Datasets:
LEAP
/

ArXiv:
License:
juannat7 commited on
Commit
443926a
β€’
1 Parent(s): 5dd4378

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +139 -38
README.md CHANGED
@@ -3,51 +3,63 @@ license: gpl-3.0
3
  viewer: false
4
  ---
5
  # ChaosBench
6
- We propose ChaosBench, a large-scale, multi-channel, physics-based benchmark for subseasonal-to-seasonal (S2S) climate prediction.
7
- It is framed as a high-dimensional video regression task that consists of 45-year, 60-channel observations
8
- for validating physics-based and data-driven models, and training the latter.
9
- Physics-based forecasts are generated from 4 national weather agencies with 44-day lead-time and serve as baselines to data-driven forecasts.
10
- Our benchmark is one of the first to incorporate physics-based metrics to ensure physically-consistent and explainable models.
11
- We establish two tasks: full and sparse dynamics prediction.
12
 
13
- πŸ”—: [https://leap-stc.github.io/ChaosBench/](https://leap-stc.github.io/ChaosBench/)
14
 
15
  πŸ“š: [https://arxiv.org/abs/2402.00712](https://arxiv.org/abs/2402.00712)
16
 
17
- ## Getting Started
18
- **Step 1**: Clone the [ChaosBench](https://github.com/leap-stc/ChaosBench) Github repository
19
 
20
- **Step 2**: Install package dependencies
 
 
 
 
 
 
 
 
 
 
 
21
  ```
22
- cd ChaosBench
23
- pip install -r requirements.txt
24
  ```
25
 
26
- **Step 3**: Initialize the data space by running
27
  ```
28
- cd data/
29
- wget https://huggingface.co/datasets/LEAP/ChaosBench/resolve/main/process.sh
30
- chmod +x process.sh
31
  ```
32
- **Step 5**: Download the data
33
-
34
  ```
35
- # NOTE: you can also run each line one at a time to retrieve individual dataset
36
-
37
- ./process.sh era5 # Required: For input ERA5 data
38
- ./process.sh climatology # Required: For climatology
39
- ./process.sh ukmo # Optional: For simulation from UKMO
40
- ./process.sh ncep # Optional: For simulation from NCEP
41
- ./process.sh cma # Optional: For simulation from CMA
42
- ./process.sh ecmwf # Optional: For simulation from ECMWF
 
 
 
 
 
 
 
 
 
43
  ```
44
 
45
- ## Dataset Overview
 
 
 
46
 
47
- - __Input:__ ERA5 Reanalysis (1979-2023)
48
-
49
- - __Target:__ The following table indicates the 48 variables (channels) that are available for Physics-based models. Note that the __Input__ ERA5 observations contains __ALL__ fields, including the unchecked boxes:
50
-
51
  Parameters/Levels (hPa) | 1000 | 925 | 850 | 700 | 500 | 300 | 200 | 100 | 50 | 10
52
  :---------------------- | :----| :---| :---| :---| :---| :---| :---| :---| :--| :-|
53
  Geopotential height, z ($gpm$) | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
@@ -57,8 +69,84 @@ chmod +x process.sh
57
  V component of wind, v ($ms^{-1}$) | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
58
  Vertical velocity, w ($Pas^{-1}$) |   |   |   |   | ✓ |   |   |   |   |   |
59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
  - __Baselines:__
61
- - Physics-based models:
62
  - [x] UKMO: UK Meteorological Office
63
  - [x] NCEP: National Centers for Environmental Prediction
64
  - [x] CMA: China Meteorological Administration
@@ -70,23 +158,36 @@ chmod +x process.sh
70
  - [x] UNet
71
  - [x] ViT/ClimaX
72
  - [x] PanguWeather
73
- - [x] Fourcastnetv2
74
  - [x] GraphCast
 
75
 
76
- ## Evaluation Metrics
77
- We divide our metrics into 2 classes: (1) ML-based, which cover evaluation used in conventional computer vision and forecasting tasks, (2) Physics-based, which are aimed to construct a more physically-faithful and explainable data-driven forecast.
78
 
