File size: 30,345 Bytes
96a90d7 24405bf 96a90d7 24405bf 96a90d7 24405bf 96a90d7 24405bf 96a90d7 24405bf 96a90d7 24405bf 96a90d7 24405bf 96a90d7 24405bf 96a90d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 |
import torch
import torch.nn as nn
import numpy as np
import os
import cv2
import dvrk
import PyKDL
from PIL import Image
import matplotlib.pyplot as plt
import yaml
import math
from scipy.spatial.transform import Rotation as R
from easydict import EasyDict as edict
import sys
sys.path.append('IGEV/core')
sys.path.append('IGEV')
from igev_stereo import IGEVStereo
from IGEV.core.utils.utils import InputPadder
from rl.agents.ddpg import DDPG
import rl.components as components
import argparse
from FastSAM.fastsam import FastSAM, FastSAMPrompt
import ast
from PIL import Image
from FastSAM.utils.tools import convert_box_xywh_to_xyxy
import torch.nn.functional as F
import queue, threading
from vmodel import vismodel
from config import opts
from rectify import my_rectify
from surrol.robots.ecm import Ecm
import pybullet as p
import numpy as np
from surrol.utils.pybullet_utils import *
class Sim_ECM():
ACTION_SIZE = 3 # (dx, dy, dz) or cVc or droll (1)
ACTION_MODE = 'cVc'
DISTANCE_THRESHOLD = 0.005
POSE_ECM = ((0.15, 0.0, 0.7524), (0, 20 / 180 * np.pi, 0))
QPOS_ECM = (0, 0.6, 0.04, 0)
WORKSPACE_LIMITS = ((0.45, 0.55), (-0.05, 0.05), (0.60, 0.70))
SCALING = 1.
p = p.connect(p.GUI)
def __init__(self, render_mode: str = None, cid = -1):
# workspace
self.workspace_limits = np.asarray(self.WORKSPACE_LIMITS)
self.workspace_limits *= self.SCALING
# camera
self.use_camera = False
# has_object
self.has_object = False
self.obj_id = None
# super(Sim_ECM, self).__init__(render_mode, cid)
# change duration
self._duration = 0.1
# distance_threshold
self.distance_threshold = self.DISTANCE_THRESHOLD * self.SCALING
# render related setting
self._view_matrix = p.computeViewMatrixFromYawPitchRoll(
cameraTargetPosition=(0.27 * self.SCALING, -0.20 * self.SCALING, 0.55 * self.SCALING),
distance=1.80 * self.SCALING,
yaw=150,
pitch=-30,
roll=0,
upAxisIndex=2
)
def reset_env(self):
assert self.ACTION_MODE in ('cVc', 'dmove', 'droll')
# camera
reset_camera(yaw=150.0, pitch=-30.0, dist=1.50 * self.SCALING,
target=(0.27 * self.SCALING, -0.20 * self.SCALING, 0.55 * self.SCALING))
# robot
self.ecm = Ecm(self.POSE_ECM[0], p.getQuaternionFromEuler(self.POSE_ECM[1]),
scaling=self.SCALING)
def SetPoints(windowname, img):
points = []
def onMouse(event, x, y, flags, param):
if event == cv2.EVENT_LBUTTONDOWN:
cv2.circle(temp_img, (x, y), 10, (102, 217, 239), -1)
points.append([x, y])
cv2.imshow(windowname, temp_img)
temp_img = img.copy()
cv2.namedWindow(windowname)
cv2.imshow(windowname, temp_img)
cv2.setMouseCallback(windowname, onMouse)
key = cv2.waitKey(0)
if key == 13: # Enter
print('select point: ', points)
del temp_img
cv2.destroyAllWindows()
return points
elif key == 27: # ESC
print('quit!')
