.GraphIndexCreator.html |
8327e174cacd-0 | langchain.evaluation.schema.StringEvaluator¶
class langchain.evaluation.schema.StringEvaluator[source]¶
Bases: _EvalArgsMixin, ABC
Grade, tag, or otherwise evaluate predictions relative to their inputs
and/or reference labels.
Methods
__init__()
aevaluate_strings(*, prediction[, ...])
Asynchronously evaluate Chain or LLM output, based on optional input and label.
evaluate_strings(*, prediction[, reference, ...])
Evaluate Chain or LLM output, based on optional input and label.
Attributes
evaluation_name
The name of the evaluation.
requires_input
Whether this evaluator requires an input string.
requires_reference
Whether this evaluator requires a reference label.
async aevaluate_strings(*, prediction: str, reference: Optional[str] = None, input: Optional[str] = None, **kwargs: Any) → dict[source]¶
Asynchronously evaluate Chain or LLM output, based on optional input and label.
Parameters
prediction (str) – The LLM or chain prediction to evaluate.
reference (Optional[str], optional) – The reference label to evaluate against.
input (Optional[str], optional) – The input to consider during evaluation.
**kwargs – Additional keyword arguments, including callbacks, tags, etc.
Returns
The evaluation results containing the score or value.
Return type
dict
evaluate_strings(*, prediction: str, reference: Optional[str] = None, input: Optional[str] = None, **kwargs: Any) → dict[source]¶
Evaluate Chain or LLM output, based on optional input and label.
Parameters
prediction (str) – The LLM or chain prediction to evaluate.
reference (Optional[str], optional) – The reference label to evaluate against.
input (Optional[str], optional) – The input to consider during evaluation.
**kwargs – Additional keyword arguments, including callbacks, tags, etc.
Returns | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.schema.StringEvaluator.html |
8327e174cacd-1 | **kwargs – Additional keyword arguments, including callbacks, tags, etc.
Returns
The evaluation results containing the score or value.
Return type
dict
property evaluation_name: str¶
The name of the evaluation.
property requires_input: bool¶
Whether this evaluator requires an input string.
property requires_reference: bool¶
Whether this evaluator requires a reference label.
Examples using StringEvaluator¶
Custom String Evaluator | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.schema.StringEvaluator.html |
1b1b2e917a7b-0 | langchain.evaluation.string_distance.base.PairwiseStringDistanceEvalChain¶
class langchain.evaluation.string_distance.base.PairwiseStringDistanceEvalChain(*, memory: Optional[BaseMemory] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, verbose: bool = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, distance: StringDistance = StringDistance.JARO_WINKLER, normalize_score: bool = True)[source]¶
Bases: PairwiseStringEvaluator, _RapidFuzzChainMixin
Compute string edit distances between two predictions.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated, use callbacks instead.
param callbacks: Callbacks = None¶
Optional list of callback handlers (or callback manager). Defaults to None.
Callback handlers are called throughout the lifecycle of a call to a chain,
starting with on_chain_start, ending with on_chain_end or on_chain_error.
Each custom chain can optionally call additional callback methods, see Callback docs
for full details.
param distance: StringDistance = StringDistance.JARO_WINKLER¶
param memory: Optional[BaseMemory] = None¶
Optional memory object. Defaults to None.
Memory is a class that gets called at the start
and at the end of every chain. At the start, memory loads variables and passes
them along in the chain. At the end, it saves any returned variables.
There are many different types of memory - please see memory docs
for the full catalog.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the chain. Defaults to None.
This metadata will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks. | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.string_distance.base.PairwiseStringDistanceEvalChain.html |
1b1b2e917a7b-1 | and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param normalize_score: bool = True¶
Whether to normalize the score to a value between 0 and 1.
Applies only to the Levenshtein and Damerau-Levenshtein distances.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the chain. Defaults to None.
These tags will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param verbose: bool [Optional]¶
Whether or not run in verbose mode. In verbose mode, some intermediate logs
will be printed to the console. Defaults to langchain.verbose value.
__call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False) → Dict[str, Any]¶
Execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.string_distance.base.PairwiseStringDistanceEvalChain.html |
1b1b2e917a7b-2 | addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False) → Dict[str, Any]¶
Asynchronously execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects. | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.string_distance.base.PairwiseStringDistanceEvalChain.html |
1b1b2e917a7b-3 | these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
async aevaluate_string_pairs(*, prediction: str, prediction_b: str, reference: Optional[str] = None, input: Optional[str] = None, **kwargs: Any) → dict¶
Asynchronously evaluate the output string pairs.