79
- - __Vision-based:__
 
80
  - [x] RMSE
81
  - [x] Bias
82
  - [x] Anomaly Correlation Coefficient (ACC)
83
  - [x] Multiscale Structural Similarity Index (MS-SSIM)
84
- - __Physics-based:__
85
  - [x] Spectral Divergence (SpecDiv)
86
  - [x] Spectral Residual (SpecRes)
 
 
 
 
 
 
 
 
 
 
 
 
87
 
88
 
89
- ## Leaderboard
90
  You can access the full score and checkpoints in `logs/<MODEL_NAME>` within the following subdirectory:
91
  - Scores: `eval/<METRIC>.csv`
92
  - Model checkpoints: `lightning_logs/`
 
3
  viewer: false
4
  ---
5
  # ChaosBench
6
+ ChaosBench is a benchmark project to improve long-term forecasting of chaotic systems, in particular subseasonal-to-seasonal (S2S) climate, using ML approaches.
 
 
 
 
 
7
 
8
+ 🌐: [https://leap-stc.github.io/ChaosBench/](https://leap-stc.github.io/ChaosBench/)
9
 
10
  πŸ“š: [https://arxiv.org/abs/2402.00712](https://arxiv.org/abs/2402.00712)
11
 
12
+ ## ✨ Features
 
13
 
14
+ 1️⃣ __Diverse Observations__. Spanning over 45 years (1979 - 2023), we include ERA5/LRA5/ORAS5 reanalysis for a fully-coupled Earth system emulation (atmosphere-terrestrial-sea-ice)
15
+
16
+ 2️⃣ __Diverse Baselines__. Wide selection of physics-based forecasts from leading national agencies in Europe, the UK, America, and Asia
17
+
18
+ 3️⃣ __Differentiable Physics Metrics__. Introduces two differentiable physics-based metrics to minimize the decay of power spectra at long forecasting horizon (blurriness)
19
+
20
+ 4️⃣ __Large-Scale Benchmarking__. Systematic evaluation (deterministic, probabilistic, physics-based) for state-of-the-art ML-based weather emulators like ViT/ClimaX, PanguWeather, GraphCast, and FourcastNetV2
21
+
22
+ ## 🏁 Getting Started
23
+ **Step 0**: Clone the [ChaosBench](https://github.com/leap-stc/ChaosBench) Github repository
24
+
25
+ **Step 1**: Install package dependencies
26
  ```
27
+ $ cd ChaosBench
28
+ $ pip install -r requirements.txt
29
  ```
30
 
31
+ **Step 2**: Initialize the data space by running
32
  ```
33
+ $ cd data/
34
+ $ wget https://huggingface.co/datasets/LEAP/ChaosBench/resolve/main/process.sh
35
+ $ chmod +x process.sh
36
  ```
37
+ **Step 3**: Download the data
 
38
  ```
39
+ # Required for inputs and climatology (e.g., normalization)
40
+ $ ./process.sh era5
41
+ $ ./process.sh lra5
42
+ $ ./process.sh oras5
43
+ $ ./process.sh climatology
44
+
45
+ # Optional: control (deterministic) forecasts
46
+ $ ./process.sh ukmo
47
+ $ ./process.sh ncep
48
+ $ ./process.sh cma
49
+ $ ./process.sh ecmwf
50
+
51
+ # Optional: perturbed (ensemble) forecasts
52
+ $ ./process.sh ukmo_ensemble
53
+ $ ./process.sh ncep_ensemble
54
+ $ ./process.sh cma_ensemble
55
+ $ ./process.sh ecmwf_ensemble
56
  ```
57
 
58
+ ## πŸ” Dataset Overview
59
+ All data has daily and 1.5-degree resolution.
60
+
61
+ 1. __ERA5 Reanalysis__ for Surface-Atmosphere (1979-2023). The following table indicates the 48 variables (channels) that are available for Physics-based models. Note that the __Input__ ERA5 observations contains __ALL__ fields, including the unchecked boxes:
62
 
