Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
1K<n<10K
License:
File size: 4,237 Bytes
4477da2 df81834 be93954 c925cef 577708f 8bd2e0e 2b933c2 06e4a0f 3ddb755 4477da2 06e4a0f db585e5 2b933c2 3ddb755 2b933c2 06e4a0f 4477da2 784523e 06e4a0f 4477da2 aab1af9 4477da2 05ec266 080e2f2 e3cb759 080e2f2 4477da2 3ddb755 4477da2 86cd38e 88c79c5 ae0eda7 f543195 ae0eda7 86cd38e 88c79c5 ed7f4e7 86cd38e 4c08ad7 d6445d7 ae0eda7 86cd38e 40a738a 5a8ec1d 40a738a 8a48f8c 40a738a 5a8ec1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
import datasets
logger = datasets.logging.get_logger(__name__)
_URL = "https://raw.githubusercontent.com/Kryansparsana/demorepo/main/"
_TRAINING_FILE = "indian_dataset.conll"
_DEV_FILE = "indian_dataset.conll"
_TEST_FILE = "indian_dataset_test.conll"
class indian_namesConfig(datasets.BuilderConfig):
"""The WNUT 17 Emerging Entities Dataset."""
def __init__(self, **kwargs):
"""BuilderConfig for WNUT 17.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(indian_namesConfig, self).__init__(**kwargs)
class indian_names(datasets.GeneratorBasedBuilder):
"""The WNUT 17 Emerging Entities Dataset."""
BUILDER_CONFIGS = [
indian_namesConfig(
name="indian_names", version=datasets.Version("1.0.0"), description="The WNUT 17 Emerging Entities Dataset"
),
]
def _info(self):
return datasets.DatasetInfo(
features=datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"O",
"B-corporation",
"I-corporation"
"B-person",
"I-person"
]
)
),
}
),
supervised_keys=None,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
urls_to_download = {
"train": f"{_URL}{_TRAINING_FILE}",
"dev": f"{_URL}{_DEV_FILE}",
"test": f"{_URL}{_TEST_FILE}",
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
]
def _generate_examples(self, filepath):
logger.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
current_tokens = []
current_labels = []
sentence_counter = 0
for row in f:
row = row.rstrip()
if row:
if "\t" in row:
token, label = row.split("\t")
current_tokens.append(token)
current_labels.append(label)
else:
# Handle cases where the delimiter is missing
# You can choose to skip these rows or handle them differently
logger.warning(f"Delimiter missing in row: {row}")
else:
# New sentence
if not current_tokens:
# Consecutive empty lines will cause empty sentences
continue
assert len(current_tokens) == len(current_labels), "💔 between len of tokens & labels"
sentence = (
sentence_counter,
{
"id": str(sentence_counter),
"tokens": current_tokens,
"ner_tags": current_labels,
},
)
sentence_counter += 1
current_tokens = []
current_labels = []
yield sentence
# Don't forget the last sentence in the dataset 🧐
if current_tokens:
yield sentence_counter, {
"id": str(sentence_counter),
"tokens": current_tokens,
"ner_tags": current_labels,
} |