Dataset Viewer
Full Screen Viewer
Full Screen
The dataset viewer is not available for this subset.
Cannot get the split names for the config 'default' of the dataset.
Exception: SplitsNotFoundError Message: The split names could not be parsed from the dataset config. Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 298, in get_dataset_config_info for split_generator in builder._split_generators( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/webdataset/webdataset.py", line 80, in _split_generators raise ValueError( ValueError: The TAR archives of the dataset should be in WebDataset format, but the files in the archive don't share the same prefix or the same types. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/split_names.py", line 65, in compute_split_names_from_streaming_response for split in get_dataset_split_names( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 352, in get_dataset_split_names info = get_dataset_config_info( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 303, in get_dataset_config_info raise SplitsNotFoundError("The split names could not be parsed from the dataset config.") from err datasets.inspect.SplitsNotFoundError: The split names could not be parsed from the dataset config.
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/datasets-cards)
DialogZoo
Data construction
To replicate data construction, three steps are required:
- Download data:
bash scripts/download.sh
- Convert origin data into our unified format:
bash scripts/convert_to_unified.sh
{
# Optional values: `single` or `multi`. Indicates whether it is a single-turn or multi-turn dialogue.
"turn": str,
# The domains involved in the dialogue (a list because some dialogues involve multiple domains).
"domain": [],
# The language of the dialogue, based on the original dataset annotations (e.g., en, fr, etc.).
"locale": str,
# The dialogue, represented as a list where each element is a dictionary for a single turn.
"dialog": [
{
# The roles involved in each turn. Some datasets may have multiple roles per turn, so it's a list.
# For datasets without role annotations:
# * Use `ROLE` for single-turn data.
# * Use `ROLE1`, `ROLE2`, etc., for multi-turn data.
"roles": [str, ...],
# The text of the current turn.
"utterance": str,
# Used for the "answer" in QA tasks.
"start": int,
"end": int,
"dialog_turn": int
# Rewritten text corresponding to the current turn.
"rewritten": str,
# Dialogue state, represented as a list where each element includes:
# Domain: Some datasets constrain slot-value pairs within specific domains.
# Intent: Some datasets constrain slot-value pairs within specific intents.
# Slot-value pairs: A list where each element includes a slot and its corresponding values.
# Slot name: A string.
# Values: A list where a slot may have multiple values.
# Each value includes four parts: the value itself, the normalized value,
# the character index in the current turn's text, and more.
# Relation: Some slots are equal to a value, while others are greater than a value.
# Defaults to "equal" if not specified.
# Requested slots: A list of slots that need to be queried but are not filled in the current state.
"belief_state": [
{
# Intent
"intent": str,
# Slot-value pairs
"informed_slot_value_table": [
{
# Slot name
"slot": str,
# Values
"values": [{
# Actual value
"value": str,
# Normalized value
"cononical_value": str
}, ...],
# Slot-value relation
"relation": str,
},
...
],
# Requested slots
"requested_slots": [],
# Domain
"domain": str,
}, ...
],
# Dialogue actions, represented as a list where each element includes:
# Domain: Some datasets constrain slot-value pairs within specific domains.
# Action: The actions involved in the current turn.
# Slot-value pairs: Same as in dialogue state.
"dialog_acts": [
{
# Action
"act": str,
# Slot-value pairs
"slot_value_table": [
{
# Slot name
"slot": str,
# Slot-value relation
"relation": str,
# Values
"values": [
{
# Actual value
"value": str,
# Normalized value
"cononical_value": str,
# Start position
"start": int,
# End position
"end": int,
},...
]
},
...
],
# Domain
"domain": str,
},
...
],
# Slot filling
"slots_to_fill": {
"intent": str,
"slot_value_table": [
{
"slot": str,
"values": [
{
"value": str,
"start": int,
"end": int
}
],
"relation": str, # '=', '<=', and so on
}
]
},
# Named entity recognition
"named_entity_recognition": [
{
"type": str,
"values": [
{
"value": str,
"start": int,
"end": int
}, ...
]
}, ...
],
"characters": [
{
"value": str,
"start": int,
"end": int
}
]
# Intent detection
"active_intents": [str],
# Query
"query" {
...
},
# Query result
"querying_result": {
...
},
# Recorded satisfied main items
"main_items": [],
# Aspect Sentiment Triplet Extraction task, represented as a list where each element includes three parts:
# Target entity.
# Related sentiment.
# Words reflecting the sentiment.
"aspects": [
{
# Target entity
"target": {
# Entity value
"value": str,
# Start position in the current turn's text
"start": int,
# End position in the current turn's text
"end": int
},
# Category of the target entity
"category": str,
# Words reflecting the sentiment
"opinion": {
# Sentiment word
"value": str,
# Start position in the current turn's text
"start": int,
# End position in the current turn's text
"end": int
},
# Related sentiment
"sentiment": str
}
],
"emotions": [
{
"emotion": str,
"sentiment": "positive", "negative", or "ambiguous",
"evidences": [
{
"turn": int,
"span": str,
"start": int,
"end": int
}
],
"evidence_types": [str]
}
],
"kg_label": str,
# Knowledge that may be required for each turn, used to select knowledge.
"knowledge_to_select": str,
# SQL
"sql": str,
# Rewritten text
"rewritten": str,
"roles_to_select": [str],
},
],
# Summary derived from the entire dialogue.
"summary": str,
# Entity relations determined from the entire dialogue.
"instance_relations": [
{
"instance1": str,
"instance2": str,
"relations": [
{
"relation": str,
"trigger": str
}, ...
]
}, ...
]
# Role relations determined from the entire dialogue.
"role_relations": [
{
"turn": int,
"relation": str
}
],
# Used in FriendsPersona to determine a character's persona based on the entire dialogue.
"role_personas": [
{
"name": str,
"personas": [
{
"persona": str,
"sentiment": int
}, ...
]
}
],
# External knowledge required for the dialogue.
"knowledge": {
# `text`, `persona`, `kg`, or `schema`.
"type": str,
# For `text`.
"value": str,
# For `persona`, persona of all roles, used for personachat.
"value": [
{
# Role name, matching the dialogue turn.
"role": str,
# Persona description, which may include several sentences.
"description": []
},
...
]
# For `kg`.
"value": {
# `directed` or `undirected`.
"direction": str,
# Graph.
"graph": [
{
# Source node.
"source": str,
# Target node.
"target": str,
# Relation.
"relation": str
},
...
]
}
# For `schema`.
"value": {
...
}
# For `dialogue`.
"value": {
"dialog": [],
"relations": []
}
# For `wiki`.
"value": {
...
}
# For `sql`.
"value": [
{
"turn": int,
"sql": str,
"result": ...
}, ...
],
# For dialogues based on specific article excerpts, this field indicates the article and section titles.
"value": {
"article title": str,
"section title": str
},
}
}
- Linearize:
bash scripts/convert_to_seq.sh
The processed data is located at DialogZoo.tar
.
Data statistics
ID | MRC | ER | MCQA | QCR | RRR | CI | SF | DCRG | CC | ABSA | T2S | DST | DT | DS | SP | NLI | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
34,963 | 368,490 | 135,356 | 196,620 | 33,192 | 5,037 | 36,385 | 104,100 | 390,463 | 262,876 | 17,328 | 30,220 | 298,358 | 60,563 | 27,192 | 31,279 | 169,654 | 2,202,076 |
- Downloads last month
- 97