Datasets:
LEAP
/

ArXiv:
License:
juannat7 commited on
Commit
fa25657
·
verified ·
1 Parent(s): bc87525

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -4
README.md CHANGED
@@ -3,11 +3,14 @@ license: gpl-3.0
3
  viewer: false
4
  ---
5
  # ChaosBench
6
- ChaosBench is a benchmark project to improve long-term forecasting of chaotic systems, in particular subseasonal-to-seasonal (S2S) climate, using ML approaches.
7
 
8
- 🌐: [https://leap-stc.github.io/ChaosBench/](https://leap-stc.github.io/ChaosBench/)
9
-
10
- 📚: [https://arxiv.org/abs/2402.00712](https://arxiv.org/abs/2402.00712)
 
 
 
11
 
12
  ## ✨ Features
13
 
@@ -20,6 +23,8 @@ ChaosBench is a benchmark project to improve long-term forecasting of chaotic sy
20
  4️⃣ __Large-Scale Benchmarking__. Systematic evaluation (deterministic, probabilistic, physics-based) for state-of-the-art ML-based weather emulators like ViT/ClimaX, PanguWeather, GraphCast, and FourcastNetV2
21
 
22
  ## 🏁 Getting Started
 
 
23
  **Step 0**: Clone the [ChaosBench](https://github.com/leap-stc/ChaosBench) Github repository
24
 
25
  **Step 1**: Install package dependencies
 
3
  viewer: false
4
  ---
5
  # ChaosBench
6
+ ChaosBench is a benchmark project to improve and extend the predictability range of deep weather emulators to the subseasonal-to-seasonal (S2S) range. Predictability at this scale is more challenging due to its: (1) __double sensitivities__ to intial condition (in weather-scale) and boundary condition (in climate-scale), (2) __butterfly effect__, and our (3) __inherent lack of understanding__ of physical processes operating at this scale. Thus, given the __high socioeconomic stakes__ for accurate, reliable, and stable S2S forecasts (e.g., for disaster/extremes preparedness), this benchmark is timely for DL-accelerated solutions.
7
 
8
+ <div align="center">
9
+ <a href="https://leap-stc.github.io/ChaosBench"><img src="https://img.shields.io/badge/View-Documentation-blue?style=for-the-badge)" alt="Homepage"/></a>
10
+ <a href="https://arxiv.org/abs/2402.00712"><img src="https://img.shields.io/badge/ArXiV-2402.00712-b31b1b.svg" alt="arXiv"/></a>
11
+ <a href="https://huggingface.co/datasets/LEAP/ChaosBench"><img src="https://img.shields.io/badge/Dataset-HuggingFace-ffd21e" alt="Huggingface Dataset"/></a>
12
+ <a href="https://github.com/leap-stc/ChaosBench/blob/main/LICENSE"><img src="https://img.shields.io/badge/License-GNU%20GPL-green" alt="License Badge"/></a>
13
+ </div>
14
 
15
  ## ✨ Features
16
 
 
23
  4️⃣ __Large-Scale Benchmarking__. Systematic evaluation (deterministic, probabilistic, physics-based) for state-of-the-art ML-based weather emulators like ViT/ClimaX, PanguWeather, GraphCast, and FourcastNetV2
24
 
25
  ## 🏁 Getting Started
26
+ > **_NOTE:_** Only need the dataset? Jump directly to **Step 2**. If you find any problems, feel free to contact us or raise a GitHub issue.
27
+
28
  **Step 0**: Clone the [ChaosBench](https://github.com/leap-stc/ChaosBench) Github repository
29
 
30
  **Step 1**: Install package dependencies