File size: 4,594 Bytes
3d1b00c f05fae3 3d1b00c 8f09c82 0249527 3d1b00c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
# coding=utf-8
# Copyright 2022 esCorpius authors
# The code required to produce and load this dataset is licensed under MIT License.
# The code samples included in this dataset keep their own licenses, which can be retrieved via their metadata.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Please note that the dataset release is still work in progress.
"""The esCorpius dataset."""
import json
import datasets
from pathlib import Path
_CITATION = """\
@misc{TODO
}
"""
_DESCRIPTION = """\
Spanish dataset
""" # TODO: expand
_HOMEPAGE = "https://huggingface.co/datasets/LHF/escorpius"
_LICENSE = "CC BY-NC-ND 4.0"
_URL = ""
_FEATURES = datasets.Features(
{
"id": datasets.Value("string"),
"text": datasets.Value("string"),
"url_warc": datasets.Value("string"),
"url": datasets.Value("string")
}
)
class EsCorpiusConfig(datasets.BuilderConfig):
"""BuilderConfig for esCorpius."""
def __init__(self, *args, **kwargs):
"""BuilderConfig for The Pile.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(
*args,
**kwargs,
)
class EsCorpius(datasets.GeneratorBasedBuilder):
"""The esCorpius dataset."""
BUILDER_CONFIGS = [
EsCorpiusConfig(
name="esCorpius",
version=datasets.Version("1.0.1"),
description="Spanish dataset"
),
]
def _info(self):
"""Give information and typings for the dataset."""
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=_FEATURES,
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
urls_to_download = [
'es_corpus.jsonl.aa',
'es_corpus.jsonl.ab',
'es_corpus.jsonl.ac',
'es_corpus.jsonl.ad',
'es_corpus.jsonl.ae',
'es_corpus.jsonl.af',
'es_corpus.jsonl.ag',
'es_corpus.jsonl.ah',
'es_corpus.jsonl.ai',
'es_corpus.jsonl.aj',
'es_corpus.jsonl.ak',
'es_corpus.jsonl.al',
'es_corpus.jsonl.am',
'es_corpus.jsonl.an',
'es_corpus.jsonl.ao',
'es_corpus.jsonl.ap',
'es_corpus.jsonl.aq',
'es_corpus.jsonl.ar',
'es_corpus.jsonl.as',
'es_corpus.jsonl.at',
'es_corpus.jsonl.au',
'es_corpus.jsonl.av',
'es_corpus.jsonl.aw',
'es_corpus.jsonl.ax',
'es_corpus.jsonl.ay',
'es_corpus.jsonl.az',
'es_corpus.jsonl.ba',
'es_corpus.jsonl.bb',
'es_corpus.jsonl.bc',
'es_corpus.jsonl.bd',
'es_corpus.jsonl.be',
'es_corpus.jsonl.bf',
'es_corpus.jsonl.bg'
]
urls_to_download = [urls_to_download[-1]] # testing
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(name='train',
gen_kwargs={"files": downloaded_files}),
]
def _generate_examples(self, files):
"""Yield examples as (key, example) tuples."""
key = 0
for path in files:#sorted(Path(files).rglob('*.jsonl*')):
with open(path, "r", encoding="utf-8") as f:
for row in f:
data = json.loads(row)
yield key, data
key += 1
|