Parameters
prediction (str) – The output string from the first model.
prediction_b (str) – The output string from the second model.
reference (Optional[str], optional) – The expected output / reference string.
input (Optional[str], optional) – The input string.
**kwargs – Additional keyword arguments, such as callbacks and optional reference strings.
Returns
A dictionary containing the preference, scores, and/or other information.
Return type
dict
async ainvoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None) → Dict[str, Any]¶
apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶
Call the chain on all inputs in the list.
async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Convenience method for executing chain.
The main difference between this method and Chain.__call__ is that this
method expects inputs to be passed directly in as positional arguments or
keyword arguments, whereas Chain.__call__ expects a single input dictionary
with all the inputs | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.string_distance.base.PairwiseStringDistanceEvalChain.html |
1b1b2e917a7b-4 | keyword arguments, whereas Chain.__call__ expects a single input dictionary
with all the inputs
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output.
Example
# Suppose we have a single-input chain that takes a 'question' string:
await chain.arun("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
await chain.arun(question=question, context=context)
# -> "The temperature in Boise is..."
compute_metric(a: str, b: str) → float¶
Compute the distance between two strings.
Parameters
a (str) – The first string.
b (str) – The second string.
Returns
The distance between the two strings.
Return type
float
dict(**kwargs: Any) → Dict¶
Dictionary representation of chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
**kwargs – Keyword arguments passed to default pydantic.BaseModel.dict
method.
Returns | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.string_distance.base.PairwiseStringDistanceEvalChain.html |
1b1b2e917a7b-5 | **kwargs – Keyword arguments passed to default pydantic.BaseModel.dict
method.
Returns
A dictionary representation of the chain.
Example
..code-block:: python
chain.dict(exclude_unset=True)
# -> {“_type”: “foo”, “verbose”: False, …}
evaluate_string_pairs(*, prediction: str, prediction_b: str, reference: Optional[str] = None, input: Optional[str] = None, **kwargs: Any) → dict¶
Evaluate the output string pairs.
Parameters
prediction (str) – The output string from the first model.
prediction_b (str) – The output string from the second model.
reference (Optional[str], optional) – The expected output / reference string.
input (Optional[str], optional) – The input string.
**kwargs – Additional keyword arguments, such as callbacks and optional reference strings.
Returns
A dictionary containing the preference, scores, and/or other information.
Return type
dict
invoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None) → Dict[str, Any]¶
prep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶
Validate and prepare chain inputs, including adding inputs from memory.
Parameters
inputs – Dictionary of raw inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
Returns
A dictionary of all inputs, including those added by the chain’s memory.
prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) → Dict[str, str]¶
Validate and prepare chain outputs, and save info about this run to memory.
Parameters
inputs – Dictionary of chain inputs, including any inputs added by chain
memory. | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.string_distance.base.PairwiseStringDistanceEvalChain.html |
1b1b2e917a7b-6 | Parameters
inputs – Dictionary of chain inputs, including any inputs added by chain
memory.
outputs – Dictionary of initial chain outputs.
return_only_outputs – Whether to only return the chain outputs. If False,
inputs are also added to the final outputs.
Returns
A dict of the final chain outputs.
validator raise_callback_manager_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Convenience method for executing chain.
The main difference between this method and Chain.__call__ is that this
method expects inputs to be passed directly in as positional arguments or
keyword arguments, whereas Chain.__call__ expects a single input dictionary
with all the inputs
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output.
Example
# Suppose we have a single-input chain that takes a 'question' string:
chain.run("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.string_distance.base.PairwiseStringDistanceEvalChain.html |
1b1b2e917a7b-7 | # Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
chain.run(question=question, context=context)
# -> "The temperature in Boise is..."
save(file_path: Union[Path, str]) → None¶
Save the chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
file_path – Path to file to save the chain to.
Example
chain.save(file_path="path/chain.yaml")
validator set_verbose » verbose¶
Set the chain verbosity.
Defaults to the global setting if not specified by the user.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
validator validate_dependencies » all fields¶
Validate that the rapidfuzz library is installed.
Parameters
values (Dict[str, Any]) – The input values.
Returns
The validated values.
Return type
Dict[str, Any]
property evaluation_name: str¶
Get the evaluation name.
Returns
The evaluation name.
Return type
str
property input_keys: List[str]¶
Get the input keys.
Returns
The input keys.
Return type
List[str]
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids. | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.string_distance.base.PairwiseStringDistanceEvalChain.html |
1b1b2e917a7b-8 | Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
property metric: Callable¶
Get the distance metric function.
Returns
The distance metric function.
Return type
Callable
property output_keys: List[str]¶
Get the output keys.
Returns
The output keys.