 
 
 
 
63
  Parameters/Levels (hPa) | 1000 | 925 | 850 | 700 | 500 | 300 | 200 | 100 | 50 | 10
64
  :---------------------- | :----| :---| :---| :---| :---| :---| :---| :---| :--| :-|
65
  Geopotential height, z ($gpm$) | &check; | &check; | &check; | &check; | &check; | &check; | &check; | &check; | &check; | &check; |
 
69
  V component of wind, v ($ms^{-1}$) | &check; | &check; | &check; | &check; | &check; | &check; | &check; | &check; | &check; | &check; |
70
  Vertical velocity, w ($Pas^{-1}$) | &nbsp; | &nbsp; | &nbsp; | &nbsp; | &check; | &nbsp; | &nbsp; | &nbsp; | &nbsp; | &nbsp; |
71
 
72
+ 2. __LRA5 Reanalysis__ for Terrestrial (1979-2023)
73
+
74
+ | Acronyms | Long Name | Units |
75
+ |------------------|-------------------------------------------|-----------------------|
76
+ | asn | snow albedo | (0 - 1) |
77
+ | d2m | 2-meter dewpoint temperature | K |
78
+ | e | total evaporation | m of water equivalent |
79
+ | es | snow evaporation | m of water equivalent |
80
+ | evabs | evaporation from bare soil | m of water equivalent |
81
+ | evaow | evaporation from open water | m of water equivalent |
82
+ | evatc | evaporation from top of canopy | m of water equivalent |
83
+ | evavt | evaporation from vegetation transpiration | m of water equivalent |
84
+ | fal | forecaste albedo | (0 - 1) |
85
+ | lai\_hv | leaf area index, high vegetation | $m^2 m^{-2}$ |
86
+ | lai\_lv | leaf area index, low vegetation | $m^2 m^{-2}$ |
87
+ | pev | potential evaporation | m |
88
+ | ro | runoff | m |
89
+ | rsn | snow density | $kg m^{-3}$ |
90
+ | sd | snow depth | m of water equivalent |
91
+ | sde | snow depth water equivalent | m |
92
+ | sf | snowfall | m of water equivalent |
93
+ | skt | skin temperature | K |
94
+ | slhf | surface latent heat flux | $J m^{-2}$ |
95
+ | smlt | snowmelt | m of water equivalent |
96
+ | snowc | snowcover | \% |
97
+ | sp | surface pressure | Pa |
98
+ | src | skin reservoir content | m of water equivalent |
99
+ | sro | surface runoff | m |
100
+ | sshf | surface sensible heat flux | $J m^{-2}$ |
101
+ | ssr | net solar radiation | $J m^{-2}$ |
102
+ | ssrd | download solar radiation | $J m^{-2}$ |
103
+ | ssro | sub-surface runoff | m |
104
+ | stl1 | soil temperature level 1 | K |
105
+ | stl2 | soil temperature level 2 | K |
106
+ | stl3 | soil temperature level 3 | K |
107
+ | stl4 | soil temperature level 4 | K |
108
+ | str | net thermal radiation | $J m^{-2}$ |
109
+ | strd | downward thermal radiation | $J m^{-2}$ |
110
+ | swvl1 | volumetric soil water layer 1 | $m^3 m^{-3}$ |
111
+ | swvl2 | volumetric soil water layer 2 | $m^3 m^{-3}$ |
112
+ | swvl3 | volumetric soil water layer 3 | $m^3 m^{-3}$ |
113
+ | swvl4 | volumetric soil water layer 4 | $m^3 m^{-3}$ |
114
+ | t2m | 2-meter temperature | K |
115
+ | tp | total precipitation | m |
116
+ | tsn | temperature of snow layer | K |
117
+ | u10 | 10-meter u-wind | $ms^{-1}$ |
118
+ | v10 | 10-meter v-wind | $ms^{-1}$ |
119
+
120
+
121
+ 3. __ORAS Reanalysis__ for Sea-Ice (1979-2023)
122
+
123
+ | Acronyms | Long Name | Units |
124
+ |------------------|-------------------------------------------|-----------------------|
125
+ | iicethic | sea ice thickness | m |
126
+ | iicevelu | sea ice zonal velocity | $ms^{-1}$ |
127
+ | iicevelv | sea ice meridional velocity | $ms^{-1}$ |
128
+ | ileadfra | sea ice concentration | (0-1) |
129
+ | so14chgt | depth of 14$^\circ$ isotherm | m |
130
+ | so17chgt | depth of 17$^\circ$ isotherm | m |
131
+ | so20chgt | depth of 20$^\circ$ isotherm | m |
132
+ | so26chgt | depth of 26$^\circ$ isotherm | m |
133
+ | so28chgt | depth of 28$^\circ$ isotherm | m |
134
+ | sohefldo | net downward heat flux | $W m^{-2}$ |
135
+ | sohtc300 | heat content at upper 300m | $J m^{-2}$ |
136
+ | sohtc700 | heat content at upper 700m | $J m^{-2}$ |
137
+ | sohtcbtm | heat content for total water column | $J m^{-2}$ |
138
+ | sometauy | meridonial wind stress | $N m^{-2}$ |
139
+ | somxl010 | mixed layer depth 0.01 | m |
140
+ | somxl030 | mixed layer depth 0.03 | m |
141
+ | sosaline | salinity | Practical Salinity Units (PSU) |
142
+ | sossheig | sea surface height | m |
143
+ | sosstsst | sea surface temperature | $^\circ C$ |
144
+ | sowaflup | net upward water flux | $kg/m^2/s$ |
145
+ | sozotaux | zonal wind stress | $N m^{-2}$ |
146
+
147
+
148
  - __Baselines:__
149
+ - Physics-based models (including control/perturbed forecasts):
150
  - [x] UKMO: UK Meteorological Office
151
  - [x] NCEP: National Centers for Environmental Prediction
152
  - [x] CMA: China Meteorological Administration
 
