Datasets:
LEAP
/

ArXiv:
License:
File size: 11,792 Bytes
2b26157
728e4c4
6fb0087
2b26157
229d82e
b5831cb
229d82e
 
 
 
 
fa25657
b5831cb
229d82e
 
443926a
b5831cb
443926a
 
 
 
 
 
 
 
 
fa25657
 
443926a
 
 
728e4c4
443926a
 
728e4c4
 
443926a
728e4c4
443926a
 
 
728e4c4
443926a
728e4c4
443926a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
728e4c4
b5831cb
443926a
 
 
 
b5831cb
 
 
 
 
 
 
 
 
 
443926a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b383c74
 
 
e71986a
 
 
 
 
 
 
 
 
 
 
 
 
 
b5831cb
443926a
 
b5831cb
443926a
 
b5831cb
 
 
 
443926a
b5831cb
 
443926a
 
 
 
 
 
 
 
 
 
 
 
b5831cb
 
443926a
b5831cb
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
---
license: gpl-3.0
viewer: false
---
# ChaosBench: A Multi-Channel, Physics-Based Benchmark for Subseasonal-to-Seasonal Climate Prediction

<div align="center" style="display: flex; justify-content: center; gap: 10px;">
  <a href="https://leap-stc.github.io/ChaosBench"><img src="https://img.shields.io/badge/View-Documentation-blue?style=for-the-badge" alt="Homepage"/></a>
  <a href="https://arxiv.org/abs/2402.00712"><img src="https://img.shields.io/badge/ArXiV-2402.00712-b31b1b.svg?style=for-the-badge" alt="arXiv"/></a>
  <a href="https://huggingface.co/datasets/LEAP/ChaosBench"><img src="https://img.shields.io/badge/Dataset-HuggingFace-ffd21e?style=for-the-badge" alt="Huggingface Dataset"/></a>
  <a href="https://github.com/leap-stc/ChaosBench/blob/main/LICENSE"><img src="https://img.shields.io/badge/License-GNU%20GPL-green?style=for-the-badge" alt="License Badge"/></a>
</div>

ChaosBench is a benchmark project to improve and extend the predictability range of deep weather emulators to the subseasonal-to-seasonal (S2S) range. Predictability at this scale is more challenging due to its: (1) __double sensitivities__ to intial condition (in weather-scale) and boundary condition (in climate-scale), (2) __butterfly effect__, and our (3) __inherent lack of understanding__ of physical processes operating at this scale. Thus, given the __high socioeconomic stakes__ for accurate, reliable, and stable S2S forecasts (e.g., for disaster/extremes preparedness), this benchmark is timely for DL-accelerated solutions.

## ✨ Features

1️⃣ __Diverse Observations__. Spanning over 45 years (1979 - 2023), we include ERA5/LRA5/ORAS5 reanalysis for a fully-coupled Earth system emulation (atmosphere-terrestrial-sea-ice)

2️⃣ __Diverse Baselines__. Wide selection of physics-based forecasts from leading national agencies in Europe, the UK, America, and Asia

3️⃣ __Differentiable Physics Metrics__. Introduces two differentiable physics-based metrics to minimize the decay of power spectra at long forecasting horizon (blurriness)

4️⃣ __Large-Scale Benchmarking__. Systematic evaluation (deterministic, probabilistic, physics-based) for state-of-the-art ML-based weather emulators like ViT/ClimaX, PanguWeather, GraphCast, and FourcastNetV2

## 🏁 Getting Started
> **_NOTE:_**  Only need the dataset? Jump directly to **Step 2**. If you find any problems, feel free to contact us or raise a GitHub issue.

**Step 0**: Clone the [ChaosBench](https://github.com/leap-stc/ChaosBench) Github repository

**Step 1**: Install package dependencies
```
$ cd ChaosBench
$ pip install -r requirements.txt
```

**Step 2**: Initialize the data space by running
```
$ cd data/
$ wget https://huggingface.co/datasets/LEAP/ChaosBench/resolve/main/process.sh
$ chmod +x process.sh
```
**Step 3**: Download the data 
```
# Required for inputs and climatology (e.g., normalization)
$ ./process.sh era5
$ ./process.sh lra5
$ ./process.sh oras5
$ ./process.sh climatology

# Optional: control (deterministic) forecasts
$ ./process.sh ukmo
$ ./process.sh ncep
$ ./process.sh cma
$ ./process.sh ecmwf

# Optional: perturbed (ensemble) forecasts
$ ./process.sh ukmo_ensemble
$ ./process.sh ncep_ensemble
$ ./process.sh cma_ensemble
$ ./process.sh ecmwf_ensemble
```

