File size: 7,544 Bytes
9ce215a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
from datetime import datetime
from distutils.util import strtobool
import numpy as np
import pandas as pd
# Converts the contents in a .tsf file into a dataframe and returns
# it along with other meta-data of the dataset:
# frequency, horizon, whether the dataset contains missing values and whether the series have equal lengths
#
# Parameters
# full_file_path_and_name - complete .tsf file path
# replace_missing_vals_with - a term to indicate the missing values in series in the returning dataframe
# value_column_name - Any name that is preferred to have as the name of the column containing series values in the returning dataframe
def convert_tsf_to_dataframe(
full_file_path_and_name,
replace_missing_vals_with="NaN",
value_column_name="series_value",
):
col_names = []
col_types = []
all_data = {}
line_count = 0
frequency = None
forecast_horizon = None
contain_missing_values = None
contain_equal_length = None
found_data_tag = False
found_data_section = False
started_reading_data_section = False
with open(full_file_path_and_name, "r", encoding="cp1252") as file:
for line in file:
# Strip white space from start/end of line
line = line.strip()
if line:
if line.startswith("@"): # Read meta-data
if not line.startswith("@data"):
line_content = line.split(" ")
if line.startswith("@attribute"):
if len(line_content) != 3: # Attributes have both name and type
raise ValueError("Invalid meta-data specification.")
col_names.append(line_content[1])
col_types.append(line_content[2])
else:
if len(line_content) != 2: # Other meta-data have only values
raise ValueError("Invalid meta-data specification.")
if line.startswith("@frequency"):
frequency = line_content[1]
elif line.startswith("@horizon"):
forecast_horizon = int(line_content[1])
elif line.startswith("@missing"):
contain_missing_values = bool(strtobool(line_content[1]))
elif line.startswith("@equallength"):
contain_equal_length = bool(strtobool(line_content[1]))
else:
if len(col_names) == 0:
raise ValueError("Missing attribute section. Attribute section must come before data.")
found_data_tag = True
elif not line.startswith("#"):
if len(col_names) == 0:
raise ValueError("Missing attribute section. Attribute section must come before data.")
elif not found_data_tag:
raise ValueError("Missing @data tag.")
else:
if not started_reading_data_section:
started_reading_data_section = True
found_data_section = True
all_series = []
for col in col_names:
all_data[col] = []
full_info = line.split(":")
if len(full_info) != (len(col_names) + 1):
raise ValueError("Missing attributes/values in series.")
series = full_info[len(full_info) - 1]
series = series.split(",")
if len(series) == 0:
raise ValueError(
"A given series should contains a set of comma separated numeric values. At least one numeric value should be there in a series. Missing values should be indicated with ? symbol"
)
numeric_series = []
for val in series:
if val == "?":
numeric_series.append(replace_missing_vals_with)
else:
numeric_series.append(float(val))
if numeric_series.count(replace_missing_vals_with) == len(numeric_series):
raise ValueError(
"All series values are missing. A given series should contains a set of comma separated numeric values. At least one numeric value should be there in a series."
)
all_series.append(np.array(numeric_series, dtype=np.float32))
for i in range(len(col_names)):
att_val = None
if col_types[i] == "numeric":
att_val = int(full_info[i])
elif col_types[i] == "string":
att_val = str(full_info[i])
elif col_types[i] == "date":
att_val = datetime.strptime(full_info[i], "%Y-%m-%d %H-%M-%S")
else:
raise ValueError(
"Invalid attribute type."
) # Currently, the code supports only numeric, string and date types. Extend this as required.
if att_val is None:
raise ValueError("Invalid attribute value.")
else:
all_data[col_names[i]].append(att_val)
line_count = line_count + 1
if line_count == 0:
raise ValueError("Empty file.")
if len(col_names) == 0:
raise ValueError("Missing attribute section.")
if not found_data_section:
raise ValueError("Missing series information under data section.")
all_data[value_column_name] = all_series
loaded_data = pd.DataFrame(all_data)
return (
loaded_data,
frequency,
forecast_horizon,
contain_missing_values,
contain_equal_length,
)
def convert_multiple(text: str) -> str:
if text.isnumeric():
return text
if text == "half":
return "0.5"
def frequency_converter(freq: str):
parts = freq.split("_")
if len(parts) == 1:
return BASE_FREQ_TO_PANDAS_OFFSET[parts[0]]
if len(parts) == 2:
return convert_multiple(parts[0]) + BASE_FREQ_TO_PANDAS_OFFSET[parts[1]]
raise ValueError(f"Invalid frequency string {freq}.")
BASE_FREQ_TO_PANDAS_OFFSET = {
"seconds": "S",
"minutely": "T",
"minutes": "T",
"hourly": "H",
"hours": "H",
"daily": "D",
"days": "D",
"weekly": "W",
"weeks": "W",
"monthly": "M",
"months": "M",
"quarterly": "Q",
"quarters": "Q",
"yearly": "Y",
"years": "Y",
}
# Example of usage
# loaded_data, frequency, forecast_horizon, contain_missing_values, contain_equal_length = convert_tsf_to_dataframe("TSForecasting/tsf_data/sample.tsf")
# print(loaded_data)
# print(frequency)
# print(forecast_horizon)
# print(contain_missing_values)
# print(contain_equal_length)
|