del temp_img
cv2.destroyAllWindows()
return
else:
print('retry')
return SetPoints(windowname, img)
def resize_with_pad(image, target_width, target_height):
# 读取原始图片
#image = cv2.imread(image_path)
# 计算缩放比例
height, width = image.shape[:2]
scale = min(target_width / width, target_height / height)
# 缩放图片
resized_image = cv2.resize(image, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)
# 计算pad的大小
pad_height = target_height - resized_image.shape[0]
pad_width = target_width - resized_image.shape[1]
# 加入pad
padded_image = cv2.copyMakeBorder(resized_image, 0, pad_height, 0, pad_width, cv2.BORDER_CONSTANT, value=[154,149,142 ])
return padded_image
def crop_img(img):
crop_img = img[:,100: ]
crop_img = crop_img[:,: -100]
#print(crop_img.shape)
crop_img=cv2.resize(crop_img ,(256,256))
return crop_img
# bufferless VideoCapture
class VideoCapture:
def __init__(self, name):
self.cap = cv2.VideoCapture(name)
video_name='test_record/{}.mp4'.format(name.split('/')[-1])
self.output_video = cv2.VideoWriter(video_name, cv2.VideoWriter_fourcc(*'mp4v'), 30, (800, 600))
self.q = queue.Queue()
t = threading.Thread(target=self._reader)
t.daemon = True
t.start()
#t.join()
# read frames as soon as they are available, keeping only most recent one
def _reader(self):
while True:
ret, frame = self.cap.read()
if not ret:
break
self.output_video.write(frame)
if not self.q.empty():
try:
self.q.get_nowait() # discard previous (unprocessed) frame
except queue.Empty:
pass
self.q.put(frame)
def read(self):
return self.q.get()
def release(self):
self.cap.release()
self.output_video.release()
def transf_DH_modified(alpha, a, theta, d):
trnsf = np.array([[math.cos(theta), -math.sin(theta), 0., a],
[math.sin(theta) * math.cos(alpha), math.cos(theta) * math.cos(alpha), -math.sin(alpha), -d * math.sin(alpha)],
[math.sin(theta) * math.sin(alpha), math.cos(theta) * math.sin(alpha), math.cos(alpha), d * math.cos(alpha)],
[0., 0., 0., 1.]])
return trnsf
basePSM_T_cam =np.array([[-0.89330132, 0.3482998 , -0.28407746, -0.0712333 ],
[ 0.44895017, 0.72151095, -0.52712968, 0.08994234],
[ 0.02136583, -0.59842226, -0.80089594, -0.06478026],
[ 0. , 0. , 0. , 1. ]])
cam_T_basePSM =np.array([[-0.89330132, 0.44895017, 0.02136583, -0.10262834],
[ 0.3482998 , 0.72151095, -0.59842226, -0.07884979],
[-0.28407746, -0.52712968, -0.80089594, -0.02470674],
[ 0. , 0. , 0. , 1. ]])
class VisPlayer(nn.Module):
def __init__(self):
super().__init__()
# depth estimation
self.device='cuda:0'
#self._load_depth_model()
#self._load_policy_model()
self._init_rcm()
self.img_size=(320,240)
self.scaling=1. # for peg transfer
self.calibration_data = {
'baseline': 0.005500,
'focal_length_left': 916.367081,
'focal_length_right': 918.730361
}
self.threshold=0.013
#self.init_run()
def _init_rcm(self):
# TODO check matrix
self.tool_T_tip=np.array([[0.0, 1.0, 0.0, 0.0],
[-1.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0],
[0.0, 0.0, 0.0, 1.0]])
### check this matrix, this matrix was the originally used one, which is used for PSM
# np.array([[ 0. ,-1. , 0. , 0.],
# [ 0. , 0. , 1. , 0.],
# [-1. , 0. , 0. , 0.],
# [ 0. , 0. , 0. , 1.]])
eul=np.array([np.deg2rad(-90), 0., 0.])
