File size: 6,316 Bytes
cb1ed64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from regress_module import VisProcess, VisTR, VisRes
from torchvision import transforms
import matplotlib.pyplot as plt
import sys
sys.path.append('/home/kejianshi/Desktop/Surgical_Robot/science_robotics/stateregress_back/utils')
from general_utils import AttrDict
# sys.path.append('/home/kejianshi/Desktop/Surgical_Robot/science_robotics/ar_surrol/surrol/tasks')
sys.path.append('/home/kejianshi/Desktop/Surgical_Robot/science_robotics/ar_surrol/surrol/tasks')
from depth_anything.dpt import DepthAnything
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet


class vismodel(nn.Module):
    def __init__(
        self,
        opts
       
    ):
        super().__init__()
        self.opts=opts
        self.device=opts.device
       
        self.img_size=self.opts.img_size
        self.obj_num=1
        self.v_processor=VisRes()
        if not self.opts.use_exist_depth:
            self._load_dam()

    def _load_dam(self):
        encoder = 'vitb' # can also be 'vitb' or 'vitl'
        self.depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_{:}14'.format(encoder)).eval()
        #self.depth_anything.to(self.device)

    def _get_depth_with_dam(self, img):
        '''
        input: rgb image 1xHxW
        '''
        
        #img=self.img_transform({'image': img})['image']
        #img=torch.from_numpy(img).unsqueeze(0)
        #img=transforms.Resize((518,518))(img)
        with torch.no_grad():
            depth = self.depth_anything(img)

        #print(depth.shape)
        depth = F.interpolate(depth[None], self.img_size, mode='bilinear', align_corners=False)[0]
        depth_min = torch.amin(depth, dim=(1, 2), keepdim=True)
        depth_max = torch.amax(depth, dim=(1, 2), keepdim=True)
        depth = (depth - depth_min) / (depth_max - depth_min)

        return depth

    
    def normlize_angles(self, x):
        return np.arctan2(np.sin(x),np.cos(x))
    
    def get_action(self, state, noise=False, v_action=False):
        #print("get_action")
        
        if not v_action:
            return super().get_action(state, noise)
        #self.count+=1

        self.v_processor.eval()
        
        rgb=self.to_torch(state['depth']).unsqueeze(0)
        
        depth=self._get_depth_with_dam(rgb)[0] #tensor
        depth_norm=self.depth_norm.normalize(depth.reshape(-1,256*256),device=self.device).reshape(1,256,256)
        seg=self.to_torch(transitions['seg'])
        seg_d=torch.concat((seg,depth_norm))
        
        inputs=seg_d.unsqueeze(0).float().to(self.device) # B 2 256 256
        #print(inputs.shape)
        
        with torch.no_grad():
            v_output=self.v_processor(inputs).squeeze() # 9

            #v_save=v_output.cpu().data.numpy()
            #np.save('test_record/v_output.npy', v_save)

            o, g = state['observation'], state['desired_goal']
            g=self.g_norm.normalize(g)
            #print("g: ",g)
            g_norm=torch.tensor(g).float().to(self.device)
            #print("g_norm: ",g_norm)
            
            if not self.regress_rbt_staet:
                robot_state=torch.tensor(o[:7]).to(self.device)
                #pos=v_output[:3]
                #rel_pos=pos-robot_state[:3]
                rel_pos=v_output[:3*self.obj_num]
                new_pos=robot_state[:3]+rel_pos[:3]
                
                if self.obj_num>1:
                    for i in range(1, self.obj_num):
                        pos=robot_state[:3]+rel_pos[i*3:3*self.obj_num]
                        new_pos=torch.concat((new_pos,pos))
                
                waypoint_pos_rot=v_output[3*self.obj_num:]
                
                
                #o=torch.from_numpy(np.concatenate([o[:,7:10].copy(),o[:,13:19]].copy(),axis=1)).to(self.device)
                
                #o_new=torch.concat((,o),dim=1) # B 19
                o_new=torch.concat((robot_state, new_pos))
                o_new=torch.concat((o_new, rel_pos))
                o_new=torch.concat((o_new, waypoint_pos_rot))
                o_norm=self.o_norm.normalize(o_new,device=self.device)
            else:
                o_norm=self.o_norm.normalize(v_output,device=self.device)
                o_norm=torch.tensor(o_norm).float().to(self.device)
                
            input_tensor=torch.concat((o_norm, g_norm), axis=0).to(torch.float32)
            #save_input=input_tensor.cpu().data.numpy()
            #np.save('test_record/actor_input.npy', save_input)
            #exit()
            
            action = self.actor(input_tensor).cpu().data.numpy().flatten()

        self.v_processor.train()
        return action
            

    def forward(self, seg, v_gt):
        # if self.opts.use_exist_depth:
        #     d=rgb
        # else:
        #     d=self._get_depth_with_dam(rgb)

        # seg_d=torch.concat((seg.unsqueeze(1),seg.unsqueeze(1)),dim=1)
        seg_d = torch.unsqueeze(seg, 1)
        # print(seg_d.shape)
        output=self.v_processor(seg_d)

        
        #print('output: ',type(output))
        #print('v_gt: ',v_gt.shape)
                
        pos_loss=F.mse_loss(output[:,:3*self.obj_num],v_gt[:,:3*self.obj_num])
        
        # w_pos_loss=F.mse_loss(output[:,3*self.obj_num: 3*self.obj_num+3],v_gt[:,3*self.obj_num: 3*self.obj_num+3])
        # v_loss+=w_pos_loss
        # w_rot_loss=F.mse_loss(output[:,3*self.obj_num+3:],v_gt[:,3*self.obj_num+3: ])
        # v_loss+=w_rot_loss
        metrics = AttrDict(
            v_pos=pos_loss.item(),
            # w_pos_loss_loss=w_pos_loss.item(),
            # w_rot_loss=w_rot_loss.item(),
            # v_loss=v_loss.item()

        )
       
        return metrics, pos_loss
    
    def get_obs(self, seg, rgb):
        # if self.opts.use_exist_depth:
        #     d=rgb
        # else:
        #     d=self._get_depth_with_dam(rgb)
        #d=self._get_depth_with_dam(rgb)
        #seg_d=torch.concat((seg.unsqueeze(1),d.unsqueeze(1)),dim=1)#.to(self.device)
        # seg_d=torch.concat((seg.unsqueeze(1),d.unsqueeze(1)),dim=1)#.to(self.device)
        seg_d = torch.unsqueeze(seg, 1)
        output=self.v_processor(seg_d)
        
        #print(output.shape)
        return output