Return type
List[str]
property requires_input: bool¶
Whether this evaluator requires an input string.
property requires_reference: bool¶
Whether this evaluator requires a reference label.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶ | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.string_distance.base.PairwiseStringDistanceEvalChain.html |
c5df5ddb52ba-0 | langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEval¶
class langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEval[source]¶
Bases: TypedDict
A named tuple containing the score and reasoning for a trajectory.
Methods
__init__(*args, **kwargs)
clear()
copy()
fromkeys([value])
Create a new dictionary with keys from iterable and values set to value.
get(key[, default])
Return the value for key if key is in the dictionary, else default.
items()
keys()
pop(k[,d])
If the key is not found, return the default if given; otherwise, raise a KeyError.
popitem()
Remove and return a (key, value) pair as a 2-tuple.
setdefault(key[, default])
Insert key with a value of default if key is not in the dictionary.
update([E, ]**F)
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
values()
Attributes
score
The score for the trajectory, normalized from 0 to 1.s
reasoning
The reasoning for the score.
clear() → None. Remove all items from D.¶
copy() → a shallow copy of D¶
fromkeys(value=None, /)¶
Create a new dictionary with keys from iterable and values set to value.
get(key, default=None, /)¶
Return the value for key if key is in the dictionary, else default. | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEval.html |
c5df5ddb52ba-1 | Return the value for key if key is in the dictionary, else default.
items() → a set-like object providing a view on D's items¶
keys() → a set-like object providing a view on D's keys¶
pop(k[, d]) → v, remove specified key and return the corresponding value.¶
If the key is not found, return the default if given; otherwise,
raise a KeyError.
popitem()¶
Remove and return a (key, value) pair as a 2-tuple.
Pairs are returned in LIFO (last-in, first-out) order.
Raises KeyError if the dict is empty.
setdefault(key, default=None, /)¶
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
update([E, ]**F) → None. Update D from dict/iterable E and F.¶
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]
If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]
values() → an object providing a view on D's values¶
reasoning: str¶
The reasoning for the score.
score: float¶
The score for the trajectory, normalized from 0 to 1.s | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.agents.trajectory_eval_chain.TrajectoryEval.html |
ac89c3aee097-0 | langchain.evaluation.schema.EvaluatorType¶
class langchain.evaluation.schema.EvaluatorType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]¶
Bases: str, Enum
The types of the evaluators.
Methods
__init__(*args, **kwds)
capitalize()
Return a capitalized version of the string.
casefold()
Return a version of the string suitable for caseless comparisons.
center(width[, fillchar])
Return a centered string of length width.
count(sub[, start[, end]])
Return the number of non-overlapping occurrences of substring sub in string S[start:end].
encode([encoding, errors])
Encode the string using the codec registered for encoding.
endswith(suffix[, start[, end]])
Return True if S ends with the specified suffix, False otherwise.
expandtabs([tabsize])
Return a copy where all tab characters are expanded using spaces.
find(sub[, start[, end]])
Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end].
format(*args, **kwargs)
Return a formatted version of S, using substitutions from args and kwargs.
format_map(mapping)
Return a formatted version of S, using substitutions from mapping.
index(sub[, start[, end]])
Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end].
isalnum()
Return True if the string is an alpha-numeric string, False otherwise.
isalpha()
Return True if the string is an alphabetic string, False otherwise.
isascii()
Return True if all characters in the string are ASCII, False otherwise.
isdecimal()
Return True if the string is a decimal string, False otherwise.
isdigit() | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.schema.EvaluatorType.html |
ac89c3aee097-1 | Return True if the string is a decimal string, False otherwise.
isdigit()
Return True if the string is a digit string, False otherwise.
isidentifier()
Return True if the string is a valid Python identifier, False otherwise.
islower()
Return True if the string is a lowercase string, False otherwise.
isnumeric()
Return True if the string is a numeric string, False otherwise.
isprintable()
Return True if the string is printable, False otherwise.
isspace()
Return True if the string is a whitespace string, False otherwise.
istitle()
Return True if the string is a title-cased string, False otherwise.
isupper()
Return True if the string is an uppercase string, False otherwise.
join(iterable, /)
Concatenate any number of strings.
ljust(width[, fillchar])
Return a left-justified string of length width.
lower()
Return a copy of the string converted to lowercase.
lstrip([chars])
Return a copy of the string with leading whitespace removed.
maketrans
Return a translation table usable for str.translate().
partition(sep, /)
Partition the string into three parts using the given separator.
removeprefix(prefix, /)
Return a str with the given prefix string removed if present.
removesuffix(suffix, /)
Return a str with the given suffix string removed if present.
replace(old, new[, count])
Return a copy with all occurrences of substring old replaced by new.