eul= self.get_matrix_from_euler(eul)
self.rcm_init_eul=np.array([-2.94573084 , 0.15808114 , 1.1354972])
#object pos [-0.123593, 0.0267398, -0.141579]
# target pos [-0.0577594, 0.0043639, -0.133283]
self.rcm_init_pos=np.array([ -0.0617016, -0.00715477, -0.0661465])
def _load_depth_model(self, checkpoint_path='pretrained_models/sceneflow.pth'):
args=edict()
args.restore_ckpt=checkpoint_path
args.save_numpy=False
args.mixed_precision=False
args.valid_iters=32
args.hidden_dims=[128]*3
args.corr_implementation="reg"
args.shared_backbone=False
args.corr_levels=2
args.corr_radius=4
args.n_downsample=2
args.slow_fast_gru=False
args.n_gru_layers=3
args.max_disp=192
self.depth_model = torch.nn.DataParallel(IGEVStereo(args), device_ids=[0])
#self.depth_model=IGEVStereo(args)
self.depth_model.load_state_dict(torch.load(args.restore_ckpt))
self.depth_model = self.depth_model.module
self.depth_model.to("cuda")
self.depth_model.eval()
def _load_policy_model(self, vmodel_file, filepath='./pretrained_models/state_dict.pt'):
with open('rl/configs/agent/ddpg.yaml',"r") as f:
agent_params=yaml.load(f.read(),Loader=yaml.FullLoader)
agent_params=edict(agent_params)
env_params = edict(
obs=19,
achieved_goal=3,
goal=3,
act=7,
max_timesteps=10,
max_action=1,
act_rand_sampler=None,
)
self.agent=DDPG(env_params=env_params,agent_cfg=agent_params)
checkpt_path=filepath
checkpt = torch.load(checkpt_path, map_location=self.device)
self.agent.load_state_dict(checkpt)
#self.agent.g_norm = checkpt['g_norm']
#self.agent.o_norm = checkpt['o_norm']
#self.agent.update_norm_test()
#print('self.agent.g_norm.mean: ',self.agent.g_norm.mean)
self.agent.g_norm.std=self.agent.g_norm_v.numpy()
self.agent.g_norm.mean=self.agent.g_norm_mean.numpy()
self.agent.o_norm.std=self.agent.o_norm_v.numpy()
self.agent.o_norm.mean=self.agent.o_norm_mean.numpy()
#print('self.agent.g_norm.mean: ',self.agent.g_norm.mean)
#exit()
'''
self.agent.depth_norm.std=self.agent.d_norm_v.numpy()
self.agent.depth_norm.mean=self.agent.d_norm_mean.numpy()
s
#print(self.agent.g_norm_v)
'''
self.agent.cuda()
self.agent.eval()
opts.device='cuda:0'
self.v_model=vismodel(opts)
ckpt=torch.load(vmodel_file, map_location=opts.device)
self.v_model.load_state_dict(ckpt['state_dict'])
self.v_model.to(opts.device)
self.v_model.eval()
def convert_disparity_to_depth(self, disparity, baseline, focal_length):
depth = baseline * focal_length/ disparity
return depth
def _get_depth(self, limg, rimg):
# input image should be RGB(Image.open().convert('RGB')); numpy.array
'''
img = np.array(Image.open(imfile)).astype(np.uint8)
img = torch.from_numpy(img).permute(2, 0, 1).float()
return img[None].to(DEVICE)
'''
limg=torch.from_numpy(limg).permute(2, 0, 1).float().to(self.device).unsqueeze(0)
rimg=torch.from_numpy(rimg).permute(2, 0, 1).float().to(self.device).unsqueeze(0)
with torch.no_grad():
#print(limg.ndim)
padder = InputPadder(limg.shape, divis_by=32)
image1, image2 = padder.pad(limg, rimg)
disp = self.depth_model(image1, image2, iters=32, test_mode=True)
disp = disp.cpu().numpy()