## 🔍 Dataset Overview
All data has daily and 1.5-degree resolution.

1. __ERA5 Reanalysis__ for Surface-Atmosphere (1979-2023). The following table indicates the 48 variables (channels) that are available for Physics-based models. Note that the __Input__ ERA5 observations contains __ALL__ fields, including the unchecked boxes:

    Parameters/Levels (hPa) | 1000 | 925 | 850 | 700 | 500 | 300 | 200 | 100 | 50 | 10
    :---------------------- | :----| :---| :---| :---| :---| :---| :---| :---| :--| :-|
    Geopotential height, z ($gpm$) | &check; | &check; | &check; | &check; | &check; | &check; | &check; | &check; | &check; | &check; |  
    Specific humidity, q ($kg kg^{-1}$) | &check; | &check; | &check; | &check; | &check; | &check; | &check; | &nbsp; | &nbsp; | &nbsp; |  
    Temperature, t ($K$) | &check; | &check; | &check; | &check; | &check; | &check; | &check; | &check; | &check; | &check; | &check; |  
    U component of wind, u ($ms^{-1}$) | &check; | &check; | &check; | &check; | &check; | &check; | &check; | &check; | &check; | &check; |  
    V component of wind, v ($ms^{-1}$) | &check; | &check; | &check; | &check; | &check; | &check; | &check; | &check; | &check; | &check; |  
    Vertical velocity, w ($Pas^{-1}$) | &nbsp; | &nbsp; | &nbsp; | &nbsp; | &check; | &nbsp; | &nbsp; | &nbsp; | &nbsp; | &nbsp; |  
    
2. __LRA5 Reanalysis__ for Terrestrial (1979-2023)

| Acronyms    | Long Name                            | Units            |
|------------------|-------------------------------------------|-----------------------|
| asn     | snow albedo                               | (0 - 1)               |
| d2m     | 2-meter dewpoint temperature              | K                     |
| e       | total evaporation                         | m of water equivalent |
| es      | snow evaporation                          | m of water equivalent |
| evabs   | evaporation from bare soil                | m of water equivalent |
| evaow   | evaporation from open water               | m of water equivalent |
| evatc   | evaporation from top of canopy            | m of water equivalent |
| evavt   | evaporation from vegetation transpiration | m of water equivalent |
| fal     | forecaste albedo                          | (0 - 1)               |
| lai\_hv | leaf area index, high vegetation          | $m^2 m^{-2}$          |
| lai\_lv | leaf area index, low vegetation           | $m^2 m^{-2}$          |
| pev     | potential evaporation                     | m                     |
| ro      | runoff                                    | m                     |
| rsn     | snow density                              | $kg m^{-3}$           |
| sd      | snow depth                                | m of water equivalent |
| sde     | snow depth water equivalent               | m                     |
| sf      | snowfall                                  | m of water equivalent |
| skt     | skin temperature                          | K                     |
| slhf    | surface latent heat flux                  | $J m^{-2}$            |
| smlt    | snowmelt                                  | m of water equivalent |
| snowc   | snowcover                                 | \%                    |
| sp      | surface pressure                          | Pa                    |
| src     | skin reservoir content                    | m of water equivalent |
| sro     | surface runoff                            | m                     |
| sshf    | surface sensible heat flux                | $J m^{-2}$            |
| ssr     | net solar radiation                       | $J m^{-2}$            |
| ssrd    | download solar radiation                  | $J m^{-2}$            |
| ssro    | sub-surface runoff                        | m                     |
| stl1    | soil temperature level 1                  | K                     |
| stl2    | soil temperature level 2                  | K                     |
| stl3    | soil temperature level 3                  | K                     |
| stl4    | soil temperature level 4                  | K                     |
| str     | net thermal radiation                     | $J m^{-2}$            |
| strd    | downward thermal radiation                | $J m^{-2}$            |
| swvl1   | volumetric soil water layer 1             | $m^3 m^{-3}$          |
| swvl2   | volumetric soil water layer 2             | $m^3 m^{-3}$          |
| swvl3   | volumetric soil water layer 3             | $m^3 m^{-3}$          |
| swvl4   | volumetric soil water layer 4             | $m^3 m^{-3}$          |
| t2m     | 2-meter temperature                       | K                     |
| tp      | total precipitation                       | m                     |
| tsn     | temperature of snow layer                 | K                     |
| u10     | 10-meter u-wind                           | $ms^{-1}$             |
| v10     | 10-meter v-wind                           | $ms^{-1}$             |


