File size: 8,697 Bytes
96a90d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import time
import math
import sys
import csv
import datetime
import crtk
import dvrk
import numpy
import argparse
import surrol
from surrol.robots.ecm import Ecm
import pybullet as p
import numpy as np
from surrol.utils.pybullet_utils import *
from surrol.tasks.ecm_env import EcmEnv, goal_distance
import torch
import torch.nn as nn
import numpy as np
import os
import cv2
import dvrk
import PyKDL
from PIL import Image
import matplotlib.pyplot as plt
import yaml
import math
from scipy.spatial.transform import Rotation as R
# def cVc_to_dq(robot, sim_robot, cVc: np.ndarray) -> np.ndarray:
# """
# convert the camera velocity in its own frame (cVc) into the joint velocity q_dot
# """
# cVc = cVc.reshape((3, 1))
# # restrict the step size, need tune
# if np.abs(cVc).max() > 0.01:
# cVc = cVc / np.abs(cVc).max() * 0.01
# # Forward kinematics
# q = robot.measured_jp()
# bRe = sim_robot.robot.fkine(q).R # use rtb instead of PyBullet, no tool_tip_offset
# orn_cam = robot.measured_cp().M
# wRc = np.array(p.getMatrixFromQuaternion(orn_cam)).reshape((3, 3))
# # Rotation
# R1, R2 = self._wRc0, wRc
# x = R1[0, 0] * R2[1, 0] - R1[1, 0] * R2[0, 0] + R1[0, 1] * R2[1, 1] - R1[1, 1] * R2[0, 1]
# y = R1[0, 0] * R2[1, 1] - R1[1, 0] * R2[0, 1] - R1[0, 1] * R2[1, 0] + R1[1, 1] * R2[0, 0]
# dz = np.arctan(x / y)
# k1, k2 = 25.0, 0.1
# self._wz = k1 * dz * np.exp(-k2 * np.linalg.norm(self._homo_delta))
# # print(' -> x: {:.4f}, y: {:.4f}, dz: {:.4f}, wz: {:.4f}'.format(x, y, dz, self._wz))
# # Pseudo Solution
# d = self._tip_offset
# Jd = np.matmul(self._eRc,
# np.array([[0, 0, d, 0],
# [0, -d, 0, 0],
# [1, 0, 0, 0]]))
# Je = np.matmul(self._eRc,
# np.array([[0, 1, 0, 0],
# [0, 0, 1, 0],
# [0, 0, 0, 1]]))
# eVe4 = np.dot(np.linalg.pinv(Jd), cVc) \
# + np.dot(np.dot((np.eye(4) - np.dot(np.linalg.pinv(Jd), Jd)), np.linalg.pinv(Je)),
# np.array([[0], [0], [self._wz]]))
# eVe = np.zeros((6, 1))
# eVe[2: 6] = eVe4[0: 4]
# Q = np.zeros((6, 6))
# Q[0: 3, 0: 3] = - bRe
# Q[3: 6, 3: 6] = - bRe
# bVe = np.dot(Q, eVe)
# # Compute the Jacobian matrix
# bJe = self.get_jacobian_spatial()
# dq = np.dot(np.linalg.pinv(bJe), bVe)
# # print(" -> cVc: {}, q: {}, dq: {}".format(list(np.round(cVc.flatten(), 4)), q, list(dq.flatten())))
# return dq.flatten()
def reset_camera(yaw=50.0, pitch=-35.0, dist=5.0, target=(0.0, 0.0, 0.0)):
p.resetDebugVisualizerCamera(
cameraDistance=dist, cameraYaw=yaw, cameraPitch=pitch, cameraTargetPosition=target)
def get_camera():
return CameraInfo(*p.getDebugVisualizerCamera())
def render_image(width, height, view_matrix, proj_matrix, shadow=1):
(_, _, px, _, mask) = p.getCameraImage(width=width,
height=height,
viewMatrix=view_matrix,
projectionMatrix=proj_matrix,
shadow=shadow,
lightDirection=(10, 0, 10),
renderer=p.ER_BULLET_HARDWARE_OPENGL)
rgb_array = np.array(px, dtype=np.uint8)
rgb_array = np.reshape(rgb_array, (height, width, 4))
rgb_array = rgb_array[:, :, :3]
return rgb_array, mask
class Sim_ECM(EcmEnv):
ACTION_SIZE = 3 # (dx, dy, dz) or cVc or droll (1)
ACTION_MODE = 'cVc'
DISTANCE_THRESHOLD = 0.005
POSE_ECM = ((0.15, 0.0, 0.7524), (0, 20 / 180 * np.pi, 0))
QPOS_ECM = (0, 0.6, 0.04, 0)
WORKSPACE_LIMITS = ((0.45, 0.55), (-0.05, 0.05), (0.60, 0.70))
SCALING = 1.
