File size: 11,368 Bytes
757cc78 3f9023f 9373819 3f9023f 9373819 3f9023f 0b2de2e 757cc78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
# DialogZoo
## Data construction
To replicate data construction, three steps are required:
* Download data: ```bash scripts/download.sh```
* Convert origin data into our unified format: ```bash scripts/convert_to_unified.sh```
```
{
# Optional values: `single` or `multi`. Indicates whether it is a single-turn or multi-turn dialogue.
"turn": str,
# The domains involved in the dialogue (a list because some dialogues involve multiple domains).
"domain": [],
# The language of the dialogue, based on the original dataset annotations (e.g., en, fr, etc.).
"locale": str,
# The dialogue, represented as a list where each element is a dictionary for a single turn.
"dialog": [
{
# The roles involved in each turn. Some datasets may have multiple roles per turn, so it's a list.
# For datasets without role annotations:
# * Use `ROLE` for single-turn data.
# * Use `ROLE1`, `ROLE2`, etc., for multi-turn data.
"roles": [str, ...],
# The text of the current turn.
"utterance": str,
# Used for the "answer" in QA tasks.
"start": int,
"end": int,
"dialog_turn": int
# Rewritten text corresponding to the current turn.
"rewritten": str,
# Dialogue state, represented as a list where each element includes:
# Domain: Some datasets constrain slot-value pairs within specific domains.
# Intent: Some datasets constrain slot-value pairs within specific intents.
# Slot-value pairs: A list where each element includes a slot and its corresponding values.
# Slot name: A string.
# Values: A list where a slot may have multiple values.
# Each value includes four parts: the value itself, the normalized value,
# the character index in the current turn's text, and more.
# Relation: Some slots are equal to a value, while others are greater than a value.
# Defaults to "equal" if not specified.
# Requested slots: A list of slots that need to be queried but are not filled in the current state.
"belief_state": [
{
# Intent
"intent": str,
# Slot-value pairs
"informed_slot_value_table": [
{
# Slot name
"slot": str,
# Values
"values": [{
# Actual value
"value": str,
# Normalized value
"cononical_value": str
}, ...],
# Slot-value relation
"relation": str,
},
...
],
# Requested slots
"requested_slots": [],
# Domain
"domain": str,
}, ...
],
# Dialogue actions, represented as a list where each element includes:
# Domain: Some datasets constrain slot-value pairs within specific domains.
# Action: The actions involved in the current turn.
# Slot-value pairs: Same as in dialogue state.
"dialog_acts": [
{
# Action
"act": str,
# Slot-value pairs
"slot_value_table": [
{
# Slot name
"slot": str,
# Slot-value relation
"relation": str,
# Values
"values": [
{
# Actual value
"value": str,
# Normalized value
"cononical_value": str,
# Start position
"start": int,
# End position
"end": int,
},...
]
},
...
],
# Domain
"domain": str,
},
...
],
# Slot filling
"slots_to_fill": {
"intent": str,
"slot_value_table": [
{
"slot": str,
"values": [
{
"value": str,
"start": int,
"end": int
}
],
"relation": str, # '=', '<=', and so on
}
]
},
# Named entity recognition
"named_entity_recognition": [
{
"type": str,
"values": [
{
"value": str,
"start": int,
"end": int
}, ...
]
}, ...
],
"characters": [
{
"value": str,
"start": int,
"end": int
}
]
# Intent detection
"active_intents": [str],
# Query
"query" {
...
},
# Query result
"querying_result": {
...
},
# Recorded satisfied main items
"main_items": [],
# Aspect Sentiment Triplet Extraction task, represented as a list where each element includes three parts:
# Target entity.
# Related sentiment.
# Words reflecting the sentiment.
"aspects": [
{
# Target entity
"target": {
# Entity value
"value": str,
# Start position in the current turn's text
"start": int,
# End position in the current turn's text
"end": int
},
# Category of the target entity
"category": str,
# Words reflecting the sentiment
"opinion": {
# Sentiment word
"value": str,
# Start position in the current turn's text
"start": int,
# End position in the current turn's text
"end": int
},
# Related sentiment
"sentiment": str
}
],
"emotions": [
{
"emotion": str,
"sentiment": "positive", "negative", or "ambiguous",
"evidences": [
{
"turn": int,
"span": str,
"start": int,
"end": int
}
],
"evidence_types": [str]
}
],
"kg_label": str,
# Knowledge that may be required for each turn, used to select knowledge.
"knowledge_to_select": str,
# SQL
"sql": str,
# Rewritten text
"rewritten": str,
"roles_to_select": [str],
},
],
# Summary derived from the entire dialogue.
"summary": str,
# Entity relations determined from the entire dialogue.
"instance_relations": [
{
"instance1": str,
"instance2": str,
"relations": [
{
"relation": str,
"trigger": str
}, ...
]
}, ...
]
# Role relations determined from the entire dialogue.
"role_relations": [
{
"turn": int,
"relation": str
}
],
# Used in FriendsPersona to determine a character's persona based on the entire dialogue.
"role_personas": [
{
"name": str,
"personas": [
{
"persona": str,
"sentiment": int
}, ...
]
}
],
# External knowledge required for the dialogue.
"knowledge": {
# `text`, `persona`, `kg`, or `schema`.
"type": str,
# For `text`.
"value": str,
# For `persona`, persona of all roles, used for personachat.
"value": [
{
# Role name, matching the dialogue turn.
"role": str,
# Persona description, which may include several sentences.
"description": []
},
...
]
# For `kg`.
"value": {
# `directed` or `undirected`.
"direction": str,
# Graph.
"graph": [
{
# Source node.
"source": str,
# Target node.
"target": str,
# Relation.
"relation": str
},
...
]
}
# For `schema`.
"value": {
...
}
# For `dialogue`.
"value": {
"dialog": [],
"relations": []
}
# For `wiki`.
"value": {
...
}
# For `sql`.
"value": [
{
"turn": int,
"sql": str,
"result": ...
}, ...
],
# For dialogues based on specific article excerpts, this field indicates the article and section titles.
"value": {
"article title": str,
"section title": str
},
}
}
```
* Linearize: ```bash scripts/convert_to_seq.sh```
The processed data is located at ```DialogZoo.tar```.
## Data statistics
|ID| MRC| ER| MCQA| QCR| RRR| CI| SF|DCRG|CC |ABSA |T2S |DST |DT |DS |SP |NLI|Total|
|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|
|34,963 | 368,490 | 135,356 | 196,620 | 33,192 | 5,037 | 36,385 | 104,100 | 390,463 | 262,876 | 17,328 | 30,220 | 298,358 | 60,563 | 27,192 | 31,279 | 169,654 | 2,202,076| |