disp = padder.unpad(disp).squeeze()
depth_map = self.convert_disparity_to_depth(disp, self.calibration_data['baseline'], self.calibration_data['focal_length_left'])
#return disp
return depth_map
def _load_fastsam(self, model_path="./FastSAM/weights/FastSAM-x.pt"):
self.seg_model=FastSAM(model_path)
def _seg_with_fastsam(self, input, object_point):
point_prompt=str([object_point,[200,200]])
point_prompt = ast.literal_eval(point_prompt)
point_label = ast.literal_eval("[1,0]")
everything_results = self.seg_model(
input,
device=self.device,
retina_masks=True,
imgsz=608,
conf=0.25,
iou=0.7
)
prompt_process = FastSAMPrompt(input, everything_results, device=self.device)
ann = prompt_process.point_prompt(
points=point_prompt, pointlabel=point_label
)
return ann[0]
def _seg_with_red(self, grid_RGB):
# input image RGB
grid_HSV = cv2.cvtColor(grid_RGB, cv2.COLOR_RGB2HSV)
# H、S、V range1:
lower1 = np.array([0,59,25])
upper1 = np.array([20,255,255])
mask1 = cv2.inRange(grid_HSV, lower1, upper1) # mask: binary
# H、S、V range2:
#lower2 = np.array([156,43,46])
#upper2 = np.array([180,255,255])
#mask2 = cv2.inRange(grid_HSV, lower2, upper2)
mask3 = mask1 #+ mask2
return mask3
def _get_visual_state(self, seg, depth, robot_pos, robot_rot, jaw, goal):
seg_d=np.concatenate([seg.reshape(1, self.img_size[0], self.img_size[1]), \
depth.reshape(1, self.img_size[0], self.img_size[1])],axis=0)
inputs=torch.tensor(seg_d).unsqueeze(0).float().to(self.device)
robot_pos=torch.tensor(robot_pos).to(self.device)
robot_rot=torch.tensor(robot_rot).to(self.device)
jaw=torch.tensor(jaw).to(self.device)
goal=torch.tensor(goal).to(self.device)
with torch.no_grad():
#print(inputs.shape)
v_output=self.agent.v_processor(inputs).squeeze()
waypoint_pos_rot=v_output[3:]
return waypoint_pos_rot[:3].cpu().data.numpy().copy(), waypoint_pos_rot[3:].cpu().data.numpy().copy()
def _get_action(self, seg, depth, robot_pos, robot_rot, ecm_wz, goal):
# the pos should be in ecm space
'''
input: seg (h,w); depth(h,w); robot_pos 3; robot_rot 3; jaw 1; goal 3
'''
#depth=self.agent.depth_norm.normalize(depth.reshape(self.img_size*self.img_size),device=self.device).reshape(self.img_size,self.img_size)
#plt.imsave('test_record/pred_depth_norm_{}.png'.format(count),depth)
#image = self.img_transform({'image': rgb})['image']
seg=torch.from_numpy(seg).to("cuda:0").float()
depth=torch.from_numpy(depth).to("cuda:0").float()
robot_pos=torch.tensor(robot_pos).to(self.device)
robot_rot=torch.tensor(robot_rot).to(self.device)
jaw=torch.tensor(jaw).to(self.device)
goal=torch.tensor(goal).to(self.device)
with torch.no_grad():
v_output=self.v_model.get_obs(seg.unsqueeze(0), depth.unsqueeze(0))[0]
assert v_output.shape == (2,)
o_new=torch.cat([
robot_pos, robot_rot, torch.tensor([0.0,0.0]),
v_output, ecm_wz
])
print('o_new: ',o_new)
o_norm=self.agent.o_norm.normalize(o_new,device=self.device)
g_norm=self.agent.g_norm.normalize(goal, device=self.device)
input_tensor=torch.cat((o_norm, g_norm), axis=0).to(torch.float32)
action = self.agent.actor(input_tensor).cpu().data.numpy().flatten()
