File size: 8,249 Bytes
742ef47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
# Author(s): Jiaqi Xu
# Created on: 2020-11
"""
PSM wrapper
Refer to:
https://github.com/jhu-dvrk/dvrk-ros/blob/master/dvrk_python/src/dvrk/ecm.py
https://github.com/jhu-dvrk/dvrk-ros/blob/7b3d48ca164755ccfc88028e15baa9fbf7aa1360/dvrk_python/src/dvrk/ecm.py
https://github.com/jhu-dvrk/sawIntuitiveResearchKit/blob/master/share/kinematic/ecm.json
https://github.com/jhu-dvrk/sawIntuitiveResearchKit/blob/4a8b4817ee7404b3183dfba269c0efe5885b41c2/share/arm/ecm-straight.json
"""
import os
import numpy as np
import pybullet as p
from surrol.robots.arm import Arm
from surrol.const import ASSET_DIR_PATH
from surrol.utils.pybullet_utils import (
get_joint_positions,
get_link_pose,
render_image
)
# Rendering width and height
RENDER_HEIGHT = 256
RENDER_WIDTH = 256
FoV = 60
LINKS = (
'ecm_base_link', 'ecm_yaw_link', 'ecm_pitch_end_link', # -1, 0, 1
'ecm_main_insertion_link', 'ecm_tool_link', # 2, 3
'ecm_end_link', # 4
'ecm_tip_link', # 5
'ecm_pitch_front_link', # 6
'ecm_pitch_bottom_link', 'ecm_pitch_top_link', # 7, 8
'ecm_pitch_back_link', # 9
'ecm_remote_center_link', # 10
)
# tooltip-offset; refer to .json
tool_T_tip = np.array([[0.0, 1.0, 0.0, 0.0],
[-1.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0],
[0.0, 0.0, 0.0, 1.0]])
# Joint limits. No limits in the .json. TODO: dVRK config modified
TOOL_JOINT_LIMIT = {
'lower': np.deg2rad([-90.0, -45.0, 0.0, -np.inf]), # not sure about the last joint
'upper': np.deg2rad([ 90.0, 66.4, 254.0, np.inf]),
}
TOOL_JOINT_LIMIT['lower'][2] = -0.01 # allow small tolerance
TOOL_JOINT_LIMIT['upper'][2] = 0.254 # prismatic joint (m); not sure, from ambf
# [-1.57079633, -0.78539816, 0. , -1.57079633]
# [ 1.57079633, 1.15889862, 0.254, 1.57079633]
class Ecm(Arm):
NAME = 'ECM'
URDF_PATH = os.path.join(ASSET_DIR_PATH, 'ecm/ecm.urdf')
DoF = 4 # 4-dof arm
JOINT_TYPES = ('R', 'R', 'P', 'R')
EEF_LINK_INDEX = 4 # EEF link index, one redundant joint for inverse kinematics
TIP_LINK_INDEX = 5 # redundant joint for easier camera matrix computation
RCM_LINK_INDEX = 10 # RCM link index
# D-H parameters
A = np.array([0.0, 0.0, 0.0, 0.0])
ALPHA = np.array([np.pi / 2, -np.pi / 2, np.pi / 2, 0.0])
D = np.array([0.0, 0.0, -0.3822, 0.3829])
THETA = np.array([np.pi / 2, -np.pi / 2, 0.0, 0.0])
def __init__(self, pos=(0., 0., 1.), orn=(0., 0., 0., 1.),
scaling=1.):
super(Ecm, self).__init__(self.URDF_PATH, pos, orn,
TOOL_JOINT_LIMIT, tool_T_tip, scaling)
# camera control related parameters
self.view_matrix = None
self.proj_matrix = None
self._homo_delta = np.zeros((2, 1))
self._wz = 0
# b: rcm, e: eef, c: camera
pos_eef, orn_eef = get_link_pose(self.body, self.EEF_LINK_INDEX)
pos_cam, orn_cam = get_link_pose(self.body, self.TIP_LINK_INDEX)
self._tip_offset = np.linalg.norm(np.array(pos_eef) - np.array(pos_cam)) # TODO
wRe = np.array(p.getMatrixFromQuaternion(orn_eef)).reshape((3, 3))
wRc = np.array(p.getMatrixFromQuaternion(orn_cam)).reshape((3, 3))
self._wRc0 = wRc.copy() # initial rotation matrix
self._eRc = np.matmul(wRe.T, wRc)
def _get_joint_positions_all(self, abs_input):
""" With the consideration of parallel mechanism constraints and other redundant joints.
