Datasets:
dataset_info:
- config_name: dutch
features:
- name: audio
dtype: audio
- name: wav_filesize
dtype: int64
- name: text
dtype: string
- name: transcript_wav2vec
dtype: string
- name: levenshtein
dtype: float64
- name: duration
dtype: float64
- name: num_words
dtype: int64
- name: speaker_id
dtype: int64
splits:
- name: train
num_bytes: 98269862937.51833
num_examples: 231177
- name: dev
num_bytes: 745162483.6791213
num_examples: 1641
- name: test
num_bytes: 797726105.9099672
num_examples: 1661
download_size: 101597337669
dataset_size: 99812751527.10742
- config_name: french
features:
- name: audio
dtype: audio
- name: wav_filesize
dtype: int64
- name: text
dtype: string
- name: transcript_wav2vec
dtype: string
- name: levenshtein
dtype: float64
- name: duration
dtype: float64
- name: num_words
dtype: int64
- name: speaker_id
dtype: int64
splits:
- name: train
num_bytes: 43465714817.56579
num_examples: 99997
- name: dev
num_bytes: 1052062781.1487837
num_examples: 2293
- name: test
num_bytes: 1086922137.0305457
num_examples: 2378
download_size: 45319112381
dataset_size: 45604699735.74512
- config_name: german
features:
- name: audio
dtype: audio
- name: wav_filesize
dtype: int64
- name: text
dtype: string
- name: transcript_wav2vec
dtype: string
- name: levenshtein
dtype: float64
- name: duration
dtype: float64
- name: num_words
dtype: int64
- name: speaker_id
dtype: int64
splits:
- name: train
num_bytes: 243597781025.5856
num_examples: 527484
- name: dev
num_bytes: 1666941056.5423663
num_examples: 3628
- name: test
num_bytes: 1602978607.4473794
num_examples: 3592
download_size: 247092068354
dataset_size: 246867700689.57535
- config_name: italian
features:
- name: audio
dtype: audio
- name: wav_filesize
dtype: int64
- name: text
dtype: string
- name: transcript_wav2vec
dtype: string
- name: levenshtein
dtype: float64
- name: duration
dtype: float64
- name: num_words
dtype: int64
- name: speaker_id
dtype: int64
splits:
- name: train
num_bytes: 19924022474.291084
num_examples: 47133
- name: dev
num_bytes: 394008759.92521244
num_examples: 786
- name: test
num_bytes: 470119421.61416894
num_examples: 958
download_size: 20512119431
dataset_size: 20788150655.830467
- config_name: polish
features:
- name: audio
dtype: audio
- name: wav_filesize
dtype: int64
- name: text
dtype: string
- name: transcript_wav2vec
dtype: string
- name: levenshtein
dtype: float64
- name: duration
dtype: float64
- name: num_words
dtype: int64
- name: speaker_id
dtype: int64
splits:
- name: train
num_bytes: 6113517251.351246
num_examples: 15136
- name: dev
num_bytes: 235417382.99062133
num_examples: 564
- name: test
num_bytes: 272458802.487715
num_examples: 603
download_size: 6528857087
dataset_size: 6621393436.829582
- config_name: portuguese
features:
- name: audio
dtype: audio
- name: wav_filesize
dtype: int64
- name: text
dtype: string
- name: transcript_wav2vec
dtype: string
- name: levenshtein
dtype: float64
- name: duration
dtype: float64
- name: num_words
dtype: int64
- name: speaker_id
dtype: int64
splits:
- name: train
num_bytes: 10141245922.630423
num_examples: 25732
- name: dev
num_bytes: 192600490.04761904
num_examples: 352
- name: test
num_bytes: 130106396.77409406
num_examples: 265
download_size: 10770507545
dataset_size: 10463952809.452135
- config_name: spanish
features:
- name: audio
dtype: audio
- name: wav_filesize
dtype: int64
- name: text
dtype: string
- name: transcript_wav2vec
dtype: string
- name: levenshtein
dtype: float64
- name: duration
dtype: float64
- name: num_words
dtype: int64
- name: speaker_id
dtype: int64
splits:
- name: train
num_bytes: 68818227269.88977
num_examples: 153150
- name: dev
num_bytes: 1032288709.7028614
num_examples: 1897
- name: test
num_bytes: 922532713.3814805
num_examples: 1662
download_size: 67248870262
dataset_size: 70773048692.97412
configs:
- config_name: dutch
data_files:
- split: train
path: dutch/train-*
- split: dev
path: dutch/dev-*
- split: test
path: dutch/test-*
- config_name: french
data_files:
- split: train
path: french/train-*
- split: dev
path: french/dev-*
- split: test
path: french/test-*
- config_name: german
data_files:
- split: train
path: german/train-*
- split: dev
path: german/dev-*
- split: test
path: german/test-*
- config_name: italian
data_files:
- split: train
path: italian/train-*
- split: dev
path: italian/dev-*
- split: test
path: italian/test-*
- config_name: polish
data_files:
- split: train
path: polish/train-*
- split: dev
path: polish/dev-*
- split: test
path: polish/test-*
- config_name: portuguese
data_files:
- split: train
path: portuguese/train-*
- split: dev
path: portuguese/dev-*
- split: test
path: portuguese/test-*
- config_name: spanish
data_files:
- split: train
path: spanish/train-*
- split: dev
path: spanish/dev-*
- split: test
path: spanish/test-*
license: cc-by-4.0
task_categories:
- text-to-speech
language:
- fr
- de
- nl
- pl
- pt
- es
- it
Dataset Card for Filtred and CML-TTS
This dataset is a filtred version of a CML-TTS [1].
CML-TTS [1] CML-TTS is a recursive acronym for CML-Multi-Lingual-TTS, a Text-to-Speech (TTS) dataset developed at the Center of Excellence in Artificial Intelligence (CEIA) of the Federal University of Goias (UFG). CML-TTS is a dataset comprising audiobooks sourced from the public domain books of Project Gutenberg, read by volunteers from the LibriVox project. The dataset includes recordings in Dutch, German, French, Italian, Polish, Portuguese, and Spanish, all at a sampling rate of 24kHz.
This dataset was used alongside the LibriTTS-R English dataset and the Non English subset of MLS to train [Parler-TTS Multilingual Mini v1.1. A training recipe is available in the Parler-TTS library.
Motivation
This dataset was filtered to remove problematic samples. In the original dataset, some samples (especially short ones) had incomplete or incorrect transcriptions. To ensure quality, all rows with a Levenshtein similarity ratio below 0.9 were removed.
Note on Levenshtein distance: the Levenshtein distance measures how different two strings are by counting the minimum number of single-character edits (insertions, deletions, or substitutions) needed to transform one string into another.
Usage
Here is an example on how to oad the clean
config with only the train.clean.360
split.
from datasets import load_dataset
load_dataset("https://huggingface.co/datasets/PHBJT/cml-tts-cleaned-levenshtein", "french", split="train")
Dataset Description
- License: CC BY 4.0
Dataset Sources
- Homepage: https://www.openslr.org/141/
- Paper: https://arxiv.org/abs/2305.18802
@misc{oliveira2023cmltts, title={CML-TTS A Multilingual Dataset for Speech Synthesis in Low-Resource Languages}, author={Frederico S. Oliveira and Edresson Casanova and Arnaldo Cândido Júnior and Anderson S. Soares and Arlindo R. Galvão Filho}, year={2023}, eprint={2306.10097}, archivePrefix={arXiv}, primaryClass={eess.AS} } ```