rfind(sub[, start[, end]])
Return the highest index in S where substring sub is found, such that sub is contained within S[start:end].
rindex(sub[, start[, end]])
Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.schema.EvaluatorType.html |
ac89c3aee097-2 | rjust(width[, fillchar])
Return a right-justified string of length width.
rpartition(sep, /)
Partition the string into three parts using the given separator.
rsplit([sep, maxsplit])
Return a list of the substrings in the string, using sep as the separator string.
rstrip([chars])
Return a copy of the string with trailing whitespace removed.
split([sep, maxsplit])
Return a list of the substrings in the string, using sep as the separator string.
splitlines([keepends])
Return a list of the lines in the string, breaking at line boundaries.
startswith(prefix[, start[, end]])
Return True if S starts with the specified prefix, False otherwise.
strip([chars])
Return a copy of the string with leading and trailing whitespace removed.
swapcase()
Convert uppercase characters to lowercase and lowercase characters to uppercase.
title()
Return a version of the string where each word is titlecased.
translate(table, /)
Replace each character in the string using the given translation table.
upper()
Return a copy of the string converted to uppercase.
zfill(width, /)
Pad a numeric string with zeros on the left, to fill a field of the given width.
Attributes
QA
Question answering evaluator, which grades answers to questions directly using an LLM.
COT_QA
Chain of thought question answering evaluator, which grades answers to questions using chain of thought 'reasoning'.
CONTEXT_QA
Question answering evaluator that incorporates 'context' in the response.
PAIRWISE_STRING
The pairwise string evaluator, which predicts the preferred prediction from between two models.
LABELED_PAIRWISE_STRING
The labeled pairwise string evaluator, which predicts the preferred prediction from between two models based on a ground truth reference label.
AGENT_TRAJECTORY | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.schema.EvaluatorType.html |
ac89c3aee097-3 | AGENT_TRAJECTORY
The agent trajectory evaluator, which grades the agent's intermediate steps.
CRITERIA
The criteria evaluator, which evaluates a model based on a custom set of criteria without any reference labels.
LABELED_CRITERIA
The labeled criteria evaluator, which evaluates a model based on a custom set of criteria, with a reference label.
STRING_DISTANCE
Compare predictions to a reference answer using string edit distances.
PAIRWISE_STRING_DISTANCE
Compare predictions based on string edit distances.
EMBEDDING_DISTANCE
Compare a prediction to a reference label using embedding distance.
PAIRWISE_EMBEDDING_DISTANCE
Compare two predictions using embedding distance.
capitalize()¶
Return a capitalized version of the string.
More specifically, make the first character have upper case and the rest lower
case.
casefold()¶
Return a version of the string suitable for caseless comparisons.
center(width, fillchar=' ', /)¶
Return a centered string of length width.
Padding is done using the specified fill character (default is a space).
count(sub[, start[, end]]) → int¶
Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are
interpreted as in slice notation.
encode(encoding='utf-8', errors='strict')¶
Encode the string using the codec registered for encoding.
encodingThe encoding in which to encode the string.
errorsThe error handling scheme to use for encoding errors.
The default is ‘strict’ meaning that encoding errors raise a
UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and
‘xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.
endswith(suffix[, start[, end]]) → bool¶
Return True if S ends with the specified suffix, False otherwise. | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.schema.EvaluatorType.html |
ac89c3aee097-4 | Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.
expandtabs(tabsize=8)¶
Return a copy where all tab characters are expanded using spaces.
If tabsize is not given, a tab size of 8 characters is assumed.
find(sub[, start[, end]]) → int¶
Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.
Return -1 on failure.
format(*args, **kwargs) → str¶
Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces (‘{’ and ‘}’).
format_map(mapping) → str¶
Return a formatted version of S, using substitutions from mapping.
The substitutions are identified by braces (‘{’ and ‘}’).
index(sub[, start[, end]]) → int¶
Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.
Raises ValueError when the substring is not found.
isalnum()¶
Return True if the string is an alpha-numeric string, False otherwise.
A string is alpha-numeric if all characters in the string are alpha-numeric and
there is at least one character in the string.
isalpha()¶
Return True if the string is an alphabetic string, False otherwise.
A string is alphabetic if all characters in the string are alphabetic and there
is at least one character in the string.
isascii()¶ | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.schema.EvaluatorType.html |
ac89c3aee097-5 | is at least one character in the string.
isascii()¶
Return True if all characters in the string are ASCII, False otherwise.
ASCII characters have code points in the range U+0000-U+007F.
Empty string is ASCII too.
isdecimal()¶
Return True if the string is a decimal string, False otherwise.
A string is a decimal string if all characters in the string are decimal and
there is at least one character in the string.
isdigit()¶
Return True if the string is a digit string, False otherwise.