p = p.connect(p.GUI)
def __init__(self, render_mode: str = None, cid = -1):
# workspace
self.workspace_limits = np.asarray(self.WORKSPACE_LIMITS)
self.workspace_limits *= self.SCALING
# camera
self.use_camera = False
# has_object
self.has_object = False
self.obj_id = None
# super(Sim_ECM, self).__init__(render_mode, cid)
# change duration
self._duration = 0.1
# distance_threshold
self.distance_threshold = self.DISTANCE_THRESHOLD * self.SCALING
# render related setting
self._view_matrix = p.computeViewMatrixFromYawPitchRoll(
cameraTargetPosition=(0.27 * self.SCALING, -0.20 * self.SCALING, 0.55 * self.SCALING),
distance=1.80 * self.SCALING,
yaw=150,
pitch=-30,
roll=0,
upAxisIndex=2
)
def reset_env(self):
assert self.ACTION_MODE in ('cVc', 'dmove', 'droll')
# camera
reset_camera(yaw=150.0, pitch=-30.0, dist=1.50 * self.SCALING,
target=(0.27 * self.SCALING, -0.20 * self.SCALING, 0.55 * self.SCALING))
# robot
self.ecm = Ecm(self.POSE_ECM[0], p.getQuaternionFromEuler(self.POSE_ECM[1]),
scaling=self.SCALING)
def run(name):
# create dVRK robot
robot = dvrk.ecm('ECM')
# # file to save data
# now = datetime.datetime.now()
# now_string = now.strftime("%Y-%m-%d-%H-%M")
# csv_file_name = name + '-gc-' + now_string + '.csv'
# print("Values will be saved in: ", csv_file_name)
# # compute joint limits
d2r = math.pi / 180.0 # degrees to radians
lower_limits = [-80.0 * d2r, -40.0 * d2r, 0.005]
upper_limits = [ 80.0 * d2r, 60.0 * d2r, 0.230]
sim_ecm = Sim_ECM('human')
sim_ecm.reset_env()
current_dvrk_jp = robot.measured_jp()
print('current dvrk jp: ',current_dvrk_jp)
current_dvrk_pose = robot.measured_cp()
state = current_dvrk_pose.M
position = current_dvrk_pose.p
ECM_rotate = np.array([[state[0,0], state[0,1], state[0,2]],
[state[1,0], state[1,1], state[1,2]],
[state[2,0], state[2,1], state[2,2]]])
ECM_position = np.array([position[0], position[1], position[2]])
print(ECM_position)
ECM_quat = R.from_matrix(ECM_rotate).as_quat()
print(ECM_quat)
# transform_M[:3, :3] = orn
# transform_M[:3, 3] = np.array(pos)
sim_ecm.ecm.reset_joint(np.array(current_dvrk_jp))
print('current sim ecm jp: ', sim_ecm.ecm.get_current_joint_position())
print('current sim ecm position: ', sim_ecm._get_robot_state())
print('converted')
while True:
p.stepSimulation()
# # set sampling for data
# # increments = [40.0 * d2r, 40.0 * d2r, 0.10] # less samples
# increments = [20.0 * d2r, 20.0 * d2r, 0.05] # more samples
# directions = [1.0, 1.0, 1.0]
# # start position
# positions = [lower_limits[0],
# lower_limits[1],
# lower_limits[2]]
# all_reached = False
# robot.home()
# while not all_reached:
# next_dimension_increment = True
# for index in range(3):
# if next_dimension_increment:
# future = positions[index] + directions[index] * increments[index]
# if (future > upper_limits[index]):
# directions[index] = -1.0
# if index == 2:
# all_reached = True
# elif (future < lower_limits[index]):
# directions[index] = 1.0
# else:
# positions[index] = future
# next_dimension_increment = False
# robot.move_jp(numpy.array([positions[0],
# positions[1],
# positions[2],
# 0.0])).wait()
# time.sleep(1.0)
if __name__ == '__main__':
# extract ros arguments (e.g. __ns:= for namespace)
# parse arguments
parser = argparse.ArgumentParser()
parser.add_argument('-a', '--arm', type=str, required=True,
choices=['ECM', 'PSM1', 'PSM2', 'PSM3'],
help = 'arm name corresponding to ROS topics without namespace. Use __ns:= to specify the namespace')
parser.add_argument('-i', '--interval', type=float, default=0.01,
help = 'expected interval in seconds between messages sent by the device')
run('ECM') |