Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
1K<n<10K
License:
Update indian_names.py
Browse files- indian_names.py +41 -32
indian_names.py
CHANGED
@@ -8,10 +8,10 @@ _URL = "https://github.com/Kriyansparsana/demorepo/blob/f4501f1de2c759ee215952b2
|
|
8 |
|
9 |
|
10 |
class indian_namesConfig(datasets.BuilderConfig):
|
11 |
-
"""
|
12 |
|
13 |
def __init__(self, **kwargs):
|
14 |
-
"""BuilderConfig
|
15 |
Args:
|
16 |
**kwargs: keyword arguments forwarded to super.
|
17 |
"""
|
@@ -19,10 +19,12 @@ class indian_namesConfig(datasets.BuilderConfig):
|
|
19 |
|
20 |
|
21 |
class indian_names(datasets.GeneratorBasedBuilder):
|
22 |
-
"""
|
23 |
|
24 |
BUILDER_CONFIGS = [
|
25 |
-
indian_namesConfig(
|
|
|
|
|
26 |
]
|
27 |
|
28 |
def _info(self):
|
@@ -35,8 +37,7 @@ class indian_names(datasets.GeneratorBasedBuilder):
|
|
35 |
datasets.features.ClassLabel(
|
36 |
names=[
|
37 |
"B-PER",
|
38 |
-
"B-ORG"
|
39 |
-
|
40 |
]
|
41 |
)
|
42 |
),
|
@@ -48,7 +49,7 @@ class indian_names(datasets.GeneratorBasedBuilder):
|
|
48 |
def _split_generators(self, dl_manager):
|
49 |
"""Returns SplitGenerators."""
|
50 |
urls_to_download = {
|
51 |
-
"train": f"{_URL}"
|
52 |
}
|
53 |
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
54 |
|
@@ -56,32 +57,40 @@ class indian_names(datasets.GeneratorBasedBuilder):
|
|
56 |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
57 |
]
|
58 |
|
59 |
-
|
60 |
def _generate_examples(self, filepath):
|
61 |
logger.info("⏳ Generating examples from = %s", filepath)
|
62 |
with open(filepath, encoding="utf-8") as f:
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
for
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
"ner_tags": ner_tags,
|
73 |
-
}
|
74 |
-
guid += 1
|
75 |
-
ner_tags = []
|
76 |
else:
|
77 |
-
#
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
class indian_namesConfig(datasets.BuilderConfig):
|
11 |
+
"""The WNUT 17 Emerging Entities Dataset."""
|
12 |
|
13 |
def __init__(self, **kwargs):
|
14 |
+
"""BuilderConfig for WNUT 17.
|
15 |
Args:
|
16 |
**kwargs: keyword arguments forwarded to super.
|
17 |
"""
|
|
|
19 |
|
20 |
|
21 |
class indian_names(datasets.GeneratorBasedBuilder):
|
22 |
+
"""The WNUT 17 Emerging Entities Dataset."""
|
23 |
|
24 |
BUILDER_CONFIGS = [
|
25 |
+
indian_namesConfig(
|
26 |
+
name="indian_names", version=datasets.Version("1.0.0"), description="The WNUT 17 Emerging Entities Dataset"
|
27 |
+
),
|
28 |
]
|
29 |
|
30 |
def _info(self):
|
|
|
37 |
datasets.features.ClassLabel(
|
38 |
names=[
|
39 |
"B-PER",
|
40 |
+
"B-ORG"
|
|
|
41 |
]
|
42 |
)
|
43 |
),
|
|
|
49 |
def _split_generators(self, dl_manager):
|
50 |
"""Returns SplitGenerators."""
|
51 |
urls_to_download = {
|
52 |
+
"train": f"{_URL}",
|
53 |
}
|
54 |
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
55 |
|
|
|
57 |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
58 |
]
|
59 |
|
|
|
60 |
def _generate_examples(self, filepath):
|
61 |
logger.info("⏳ Generating examples from = %s", filepath)
|
62 |
with open(filepath, encoding="utf-8") as f:
|
63 |
+
current_tokens = []
|
64 |
+
current_labels = []
|
65 |
+
sentence_counter = 0
|
66 |
+
for row in f:
|
67 |
+
row = row.rstrip()
|
68 |
+
if row:
|
69 |
+
token, label = row.split("\t")
|
70 |
+
current_tokens.append(token)
|
71 |
+
current_labels.append(label)
|
|
|
|
|
|
|
|
|
72 |
else:
|
73 |
+
# New sentence
|
74 |
+
if not current_tokens:
|
75 |
+
# Consecutive empty lines will cause empty sentences
|
76 |
+
continue
|
77 |
+
assert len(current_tokens) == len(current_labels), "💔 between len of tokens & labels"
|
78 |
+
sentence = (
|
79 |
+
sentence_counter,
|
80 |
+
{
|
81 |
+
"id": str(sentence_counter),
|
82 |
+
"tokens": current_tokens,
|
83 |
+
"ner_tags": current_labels,
|
84 |
+
},
|
85 |
+
)
|
86 |
+
sentence_counter += 1
|
87 |
+
current_tokens = []
|
88 |
+
current_labels = []
|
89 |
+
yield sentence
|
90 |
+
# Don't forget last sentence in dataset 🧐
|
91 |
+
if current_tokens:
|
92 |
+
yield sentence_counter, {
|
93 |
+
"id": str(sentence_counter),
|
94 |
+
"tokens": current_tokens,
|
95 |
+
"ner_tags": current_labels,
|
96 |
+
}
|