File size: 8,697 Bytes
96a90d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import time
import math
import sys
import csv
import datetime
import crtk
import dvrk
import numpy
import argparse
import surrol
from surrol.robots.ecm import Ecm
import pybullet as p
import numpy as np
from surrol.utils.pybullet_utils import *
from surrol.tasks.ecm_env import EcmEnv, goal_distance
import torch
import torch.nn as nn
import numpy as np
import os
import cv2
import dvrk
import PyKDL
from PIL import Image
import matplotlib.pyplot as plt
import yaml
import math
from scipy.spatial.transform import Rotation as R





# def cVc_to_dq(robot, sim_robot, cVc: np.ndarray) -> np.ndarray:
#         """
#         convert the camera velocity in its own frame (cVc) into the joint velocity q_dot
#         """
#         cVc = cVc.reshape((3, 1))

#         # restrict the step size, need tune
#         if np.abs(cVc).max() > 0.01:
#             cVc = cVc / np.abs(cVc).max() * 0.01

#         # Forward kinematics
#         q = robot.measured_jp()
#         bRe = sim_robot.robot.fkine(q).R  # use rtb instead of PyBullet, no tool_tip_offset
#         orn_cam = robot.measured_cp().M
#         wRc = np.array(p.getMatrixFromQuaternion(orn_cam)).reshape((3, 3))

#         # Rotation
#         R1, R2 = self._wRc0, wRc
#         x = R1[0, 0] * R2[1, 0] - R1[1, 0] * R2[0, 0] + R1[0, 1] * R2[1, 1] - R1[1, 1] * R2[0, 1]
#         y = R1[0, 0] * R2[1, 1] - R1[1, 0] * R2[0, 1] - R1[0, 1] * R2[1, 0] + R1[1, 1] * R2[0, 0]
#         dz = np.arctan(x / y)
#         k1, k2 = 25.0, 0.1
#         self._wz = k1 * dz * np.exp(-k2 * np.linalg.norm(self._homo_delta))
#         # print(' -> x: {:.4f}, y: {:.4f}, dz: {:.4f}, wz: {:.4f}'.format(x, y, dz, self._wz))

#         # Pseudo Solution
#         d = self._tip_offset
#         Jd = np.matmul(self._eRc,
#                        np.array([[0,  0, d, 0],
#                                  [0, -d, 0, 0],
#                                  [1,  0, 0, 0]]))
#         Je = np.matmul(self._eRc,
#                        np.array([[0, 1, 0, 0],
#                                  [0, 0, 1, 0],
#                                  [0, 0, 0, 1]]))

#         eVe4 = np.dot(np.linalg.pinv(Jd), cVc) \
#                + np.dot(np.dot((np.eye(4) - np.dot(np.linalg.pinv(Jd), Jd)), np.linalg.pinv(Je)),
#                         np.array([[0], [0], [self._wz]]))
#         eVe = np.zeros((6, 1))
#         eVe[2: 6] = eVe4[0: 4]
#         Q = np.zeros((6, 6))
#         Q[0: 3, 0: 3] = - bRe
#         Q[3: 6, 3: 6] = - bRe
#         bVe = np.dot(Q, eVe)

#         # Compute the Jacobian matrix
#         bJe = self.get_jacobian_spatial()
#         dq = np.dot(np.linalg.pinv(bJe), bVe)
#         # print(" -> cVc: {}, q: {}, dq: {}".format(list(np.round(cVc.flatten(), 4)), q, list(dq.flatten())))
#         return dq.flatten()

def reset_camera(yaw=50.0, pitch=-35.0, dist=5.0, target=(0.0, 0.0, 0.0)):
    p.resetDebugVisualizerCamera(
        cameraDistance=dist, cameraYaw=yaw, cameraPitch=pitch, cameraTargetPosition=target)


def get_camera():
    return CameraInfo(*p.getDebugVisualizerCamera())


def render_image(width, height, view_matrix, proj_matrix, shadow=1):
    (_, _, px, _, mask) = p.getCameraImage(width=width,
                                           height=height,
                                           viewMatrix=view_matrix,
                                           projectionMatrix=proj_matrix,
                                           shadow=shadow,
                                           lightDirection=(10, 0, 10),
                                           renderer=p.ER_BULLET_HARDWARE_OPENGL)

    rgb_array = np.array(px, dtype=np.uint8)
    rgb_array = np.reshape(rgb_array, (height, width, 4))

    rgb_array = rgb_array[:, :, :3]
    return rgb_array, mask



class Sim_ECM(EcmEnv):
    ACTION_SIZE = 3  # (dx, dy, dz) or cVc or droll (1)
    ACTION_MODE = 'cVc'
    DISTANCE_THRESHOLD = 0.005
    POSE_ECM = ((0.15, 0.0, 0.7524), (0, 20 / 180 * np.pi, 0))
    QPOS_ECM = (0, 0.6, 0.04, 0)
    WORKSPACE_LIMITS = ((0.45, 0.55), (-0.05, 0.05), (0.60, 0.70))
    SCALING = 1.
    p = p.connect(p.GUI)
    def __init__(self, render_mode: str = None, cid = -1):
        # workspace
        self.workspace_limits = np.asarray(self.WORKSPACE_LIMITS)
        self.workspace_limits *= self.SCALING

