File size: 16,376 Bytes
742ef47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import os
import time

import pybullet as p
from surrol.tasks.ecm_env import EcmEnv, goal_distance
from surrol.utils.pybullet_utils import (
    get_body_pose,
)
import random
import cv2
import pickle
from surrol.utils.robotics import (
    get_euler_from_matrix,
    get_matrix_from_euler
)
import torch
from surrol.utils.utils import RGB_COLOR_255, Boundary, Trajectory, get_centroid
from surrol.robots.ecm import RENDER_HEIGHT, RENDER_WIDTH, FoV
from surrol.const import ASSET_DIR_PATH
import numpy as np
from surrol.robots.psm import Psm1, Psm2
import sys
sys.path.append('/home/kejianshi/Desktop/Surgical_Robot/science_robotics/stateregress_back')
sys.path.append('/home/kejianshi/Desktop/Surgical_Robot/science_robotics/stateregress_back/utils')
from general_utils import AttrDict
sys.path.append('/home/kejianshi/Desktop/Surgical_Robot/science_robotics/ar_surrol/surrol_datagen/tasks')
from depth_anything.dpt import DepthAnything
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet

from vmodel import vismodel
from config import opts

class ActiveTrack(EcmEnv):
    """
    Active track is not a GoalEnv since the environment changes internally.
    The reward is shaped.
    """
    ACTION_MODE = 'cVc'
    # RCM_ACTION_MODE = 'yaw'
    QPOS_ECM = (0, 0, 0.02, 0)
    WORKSPACE_LIMITS = ((-0.3, 0.6), (-0.4, 0.4), (0.05, 0.05))

    CUBE_NUMBER = 18

    def __init__(self, render_mode=None):
        # to control the step
        self._step = 0
        self.counter=0
        self.img_list={}
        super(ActiveTrack, self).__init__(render_mode)

    def step(self, action: np.ndarray):
        obs, reward, done, info = super().step(action)
        centroid = obs['observation'][-3: -1]
        if not (-1.2 < centroid[0] < 1.1 and -1.1 < centroid[1] < 1.1):
            # early stop if out of view
            done = True
        info['achieved_goal'] = centroid
        return obs, reward, done, info

    def compute_reward(self, achieved_goal: np.ndarray, desired_goal: np.ndarray, info):
        """ Dense reward."""
        centroid, wz = achieved_goal, self.ecm.wz
        d = goal_distance(centroid, desired_goal) / 2
        reward = 1 - (d + np.linalg.norm(wz) * 0.1)  # maximum reward is 1, important for baseline DDPG
        return reward

    def _env_setup(self):
        super(ActiveTrack, self)._env_setup()
        opts.device='cuda:0'
        self.v_model=vismodel(opts)
        ckpt=torch.load(opts.ckpt_dir, map_location=opts.device)
        self.v_model.load_state_dict(ckpt['state_dict'])
        self.v_model.to(opts.device)
        self.v_model.eval()

        self.use_camera = True

        # robot
        self.ecm.reset_joint(self.QPOS_ECM)
        pos_x = random.uniform(0.18, 0.24)
        pos_y = random.uniform(0.21, 0.24)
        pos_z = random.uniform(0.5, 0.6)
        left_right = random.choice([-1, 1])