A string is a digit string if all characters in the string are digits and there
is at least one character in the string.
isidentifier()¶
Return True if the string is a valid Python identifier, False otherwise.
Call keyword.iskeyword(s) to test whether string s is a reserved identifier,
such as “def” or “class”.
islower()¶
Return True if the string is a lowercase string, False otherwise.
A string is lowercase if all cased characters in the string are lowercase and
there is at least one cased character in the string.
isnumeric()¶
Return True if the string is a numeric string, False otherwise.
A string is numeric if all characters in the string are numeric and there is at
least one character in the string.
isprintable()¶
Return True if the string is printable, False otherwise.
A string is printable if all of its characters are considered printable in
repr() or if it is empty.
isspace()¶
Return True if the string is a whitespace string, False otherwise.
A string is whitespace if all characters in the string are whitespace and there
is at least one character in the string.
istitle()¶
Return True if the string is a title-cased string, False otherwise. | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.schema.EvaluatorType.html |
ac89c3aee097-6 | Return True if the string is a title-cased string, False otherwise.
In a title-cased string, upper- and title-case characters may only
follow uncased characters and lowercase characters only cased ones.
isupper()¶
Return True if the string is an uppercase string, False otherwise.
A string is uppercase if all cased characters in the string are uppercase and
there is at least one cased character in the string.
join(iterable, /)¶
Concatenate any number of strings.
The string whose method is called is inserted in between each given string.
The result is returned as a new string.
Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’
ljust(width, fillchar=' ', /)¶
Return a left-justified string of length width.
Padding is done using the specified fill character (default is a space).
lower()¶
Return a copy of the string converted to lowercase.
lstrip(chars=None, /)¶
Return a copy of the string with leading whitespace removed.
If chars is given and not None, remove characters in chars instead.
static maketrans()¶
Return a translation table usable for str.translate().
If there is only one argument, it must be a dictionary mapping Unicode
ordinals (integers) or characters to Unicode ordinals, strings or None.
Character keys will be then converted to ordinals.
If there are two arguments, they must be strings of equal length, and
in the resulting dictionary, each character in x will be mapped to the
character at the same position in y. If there is a third argument, it
must be a string, whose characters will be mapped to None in the result.
partition(sep, /)¶
Partition the string into three parts using the given separator. | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.schema.EvaluatorType.html |
ac89c3aee097-7 | partition(sep, /)¶
Partition the string into three parts using the given separator.
This will search for the separator in the string. If the separator is found,
returns a 3-tuple containing the part before the separator, the separator
itself, and the part after it.
If the separator is not found, returns a 3-tuple containing the original string
and two empty strings.
removeprefix(prefix, /)¶
Return a str with the given prefix string removed if present.
If the string starts with the prefix string, return string[len(prefix):].
Otherwise, return a copy of the original string.
removesuffix(suffix, /)¶
Return a str with the given suffix string removed if present.
If the string ends with the suffix string and that suffix is not empty,
return string[:-len(suffix)]. Otherwise, return a copy of the original
string.
replace(old, new, count=- 1, /)¶
Return a copy with all occurrences of substring old replaced by new.
countMaximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.
If the optional argument count is given, only the first count occurrences are
replaced.
rfind(sub[, start[, end]]) → int¶
Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.
Return -1 on failure.
rindex(sub[, start[, end]]) → int¶
Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.
Raises ValueError when the substring is not found.
rjust(width, fillchar=' ', /)¶ | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.schema.EvaluatorType.html |
ac89c3aee097-8 | rjust(width, fillchar=' ', /)¶
Return a right-justified string of length width.
Padding is done using the specified fill character (default is a space).
rpartition(sep, /)¶
Partition the string into three parts using the given separator.
This will search for the separator in the string, starting at the end. If
the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it.
If the separator is not found, returns a 3-tuple containing two empty strings
and the original string.
rsplit(sep=None, maxsplit=- 1)¶
Return a list of the substrings in the string, using sep as the separator string.
sepThe separator used to split the string.
When set to None (the default value), will split on any whitespace
character (including \n \r \t \f and spaces) and will discard
empty strings from the result.
maxsplitMaximum number of splits (starting from the left).
-1 (the default value) means no limit.
Splitting starts at the end of the string and works to the front.
rstrip(chars=None, /)¶
Return a copy of the string with trailing whitespace removed.
If chars is given and not None, remove characters in chars instead.
split(sep=None, maxsplit=- 1)¶
Return a list of the substrings in the string, using sep as the separator string.
sepThe separator used to split the string.
When set to None (the default value), will split on any whitespace
character (including \n \r \t \f and spaces) and will discard
empty strings from the result.
maxsplitMaximum number of splits (starting from the left).