return action
def get_euler_from_matrix(self, mat):
"""
:param mat: rotation matrix (3*3)
:return: rotation in 'xyz' euler
"""
rot = R.from_matrix(mat)
return rot.as_euler('xyz', degrees=False)
def get_matrix_from_euler(self, ori):
"""
:param ori: rotation in 'xyz' euler
:return: rotation matrix (3*3)
"""
rot = R.from_euler('xyz', ori)
return rot.as_matrix()
def wrap_angle(self, theta):
return (theta + np.pi) % (2 * np.pi) - np.pi
def convert_pos(self,pos,matrix):
'''
input: ecm pose matrix 4x4
output rcm pose matrix 4x4
'''
return np.matmul(matrix[:3,:3],pos)+matrix[:3,3]
#bPSM_T_j6=self.get_bPSM_T_j6(joint)
#new_ma=matrix @ bPSM_T_j6
#a=np.matmul(new_ma[:3,:3],pos)+new_ma[:3,3]
#return a
def convert_rot(self, euler_angles, matrix):
# Convert Euler angles to rotation matrix
# return: matrix
roll, pitch, yaw = euler_angles
R_x = np.array([[1, 0, 0], [0, np.cos(roll), -np.sin(roll)], [0, np.sin(roll), np.cos(roll)]])
R_y = np.array([[np.cos(pitch), 0, np.sin(pitch)], [0, 1, 0], [-np.sin(pitch), 0, np.cos(pitch)]])
R_z = np.array([[np.cos(yaw), -np.sin(yaw), 0], [np.sin(yaw), np.cos(yaw), 0], [0, 0, 1]])
rotation_matrix = np.matmul(R_z, np.matmul(R_y, R_x))
# Invert the extrinsic matrix
extrinsic_matrix_inv = np.linalg.inv(matrix)
# Extract the rotation part from the inverted extrinsic matrix
rotation_matrix_inv = extrinsic_matrix_inv[:3, :3]
# Perform the rotation
position_rotated = np.matmul(rotation_matrix_inv, rotation_matrix)
return position_rotated
def get_bPSM_T_j6(self, joint_value):
LRcc = 0.4318
LTool = 0.4162
LPitch2Yaw = 0.0091
# alpha , a , theta , d
base_T_j1 = transf_DH_modified( np.pi*0.5, 0. , joint_value[0] + np.pi*0.5 , 0. )
j1_T_j2 = transf_DH_modified(-np.pi*0.5, 0. , joint_value[1] - np.pi*0.5 , 0. )
j2_T_j3 = transf_DH_modified( np.pi*0.5, 0. , 0.0 , joint_value[2]-LRcc )
j3_T_j4 = transf_DH_modified( 0. , 0. , joint_value[3] , LTool )
j4_T_j5 = transf_DH_modified(-np.pi*0.5, 0. , joint_value[4] - np.pi*0.5 , 0. )
j5_T_j6 = transf_DH_modified(-np.pi*0.5 , LPitch2Yaw , joint_value[5] - np.pi*0.5 , 0. )
j6_T_j6f = np.array([[ 0.0, -1.0, 0.0, 0.0], # Offset from file `psm-pro-grasp.json`
[ 0.0, 0.0, 1.0, 0.0],
[-1.0, 0.0, 0.0, 0.0],
[ 0.0, 0.0, 0.0, 1.0]])
bPSM_T_j2 = np.matmul(base_T_j1, j1_T_j2)
bPSM_T_j3 = np.matmul(bPSM_T_j2, j2_T_j3)
bPSM_T_j4 = np.matmul(bPSM_T_j3, j3_T_j4)
bPSM_T_j5 = np.matmul(bPSM_T_j4, j4_T_j5)
bPSM_T_j6 = np.matmul(bPSM_T_j5, j5_T_j6)
bPSM_T_j6f = np.matmul(bPSM_T_j6, j6_T_j6f) # To make pose the same as the one in the dVRK
return bPSM_T_j6f
def rcm2tip(self, rcm_action):
return np.matmul(rcm_action, self.tool_T_tip)
def _set_action(self, action, robot_pos, rot):
########## TODO
'''
robot_pos in cam coodinate
robot_rot in rcm; matrix
'''
action[:3] *= 0.01 * self.scaling
#action[1]=action[1]*-1
#print(action)
ecm_pos=robot_pos+action[:3]
print('aft robot pos tip ecm: ',ecm_pos)
psm_pose=np.zeros((4,4))
psm_pose[3,3]=1
psm_pose[:3,:3]=rot
#print('ecm pos: ',ecm_pos)
rcm_pos=self.convert_pos(ecm_pos,basePSM_T_cam)
print('aft robot pos tip rcm: ',rcm_pos)