158
  - [x] UNet
159
  - [x] ViT/ClimaX
160
  - [x] PanguWeather
 
161
  - [x] GraphCast
162
+ - [x] Fourcastnetv2
163
 
164
+ ## πŸ… Evaluation Metrics
165
+ We divide our metrics into 3 classes: (1) Deterministic-based, which cover evaluation used in conventional deterministic forecasting tasks, (2) Physics-based, which are aimed to construct a more physically-faithful and explainable data-driven forecast, and (3) Probabilistic-based, which account for the skillfulness of ensemble forecasts.
166
 
167
+
168
+ 1. __Deterministic-based:__
169
  - [x] RMSE
170
  - [x] Bias
171
  - [x] Anomaly Correlation Coefficient (ACC)
172
  - [x] Multiscale Structural Similarity Index (MS-SSIM)
173
+ 2. __Physics-based:__
174
  - [x] Spectral Divergence (SpecDiv)
175
  - [x] Spectral Residual (SpecRes)
176
+
177
+ 3. __Probabilistic-based:__
178
+ - [x] RMSE Ensemble
179
+ - [x] Bias Ensemble
180
+ - [x] ACC Ensemble
181
+ - [x] MS-SSIM Ensemble
182
+ - [x] SpecDiv Ensemble
183
+ - [x] SpecRes Ensemble
184
+ - [x] Continuous Ranked Probability Score (CRPS)
185
+ - [x] Continuous Ranked Probability Skill Score (CRPSS)
186
+ - [x] Spread
187
+ - [x] Spread/Skill Ratio
188
 
189
 
190
+ ## πŸͺœ Leaderboard
191
  You can access the full score and checkpoints in `logs/<MODEL_NAME>` within the following subdirectory:
192
  - Scores: `eval/<METRIC>.csv`
193
  - Model checkpoints: `lightning_logs/`