-1 (the default value) means no limit. | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.schema.EvaluatorType.html |
ac89c3aee097-9 | -1 (the default value) means no limit.
Note, str.split() is mainly useful for data that has been intentionally
delimited. With natural text that includes punctuation, consider using
the regular expression module.
splitlines(keepends=False)¶
Return a list of the lines in the string, breaking at line boundaries.
Line breaks are not included in the resulting list unless keepends is given and
true.
startswith(prefix[, start[, end]]) → bool¶
Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.
strip(chars=None, /)¶
Return a copy of the string with leading and trailing whitespace removed.
If chars is given and not None, remove characters in chars instead.
swapcase()¶
Convert uppercase characters to lowercase and lowercase characters to uppercase.
title()¶
Return a version of the string where each word is titlecased.
More specifically, words start with uppercased characters and all remaining
cased characters have lower case.
translate(table, /)¶
Replace each character in the string using the given translation table.
tableTranslation table, which must be a mapping of Unicode ordinals to
Unicode ordinals, strings, or None.
The table must implement lookup/indexing via __getitem__, for instance a
dictionary or list. If this operation raises LookupError, the character is
left untouched. Characters mapped to None are deleted.
upper()¶
Return a copy of the string converted to uppercase.
zfill(width, /)¶
Pad a numeric string with zeros on the left, to fill a field of the given width.
The string is never truncated.
AGENT_TRAJECTORY = 'trajectory'¶ | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.schema.EvaluatorType.html |
ac89c3aee097-10 | The string is never truncated.
AGENT_TRAJECTORY = 'trajectory'¶
The agent trajectory evaluator, which grades the agent’s intermediate steps.
CONTEXT_QA = 'context_qa'¶
Question answering evaluator that incorporates ‘context’ in the response.
COT_QA = 'cot_qa'¶
Chain of thought question answering evaluator, which grades
answers to questions using
chain of thought ‘reasoning’.
CRITERIA = 'criteria'¶
The criteria evaluator, which evaluates a model based on a
custom set of criteria without any reference labels.
EMBEDDING_DISTANCE = 'embedding_distance'¶
Compare a prediction to a reference label using embedding distance.
LABELED_CRITERIA = 'labeled_criteria'¶
The labeled criteria evaluator, which evaluates a model based on a
custom set of criteria, with a reference label.
LABELED_PAIRWISE_STRING = 'labeled_pairwise_string'¶
The labeled pairwise string evaluator, which predicts the preferred prediction
from between two models based on a ground truth reference label.
PAIRWISE_EMBEDDING_DISTANCE = 'pairwise_embedding_distance'¶
Compare two predictions using embedding distance.
PAIRWISE_STRING = 'pairwise_string'¶
The pairwise string evaluator, which predicts the preferred prediction from
between two models.
PAIRWISE_STRING_DISTANCE = 'pairwise_string_distance'¶
Compare predictions based on string edit distances.
QA = 'qa'¶
Question answering evaluator, which grades answers to questions
directly using an LLM.
STRING_DISTANCE = 'string_distance'¶
Compare predictions to a reference answer using string edit distances.
Examples using EvaluatorType¶
LangSmith Walkthrough
Criteria Evaluation | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.schema.EvaluatorType.html |
ad70e062de0e-0 | langchain.evaluation.comparison.eval_chain.resolve_pairwise_criteria¶
langchain.evaluation.comparison.eval_chain.resolve_pairwise_criteria(criteria: Optional[Union[Mapping[str, str], Criteria, ConstitutionalPrinciple, str, List[Union[Mapping[str, str], Criteria, ConstitutionalPrinciple]]]]) → dict[source]¶
Resolve the criteria for the pairwise evaluator.
Parameters
criteria (Union[CRITERIA_TYPE, str], optional) – The criteria to use.
Returns
The resolved criteria.
Return type
dict | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.comparison.eval_chain.resolve_pairwise_criteria.html |
efecc1ece969-0 | langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain¶
class langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain(*, memory: Optional[BaseMemory] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, verbose: bool = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, prompt: BasePromptTemplate, llm: BaseLanguageModel, output_key: str = 'results', output_parser: BaseOutputParser = None, return_final_only: bool = True, llm_kwargs: dict = None)[source]¶
Bases: PairwiseStringEvaluator, LLMEvalChain, LLMChain
A chain for comparing two outputs, such as the outputsof two models, prompts, or outputs of a single model on similar inputs.
output_parser¶
The output parser for the chain.