psm_pose[:3,3]=rcm_pos
#rcm_action=self.rcm2tip(psm_pose)
#return rcm_action
return psm_pose
'''
def _set_action(self, action, rot, robot_pos):
"""
delta_position (6), delta_theta (1) and open/close the gripper (1)
in the ecm coordinate system
input: robot_rot, robot_pos in ecm
"""
# TODO: need to ensure to use this scaling
action[:3] *= 0.01 * self.scaling # position, limit maximum change in position
#ecm_pose=self.rcm2ecm(psm_pose)
#ecm_pos=self.convert_pos(robot_pos, cam_T_basePSM)
ecm_pos=robot_pos+action[:3]
#ecm_pos[2]=ecm_pos[2]-2*action[2]
#ecm_pose[:3,3]=ecm_pose[:3,3]+action[:3]
#rot=self.get_euler_from_matrix(ecm_pose[:3,:3])
#rot=self.convert_rot(robot_rot, cam_T_basePSM)
#rot=self.get_euler_from_matrix(robot_rot)
#action[3:6] *= np.deg2rad(20)
#rot =(self.wrap_angle(rot[0]+action[3]),self.wrap_angle(rot[1]+action[4]),self.wrap_angle(rot[2]+action[5]))
#rcm_action_matrix=self.convert_rot(rot,basePSM_T_cam) # ecm2rcm rotation
rcm_pos=self.convert_pos(ecm_pos,basePSM_T_cam) # ecm2rcm position
rot_matrix=self.get_matrix_from_euler(rot)
#rcm_action_matrix=self.convert_rot(ecm_pose) #self.ecm2rcm(ecm_pose)
#rcm_action_eul=self.get_euler_from_matrix(rcm_action_matrix)
#rcm_action_eul=(self.rcm_init_eul[0], self.rcm_init_eul[1],rcm_action_eul[2])
#rcm_action_matrix=self.get_matrix_from_euler(rcm_action_eul)
psm_pose=np.zeros((4,4))
psm_pose[3,3]=1
psm_pose[:3,:3]=rot_matrix
psm_pose[:3,3]=rcm_pos
# TODO: use get_bPSM_T_j6 function
rcm_action=self.rcm2tip(psm_pose)
rcm_action=psm_pose
return rcm_action
'''
def convert_point_to_camera_axis(self, x, y, depth, intrinsics_matrix):
'''
# Example usage
x = 100
y = 200
depth = 5.0
intrinsics_matrix = np.array([[500, 0, 320], [0, 500, 240], [0, 0, 1]])
xc, yc, zc = convert_point_to_camera_axis(x, y, depth, intrinsics_matrix)
print(f"Camera axis coordinates: xc={xc}, yc={yc}, zc={zc}")
'''
# Extract camera intrinsics matrix components
fx, fy, cx, cy = intrinsics_matrix[0, 0], intrinsics_matrix[1, 1], intrinsics_matrix[0, 2], intrinsics_matrix[1, 2]
# Normalize pixel coordinates
xn = (x - cx) / fx
yn = (y - cy) / fy
# Convert to camera axis coordinates
xc = xn * depth
yc = yn * depth
zc = depth
return np.array([xc, yc, zc])
def goal_distance(self,goal_a, goal_b):
assert goal_a.shape==goal_b.shape
return np.linalg.norm(goal_a-goal_b,axis=-1)
def is_success(self, curr_pos, desired_goal):
d=self.goal_distance(curr_pos, desired_goal)
d3=np.abs(curr_pos[2]-desired_goal[2])
print('distance: ',d)
print('distance z-axis: ',d3)
if d3<0.003:
return True
return (d<self.threshold and d3<0.003).astype(np.float32)
def init_run(self):
intrinsics_matrix=np.array([[916.367081, 1.849829, 381.430393], [0.000000, 918.730361, 322.704614], [0.000000, 0.000000, 1.000000]])
self.ecm = dvrk.ecm('ECM')
self._finished=False
#player=VisPlayer()
self._load_depth_model()
#player._load_dam()
self._load_policy_model(vmodel_file='/home/kj/kj_demo/active/pretrained_models/best_model.pt',filepath='/home/kj/kj_demo/active/pretrained_models/s80_DDPG_demo0_traj_best_kj.pt')
self._load_fastsam()