        self.POSE_PSM1 = ((pos_x, left_right*pos_y, pos_z), (0, 0, -(90+ left_right*20 ) / 180 * np.pi)) #(x:0.18-0.25, y:0.21-0.24, z:0.5)
        self.QPOS_PSM1 = (0, 0, 0.10, 0, 0, 0)
        self.PSM_WORLSPACE_LIMITS = ((0.18+0.45,0.18+0.55), (0.24-0.29,0.24-0.19), (0.5-0.1774,0.5-0.1074))
        self.PSM_WORLSPACE_LIMITS = np.asarray(self.PSM_WORLSPACE_LIMITS) \
                           + np.array([0., 0., 0.0102]).reshape((3, 1))
        # trajectory
        traj = Trajectory(self.PSM_WORLSPACE_LIMITS, seed=None)
        self.traj = traj
        self.traj.set_step(self._step)
        self.psm1 = Psm1(self.POSE_PSM1[0], p.getQuaternionFromEuler(self.POSE_PSM1[1]),
                         scaling=self.SCALING)
        if left_right == 1:
            self.psm1.move_joint([0.4516922970194888, -0.11590085534517788, 0.1920614431341014, -0.275713630305575, -0.025332969748983816, -0.44957632598600145])
        else:
            self.psm1.move_joint([0.4516922970194888, -0.11590085534517788, 0.1920614431341014, -0.275713630305575, -0.025332969748983816, -0.44957632598600145])
        # target cube
        init_psm_Pose  = self.psm1.get_current_position(frame='world')
        # print(init_psm_Pose[:3, 3])
        # exit()
        b = Boundary(self.PSM_WORLSPACE_LIMITS)
        x, y = self.traj.step()
        obj_id = p.loadURDF(os.path.join(ASSET_DIR_PATH, 'cube/cube.urdf'),
                            (init_psm_Pose[0, 3], init_psm_Pose[1, 3], init_psm_Pose[2, 3]),
                            p.getQuaternionFromEuler(np.random.uniform(np.deg2rad([0, 0, -90]),
                                                                       np.deg2rad([0, 0, 90]))),
                            globalScaling=0.001 * self.SCALING)
        # print('psm_eef:', self.psm1.get_joint_number())
        color = RGB_COLOR_255[0]
        p.changeVisualShape(obj_id, -1,
                            rgbaColor=(color[0] / 255, color[1] / 255, color[2] / 255, 0),
                            specularColor=(0.1, 0.1, 0.1))
        self.obj_ids['fixed'].append(obj_id)  # 0 (target)
        self.obj_id = obj_id
        b.add(obj_id, sample=False, min_distance=0.12)
        # self._cid = p.createConstraint(obj_id, -1, -1, -1,
        #                                p.JOINT_FIXED, [0, 0, 0], [0, 0, 0], [x, y, 0.05 * self.SCALING])
        self._cid = p.createConstraint(
            parentBodyUniqueId=self.psm1.body,
            parentLinkIndex=5,
            childBodyUniqueId=self.obj_id,
            childLinkIndex=-1,
            jointType=p.JOINT_FIXED,
            jointAxis=[0, 0, 0],
            parentFramePosition=[0, 0, 0],
            childFramePosition=[0, 0, 0]
        )
        

        # '''
        # Set up initial env
        # '''
        # self.psm1_eul = np.array(p.getEulerFromQuaternion(
        #     self.psm1.pose_rcm2world(self.psm1.get_current_position(), 'tuple')[1]))  # in the world frame
        
        # # robot 
        # #self.psm1_eul = np.array(p.getEulerFromQuaternion(
        # #    self.psm1.pose_rcm2world(self.psm1.get_current_position(), 'tuple')[1]))  # in the world frame
        
        # if self.RCM_ACTION_MODE == 'yaw':
        #     #self.psm1_eul = np.array([np.deg2rad(-90), 0., self.psm1_eul[2]])
        #     '''
        #     # RCM init
        #     #eul=np.array([np.deg2rad(-90), 0., 0.])
        #     print(self.psm1.wTr)
        #     print(self.psm1.tool_T_tip)
        #     init_pose=self.psm1.get_current_position()
            
        #     eul=np.array([0, 0.,np.deg2rad(-50)])
        #     rcm_eul=get_matrix_from_euler(eul)
        #     init_pose[:3,:3]=rcm_eul
            
        #     rcm_pose=self.psm1.pose_world2rcm(init_pose)
        #     rcm_eul=get_euler_from_matrix(rcm_pose[:3,:3])
        #     print('from [0, 0.,np.deg2rad(-50)] to ',rcm_eul)
        #     #exit()
        #     eul=np.array([0, 0.,np.deg2rad(-90)])
        #     rcm_eul=get_matrix_from_euler(eul)
        #     init_pose[:3,:3]=rcm_eul
            
        #     rcm_pose=self.psm1.pose_world2rcm(init_pose)
        #     rcm_eul=get_euler_from_matrix(rcm_pose[:3,:3])
        #     print('from [0, 0.,np.deg2rad(-90)] to ',rcm_eul)
            
        #     m=np.array([[ 0.93969262 ,-0.34202014 , 0.         , 1.21313615],
        #                 [ 0.34202014 , 0.93969262 , 0.         ,-2.25649898],
        #                 [ 0.         , 0.         , 1.         ,-4.25550013],
        #                 [ 0.         , 0.         , 0.         , 1.        ]])
        #     #print(m.shape)
        