Type
BaseOutputParser
Example
>>> from langchain.chat_models import ChatOpenAI
>>> from langchain.evaluation.comparison import PairwiseStringEvalChain
>>> llm = ChatOpenAI(temperature=0)
>>> chain = PairwiseStringEvalChain.from_llm(llm=llm)
>>> result = chain.evaluate_string_pairs(
... input = "What is the chemical formula for water?",
... prediction = "H2O",
... prediction_b = (
... "The chemical formula for water is H2O, which means"
... " there are two hydrogen atoms and one oxygen atom."
... reference = "The chemical formula for water is H2O.",
... )
>>> print(result["text"])
# {
# "value": "B",
# "comment": "Both responses accurately state" | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain.html |
efecc1ece969-1 | # "comment": "Both responses accurately state"
# " that the chemical formula for water is H2O."
# " However, Response B provides additional information"
# . " by explaining what the formula means.\n[[B]]"
# }
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated, use callbacks instead.
param callbacks: Callbacks = None¶
Optional list of callback handlers (or callback manager). Defaults to None.
Callback handlers are called throughout the lifecycle of a call to a chain,
starting with on_chain_start, ending with on_chain_end or on_chain_error.
Each custom chain can optionally call additional callback methods, see Callback docs
for full details.
param llm: BaseLanguageModel [Required]¶
Language model to call.
param llm_kwargs: dict [Optional]¶
param memory: Optional[BaseMemory] = None¶
Optional memory object. Defaults to None.
Memory is a class that gets called at the start
and at the end of every chain. At the start, memory loads variables and passes
them along in the chain. At the end, it saves any returned variables.
There are many different types of memory - please see memory docs
for the full catalog.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the chain. Defaults to None.
This metadata will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param output_parser: BaseOutputParser [Optional]¶
Output parser to use.
Defaults to one that takes the most likely string but does not change it
otherwise.
param prompt: BasePromptTemplate [Required]¶
Prompt object to use. | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain.html |
efecc1ece969-2 | otherwise.
param prompt: BasePromptTemplate [Required]¶
Prompt object to use.
param return_final_only: bool = True¶
Whether to return only the final parsed result. Defaults to True.
If false, will return a bunch of extra information about the generation.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the chain. Defaults to None.
These tags will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param verbose: bool [Optional]¶
Whether or not run in verbose mode. In verbose mode, some intermediate logs
will be printed to the console. Defaults to langchain.verbose value.
__call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False) → Dict[str, Any]¶
Execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects. | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain.html |
efecc1ece969-3 | these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
async aapply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶
Utilize the LLM generate method for speed gains.
async aapply_and_parse(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → Sequence[Union[str, List[str], Dict[str, str]]]¶
Call apply and then parse the results.
async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False) → Dict[str, Any]¶
Asynchronously execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False. | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain.html |
efecc1ece969-4 | chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
async aevaluate_string_pairs(*, prediction: str, prediction_b: str, reference: Optional[str] = None, input: Optional[str] = None, **kwargs: Any) → dict¶
Asynchronously evaluate the output string pairs.
Parameters
prediction (str) – The output string from the first model.
prediction_b (str) – The output string from the second model.
reference (Optional[str], optional) – The expected output / reference string.
input (Optional[str], optional) – The input string.
**kwargs – Additional keyword arguments, such as callbacks and optional reference strings.
Returns
A dictionary containing the preference, scores, and/or other information.
Return type
dict
async agenerate(input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None) → LLMResult¶
Generate LLM result from inputs.
async ainvoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None) → Dict[str, Any]¶ | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain.html |
efecc1ece969-5 | apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶
Utilize the LLM generate method for speed gains.
apply_and_parse(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → Sequence[Union[str, List[str], Dict[str, str]]]¶
Call apply and then parse the results.
async apredict(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶
Format prompt with kwargs and pass to LLM.
Parameters
callbacks – Callbacks to pass to LLMChain
**kwargs – Keys to pass to prompt template.
Returns
Completion from LLM.
Example
completion = llm.predict(adjective="funny")
async apredict_and_parse(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[str, List[str], Dict[str, str]]¶
Call apredict and then parse the results.
async aprep_prompts(input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None) → Tuple[List[PromptValue], Optional[List[str]]]¶
Prepare prompts from inputs.
async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Convenience method for executing chain.
The main difference between this method and Chain.__call__ is that this
method expects inputs to be passed directly in as positional arguments or | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain.html |
efecc1ece969-6 | method expects inputs to be passed directly in as positional arguments or
keyword arguments, whereas Chain.__call__ expects a single input dictionary
with all the inputs
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output.