self.cap_0=VideoCapture("/dev/video8") # left 5.23
self.cap_2=VideoCapture("/dev/video6") # right 5.23
# TODO the goal in scaled image vs. goal in simualtor?
for i in range(10):
frame1=self.cap_0.read()
frame2=self.cap_2.read()
self.fs = cv2.FileStorage("/home/kj/ar/EndoscopeCalibration/calibration_new.yaml", cv2.FILE_STORAGE_READ)
frame1, frame2 = my_rectify(frame1, frame2, self.fs)
frame1=cv2.resize(frame1, self.img_size)
frame2=cv2.resize(frame2, self.img_size)
point=SetPoints("Goal Selection", frame1)
self.object_point=point[0]
frame1=cv2.cvtColor(frame1, cv2.COLOR_BGR2RGB)
frame2=cv2.cvtColor(frame2, cv2.COLOR_BGR2RGB)
goal= np.array([0.0,0.0,0.0])
self.goal=goal
self.count=0
####### Setup the simulator for ECM motion planning
self.sim_ecm = Sim_ECM('human')
self.sim_ecm.reset_env()
## get the current dvrk joint position and sync it to the simulator
current_dvrk_jp = self.ecm.measured_jp()
self.sim_ecm.ecm.reset_joint(np.array(current_dvrk_jp))
def run_step(self):
if self._finished:
return True
#time.sleep(.5)
self.count+=1
print("--------step {}----------".format(self.count))
#time.sleep(2)
frame1=self.cap_0.read()
frame2=self.cap_2.read()
#fs = cv2.FileStorage("/home/kj/ar/EndoscopeCalibration/calibration_new.yaml", cv2.FILE_STORAGE_READ)
frame1, frame2 = my_rectify(frame1, frame2, self.fs)
frame1=cv2.resize(frame1, self.img_size)
frame2=cv2.resize(frame2, self.img_size)
#frame1=resize_with_pad(frame1, player.img_size, player.img_size)
#frame2=resize_with_pad(frame2, player.img_size, player.img_size)
#frame1=crop_img(frame1)
#frame2=crop_img(frame2)
frame1=cv2.cvtColor(frame1, cv2.COLOR_BGR2RGB)
frame2=cv2.cvtColor(frame2, cv2.COLOR_BGR2RGB)
plt.imsave( 'test_record/frame1_{}.png'.format(self.count),frame1)
plt.imsave( 'test_record/frame2_{}.png'.format(self.count),frame2)
# 1. get depth from left and right image
#depth=player._get_depth(frame1, frame2)
#depth=player._get_depth_with_dam(frame1)/10+0.025
#depth=depth/player.scaling
#frame1=cv2.resize(frame1, player.img_size)
#frame2=cv2.resize(frame2, player.img_size)
depth=self._get_depth(frame1, frame2)+0.09
#print(frame1.shape)
#print('depth shape: ',depth.shape)
#np.save('/home/kj/ar/GauzeRetrievel/test_record/depth.npy',depth)
#print(depth[self.object_point[0]][self.object_point[1]])
#print(depth)
#print(depth.mean())
#print(depth.std())
plt.imsave('test_record/pred_depth_{}.png'.format(self.count),depth)
seg=self._seg_with_fastsam(frame1,self.object_point)
#print(seg)
seg=np.array(seg==True).astype(int)
np.save('test_record/seg.npy',seg)
plt.imsave('test_record/seg_{}.png'.format(self.count),seg)
#seg=np.load('/home/kj/ar/peg_transfer/test_record/seg_from_depth.npy')
print("finish seg")
# exit()
# 3. get robot pose
# an example of the state
#PSM1_rotate = PyKDL.Rotation(transform[0,0], transform[0,1], transform[0,2],
# transform[1,0], transform[1,1], transform[1,2],
# transform[2,0], transform[2,1], transform[2,2])
#PSM1_pose = PyKDL.Vector(transform[0,-1], transform[1,-1], transform[2,-1])