3. __ORAS Reanalysis__ for Sea-Ice (1979-2023)

| Acronyms    | Long Name                            | Units            |
|------------------|-------------------------------------------|-----------------------|
| iicethic | sea ice thickness                          | m                            |
| iicevelu | sea ice zonal velocity                     | $ms^{-1}$  |
| iicevelv | sea ice meridional velocity                | $ms^{-1}$  |
| ileadfra | sea ice concentration                      | (0-1)      |
| so14chgt | depth of 14$^\circ$ isotherm               | m          |
| so17chgt | depth of 17$^\circ$ isotherm               | m          |
| so20chgt | depth of 20$^\circ$ isotherm               | m          |
| so26chgt | depth of 26$^\circ$ isotherm               | m          |
| so28chgt | depth of 28$^\circ$ isotherm               | m          |
| sohefldo | net downward heat flux                     | $W m^{-2}$ |
| sohtc300 | heat content at upper 300m  | $J m^{-2}$ |
| sohtc700 | heat content at upper 700m | $J m^{-2}$ |
| sohtcbtm | heat content for total water column        | $J m^{-2}$ |
| sometauy | meridonial wind stress                     | $N m^{-2}$ |
| somxl010 | mixed layer depth 0.01                     | m          |
| somxl030 | mixed layer depth 0.03                     | m          |
| sosaline | salinity                                   | Practical Salinity Units (PSU) |
| sossheig | sea surface height                         | m                       |
| sosstsst | sea surface temperature                    | $^\circ C$ |
| sowaflup | net upward water flux                      | $kg/m^2/s$ |
| sozotaux | zonal wind stress                          | $N m^{-2}$ |
 
    
## 💡 Baseline Models
In addition to climatology and persistence, we evaluate the following:

1. __Physics-based models (including control/perturbed forecasts)__:
    - [x] UKMO: UK Meteorological Office
    - [x] NCEP: National Centers for Environmental Prediction
    - [x] CMA: China Meteorological Administration
    - [x] ECMWF: European Centre for Medium-Range Weather Forecasts
2. __Data-driven models__:
    - [x] Lagged-Autoencoder
    - [x] Fourier Neural Operator (FNO)
    - [x] ResNet
    - [x] UNet
    - [x] ViT/ClimaX
    - [x] PanguWeather
    - [x] GraphCast
    - [x] Fourcastnetv2

## 🏅 Evaluation Metrics
We divide our metrics into 3 classes: (1) Deterministic-based, which cover evaluation used in conventional deterministic forecasting tasks, (2) Physics-based, which are aimed to construct a more physically-faithful and explainable data-driven forecast, and (3) Probabilistic-based, which account for the skillfulness of ensemble forecasts.


1. __Deterministic-based:__
    - [x] RMSE
    - [x] Bias
    - [x] Anomaly Correlation Coefficient (ACC)
    - [x] Multiscale Structural Similarity Index (MS-SSIM)
2. __Physics-based:__
    - [x] Spectral Divergence (SpecDiv)
    - [x] Spectral Residual (SpecRes)
    
3. __Probabilistic-based:__
    - [x] RMSE Ensemble
    - [x] Bias Ensemble
    - [x] ACC Ensemble
    - [x] MS-SSIM Ensemble
    - [x] SpecDiv Ensemble
    - [x] SpecRes Ensemble
    - [x] Continuous Ranked Probability Score (CRPS)
    - [x] Continuous Ranked Probability Skill Score (CRPSS)
    - [x] Spread
    - [x] Spread/Skill Ratio
 
  
## 🪜 Leaderboard
You can access the full score and checkpoints in `logs/<MODEL_NAME>` within the following subdirectory:
- Scores: `eval/<METRIC>.csv` 
- Model checkpoints: `lightning_logs/`