        # camera
        self.use_camera = False

        # has_object
        self.has_object = False
        self.obj_id = None

        # super(Sim_ECM, self).__init__(render_mode, cid)

        # change duration
        self._duration = 0.1

        # distance_threshold
        self.distance_threshold = self.DISTANCE_THRESHOLD * self.SCALING

        # render related setting
        self._view_matrix = p.computeViewMatrixFromYawPitchRoll(
            cameraTargetPosition=(0.27 * self.SCALING, -0.20 * self.SCALING, 0.55 * self.SCALING),
            distance=1.80 * self.SCALING,
            yaw=150,
            pitch=-30,
            roll=0,
            upAxisIndex=2
        )

    def reset_env(self):
        assert self.ACTION_MODE in ('cVc', 'dmove', 'droll')
        # camera
        
        reset_camera(yaw=150.0, pitch=-30.0, dist=1.50 * self.SCALING,
                         target=(0.27 * self.SCALING, -0.20 * self.SCALING, 0.55 * self.SCALING))

        # robot
        self.ecm = Ecm(self.POSE_ECM[0], p.getQuaternionFromEuler(self.POSE_ECM[1]),
                       scaling=self.SCALING)
        
def run(name):
    # create dVRK robot
    robot = dvrk.ecm('ECM')
    # # file to save data
    # now = datetime.datetime.now()
    # now_string = now.strftime("%Y-%m-%d-%H-%M")
    # csv_file_name = name + '-gc-' + now_string + '.csv'
    # print("Values will be saved in: ", csv_file_name)
    

    # # compute joint limits
    d2r = math.pi / 180.0 # degrees to radians
    lower_limits = [-80.0 * d2r, -40.0 * d2r,  0.005]
    upper_limits = [ 80.0 * d2r,  60.0 * d2r,  0.230]
    sim_ecm = Sim_ECM('human')
    sim_ecm.reset_env()
    
    current_dvrk_jp = robot.measured_jp()
    print('current dvrk jp: ',current_dvrk_jp)
    current_dvrk_pose = robot.measured_cp()
    state = current_dvrk_pose.M
    position = current_dvrk_pose.p
    ECM_rotate = np.array([[state[0,0], state[0,1], state[0,2]],
                            [state[1,0], state[1,1], state[1,2]],
                            [state[2,0], state[2,1], state[2,2]]])
    ECM_position = np.array([position[0], position[1], position[2]])
    print(ECM_position)
    ECM_quat = R.from_matrix(ECM_rotate).as_quat()
    print(ECM_quat)
    # transform_M[:3, :3] = orn
    # transform_M[:3, 3] = np.array(pos)
    sim_ecm.ecm.reset_joint(np.array(current_dvrk_jp))
    
    print('current sim ecm jp: ', sim_ecm.ecm.get_current_joint_position())
    print('current sim ecm position: ', sim_ecm._get_robot_state())
    print('converted')
    while True:
        p.stepSimulation()
    # # set sampling for data
    # # increments = [40.0 * d2r, 40.0 * d2r, 0.10] # less samples
    # increments = [20.0 * d2r, 20.0 * d2r, 0.05] # more samples
    # directions = [1.0, 1.0, 1.0]

    # # start position
    # positions = [lower_limits[0],
    #              lower_limits[1],
    #              lower_limits[2]]

    # all_reached = False

    # robot.home()

    # while not all_reached:
    #     next_dimension_increment = True
    #     for index in range(3):
    #         if next_dimension_increment:
    #             future = positions[index] + directions[index] * increments[index]
    #             if (future > upper_limits[index]):
    #                 directions[index] = -1.0
    #                 if index == 2:
    #                     all_reached = True
    #             elif (future < lower_limits[index]):
    #                 directions[index] = 1.0
    #             else:
    #                 positions[index] = future
    #                 next_dimension_increment = False

    #     robot.move_jp(numpy.array([positions[0],
    #                                positions[1],
    #                                positions[2],
    #                                0.0])).wait()
    #     time.sleep(1.0)


if __name__ == '__main__':
    # extract ros arguments (e.g. __ns:= for namespace)

    # parse arguments
    parser = argparse.ArgumentParser()
    parser.add_argument('-a', '--arm', type=str, required=True,
                        choices=['ECM', 'PSM1', 'PSM2', 'PSM3'],
                        help = 'arm name corresponding to ROS topics without namespace.  Use __ns:= to specify the namespace')
    parser.add_argument('-i', '--interval', type=float, default=0.01,
                        help = 'expected interval in seconds between messages sent by the device')

    run('ECM')