"""
positions = get_joint_positions(self.body, self.joints)
joint_positions = [
abs_input[0], abs_input[1], # 0, 1
abs_input[2] * self.scaling, abs_input[3], # 2, 3
positions[4], positions[5], # 4 (0.0), 5 (0.0)
abs_input[1], # 6
-abs_input[1], -abs_input[1], # 7, 8
abs_input[1], # 9
positions[10], # 10 (0.0)
]
return joint_positions
def cVc_to_dq(self, cVc: np.ndarray) -> np.ndarray:
"""
convert the camera velocity in its own frame (cVc) into the joint velocity q_dot
"""
cVc = cVc.reshape((3, 1))
# restrict the step size, need tune
if np.abs(cVc).max() > 0.01:
cVc = cVc / np.abs(cVc).max() * 0.01
# Forward kinematics
q = self.get_current_joint_position()
bRe = self.robot.fkine(q).R # use rtb instead of PyBullet, no tool_tip_offset
_, orn_cam = get_link_pose(self.body, self.TIP_LINK_INDEX)
wRc = np.array(p.getMatrixFromQuaternion(orn_cam)).reshape((3, 3))
# Rotation
R1, R2 = self._wRc0, wRc
x = R1[0, 0] * R2[1, 0] - R1[1, 0] * R2[0, 0] + R1[0, 1] * R2[1, 1] - R1[1, 1] * R2[0, 1]
y = R1[0, 0] * R2[1, 1] - R1[1, 0] * R2[0, 1] - R1[0, 1] * R2[1, 0] + R1[1, 1] * R2[0, 0]
dz = np.arctan(x / y)
k1, k2 = 25.0, 0.1
self._wz = k1 * dz * np.exp(-k2 * np.linalg.norm(self._homo_delta))
# print(' -> x: {:.4f}, y: {:.4f}, dz: {:.4f}, wz: {:.4f}'.format(x, y, dz, self._wz))
# Pseudo Solution
d = self._tip_offset
Jd = np.matmul(self._eRc,
np.array([[0, 0, d, 0],
[0, -d, 0, 0],
[1, 0, 0, 0]]))
Je = np.matmul(self._eRc,
np.array([[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]]))
eVe4 = np.dot(np.linalg.pinv(Jd), cVc) \
+ np.dot(np.dot((np.eye(4) - np.dot(np.linalg.pinv(Jd), Jd)), np.linalg.pinv(Je)),
np.array([[0], [0], [self._wz]]))
eVe = np.zeros((6, 1))
eVe[2: 6] = eVe4[0: 4]
Q = np.zeros((6, 6))
Q[0: 3, 0: 3] = - bRe
Q[3: 6, 3: 6] = - bRe
bVe = np.dot(Q, eVe)
# Compute the Jacobian matrix
bJe = self.get_jacobian_spatial()
dq = np.dot(np.linalg.pinv(bJe), bVe)
# print(" -> cVc: {}, q: {}, dq: {}".format(list(np.round(cVc.flatten(), 4)), q, list(dq.flatten())))
return dq.flatten()
def render_image(self, width=RENDER_WIDTH, height=RENDER_HEIGHT):
pos_eef, orn_eef = get_link_pose(self.body, self.EEF_LINK_INDEX)
pos_tip = get_link_pose(self.body, self.TIP_LINK_INDEX)[0]
mat_eef = np.array(p.getMatrixFromQuaternion(orn_eef)).reshape((3, 3))
# TODO: need to check the up vector
self.view_matrix = p.computeViewMatrix(cameraEyePosition=pos_eef,
cameraTargetPosition=pos_tip,
cameraUpVector=mat_eef[:, 0])
self.proj_matrix = p.computeProjectionMatrixFOV(fov=FoV,
aspect=float(width) / height,
nearVal=0.01,
farVal=10.0)
rgb_array, mask, depth = render_image(width, height,
self.view_matrix, self.proj_matrix)
return rgb_array, mask, depth
def get_centroid_proj(self, pos) -> np.ndarray:
"""
Compute the object position in the camera NDC space.
Refer to OpenGL.
:param pos: object position in the world frame.
"""
assert len(pos) in (3, 4)
if len(pos) == 3:
# homogeneous coordinates: (x, y, z) -> (x, y, z, w)
pos_obj = np.ones((4, 1))
pos_obj[: 3, 0] = pos
else:
pos_obj = np.array(pos).reshape((4, 1))
view_matrix = np.array(self.view_matrix).reshape(4, 4).T
proj_matrix = np.array(self.proj_matrix).reshape(4, 4).T
# pos in the camera frame
pos_cam = np.dot(proj_matrix, np.dot(view_matrix, pos_obj))
pos_cam /= pos_cam[3, 0]
return np.array([pos_cam[0][0], - pos_cam[1][0]]) # be consistent with get_centroid
@property
def homo_delta(self):
return self._homo_delta
@homo_delta.setter
def homo_delta(self, val: np.ndarray):
self._homo_delta = val
@property
def wz(self):
return self._wz
|