Example
# Suppose we have a single-input chain that takes a 'question' string:
await chain.arun("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
await chain.arun(question=question, context=context)
# -> "The temperature in Boise is..."
create_outputs(llm_result: LLMResult) → List[Dict[str, Any]]¶
Create outputs from response.
dict(**kwargs: Any) → Dict¶
Dictionary representation of chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
**kwargs – Keyword arguments passed to default pydantic.BaseModel.dict
method.
Returns
A dictionary representation of the chain.
Example
..code-block:: python | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain.html |
efecc1ece969-7 | Returns
A dictionary representation of the chain.
Example
..code-block:: python
chain.dict(exclude_unset=True)
# -> {“_type”: “foo”, “verbose”: False, …}
evaluate_string_pairs(*, prediction: str, prediction_b: str, reference: Optional[str] = None, input: Optional[str] = None, **kwargs: Any) → dict¶
Evaluate the output string pairs.
Parameters
prediction (str) – The output string from the first model.
prediction_b (str) – The output string from the second model.
reference (Optional[str], optional) – The expected output / reference string.
input (Optional[str], optional) – The input string.
**kwargs – Additional keyword arguments, such as callbacks and optional reference strings.
Returns
A dictionary containing the preference, scores, and/or other information.
Return type
dict
classmethod from_llm(llm: BaseLanguageModel, *, prompt: Optional[PromptTemplate] = None, criteria: Optional[Union[Mapping[str, str], Criteria, ConstitutionalPrinciple, str]] = None, **kwargs: Any) → PairwiseStringEvalChain[source]¶
Initialize the PairwiseStringEvalChain from an LLM.
Parameters
llm (BaseLanguageModel) – The LLM to use.
prompt (PromptTemplate, optional) – The prompt to use.
**kwargs (Any) – Additional keyword arguments.
Returns
The initialized PairwiseStringEvalChain.
Return type
PairwiseStringEvalChain
Raises
ValueError – If the input variables are not as expected.
classmethod from_string(llm: BaseLanguageModel, template: str) → LLMChain¶
Create LLMChain from LLM and template.
generate(input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None) → LLMResult¶ | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain.html |
efecc1ece969-8 | Generate LLM result from inputs.
invoke(input: Dict[str, Any], config: Optional[RunnableConfig] = None) → Dict[str, Any]¶
predict(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶
Format prompt with kwargs and pass to LLM.
Parameters
callbacks – Callbacks to pass to LLMChain
**kwargs – Keys to pass to prompt template.
Returns
Completion from LLM.
Example
completion = llm.predict(adjective="funny")
predict_and_parse(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[str, List[str], Dict[str, Any]]¶
Call predict and then parse the results.
prep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶
Validate and prepare chain inputs, including adding inputs from memory.
Parameters
inputs – Dictionary of raw inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
Returns
A dictionary of all inputs, including those added by the chain’s memory.
prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) → Dict[str, str]¶
Validate and prepare chain outputs, and save info about this run to memory.
Parameters
inputs – Dictionary of chain inputs, including any inputs added by chain
memory.
outputs – Dictionary of initial chain outputs.
return_only_outputs – Whether to only return the chain outputs. If False,
inputs are also added to the final outputs.
Returns
A dict of the final chain outputs. | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain.html |
efecc1ece969-9 | Returns
A dict of the final chain outputs.
prep_prompts(input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None) → Tuple[List[PromptValue], Optional[List[str]]]¶
Prepare prompts from inputs.
validator raise_callback_manager_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶
Convenience method for executing chain.
The main difference between this method and Chain.__call__ is that this
method expects inputs to be passed directly in as positional arguments or
keyword arguments, whereas Chain.__call__ expects a single input dictionary
with all the inputs
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output.
Example
# Suppose we have a single-input chain that takes a 'question' string:
chain.run("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain.html |
efecc1ece969-10 | # Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
chain.run(question=question, context=context)
# -> "The temperature in Boise is..."
save(file_path: Union[Path, str]) → None¶
Save the chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
file_path – Path to file to save the chain to.
Example
chain.save(file_path="path/chain.yaml")
validator set_verbose » verbose¶
Set the chain verbosity.
Defaults to the global setting if not specified by the user.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
property requires_input: bool¶
Return whether the chain requires an input.
Returns
True if the chain requires an input, False otherwise.
Return type
bool
property requires_reference: bool¶
Return whether the chain requires a reference.
Returns
True if the chain requires a reference, False otherwise.
Return type
bool | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain.html |
efecc1ece969-11 | Returns
True if the chain requires a reference, False otherwise.
Return type
bool
model Config[source]¶
Bases: object
Configuration for the PairwiseStringEvalChain.
extra = 'ignore'¶ | https://api.python.langchain.com/en/latest/evaluation/langchain.evaluation.comparison.eval_chain.PairwiseStringEvalChain.html |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.