        #     m=get_euler_from_matrix(m[:3,:3])
        #     print('m1: ',m)
            
        #     m=np.array([[ 0.         ,-0.93969262 ,-0.34202014 , 1.21313615],
        #                 [ 0.         ,-0.34202014 , 0.93969262 ,-2.25649898],
        #                 [-1.         , 0.         , 0.         ,-4.25550013],
        #                 [ 0.         , 0.         , 0.         , 1.        ],])
        #     m=get_euler_from_matrix(m[:3,:3])
        #     print('m2: ',m)
        #     exit()
        #     '''
        #     # RCM init
        #     eul=np.array([np.deg2rad(-90), 0., 0.])
        #     eul= get_matrix_from_euler(eul)
        #     init_pose=self.psm1.get_current_position()
        #     self.rcm_init_eul=np.array(get_euler_from_matrix(init_pose[:3, :3]))
        #     init_pose[:3,:3]=eul
        #     rcm_pose=self.psm1.pose_world2rcm_no_tip(init_pose)
        #     rcm_eul=get_euler_from_matrix(rcm_pose[:3,:3])
        #     #print('rcm eul: ',rcm_eul)
        #     #exit()
        #     self.rcm_init_eul[0]=rcm_eul[0]
        #     self.rcm_init_eul[1]=rcm_eul[1]
        #     print(self.rcm_init_eul)
        #     #exit()
            
            

            
            
        # elif self.RCM_ACTION_MODE == 'pitch':
        #     self.psm1_eul = np.array([np.deg2rad(0), self.psm1_eul[1], np.deg2rad(-90)])
        # else:
        #     raise NotImplementedError
        # self.psm2 = None
        # self._contact_constraint = None
        # self._contact_approx = False
        # other cubes
        # b.set_boundary(self.workspace_limits + np.array([[-0.2, 0], [0, 0], [0, 0]]))
        # for i in range(self.CUBE_NUMBER):
        #     obj_id = p.loadURDF(os.path.join(ASSET_DIR_PATH, 'cube/cube.urdf'),
        #                         (0, 0, 0.05), (0, 0, 0, 1),
        #                         globalScaling=0.8 * self.SCALING)
        #     color = RGB_COLOR_255[1 + i // 2]
        #     p.changeVisualShape(obj_id, -1,
        #                         rgbaColor=(color[0] / 255, color[1] / 255, color[2] / 255, 1),
        #                         specularColor=(0.1, 0.1, 0.1))
        #     # p.changeDynamics(obj_id, -1, mass=0.01)
        #     b.add(obj_id, min_distance=0.12)

    # def _get_obs(self) -> np.ndarray:
    #     robot_state = self._get_robot_state()
    #     # may need to modify
    #     rgb_array, mask, depth = self.ecm.render_image()
    #     in_view, centroids = get_centroid(mask, self.obj_id)

    #     if not in_view:
    #         # out of view; differ when the object is on the boundary.
    #         pos, _ = get_body_pose(self.obj_id)
    #         centroids = self.ecm.get_centroid_proj(pos)
    #         # print(" -> Out of view! {}".format(np.round(centroids, 4)))

    #     observation = np.concatenate([
    #         robot_state, np.array(in_view).astype(np.float).ravel(),
    #         centroids.ravel(), np.array(self.ecm.wz).ravel()  # achieved_goal.copy(),
    #     ])
    #     return observation
    def _get_obs(self) -> dict:
        robot_state = self._get_robot_state()
        
        render_obs,seg, depth=self.ecm.render_image()
        #cv2.imwrite('/research/d1/rshr/arlin/data/debug/depth_noise_debug/img.png',cv2.cvtColor(render_obs, cv2.COLOR_BGR2RGB))
        #plt.imsave('/research/d1/rshr/arlin/data/debug/depth_noise_debug/img2.png',render_obs)
        #print('depth max: ',np.max(depth))
        #exit()
        render_obs=cv2.resize(render_obs,(320,240))
        
        self.counter+=1
        #print(render_obs[0][0])
        #exit()
        #seg=np.array(seg==6).astype(int)
        
        seg=np.array((seg==6 )| (seg==1)).astype(int)
        #seg=np.array(seg==1).astype(int)
        #seg=np.resize(seg,(320,240))
        
        #plt.imsave('/research/d1/rshr/arlin/data/debug/depth_noise_debug/depth.png',depth)
        #exit()
        seg = cv2.resize(seg, (320,240), interpolation =cv2.INTER_NEAREST)
        #plt.imsave('/research/d1/rshr/arlin/data/debug/seg_debug/noise_{}/seg.png'.format(self.curr_intensity),seg)
        #exit()
        depth = cv2.resize(depth, (320,240), interpolation =cv2.INTER_NEAREST)
        #print(np.max(depth))
        #depth = cv2.resize(depth, (320,240),interpolation=cv2.INTER_LANCZOS4)

        
        #image=cv2.cvtColor(render_obs, cv2.COLOR_BGR2RGB) / 255.0
        #plt.imsave('/home/student/code/regress_data7/seg/seg_{}.png'.format(self.counter),seg)
        #image = self.transform({'image': image})['image']
        #image=torch.from_numpy(image).to("cuda:0").float()