#goal = PyKDL.Frame(PSM1_rotate, PSM1_pose)
#p.move_cp(goal).wait()
robot_pose=self.p.measured_cp()
robot_pos=robot_pose.p
print("pre action pos rcm: ",robot_pos)
robot_pos=np.array([robot_pos[0],robot_pos[1],robot_pos[2]])
#robot_pos=player.rcm2tip(robot_pos)
pre_robot_pos=np.array([robot_pos[0],robot_pos[1],robot_pos[2]])
# can be replaced with robot_pose.M.GetRPY()
# start
transform_2=robot_pose.M
np_m=np.array([[transform_2[0,0], transform_2[0,1], transform_2[0,2]],
[transform_2[1,0], transform_2[1,1], transform_2[1,2]],
[transform_2[2,0], transform_2[2,1], transform_2[2,2]]])
tip_ecm_pose=np.zeros((4,4))
tip_ecm_pose[3,3]=1
tip_ecm_pose[:3,:3]=np_m
tip_ecm_pose[:3,3]=robot_pos
#print('tip_psm_pose before: ',tip_psm_pose)
tip_ecm_pose=self.rcm2tip(tip_ecm_pose)
#print('tip_psm_pose aft: ',tip_psm_pose)
np_m=tip_ecm_pose[:3,:3]
robot_pos=tip_ecm_pose[:3,3]
#print("pre action pos tip rcm: ",robot_pos)
#robot_rot=np_m
robot_rot=self.get_euler_from_matrix(np_m)
# robot_rot=self.convert_rot(robot_rot, cam_T_basePSM)
# robot_rot=self.get_euler_from_matrix(robot_rot)
# robot_pos=self.convert_pos(robot_pos,cam_T_basePSM)
print("pre action pos tip ecm: ",robot_pos)
# end
action=self._get_action(seg, depth ,robot_pos, robot_rot, self.goal)
print("finish get action")
print("action: ",action)
#obtained_object_position=player.convert_pos(action, basePSM_T_cam)
#print('obtained_object_position: ',obtained_object_position)
#PSM2_pose=PyKDL.Vector(obtained_object_position[0], obtained_object_position[1], obtained_object_position[2])
# 4. action -> state
state=self._set_action(action, robot_pos, np_m)
print("finish set action")
print("state: ",state)
#z_delta=state[2,-1]-pre_robot_pos[2]
#state[2,-1]=pre_robot_pos[2]-z_delta
# 5. move
PSM2_rotate = PyKDL.Rotation(state[0,0], state[0,1], state[0,2],
state[1,0], state[1,1], state[1,2],
state[2,0], state[2,1], state[2,2])
PSM2_pose = PyKDL.Vector(state[0,-1], state[1,-1], state[2,-1])
curr_robot_pos=np.array([state[0,-1], state[1,-1], state[2,-1]])
move_goal = PyKDL.Frame(PSM2_rotate, PSM2_pose)
move_goal=PyKDL.Frame(robot_pose.M,PSM2_pose)
#if count>7:
# break
self.p.move_cp(move_goal).wait()
print("finish move")
print('is sccess: ',self.is_success(curr_robot_pos, self.rcm_goal))
if self.is_success(curr_robot_pos, self.rcm_goal) or self.count>9:
self._finished=True
return self._finished
'''
if action[3] < 0:
# close jaw
p.jaw.move_jp(np.array(-0.5)).wait()
else:
# open jaw
p.jaw.move_jp(np.array(0.5)).wait()
'''
#if cv2.waitKey(1)==27:
# break
def record_video(self, out1, out2):
for i in range(10):
frame1=self.cap_0.read()
frame2=self.cap_2.read()
out1.write(frame1)
out2.write(frame2)
return
import threading
if __name__=="__main__":
#lock = threading.Lock()
player=VisPlayer()
player.init_run()
finished=False
while not finished:
#player.record_video
finished=player.run_step()
player.cap_0.release()
player.cap_2.release()
|