         # test depth noise
        
        #if np.random.randn()<0.5:
        #    instensity=np.random.randint(3,15)/100
        #instensity=0.1
        #    depth = add_gaussian_noise(depth, instensity)
        '''
        if self.counter==10:
            cv2.imwrite('/research/d1/rshr/arlin/data/debug/depth_noise_debug/gaussian/img.png',cv2.cvtColor(render_obs, cv2.COLOR_BGR2RGB))
            plt.imsave('/research/d1/rshr/arlin/data/debug/depth_noise_debug/gaussian/depth.png',depth)
            for i in [0.01,0.05,0.1,0.15,0.2]:
                noisy_depth_map = add_random_noise(depth, i)
                plt.imsave('/research/d1/rshr/arlin/data/debug/depth_noise_debug/gaussian/noise_{}.png'.format(i),noisy_depth_map)

            exit()
        '''

        #noisy_segmentation_map = add_noise_to_segmentation(seg, self.seg_noise_intensity)
        #noisy_depth_map = add_gaussian_noise(depth, self.curr_intensity)
        #if self.counter==10:
        #    plt.imsave('/research/d1/rshr/arlin/data/debug/seg_debug/noise_{}/img.png'.format(self.curr_intensity),render_obs)
        #    plt.imsave('/research/d1/rshr/arlin/data/debug/seg_debug/noise_{}/seg.png'.format(self.curr_intensity),seg)
        #    plt.imsave('/research/d1/rshr/arlin/data/debug/seg_debug/noise_{}/noise_seg.png'.format(self.curr_intensity),noisy_segmentation_map)

        seg=torch.from_numpy(seg).to("cuda:0").float()
        depth=torch.from_numpy(depth).to("cuda:0").float()

        
        with torch.no_grad():
            v_output=self.v_model.get_obs(seg.unsqueeze(0), depth.unsqueeze(0))[0]#.cpu().data().numpy()
        #print(v_output.shape)
        v_output=v_output.cpu().numpy()

        achieved_goal = np.array([
            v_output[0], v_output[1], self.ecm.wz
        ])

        observation = np.concatenate([
            robot_state, np.array([0.0]).astype(np.float).ravel(),
            v_output.ravel(), np.array(self.ecm.wz).ravel()  # achieved_goal.copy(),
        ])
        obs = {
            'observation': observation.copy(),
            'achieved_goal': achieved_goal.copy(),
            'desired_goal': np.array([0., 0., 0.]).copy()
        }
        return obs
    

    def _sample_goal(self) -> np.ndarray:
        """ Samples a new goal and returns it.
        """
        goal = np.array([0., 0.])
        return goal.copy()

    def _step_callback(self):
        """ Move the target along the trajectory
        """
        for _ in range(10):
            x, y = self.traj.step()
            self._step = self.traj.get_step()
            current_PSM_position = self.psm1.get_current_position(frame='world')
            new_PSM_position = current_PSM_position.copy()

            new_PSM_position[0, 3] =x
            new_PSM_position[1, 3] =y
            new_PSM_position = self.psm1.pose_world2rcm(new_PSM_position)
            self.psm1.move(new_PSM_position)
            # pivot = [x, y, 0.05 * self.SCALING]
            # p.changeConstraint(self._cid, pivot, maxForce=50)
            p.stepSimulation()

    def get_oracle_action(self, obs) -> np.ndarray:
        """
        Define a human expert strategy
        """
        centroid = obs['observation'][-3: -1]
        cam_u = centroid[0] * RENDER_WIDTH
        cam_v = centroid[1] * RENDER_HEIGHT
        self.ecm.homo_delta = np.array([cam_u, cam_v]).reshape((2, 1))
        if np.linalg.norm(self.ecm.homo_delta) < 8 and np.linalg.norm(self.ecm.wz) < 0.1:
            # e difference is small enough
            action = np.zeros(3)
        else:
            # print("Pixel error: {:.4f}".format(np.linalg.norm(self.ecm.homo_delta)))
            # controller
            fov = np.deg2rad(FoV)
            fx = (RENDER_WIDTH / 2) / np.tan(fov / 2)
            fy = (RENDER_HEIGHT / 2) / np.tan(fov / 2)  # TODO: not sure
            cz = 1.0
            Lmatrix = np.array([[-fx / cz, 0., cam_u / cz],
                                [0., -fy / cz, cam_v / cz]])
            action = 0.5 * np.dot(np.linalg.pinv(Lmatrix), self.ecm.homo_delta).flatten() / 0.01
            if np.abs(action).max() > 1:
                action /= np.abs(action).max()
        return action


if __name__ == "__main__":
    env = ActiveTrack(render_mode='human')  # create one process and corresponding env

    env.test(horizon=200)
    env.close()
    time.sleep(2)